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DISTINGUISHED G2-STRUCTURES ON SOLVMANIFOLDS

JORGE LAURET

Abstract. Among closed G2-structures there are two very distinguished classes: Lapla-
cian solitons and Extremally Ricci-pinched G2-structures. We study the existence prob-
lem and explore possible interplays between these concepts in the context of left-invariant
G2-structures on solvable Lie groups. Also, some Ricci pinching properties of G2-
structures on solvmanifolds are obtained, in terms of the extremal values and points

of the functional F = Scal
2

|Ric |2
, 0 < F < 7. Many natural open problems have been

included.
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1. Introduction

Our main motivation in this article is the following heuristic though very natural and in-
triguing question, which we borrowed from the first page of Besse’s book [Be] and adapted
to G2-geometry:

Given a 7-dimensional differentiable manifold M , are there any best (or
nicest, or most distinguished) G2-structures on M?

The question remains natural when restricted to special kinds of manifolds or particular
classes of G2-structures, like the set of all G2-structures with the same associated metric,
left-invariant G2-structures on a given Lie group, etc. The meaning of the adjectives in
the question are of course part of the problem, and any good candidate is expected to be
weak enough to allow existence results but also sufficiently strong to imply some kind of
uniqueness or finiteness results.

As a first reduction, we consider closed G2-structures, but there are many other rea-
sonable and natural special classes to start with. We have included in an appendix (see
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2 JORGE LAURET

Section 5) the definition of several of them, as well as a diagram describing the inclusion
relationships between such classes (see Figure 1). No topological obstruction on M to ad-
mit a closed G2-structure is known, other than the ones for admitting just a G2-structure,
i.e. orientable and spin.

In the case when a G2-structure ϕ is closed, the only torsion that survives is contained
in a 2-form τ , and the starting situation can be described as follows:

dϕ = 0, τ = − ∗ d ∗ ϕ, d ∗ ϕ = τ ∧ ϕ, dτ = ∆ϕ,

where ∗ and ∆ denote the Hodge star and Laplacian operator, respectively, defined by the
metric attached to ϕ.

Among closed G2-structures, one finds two concepts which are both distinguished but
from points of view of a very different taste:

• Laplacian solitons: dτ = cϕ+ LXϕ for some c ∈ R and X ∈ X (M).

• Extremally Ricci-pinched: dτ = 1
6 |τ |2ϕ+ 1

6 ∗ (τ ∧ τ).
In this paper, we mainly work in the homogeneous setting (see [L4] for further infor-

mation); more specifically, in the context of left-invariant G2-structures on solvable Lie
groups (or solvmanifolds). We aim to overview what is known on the existence of the
above two special classes of G2-structures and explore possible interplays. Diverse open
problems have been included throughout the paper.

Any G2-structure or metric on a Lie group is always assumed to be left-invariant.

1.1. Solitons. The space G of all G2-structures on a given 7-dimensional manifold M is
an open cone in Ω3M , whose equivalence classes are Diff(M)-orbits. Assume that at each
ϕ ∈ G, we have a preferred direction q(ϕ) ∈ Ω3M , an optimal ‘direction of improvement’
in some sense (e.g. the gradient of a natural functional on G). It is therefore reasonable
to consider an element ϕ ∈ G distinguished when q(ϕ) is tangent to its equivalence class
(up to scaling), i.e.

(1) q(ϕ) ∈ Tϕ (R∗Diff(M) · ϕ) .
Heuristically, it is like such a ϕ is nice enough that it does not need to be improved. A
G2-structure for which condition (1) holds will be called a q-soliton. It is easy to see that
if q is Diff(M)-equivariant, then the following conditions are equivalent:

• ϕ is a q-soliton.

• q(ϕ) = cϕ+ LXϕ for some c ∈ R, X ∈ X(M).

• The solution ϕ(t) starting at ϕ to the corresponding geometric flow

∂

∂t
ϕ(t) = q(ϕ(t)),

is self-similar, i.e. ϕ(t) = c(t)f(t)∗ϕ for some c(t) ∈ R and f(t) ∈ Diff(M).

The q-soliton is said to be expanding, steady or shrinking if c > 0, c = 0 or c < 0,
respectively. The corresponding self-similar solutions are respectively immortal, eternal
and ancient if q(aϕ) = aαq(ϕ) for any a ∈ R∗ and some fixed α < 1 (see [L3, Section 4.4]).

We consider in this paper the direction q(ϕ) = ∆ϕ, which determines the so called
Laplacian solitons and the Laplacian flow introduced by Bryant in [B]. Many other types
of q-solitons have also been studied in the literature, see for example [WW1, WW2, G, BF].

