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Abstract

There is an extensive recent literature on the graded, non-graded,

prime, primitive, maximal ideals of Leavitt path algebras. In this in-

troductory level survey, we will be giving an overview of different types of

ideals and the correspondence between the lattice of ideals and the lattice

of hereditary and saturated subsets of the graph over which the Leavitt

path algebra is constructed.

Introduction

Leavitt path algebras are introduced independently by Abrams and Aranda Pino
in [3] and by Ara, Moreno and Pardo in [6] around 2005. When the Leavitt path
algebra is defined over the complex field it is the dense subalgebra of the graph
C∗-algebra. (For a comprehensive survey on the graph C∗-algebras by Raeburn,
see [11]). This close connection between algebra and analysis, flourished with
many similar results on the algebraic and analytic structures. A survey article by
Abrams [1] summarized this interaction, also listed the similarities/differences of
algebraic and analytic results giving an extensive list of references. This topic
attracted the interest of many mathematicians immediately as the structure
reveals itself in the graph properties on which it is constructed. Leavitt path
algebras produced examples to answer some well-known open problems. Hence,
hundreds of papers are published within a decade.

For a detailed discussion on Leavitt path algebras, interactions with various
topics, we refer the interested reader to a well-written introductory level book
published in 2017 by Abrams, Ara and Siles Molina [2] which covers most of the
literature.

2010 Mathematics Subject Classification: 16D25, 16W50; Key words and phrases: Leavitt
path algebras, arbitrary graphs, maximal ideals, prime ideals.
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Our main aim in this article is to focus only on the prime, primitive and
maximal two-sided ideals of Leavitt path algebras over a field, we gather and
cite the known results that are either included in the book [2] or some recent
to appear results [9], [14]. To keep the survey short and to avoid the overlap
with other expository papers, we did not include many other important and
interesting topics in the ideal structure of Leavitt path algebras. We also did not
extend the discussion to the results on Leavitt path algebras over commutative
rings.

1 Preliminaries

The first section consists of preliminary definitions all of which can be found in
the book [2].

1.1 Graph Theory

We first start with the basic definitions on graphs that is the main discrete
structure of our interest. In this paper, E = (E0, E1, s, r) will denote a directed
graph with vertex set E0, edge set E1, source function s, and range function r.
In particular, the source vertex of an edge e is denoted by s(e), and the range
vertex by r(e). The graph E is called finite if both E0 and E1 are finite sets,
and called row-finite if every vertex emits only finitely many edges. A vertex
which emits infinitely many edges is called an infinite emitter. A sink is a vertex
v for which the set s−1(v) = {e ∈ E1 | s(e) = v} is empty, i.e. emits no edges.
A vertex is a regular vertex if it is neither a sink nor an infinite emitter.

A proper path µ is a sequence of edges µ = e1e2...en such that s(ei) = r(ei−1)
for i = 2, ..., n. Any vertex is considered to be a trivial path of length zero. The
length of a path µ is the number of edges forming the path, i.e. l(µ) = n and the
set of all paths is denoted by Path(E). If n = l(µ) ≥ 1, and v = s(µ) = r(µ),
then µ is called a closed path based at v. Again, µ is a closed simple path based
at v if s(ej) 6= v for every j > 1. If µ = e1e2...en is a closed path based at v and
s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle based at v. An exit for a
path µ = e1 . . . en is an edge e such that s(e) = s(ei) for some i and e 6= ei. A
cycle of length 1 is called a loop. A graph E is said to be acyclic in case it does
not have any closed paths based at any vertex of E.

There are some graph properties that deserves to be named which will be
used in the sequel.

Definition 1.1.1. For v, w ∈ E0, we write v ≥ w in case there is a path
µ ∈ Path(E) such that s(µ) = v and r(µ) = w.

If v ∈ E0 then the tree of v, denoted T (v), is the set

T (v) = {w ∈ E0 | v ≥ w}.

Also, define M(v) = {w ∈ E0 : w ≥ v}.
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Definition 1.1.2. A graph E satisfies Condition (K) if for each v ∈ E0 which
lies on a closed simple path, there exist at least two distinct closed simple paths
α, β based at v.
A graph E satisfies Condition (L) if every cycle in E has an exit.
A cycle c in a graph E is called a cycle without K, if no vertex on c is the
base of another distinct cycle in E (where distinct cycles possess different sets
of edges).
A graphE satisfies the Countable Separation Property, if there exists a countable
set S of vertices in E such that, for each vertex u ∈ E, there exists w ∈ S for
which u ≥ w.
A graph E is said to be countably directed if there is a non-empty at most
countable subset S of E0 such that, for any two u, v ∈ E0, there is a w ∈ S
such that u ≥ w and v ≥ w.

Definition 1.1.3. Let E be a graph, and H ⊆ E0. H is hereditary if whenever
v ∈ H and w ∈ E0 for which v ≥ w, then w ∈ H .
H is saturated if whenever a regular vertex v has the property that {r(e)|e ∈
E1, s(e) = v} ⊆ H , then v ∈ H .

We denote HE the set of those subsets of E0 which are both hereditary and
saturated.

For a given graph, there are many different new graph constructions that
play a role in the ideal theory of Leavitt path algebras.

Definition 1.1.4. (The restriction graph EH) Let E be an arbitrary graph,
and let H be a hereditary subset of E0. We We denote bydenote by EH the
restriction graph:

E0
H := H, E1

H := {e ∈ E1|s(e) ∈ H},

and the source and range functions in EH are the source and range functions in
E, restricted to H .

(The quotient graph by a hereditary subset E/H) Let E be an arbi-
trary graph, and let H be a hereditary subset of E0. We denote by E/H the
quotient graph of E by H , defined follows:

(E/H)0 = E0\H, and (E/H)1 = {e ∈ E1|r(e) /∈ H}.

The range and source functions for E/H are defined by restricting the range
and source functions of E to (E/H)1.

(The hedgehog graph for a hereditary subset FE(H)) Let E be an
arbitrary graph. Let H be a nonempty hereditary subset of E0. We denote by
FE(H) the set

FE(H) = {α ∈ Path(E)|α = e1....en, with s(e1) ∈ E0\H, r(ei) ∈ E0\H for all

1 ≤ i < n, and r(en) ∈ H}
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We denote by FE(H) another copy of FE(H). If α ∈ FE(H), we will write α
to refer to a copy of α in FE(H). We define the graph HE = (HE0,H E1, s′, r′)
as follows:

HE0 = H ∪ FE(H), and HE1 = {e ∈ E1|s(e) ∈ H} ∪ FE(H).

The source and range functions s′ and r′ are defined by setting s′(e) = s(e) and
r′(e) = r(e) for every e ∈ E1 such that s(e) ∈ H ; and by setting s′(α) = α and
r′(α) = r(α) for all α ∈ FE(H).

Intuitively, FE(H) can be viewed as H , together with a new vertex corre-
sponding to each path in E which ends at a vertex in H , but for which none
of the previous edges in the path ends at a vertex in H . For every such new
vertex, a new edge is added going into H . In FE(H), the only paths entering
the subgraph H have common length 1; (the new graph looks like a hedgehog
where the body is H and the quills are the edges into H).

Example 1.1.5. Consider the graph E below and take the hereditary saturated
subset H = {v, w},

•u++33 // •v // •w ff

The restriction graph is

EH

•v // •w ff

The quotient graph E/H is

E/H

•u++ 33

Example 1.1.6. Consider the graph E below and take the hereditary saturated
subset H = {v, w},

•ue 88
f // •v // •w ff

The hedgehog graph HE is

•e
2f

e2f

!!❈
❈❈

❈❈
❈❈

❈❈
· · ·

��

•e
nf

enf

}}④④
④④
④④
④④
④

•ef
ef // •v // •w ff

•f

f

==③③③③③③③③③
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When we have infinite emitters in a graph, the graph is not row-finite and
we need to introduce the notion of breaking vertices.

Definition 1.1.7. Let E be an arbitrary graph and K be any field. Let H be
a hereditary subset of E0, and let v ∈ E0. We say that v is a breaking vertex of
H if v belongs to the set

BH := {v ∈ E0\H | v is an infinite emitter and 0 < |s−1(v)∩r−1(E0\H)| < ∞}.

In words, BH consists of those vertices of E which are infinite emitters, which
do not belong to H , and for which the ranges of the edges they emit are all,
except for a finite (but nonzero) number, inside H . For v ∈ BH , we define the
element vH of LK(E) by setting

vH := v −
∑

e∈s−1(v)∩r−1(E0\H)

ee∗.

We note that any such vH is homogeneous of degree 0 in the standard Z-grading
on LK(E). For any subset S ⊆ BH , we define SH ⊆ LK(E) by setting SH =
{vH |v ∈ S}. Given a hereditary saturated subset H and a subset S ⊂ BH ,
(H,S) is called an admissible pair. Given an admissible pair (H,S), the ideal
generated by H ∪ SH is denoted by I(H,S).

Now, the new graph constructions that we defined in Definition 1.1.4, can
be extended to graphs with infinite emitters.