We next list all the results on Laplacian solitons in the literature that we are aware of:
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• [Li, Corollary 1] There are no compact shrinking Laplacian solitons, and the
only compact steady Laplacian solitons are the torsion-free G2-structures (see also
[LoW, Proposition 9.4] for a shorter proof in the closed case).

• Any nearly parallel G2-structure ϕ satisfies ∆ϕ = c2ϕ and so it is a coclosed
expanding Laplacian soliton. Examples are given by the round and squashed
spheres (see [WW2, Section 4.1]).

• [KMT, Section 6] Examples of non-compact expanding coclosed Laplacian solitons
which are not nearly parallel. However, they still are all eigenforms (i.e. ∆ϕ = cϕ
for some c ∈ R).

• [LoW, Proposition 9.1] The only compact and closed Laplacian solitons which are
eigenforms are the torsion-free G2-structures.

• [L3, Section 7] A closed G2-structure on a nilpotent Lie group which is an expand-
ing Laplacian soliton and is not an eigenform was found.

• [N] Closed expanding Laplacian solitons were exhibited on seven of the twelve
nilpotent Lie groups admitting a closed G2-structure. There is even a one-parameter
family of pairwise non-homothetic closed Laplacian solitons on one of them.

• [L4] Homogeneous Laplacian solitons are studied using the algebraic soliton ap-
proach. Many continuous families of expanding Laplacian solitons on almost-
abelian Lie groups were given (see [L4, Section 5.2]).

• [L5, Section 4] Examples of steady and shrinking closed Laplacian solitons were
found on solvmanifolds by using coupled SU(3)-structures.

• [FR] Closed expanding Laplacian solitons were found on solvmanifolds from sym-
plectic half-flat SU(3)-structures.

The following are open questions on Laplacian solitons:

• Are there compact and closed expanding Laplacian solitons?

• Are there compact expanding Laplacian solitons other than nearly parallel G2-
structures?

1.2. Extremally Ricci pinched G2-structures. The following nice interplay between
the metric and the torsion 2-form of a closed G2-structure was discovered by R. Bryant.
Let Scal and Ric denote the scalar and Ricci curvature of the metric attached to a G2-
structure.

Theorem 1.1. [B, Corollary 3] If ϕ is a closed G2-structure on a compact manifold M ,

then
∫

M
Scal2 ∗1 ≤ 3

∫

M
|Ric |2 ∗ 1,

and equality holds if and only if dτ = 1
6 |τ |2ϕ+ 1

6 ∗ (τ ∧ τ).
The special G2-structures for which equality holds were called extremally Ricci-pinched

(ERP for short) in [B, Remark 13]. Notice the factor of 3 on the right hand side, much
smaller than the factor of 7 provided by the Cauchy-Schwartz inequality, only attained at
Einstein metrics.
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As far as we know, there are only two examples of ERP G2-structures in the literature
and they are both homogeneous: the first one was given in [B, Example 1] on the ho-
mogeneous space SL2(C) ⋉ C2/SU(2) (and on any compact quotient by a lattice), which
also has a presentation as a G2-structure on the solvable Lie group given in [L5, Examples
4.13, 4.10], and the one found on a unimodular solvable Lie group in [L5, Example 4.7].
Surprisingly (or not), both examples are also steady Laplacian solitons. We do not know
if there could be an interplay between the two notions.

Motivated by Theorem 1.1, we consider the invariant (up to isometry and scaling)
functional

F :=
Scal2

|Ric |2 , 0 ≤ F ≤ 7,

on the space of all non-flat homogeneous closed G2-structures (recall that a Ricci flat ho-
mogeneous Riemannian manifold is necessarily flat; see [AK]). Note that after integrating
onM in the compact case, F ≤ 3 by Theorem 1.1. On the other hand, we know that F < 7
always since no solvable Lie group admits an Einstein closed (non-parallel) G2-structure
(see [FFM1]) and the Alekseevskii Conjecture, asserting that any homogeneous Einstein
metric of negative scalar curvature is isometric to a solvmanifold, has recently been proved
in dimension 7 (see [AL]).

Within the class of closed G2-structures on almost-abelian Lie groups, F ≤ 1 and
equality holds precisely at non-nilpotent expanding Laplacian solitons (see [L4, Section
5]). At some point it was not unreasonable to expect that F ≤ 3 would also hold in
the homogeneous case. However, we found in [L5] a curve ϕt,

1
4 ≤ t ≤ 1, of closed G2-

structures on pairwise non-isomorphic solvmanifolds such that F (ϕt) is strictly decreasing
and

F (ϕ1/4) =
81
17 (≈ 4.76) > 3 = F (ϕ1).

Furthermore, ϕt is a shrinking Laplacian soliton for any 1
4 ≤ t < 1 and ϕ1 is the ERP

steady Laplacian soliton given by Bryant. It is therefore natural to wonder about what
would be the ‘extremally Ricci pinched’ G2-structures in the homogeneous case:

What is the value of supF and its meaning? Is it a maximum? Are the
maximal G2-structures distinguished in some sense?

We study the behavior of the functional F on solvmanifolds in Section 4, after giving a
summary on what is known on Ricci pinching of solvmanifolds in the Riemannian case in
Section 3.

Acknowledgements. The author is very grateful to the organizers of the ‘Workshop on G2

Manifolds and Related Topics’, August 21 - 25, 2017 and to The Fields Institute for the
great hospitality. The author would also like to thank Ramiro Lafuente for very helpful
comments.

2. The space of closed G2-structures on solvmanifolds

We fix a 7-dimensional real vector space s endowed with a basis {e1, . . . , e7} and the
positive 3-form

ϕ := e127 + e347 + e567 + e135 − e146 − e236 − e245,
whose associated inner product 〈·, ·〉 is the one making the basis {ei} orthonormal. Let
S ⊂ Λ2s∗⊗ s denote the algebraic subset of all Lie brackets on s which are solvable. Each
µ ∈ S will be identified with the left-invariant G2-structure determined by ϕ on the simply
connected solvable Lie group Sµ with Lie algebra (s, µ):

µ←→ (Sµ, ϕ).
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In this way, the isomorphism class GL7(R) · µ stands for the set of all left-invariant G2-
structures on Sµ:

(Sh·µ, ϕ)←→ (Sµ, ϕ(h·, h·, h·)), ∀h ∈ GL7(R).

Note that h−1 is an isomorphism determining an equivalence between these two Lie groups
endowed with G2-structures. Recall that any G2-structure or metric on a Lie group is
assumed to be left-invariant.

Thus any two Lie brackets in the same G2-orbit are equivalent as G2-structures, and
if they are in the same O(7)-orbit then they are isometric as Riemannian metrics. Both
converse assertions hold for completely real Lie brackets. We note that the orbit O(7) · µ
consists of all the G2-structures on Sµ defining some fixed metric.

By intersecting S with the linear subspace {µ ∈ Λ2s∗ ⊗ s : dµϕ = 0}, one obtains the
G2-invariant algebraic subset

Sclosed := {µ ∈ S : dµϕ = 0}.
The space Sclosed therefore parameterizes the set of all closed G2-structures on solvman-
ifolds. Note that a Lie group Sµ admits a closed G2-structure if and only if the orbit
GL7(R) · µ meets Sclosed (or equivalently, the above linear subspace). We do not know
much about the topology of the cone GL7(R) · µ ∩ Sclosed of all closed G2-structures on a
given Lie group: is it connected? Is its intersection with a sphere connected?

Recall that for each µ ∈ Sclosed, the only torsion form that survives is the 2-form
τµ ∈ Λ2s∗ given by

τµ = − ∗ dµ ∗ ϕ, dµ ∗ ϕ = τµ ∧ ϕ.
We also consider the G2-invariant subset of torsion-free G2-structures,

Stf := {µ ∈ S : dµϕ = 0, dµ ∗ ϕ = 0} = {µ ∈ Sclosed : τµ = 0} ,
and the O(7)-invariant subset

Sflat := {µ ∈ S : (Sµ, 〈·, ·〉) is flat} = {µ ∈ S : Scalµ = 0} .
Since the scalar curvature of µ (i.e. of (Sµ, 〈·, ·〉)) equals Scalµ = −1

2 |τµ|2, we obtain that

Stf = Sclosed ∩ Sflat.

2.1. Nilpotent case. There are exactly twelve nilpotent Lie algebras admitting a closed
G2-structure (see [CF]). Thus the space Sclosed meets twelve nilpotent GL(s)-orbits, say
GL(s) · µ1, . . . ,GL(s) · µ12. In [FFM2], the authors classified which of these twelve Lie
groups admit a closed G2-structure which is in addition a Ricci soliton (called nilsolitons

in the nilpotent case), and in [N], the existence of closed Laplacian solitons was studied.
The following information has been extracted from these two articles (we use the same
enumeration of the algebras):