Definition 1.1.8. (The quotient graph E/(H,S)) Let E be an arbitrary
graph, H ∈ HE , and S ⊆ BH . We denote by E/(H,S) the quotient graph of E
by (H,S), defined as follows:

(E/(H,S))0 = (E0\H) ∪ {v′|v ∈ BH\S},

(E/(H,S))1 = {e ∈ E1|r(e) /∈ H} ∪ {e′|e ∈ E1 and r(e) ∈ BH\S},

and range and source maps in E/(H,S) are defined by extending the range and
source maps in E when appropriate, and in addition setting s(e′) = s(e) and
r(e′) = r(e)′.

(The generalized hedgehog graph construction (H,S)E) Let E be an
arbitrary graph, H a nonempty hereditary subset of E, and S ⊆ BH . We define

F1(H,S) := {α ∈ Path(E)|α = e1...en, r(en) ∈ H and s(en) /∈ H ∪ S}, and

F2(H,S) := {α ∈ Path(E)| |α| ≥ 1 and r(α) ∈ S}.

For i = 1, 2 we denote a copy of Fi(H,S) by F i(H,S). We define the graph

(H,S)E as follows:

(H,S)E
0 := H ∪ S ∪ F1(H,S) ∪ F2(H,S), and

(H,S)E
1 := {e ∈ E1|s(e) ∈ H}∪{e ∈ E1|s(e) ∈ S and r(e) ∈ H}∪F 1(H,S)∪F 2(H,S).

The range and source map for (H,S)E are described by extending r and s to

(H,S)E
1, and by defining r(α) = α and s(α) = α for all α ∈ F 1(H,S)∪F 2(H,S).
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Definition 1.1.9. A graph F is a subgraph of a graph E, if F 0 ⊂ E0 and
F 1 ⊂ E1 where for any f ∈ F 1, s(f), r(f) ∈ F 0.

A subgraph F of a graph E is called full in case for each v, w ∈ F 0,

{f ∈ F 1|s(f) = v, r(f) = w} = {e ∈ E1|s(e) = v, r(e) = w}.

In other words, the subgraph F is full in case whenever two vertices of E are in
the subgraph, then all of the edges connecting those two vertices in E are also
in F .

A non-empty full subgraph M of E is a maximal tail if it satisfies the fol-
lowing properties:

(MT − 1) If v ∈ E0, w ∈ M0 and v ≥ w, then v ∈ M0;

(MT − 2) If v ∈ M0 and s−1
E (v) 6= ∅, then there exists e ∈ E1 such that s(e) = v

and r(e) ∈ M0; and

(MT − 3) If v, w ∈ M0, then there exists y ∈ M0 such that v ≥ y and w ≥ y.

Condition MT − 3 is now more commonly called downward directedness in
literature, however we will use the term MT − 3 for consistency throughout the
text.

1.2 Leavitt Path Algebra

Definition 1.2.1. Given an arbitrary graph E and a field K, the Leavitt path
algebra LK(E) is defined to be the K-algebra generated by a set {v : v ∈ E0} of
pair-wise orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1}
which satisfy the following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.

(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.

(3) (CK-1 relations) For all e, f ∈ E1, e∗e = r(e) and e∗f = 0 if e 6= f .

(4) (CK-2 relations) For every regular vertex v ∈ E0,

v =
∑

e∈E1, s(e)=v

ee∗.

The Leavitt path algebra is spanned as a K-vector space by the set of mono-
mials

{γλ∗|γ, λ ∈ Path(E) such that r(γ) = r(λ)}

That is, any x ∈ LK(E),

x =

n
∑

i=1

kiγiλ
∗
i for any ki ∈ K, γi, λi ∈ Path(E).

Some familiar rings appear as examples of Leavitt path algebras, for instance:
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Example 1.2.2. Take the graph E as

•v1
e1 // •v2 •vn−1

en−1 // •vn

LK(E) ∼= Mn(K).

Example 1.2.3. Take the graph R1 as

•v eff

In this case, LK(R1) ∼= K[x, x−1] via v 7→ 1, e 7→ x, e∗ 7→ x−1.

Example 1.2.4. For n ≥ 2, consider the graph

Rn = •v e1ff

e2

ss

e3

��

en

QQ...

Then LK(Rn) ∼= LK(1, n) which is Leavitt algebra of type (1, n).

Recall that a ring R is said to have a set of local units F , where F is a set
of idempotents in R having the property that, for each finite subset r1, . . . , rn
of R, there exists f ∈ F with frif = ri for all 1 ≤ i ≤ n. A ring R with unit 1
is, clearly, a ring with a set of local units where F = {1}.