• µ1: This is the abelian Lie algebra and so Sµ1
= R7 admits a unique G2-structure

up to equivalence which is torsion-free.
• µ2: The Lie group Sµ2

admits a unique closed G2-structure up to equivalence and
scaling, which is a nilsoliton and also a Laplacian soliton.
• µ3: There exists a curve of closed Laplacian solitons on Sµ3

which are not nilsoli-
tons; however, there are no nilsoliton closed G2-structures on this group.
• µ4: The Lie group Sµ4

admits a pairwise non-equivalent one-parameter family of
closed G2-structures, among which there are a nilsoliton and a (different) Laplacian
soliton.
• µ5: Sµ5

does not admit any closed G2-structure which is a nilsoliton. There is
though a Laplacian soliton belonging to a curve of closed G2-structures.
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• µ6: The Lie group Sµ6
admits a curve of closed G2-structures, one of them being

a nilsoliton and another one a Laplacian soliton.
• µ7: Sµ7

does not admit any closed G2-structure which is a nilsoliton. However,
there exists a curve of closed G2-structures containing a Laplacian soliton.
• µ8, µ9, µ11: None of these Lie groups admit a closed G2-structure which is a nil-
soliton.
• µ10: The existence of a nilsoliton closed G2-structure in Sµ10

is still open.
• µ12: The Lie group Sµ12

admits a closed G2-structure which is also a nilsoliton.

The existence of closed Laplacian solitons on the Lie groups Sµ8
, . . . , Sµ12

remains open.

2.2. Almost-abelian case. Closed G2-structures in the class of almost-abelian Lie alge-
bras (i.e. with a codimension-one abelian ideal) were studied in [L4, Section 5], we refer the
reader there for further information. One attaches to each matrix A ∈ gl6(R) a Lie bracket
µA ∈ S as follows: relative to a fixed orthonormal basis {e1, . . . , e7}, n := span{e1, . . . , e6}
is an abelian ideal for µA and adµA

e7|n = A.
We have that µA ∈ Sclosed if and only if A ∈ sl3(C) ⊂ gl6(R), where the complex

structure defining sl3(C) is Jei = ei+1, i = 1, 3, 5, and µA ∈ Stf if and only if A ∈ su(3).
It is easy to see that µB ∈ GL(s) · µA for A,B ∈ sl3(C) if and only if B ∈ R∗SL3(C) · A,
where the last action is by conjugation. This implies that every almost-abelian Lie algebra
admitting a closed G2-structure is isomorphic to µA for some matrix A in the following
list:





α
β

γ



 ,





α 1
α
−2α



 ,





0 1
0

0



 ,





0 1
0 1

0



 ,





i
ai

bi



 ,





i 1
i
−2i



 ,

where α, β, γ ∈ C, α + β + γ = 0, |α| = 1, α 6= ±i and a, b ∈ R, 1 + a + b = 0. The two
nilpotent matrices in the middle define groups isomorphic to Sµ2

and Sµ6
, respectively (see

Section 2.1). Moreover, each Lie group SµA
admits an SL3(C)-orbit of closed G2-structures

up to scaling and each SU(3)-orbit consists of pairwise equivalent structures. Thus there
are continuous families of closed G2-structures depending on many parameters on most of
these Lie groups (see e.g. [L4, Example 5.9]).

It is easy to see that if A = S+N for A,S,N ∈ sl3(C), where S is semisimple, N nilpo-

tent and [S,N ] = 0, then µS , µN ∈ R∗SL3(C) · µA ⊂ Sclosed. It is worth observing that
any kind of geometric quantity associated to closed G2-structures depends continuously
on the Lie bracket µ ∈ Sclosed, so µS and µN inherit any property that µA may have. This
can also be used to study pinching curvature properties (see [L3, Section 3.3] and the next
sections).

It is proved in [L4, Proposition 5.22] that µA is a Laplacian soliton for any normal
matrix A ∈ sl3(C) (see [L4, Propositions 5.22, 5.27] for the Laplacian soliton conditions
for a nilpotent A).

3. Ricci pinching of solvmanifolds

In this section, we give a short overview on Ricci pinching of solvmanifolds. We refer
to [LW] for a more detailed treatment with a complete list of references.

We fix an n-dimensional real vector space s endowed with an inner product 〈·, ·〉. Let
S ⊂ Λ2s∗⊗ s denote the algebraic subset of all Lie brackets on s which are solvable. Given
µ ∈ S, its isomorphism class GL(s) · µ can be identified with the set of all left-invariant
metrics on the corresponding simply connected solvable Lie group Sµ in the following way:

(Sh·µ, 〈·, ·〉) ←→ (Sµ, 〈h·, h·〉), ∀h ∈ GL(s).
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Consider the following GL(s)-invariant subsets of S:
SiR := {µ ∈ S : Spec(adµX) ⊂ iR, ∀X ∈ s} ,
SR := {µ ∈ S : either adµX is nilpotent or Spec(adµX) * iR, ∀X ∈ s} ,
ScR := {µ ∈ S : Spec(adµX) ⊂ R, ∀X ∈ s} ,

Sunim := {µ ∈ S : tr adµX = 0, ∀X ∈ s} ,
N := {µ ∈ S : µ is nilpotent} ,

where Spec(adµX) is the set of eigenvalues of the operator adµX.
The Lie algebras in SiR and SR are called of imaginary and real type, respectively (see

e.g. [BL2, Section 3]). The closed subset ScR is known in the literature as the class of
completely real or completely solvable Lie algebras, and Sunim is the subset of unimodular

solvable Lie algebras. It easily follows that SiR is closed, SR r N is open in S and
SiR ∩ SR = N . We also consider the subset

Sflat := {µ ∈ S : (Sµ, 〈·, ·〉) is flat} .
The following inclusions hold,

{0} ⊂ Sflat ⊂ GL(s) · Sflat ⊂ SiR ⊂ Sunim, {0} ⊂ N ⊂ ScR ⊂ SR.
and the following lemma will be very useful.

Lemma 3.1. [BL2, Lemma 3.4] If µ ∈ SR then GL(s) · µ ∩ Sflat = {0}.
From our point of view, the Ricci pinching is captured by the extremal values of the

functional

F : S r Sflat −→ R, F (µ) :=
Scal2µ
|Ricµ |2

,

where Scalµ and Ricµ are respectively the scalar curvature and Ricci operator of µ (recall
that µ ↔ (Sµ, 〈·, ·〉)). Note that F is invariant up to isometry and scaling; in particular,
F is O(s)-invariant. Since Scalµ = 0 if and only if µ ∈ Sflat, one obtains from the
Cauchy-Schwartz inequality that

0 < F (µ) ≤ n, ∀µ ∈ S r Sflat,
with F (µ) = n if and only if µ is Einstein. For each µ ∈ S we define,

mµ := inf F (GL(s) · µ), Mµ := supF (GL(s) · µ),
that is, the infimum and supremum of F among all left-invariant metrics on the Lie group
Sµ. It follows that

(mµ,Mµ) ⊂ F (GL(s) · µ) ⊂ F
(

GL(s) · µ
)

⊂ [mµ,Mµ].

Recall that F is not defined on Sflat, so when we write F (C) for some subset C ⊂ S we
always mean F (C r Sflat).

An element µ ∈ S is called a solvsoliton when Ricµ = cI + D for some c ∈ R and
D ∈ Der(µ). Any solvsoliton belongs to SR (see [L1, Theorem 4.8]) and any Ricci soliton
metric on a solvable Lie group is isometric to a solvsoliton (see [J]).

The only non-abelian Lie groups with mµ =Mµ are precisely those admitting a unique
metric up to isometry and scaling, i.e.

µheis(e1, e2) = e3, µhyp(en, ei) = ei, i = 1, . . . , n− 1,

and zero otherwise. Note that Sµhyp
is isometric to the real hyperbolic space RHn and so

mµhyp
=Mµhyp

= n. On the other hand, mµheis
=Mµheis

= 1
3 , and since µheis ∈ GL(s) · µ

for any µ /∈ GL(s) · µhyp, we have that
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mµ ≤ 1
3 for any µ ∈ S such that µ /∈ GL(s) · µhyp.

The maximum of F among all left-invariant metrics on a nilpotent Lie group is attained
at a nilsoliton, which is known to be unique up to isometry and scaling, if one exists. For
any nonzero µ ∈ N ,

F (GL(s) · µ) =























(

1
3 ,Mµ

]

, Sµ admits a nilsoliton andµ /∈ GL(s) · µheis,
(

1
3 ,Mµ

)

, Sµ does not admit any nilsoliton,

{

1
3

}

, µ ∈ GL(s) · µheis.

We also have that F (N ) = [13 , Cn] for some constant Cn < n depending only on n, which
is necessarily the value of F at some nilsoliton. The nilsolitons with Ric = Dg(1, 2, . . . , n)

have F = n(n−1)
2(2n+1) , showing that

1
5n ≤ Cn for all 7 ≤ n. In the nilpotent case, the functional

F is strictly increasing along any Ricci flow solution g(t), unless g(0) is a nilsoliton (see
[L2]).