In the case of Leavitt path algebras, for each x ∈ LK(E) there exists a finite
set of distinct vertices V (x) for which x = fxf , where f =

∑

v∈V (x) v. When

E0 is finite, LK(E) is a ring with unit element 1 =
∑

v∈E0

v. Otherwise, LK(E)

is not a unital ring, but is a ring with local units consisting of sums of distinct
elements of E0.

One of the most important properties of the class of Leavitt path algebras

is that each LK(E) is a Z-graded K-algebra. that is, LK(E) =
⊕

n∈Z

Ln induced

by defining, for all v ∈ E0 and e ∈ E1, deg(v) = 0, deg(e) = 1, deg(e∗) = −1.
Further, for each n ∈ Z, the homogeneous component Ln is given by

Ln = {
∑

kiαiβ
∗
i ∈ L : l(αi)− l(βi) = n, ki ∈ K, αi, βi ∈ Path(E)} .

An ideal I of LK(E) is said to be a graded ideal if I =
⊕

n∈Z

(I ∩ Ln). In the

sequel all ideals of our concern will be two-sided.

2 Ideals in Leavitt Path Algebras

Recall that an (not necessarily unital) algebraR is called simple, if R2 6= 0 and R
has no proper non-trivial ideals. Simple Leavitt path algebras are characterized
in [3] by Abrams and Aranda Pino.
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Theorem 2.0.1. Let E be an arbitrary graph and K be any field. Then LK(E)
is simple if and only if E has Condition (L) and the only hereditary saturated
subsets of E0 are ∅ and E0.

In a Leavitt path algebra, the intersection of any ideal with the set of vertices
is always a hereditary set.

Lemma 2.0.2. ([3, Lemma 3.9]) Let E be an arbitrary graph and K be any
field. Let N be an ideal of LK(E). Then N ∩E0 ∈ HE .

N ∩E0 may very well be the empty set, however if the Leavitt path algebra
is over a graph that satisfies Condition (L) then N definitely contains a vertex
(an idempotent).

Proposition 2.0.3. ([3, Corollary 3.8]) Let E be an arbitrary graph and Let
E be a graph satisfying Condition (L) and K be any field. Then every nonzero
ideal of LK(E) contains a vertex.

Proposition 2.0.4. Let E be an arbitrary graph and K be any field. Let H
be a hereditary subset of E0. Then there is a Z-graded monomorphism ϕ from
LK(EH) into LK(E) via v 7→ v, e 7→ e, e∗ 7→ e∗ for all v ∈ E0

H , e ∈ E1
H .

We give a description of the elements in the ideal generated by a hereditary
subset of vertices.

Lemma 2.0.5. ([15, Lemma 5.6]) Let E be an arbitrary graph and K be any
field.

(i) Let H be a hereditary subset of E0. Then the ideal I(H) is

I(H) = spanK({γλ∗|γ, λ ∈ Path(E) such that r(γ) = r(λ) ∈ H})

=
{

n
∑

i=1

kiγiλ
∗
i |n ≥ 1, ki ∈ K, γi, λi ∈ Path(E) such that r(γi) = r(λi) ∈ H

}

(ii) Let H be a hereditary subset of E0 and S a subset of BH . Then the ideal

I(H,S) = spanK({γλ∗|γ, λ ∈ Path(E) such that r(γ) = r(λ) ∈ H})

+spanK({αvHβ∗|α, β ∈ Path(E) and v ∈ S}).

2.1 Graded Ideals

First, we mention the result on graded simplicity, that is when LK(E) has no
non-trivial graded ideals. As stated in [2, Cor.2.5.15], LK(E) is graded simple if
and only if the only hereditary saturated subsets of E0 are ∅ and E0. A typical
example of a graded simple Leavitt path algebra is K[x, x−1], see Example 1.2.3.
However, since 〈1 + x〉 is a (non-graded) ideal, K[x, x−1] is not simple. Hence,
it is possible to have non-trivial non-graded ideals in a graded simple ring.

Now, we are ready to describe the graded ideals in Leavitt path algebras
which is in [7, Remark 2.2].
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Theorem 2.1.1. Let E be an arbitrary graph and K be any field. Then every
graded ideal N of LK(E) is generated by H ∪ SH , where H = N ∩ E0 ∈ HE ,
and S = {v ∈ BH |vH ∈ N} , i.e. N = I(H,S).

In particular, every graded ideal of LK(E) is generated by a set of homoge-
neous idempotents.