As in Section 2.2, in order to study the almost-abelian case, one fixes an orthogonal
decomposition s = n ⊕ Ren and attaches to each matrix A ∈ gln−1(R) (identified with
gl(n) via any fixed orthonormal basis) the Lie bracket µA defined by µA(n, n) = 0 and
adµA

en|n = A. The construction covers, up to isometry, all left-invariant metrics on
almost abelian Lie groups. Note that the class of almost-abelian Lie brackets is contained
in SiR ∪ SR.

Using well-known formulas for the Ricci curvature of solvmanifolds, one obtains that

F (A) ≤ 1 +
(trA)2

trS(A)2
≤ n,

where S(A) := 1
2(A + At). Moreover, F (A) = n if and only if S(A) = aI, a 6= 0, if

and only if µA is isometric to the real hyperbolic space RHn. It was proved in [Ar,
Proposition 3.3] that A is a solvsoliton if and only if either A is normal or A is nilpotent
and [A, [A,At]] = cA for some c ∈ R.

In the case when trA = 0, i.e. µA unimodular, it follows that

F (A) =

(

trS(A)2
)2

(trS(A)2)2 + 1
4 |[A,At]|2

,

hence F (A) ≤ 1 and equality holds if and only if [A,At] = 0. Thus MA = 1 for any
µA ∈ SR and it is a maximum if and only if A is semisimple. Note that the maxima of F
on one of these Lie groups are precisely solvsolitons, as in the nilpotent case.

More generally, it is proved in [BL1, (2)] that for any µ ∈ Sunim, F (λ) = Mµ for some
λ ∈ GL(s) · µ if and only if λ is a solvsoliton.

Some general results on Ricci pinching of solvmanifolds follow.

Theorem 3.2. [LW]

(i) 0 < mµ and F
(

GL(s) · µ
)

= [mµ,Mµ] for any µ ∈ SR.

(ii) For n ≥ 4, inf{mµ : µ ∈ SR} = 0; in particular, F (SR) = (0, n].

(iii) F (GL(s) · µ) = (mµ,Mµ] for every µ ∈ SR ∩ Sunim.

(iv) mµ = 0 for any µ ∈ S r SR.
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4. Ricci pinching of G2-structures on solvmanifolds

With Sections 1.2 and 3 as our motivation, we now study the extremal points and values
of the functional

F : Sclosed r Stf −→ R, F (µ) :=
Scal2µ
|Ricµ |2

,

where Scalµ and Ricµ are respectively the scalar curvature and Ricci operator of (Sµ, 〈·, ·〉).
Since no solvable Lie group admits an Einstein (non-flat) and closed G2-structure (see
[FFM1]),

0 < F (µ) < 7, ∀µ ∈ Sclosed r Stf .
For each µ ∈ Sclosed we define,

nµ := inf F (GL(s) · µ ∩ Sclosed), Nµ := supF (GL(s) · µ ∩ Sclosed),
that is, the infimum and supremum of F among all closed G2-structures on the Lie group
Sµ. Recall that F is not defined on Stf , so when we write F (C) for some subset C ⊂ Sclosed
we always mean F (C r Stf ).

It follows from Theorem 1.1 that if µ ∈ Sclosed and Sµ admits a lattice (i.e. a cocompact
discrete subgroup), then F (µ) ≤ 3, and equality holds if and only if µ is ERP. On the
other hand, if for a unimodular µ ∈ Sclosed there is a solvsoliton λ ∈ GL7(R) · µ ∩ Sclosed,
then F (λ) = Nµ =Mµ.

For any class of G2-structures defined by a closed cone C ⊂ S such that C ∩ Stf = {0},
one has that

C ∩ Sclosed ∩ {µ : |µ| = 1}
is a compact subset of Sclosed r Stf . This implies that the infimum and supremum of
F (C ∩ Sclosed) are actually minimum and maximum, respectively, and

0 < minF (C ∩ Sclosed) ≤ maxF (C ∩ Sclosed) < 7.

Examples of classes C for which the above holds include

• N or any closed cone contained in N .

• GL7(R) · µ for any µ ∈ SR (see Lemma 3.1).

It would be really interesting to know the number

Nclosed := supF (Sclosed).
If Nclosed turns out to be a maximum, then the closed G2-structures with F = Nclosed

should be special in some sense. At the moment, the largest known value for F on Sclosed
is 81

17 ∼ 4.76 and was found in [L5, Example 4.11] at a shrinking Laplacian soliton.

Proposition 4.1.

(i) 0 < nµ for any µ ∈ Sclosed ∩ SR.

(ii) inf{nµ : µ ∈ Sclosed ∩ SR} = 0.

Proof. Given µ ∈ Sclosed ∩ SR, it follows from [BL2, Lemma 3.4] that

GL7(R) · µ ∩ Sclosed ∩ {µ : |µ| = 1}
is a compact subset of Sclosed r Stf , so part (i) follows. Part (ii) was proved in Example
4.2 by using the family Ct. �

We note that part (i) also follows from Theorem 3.2, (i) and the fact that mµ ≤ nµ.
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Corollary 4.2. For any non-abelian solvable Lie group S of real type there exists a con-

stant C(S) > 0 depending only on S such that

|Ric(ψ)| ≤ C(S)|Scal(ψ)|,
for any left-invariant G2-structure ψ on S.

This estimate may have some applications in the study of convergence of geometric
flows for G2-structures (see [BL2]).

4.1. Nilpotent case. Since µheis does not appear in the list µ1, . . . , µ12 given in Section
2.1, we obtain that 1

3 < minF (Sclosed ∩ N ) and so 1
3 < nµ for any µ ∈ Sclosed ∩ N . In

what follows, we describe what we know about the behavior of F on each of the nilpotent
Lie groups admitting a closed G2-structure (see [N]):

• µ1: F is not defined.
• µ2: F ≡ 1

2 ; in particular, nµ2
= Nµ2

= 1
2 .

• µ3: F ≡ 1
2 on the curve of closed Laplacian solitons.

• µ4: F = 4
5 = Nµ4

at the nilsoliton and F = 3
4 at the Laplacian soliton.

• µ5: F = 3
4 at the Laplacian soliton, but F > 3

4 on a certain curve of closed
G2-structures.
• µ6: At the nilsoliton, F = 4

5 = Nµ6
, and at the Laplacian soliton, F = 3

4 .

• µ7: At the Laplacian soliton, F = 3
4 , though F > 3

4 on a curve of closed G2-
structures.
• µ12: F = 1 = Nµ12

at the nilsoliton.

We note that Laplacian solitons in general fail to provide the maximum value of F on
a given nilpotent Lie group.

4.2. Almost-abelian case. We work in this section on the class of almost-abelian solv-
able Lie groups (see Section 2.2). For each A ∈ sl3(C) one has that

F (A) =
|H(A)|4

|H(A)|4 + 1
8 |[A,A∗]|2 ,

whereH(A) := 1
2(A+A

∗) is the hermitian part of A and |B|2 := trBB∗ for any B ∈ sl3(C).
It follows that F (A) ≤ 1 and equality holds if and only if [A,A∗] = 0. Thus the maximum
of F on a given non-nilpotent SµA

is only attained if A is semisimple and it is both a
Laplacian and a Ricci soliton. The following example explicitly shows that the maximum
value of F is not always attained at a Laplacian soliton in the nilpotent case.

Example 4.3. Consider the set of closed G2-structures on the 3-step nilpotent Lie group
Sµ6

parameterized by




0 a 0
0 1

0



 , a > 0.

The Ricci soliton and the Laplacian soliton correspond to a = 1 and a =
√
2, respectively.

We have that

F (a) =
a4 + 2a2 + 1

2a4 + a2 + 2
, 0 < a,

a function with only one critical point, a global maximum with F = 4
5 at the nilsoliton

a = 1. Note that at the Laplacian soliton, F (
√
2) = 3

4 .
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Concerning the behavior of F close to Stf , we have that

At :=





t −1
1 −t

0



 , F (At) =
t4

t4 + t2
−→
t→0

0; Bt :=





t −1
1 t

−2t



 , F (Bt) ≡ 1.

This implies that F diverges at the torsion-free G2-structure A0 = B0. Since Spec(At) =

{±i
√
1− t2} for any t < 1, we deduce that nA0

= 0. On the other hand, Spec(Bt) =
{±i + t,−2t}, so the family of Laplacian solitons µBt is pairwise non-isomorphic.

More generally, nA = 0 for every µA ∈ SiR rN . Indeed, if a 6= b, then

Dt :=





ai t
bi

ci



 , F (Dt) =
t4

t4 + (a− b)2t2 −→t→0
0.

Recall that the class of almost-abelian Lie brackets is contained in the disjoint union of
SR rN , N and SiR rN . In the list of matrices given in Section 2.2, the first two belong
to SR rN , the second two to N and the last two to SiR rN .