Observe that if N = I(H,S) is a graded ideal, so that N = 〈H, vH : v ∈ S〉,
the generators u in H and vH are all idempotents. So they all belong to N2,
that is if N is a graded ideal, then N = N2. Conversely, if N is an ideal such
that N = N2, we use a result from [10]. In [10, Theorem 3.6], it was shown
that for any ideal N , the intersection of {Nn : n > 0} is a graded ideal. So,
if N2 = N , then N = ∩{Nn : n > 0} is a graded ideal. Thus we obtain the
following characterization of graded ideals of a Leavitt path algebra (which also
appears in [2, Cor. 2.9.11] via a different proof.)

Theorem 2.1.2. Let E be an arbitrary graph and K be any field. Then, an
ideal N of LK(E) is graded if and only if N2 = N .

The correspondence between the quotient Leavitt path algebra and the Leav-
itt path algebra of the quotient graph is noteworthly to state at this point. Part
(i) of the following theorem appears as [7, Lemma 2.3] and part (ii) appears in
[15, Theorem 5.7].

Theorem 2.1.3. Let K be any field,

(i) E be a row-finite graph, and H ∈ HE . Then LK(E)/I(H) ∼= LK(E/H)
as Z-graded K-algebras.

(ii) E be an arbitrary graph, H ∈ HE and S ⊂ BH . Then LK(E)/I(H,S) ∼=
LK(E/(H,S)) as Z-graded K-algebras.

2.2 The Structure Theorem of Graded Ideals

Now, we are ready to give a complete description of the lattice of graded ideals of
a Leavitt path algebra in terms of specified subsets of E0, that is the Structure
Theorem for Graded Ideals. The results in this section first appeared for row-
finite graphs in [6] and for arbitrary graphs in [15].

Definition 2.2.1. Let E be an arbitrary graph and K be any field. Denote
Lgr(LK(E)) the lattice of graded ideals of LK(E), whose order is inclusion, also
supremum and infimum are the usual operations of ideal sum and intersection.

Remark 2.2.2. Let E be an arbitrary graph. We define in HE a partial
order by setting H ≤ H ′ in case H ⊆ H ′. So, HE is a complete lattice, with
supremum ∨ and infimum ∧ in HE given by setting ∨i∈ΓHi := ∪i∈ΓHi and
∧i∈ΓHi := ∩i∈ΓHi respectively.

9



Definition 2.2.3. Let E be an arbitrary graph. We set

S =
⋃

H∈HE

P(BH),

where P(BH) denotes the set of all subset of BH .
We denote by TE the subset of HE × S consisting of pairs of the form

(H,S), where S ∈ P(BH). We define in TE the following relation:

(H1, S1) ≤ (H2, S2) if and only if H1 ⊆ H2 and S1 ⊆ H2 ∪ S2.

Proposition 2.2.4. Let E be an arbitrary graph. For (H1, S1), (H2, S2) ∈ TE ,
we have

(H1, S1) ≤ (H2, S2) ⇐⇒ I(H1, S1) ⊆ I(H2, S2).

In particular, ≤ is a partial order on TE.

Fore more details on the lattice structure of TE , see [2].

Theorem 2.2.5. ([15, Theorem 5.7]) Let E be an arbitrary graph and K be
any field. Then the map ϕ given here provides a lattice isomorphism:

ϕ : Lgr(LK(E)) → TE via I 7→ (I ∩ E0, S).

where S = {v ∈ BH |vH ∈ I} for H = I ∩ E0. The inverse ϕ′ of ϕ is given by:

ϕ′ : TE → Lgr(LK(E)) via (H,S) 7→ I(H ∪ SH).

Theorem 2.2.6. ([6, Theorem 5.3]) Let E be a row-finite graph and K be any
field. The following map ϕ provides a lattice isomorphism:

ϕ : Lgr(LK(E)) → HE via ϕ(I) = I ∩ E0,

with inverse given by

ϕ′ : HE → Lgr(LK(E)) via ϕ′(H) = I(H).

Let E be an arbitrary graph and K be any field. Then every graded ideal
of LK(E) is K-algebra isomorphic to a Leavitt path algebra Part (i) of the
following theorem first appears in [7, Lemma 5.2] under the hypothesis that
graph EH satisfies Condition (L).

Theorem 2.2.7. Let E be an arbitrary graph and K be any field. Let H be
a non-empty hereditary subset of E and S ⊆ BH . Then (i) I(H) is K-algebra
isomorphic to LK(HE);
(ii) I(H,S) is isomorphic as K-algebras to LK((H,S)E).

10



2.3 Structure of Two-Sided Ideals

The generators of an ideal are studied in [13] and gives a useful characterization
of the graded and non-graded part of an ideal. The following results are due to
Rangaswamy and finally achieving that in a Leavitt path algebra, any finitely
generated ideal is principal [13].