The following family Ct, 0 < t, in SR given by

Ct :=





t −1
1 0

−t



 , F (Ct) =
4t4

4t4 + t2
−→
t→0

0,

shows that inf{nA : µA ∈ Sclosed ∩ SR} = 0.
In [L4, Example 5.20], the Laplacian flow on the family





0 a
b 0

0



 , F (a, b) =
(a+ b)4

(a+ b)4 + (a2 − b2)2 ,

was studied. Using the ODE obtained there for a(t), b(t), it is easy to prove that F is
strictly decreasing along the Laplacian flow solutions starting at closed G2-structures with
ab < 0, a 6= −b. This shows that the Laplacian flow does not always improve the Ricci
pinching of closed G2-structures. On the other hand, the functional F was found to be
increasing in some other Laplacian flow solutions like in the above example with ab > 0
and in the evolution studied in [L5, Example 4.9].

4.3. Open questions. It would be interesting to know the answers to the following nat-
ural questions:

• Given A0 ∈ sl3(C) such that Spec(A0) ⊂ iR, i.e. µA0
∈ SiR, does limF as A goes

to A0 exist on the isomorphism class R∗SL3(C) · A0? Examples At and Bt above
show that such a limit does not exist on the set of all closed almost-abelian Lie
brackets.

• Is nµ = 0 for any µ /∈ Sclosed∩SR? This holds in the Riemannian case (see Theorem
3.2, (iv)) and in the G2 case for almost-abelian Lie groups (see Section 4.2).

• Is F (GL7(R) · µ ∩ Sclosed) = (nµ, Nµ] for any µ ∈ SR?

• Does F (λ) = Nµ hold for any solvsoliton λ ∈ GL7(R) ·µ∩Sclosed? This is known to
be true in the unimodular case and it is open in the non-unimodular Riemannian
case.

• Is F (GL(s)·µ) = (0,Mµ) for any µ ∈ SclosedrSR? What about for µ ∈ SiR∩Sclosed?
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P E → RS

ւ ↓ ց ր

C LCP NP → EF → LS

↓ ւ ց ↓ ց

LCC LCNP CC

ց ↓ ւ

LCB ← ST

Figure 1. Special classes of G2-structures

• What is the value of sup{Mµ : µ ∈ SiR ∩ Sclosed}?

5. Appendix: Special classes of G2-structures

The torsion forms of a G2-structure ϕ on M are the components of the intrinsic torsion

∇ϕ, where ∇ is the Levi-Civita connection of the metric g attached to ϕ. They can be
defined as the unique differential forms τi ∈ ΩiM , i = 0, 1, 2, 3, such that

(2) dϕ = τ0 ∗ ϕ+ 3τ1 ∧ ϕ+ ∗τ3, d ∗ ϕ = 4τ1 ∧ ∗ϕ + τ2 ∧ ϕ.
Some special classes of G2-structures are defined or characterized as follows, we refer to

[FG] for further information:

• parallel (P) or torsion-free: dϕ = 0 and d ∗ ϕ = 0, or equivalently, ∇ϕ = 0 (for M
compact, this is equivalent to ϕ harmonic (H), i.e. ∆ϕ = 0);

• closed (C) or calibrated: dϕ = 0;

• coclosed (CC) or cocalibrated: d ∗ ϕ = 0;

• locally conformal parallel (LCP): dϕ = 3τ1 ∧ ϕ and d ∗ ϕ = 4τ1 ∧ ∗ϕ;

• locally conformal closed (LCC): dϕ = 3τ1 ∧ ϕ (in particular, dτ1 = 0);

• nearly parallel (NP): dϕ = τ0 ∗ ϕ (which implies that ∆ϕ = τ20ϕ and Ric = 3
8τ

2
0 g);

• locally conformal nearly parallel (LCNP): dϕ = τ0∗ϕ+3τ1∧ϕ and d∗ϕ = 4τ1∧∗ϕ;

• skew-torsion (ST) or G2T -structures: d ∗ ϕ = 4τ1 ∧ ∗ϕ (in particular, dτ1 = 0);

• locally conformal balanced (LCB): dτ1 = 0;

• eigenform (EF): ∆ϕ = cϕ for some c ∈ R;

• Einstein (E): Rc = cg for some c ∈ R;
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• Laplacian soliton (LS): ∆ϕ = cϕ + LXϕ for some c ∈ R and X ∈ X(M) (called
expanding, steady or shrinking if c > 0, c = 0 or c < 0, respectively);

• Ricci soliton (RS): Rc = cg + LXg for some c ∈ R and X ∈ X(M).

We also refer to [R] for a more detailed study of most of these classes of G2-structures
and their possible intersections. Figure 1 describes the obvious inclusions among them.
For a given class C, a G2-structure ϕ is said to be locally conformal C if for each p ∈ M ,
there exist an open neighborhood U and a conformal change ψ := efϕ, f ∈ C∞(U) such
that (U,ψ) is a G2-structure of class C.
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