Theorem 2.3.1. Let E be an arbitrary graph and K be any field. Then any
non-zero ideal of the LK(E) is generated by elements of the form

(

u+
k

∑

i=1

kig
ri

)

(

u−
∑

e∈X

ee∗
)

where u ∈ E0, ki ∈ K,ri are positive integers, X is a finite (possibly empty)
proper subset of s−1(u) and, whenever ki 6= 0 for some i, then g is a unique
cycle based at u.

The main result of [13] is the following theorem:

Theorem 2.3.2. Let I be an arbitrary nonzero ideal of LK(E) with I∩E0 = H
and S = {v ∈ BH : vH ∈ I}. Then I is generated by H ∪ {vH : v ∈ S} ∪ Y
where Y is a set of mutually orthogonal elements of the form (u +

∑n

i=1 kig
ri)

in which the following statements hold:

(i) g is a (unique) cycle with no exits in E0\H based at a vertex u in E0\H;
and

(ii) ki ∈ K with at least one ki 6= 0.

If I is nongraded, then Y is nonempty.

Corollary 2.3.3. Every finitely generated ideal of LK(E) is a principal ideal.
Moreover, if E is a finite graph, then every ideal is principal.

2.4 Prime and Primitive Ideals

The structure of prime ideals has played a key role in ring theory. In the Leavitt
path algebra setting the first paper to focus on the prime and primitive ideals
of Leavitt path algebras on row-finite graphs has been [8]. Later the prime
ideal structure on an arbitrary graph was studied in [12], while the primitive
Leavitt path algebras are described in [4]. The primitive algebras have also been
important as a consequence of Kaplansky’s question: ”Is a regular prime ring
necessarily primitive?”

We recall a few ring-theoretic definitions. A two-sided ideal P of a ring R
is prime in case P 6= R and P has the property that for any two-sided ideals
I, J of R, if IJ ⊆ P then either I ⊆ P of J ⊆ P . The ring R is called prime
in case {0} is a prime ideal of R. It is easily shown that P is a prime idal of R
if and only if R/P is a prime ring. The set of all prime ideals of R is denoted
by Spec(R), call the prime spectrum of R. A ring R is called left primitive if

11



R admits a simple faithful left R-module. It is easy to show that any primitive
ring is prime.

A ring is von Neumann regular (or regular) in case for each a ∈ R there
exists x ∈ R for which a = axa. In the theory of Leavitt path algebras the
necessary and sufficient condition for LK(E) to be regular is given by Abrams
and Rangaswamy [5].

Theorem 2.4.1. Let E be an arbitrary graph and K be any field. LK(E) is
von Neumann regular if and only if E is acyclic.

Recall the graph the one vertex, one loop graph R1 of the Example 1.2.3.
The prime ideals of the principal ideal domain K[x, x−1] ∼= LK(R1) provide a
model for the prime spectra of general Leavitt path algebras. The key property
of R1 in this setting is that it contains a unique cycle without exits. Specifically,
Spec(K[x, x−1]) consists of the ideal {0}, together with ideals generated by the
irreducible polynomials of K[x, x−1]. The irreducible polynomials are of the
form xnf(x), where f(x) is an irreducible polynomial in the standard polynomial
ring K[x], and n ∈ Z. In particular, there is exactly one graded prime ideal
(namely,{0}) in LK(R1). All the remaining prime ideals of LK(R1) are non-
graded corresponding to irreducible polynomials in K[x, x−1].

The prime ideals of a Leavitt path algebra are completely characterized in
the following theorem. Recall that M(u) is defined in Definition 1.1.1.

Theorem 2.4.2. [12, Thm.3.12] Let E be an arbitrary graph and K be any
field. Let P be an ideal of LK(E) with P ∩ E0 = H. Then P is a prime ideal
of LK(E) if and only if P satisfies one of the following conditions:

(i) P = 〈H, {vH : v ∈ BH}〉 and E0\H satisfies the MT − 3 condition;

(ii) P = 〈H, {vH : v ∈ BH\{u}}〉 for some u ∈ BH and E0\H = M(u);

(iii) P = 〈H, {vH : v ∈ BH}, f(c)〉 where c is a cycle without K in E based
at a vertex u, E0\H = M(u) and f(x) is an irreducible polynomial in
K[x, x−1].

Recall that a ring R is prime if {0} is a prime ideal, hence the immediate
corollary to Theorem 2.4.2 follows.

Corollary 2.4.3. Let E be an arbitrary graph and K any field. Then LK(E)
is prime if and only if E is MT − 3.

When E is row-finite, the characterization of a primitive LK(E) is given [8].

Theorem 2.4.4. Let E be a row-finite graph and K be any field. Then LK(E)
is primitive if and only if E is MT − 3 and Condition(L).

When E is an arbitrary graph, the result requires a new condition on the
graph [4].

Theorem 2.4.5. Let E be any graph and K be any field. Then LK(E) is
primitive if and only if E has MT − 3, Condition(L) and Countable Separation
Property.
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We pause here to construct a Leavitt path algebra which is a counter example
to Kaplansky’s question ”Is a regular prime ring necessarily primitive?”, (see
[4] for details).

Example 2.4.6. X uncountable, S the set of finite subsets of X. Define the
graph E:

(1) vertices indexed by S, and

(2) edges induced by proper subset relationship.

Then LK(E) is regular, prime, not primitive.

The following results are from [12].

Lemma 2.4.7. ([12, Lemma 3.8]) Let P be a prime ideal of LK(E) with H =
P ∩E0 and let S = {v ∈ BH : vH ∈ P}. Then the ideal I(H,S) is also a prime
ideal of LK(E).

Corollary 2.4.8. ([12, Corollary 3.9]) Let E be an arbitrary graph and K be
any field. Then the Leavitt path algebra LK(E) is a prime ring if and only if
there is a prime ideal of LK(E) which does not contain any vertices.

A natural question that arose is to answer the graded version of Kaplansky’s
question, namely whether every graded prime von Neumann regular Leavitt
path algebra is graded primitive. This question is solved by the recent unpub-
lished work of Rangaswamy [14].

Theorem 2.4.9. For any arbitrary graph E given, the following are equivalent

(i) LK(E) is graded primitive;

(ii) E0 is countably directed;

(iii) LK(E) is graded prime and, for some vertex v ∈ E0, the tree T (v) satisfies
the Countable Separation Property.

The author in [14], provides many examples of graded von Neumann regular
rings which are graded prime but not graded primitive.

2.5 Maximal Ideals

This section is quoted from [9] by Esin and the first named author.
In a unital ring, any maximal ideal is also a prime ideal. However, this is

not necessarily true for a non-unital ring. Consider, for instance, the non-unital
ring 2Z, and its ideal 4Z. Notice that 4Z is a maximal ideal, but not prime
ideal in 2Z. The Leavitt path algebra is a unital ring, only if E0 is finite.
So it is worthwhile to study the maximal ideals in a non-unital setting. The
following argument on maximal and prime ideals in non-unital Leavitt path
algebras appears in [12, pp.86-87].
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Proposition 2.5.1. In a ring R satisfying R2 = R, any maximal ideal is a
prime ideal. Hence, in any Leavitt path algebra, any maximal ideal is a prime
ideal.

Proof. Suppose R2 = R, and let M be a maximal ideal of R such that A * M
and B * M for some ideals A,B of R. Then R = R2 = (M + A)(M + B) =
M2 +AM +MB +AB ⊆ M +AB. Then M +AB = R, and AB * M . Thus
M is a prime ideal. Now, since any Leavitt path algebra R is a ring with local
units, R2 = R is satisfied and the result holds.

As stated in [12, Lemma 3.6], in a Leavitt path algebra LK(E), the largest
graded ideal contained in any ideal N (which is denoted by gr(N)) is the ideal
generated by the admissible pair (H,S) where H = N ∩ E0, and S = {v ∈
BH |vH ∈ N}, i.e. gr(N) = I(H,S). One useful observation is that: if a
non-graded ideal N is a maximal element in L (LK(E)), the lattice of all two-
sided ideals of a Leavitt path algebra, then gr(N) is a maximal element in
Lgr(LK(E)), the lattice of all two-sided graded ideals of this Leavitt path al-
gebra (e.g. Example 2.5.7).

Maximal ideals always exist in a unital ring; however, this is not always true
in a non-unital ring. Consider the Leavitt path algebra of the next example:

Example 2.5.2. Let E be the row-finite graph with E0 = {vi : i = 1, 2, . . .}
and for each i, there is an edge ei with r(ei) = vi, s(ei) = vi+1, also at each vi
there are two loops fi, gi so that vi = s(fi) = r(fi) = s(gi) = r(gi):

// •v3

f3

**

g3

tt
e2

11 •v2

f2

**

g2

tt
e1

11 •v1

f1

**

g1

tt

The non-empty proper hereditary saturated subsets of vertices in E are the sets
Hn = {v1, . . . , vn} for some n ≥ 1 and they form an infinite chain under set
inclusion. Graph E satisfies Condition (K), so all ideals are graded, generated
by Hn for some n and they form a chain under set inclusion. As the chain of
ideals does not terminate, LK(E) does not contain any maximal ideals. Note
also that, E0\(Hn, ∅) is MT − 3 for each n, thus all ideals are prime ideals.

A well-established question is to find out when a maximal ideal exist in a
non-unital Leavitt path algebra. The necessary and sufficient condition depends
on the existence of a maximal hereditary and saturated subset of E0 as proved
in [9].

Theorem 2.5.3. (Existence Theorem) LK(E) has a maximal ideal if and only
if HE has a maximal element.

Proof. (Sketch: see [9] for details) Assume LK(E) has a maximal ideal M , then
there are two cases:
if M is a graded ideal, then M = I(H,S) for some H ∈ HE and S = {v ∈
BH |vH ∈ M}. However, M = I(H,S) ≤ I(H,BH), and as M is a maximal
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ideal, S = BH . Then it can be shown that: I(H,BH) is a maximal ideal in
LK(E) if and only if H is a maximal element in HE and the quotient graph
E\(H,BH) has Condition(L).

If M is a non-graded maximal ideal, then gr(M) = I(H,S) is a maximal
graded ideal where H = M ∩ E0, and S = {v ∈ BH |vH ∈ M}. Similarly
since gr(M) is maximal, S = BH . Again, it can be shown that: H is a maximal
element in HE with E\(H,BH) not satisfying Condition(L), if and only if there
is a maximal non-graded ideal M containing I(H,BH) with H = M ∩ E0.

This completes the proof.

Moreover, the poset structure of HE determines whether every ideal of the
Leavitt path algebra is contained in a maximal ideal.

Theorem 2.5.4. The following assertions are equivalent:

(i) Every element X ∈ HE is contained in a maximal element Z ∈ HE .

(ii) Every ideal of LK(E) is contained in a maximal ideal.

Example 2.5.5. Let E be the graph

•u++33 // •v // •w cff

Then E does not satisfy Condition (K), so the Leavitt path algebra on E has
both graded and non-graded ideals. Let Q be the graded ideal generated by the
hereditary saturated set H = {v, w}. Q is a maximal ideal as L/Q is isomorphic
to LK(E\H) which is also isomorphic to the simple Leavitt algebra L(1, 2) (See
the Example 1.1.5). By using Theorem 2.4.2, we classify the prime ideals in
L. There are infinitely many non-graded prime ideals each generated by f(c)
where f(x) is an irreducible polynomial in K[x, x−1] which are all contained
in Q. Also, the trivial ideal {0} is prime as E satisfies condition MT − 3 and
LK(E) has a unique maximal element Q.

We now give an example of a graph with infinitely many hereditary saturated
sets and the corresponding Leavitt path algebra has a unique maximal ideal
which is graded.

Example 2.5.6. Let E be a graph with E0 = {vi : i = 1, 2, . . .}. For each i,
there is an edge ei with s(ei) = vi and r(ei) = vi+1 and at each vi there are two
loops fi, gi so that vi = s(fi) = r(fi) = s(gi) = r(gi). Thus E is the graph

•v3oo

f3

**

g3

tt •v2

f2

**

g2

tte2mm •v1

f1

**

g1

tte1mm

Now E is a row-finite graph and the non-empty proper hereditary saturated
subsets of vertices in E are the sets Hn = {vn, vn+1, . . .} for some n ≥ 2 and
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Hn+1 ( Hn form an infinite chain under set inclusion and H2 = {v2, v3, . . .} is
the maximal element in HE . The graph E satisfies Condition (K), so all ideals
are graded, generated by Hn for some n. So LK(E) contains a unique maximal
ideal I(H2). Note also that, E0\Hn is MT − 3 for each n, thus all ideals of L
are prime ideals.

In a Leavitt path algebra, if a unique maximal ideal exists, then it is a
graded ideal. Also, every maximal ideal is graded in LK(E) if and only if for
every maximal element H in HE , E\(H,BH) satisfies Condition(L). Note that
there are Leavitt path algebras with both graded and non-graded maximal ideals
as the following example illustrates.

Example 2.5.7. Let E be the graph

•u++ 33 •v //oo •w cff

Then the Leavitt path algebra on E has both graded and non-graded maxi-
mal ideals. The set HE is finite and hence any ideal is contained in a maximal
ideal. The trivial ideal {0} which is a graded ideal generated by the empty
set, is not prime as E does not satisfy condition MT − 3. There are infinitely
many non-graded prime ideals each generated by f(c) where f(x) is an irre-
ducible polynomial in K[x, x−1] which all contain {0}. Let N be the graded
ideal generated by the hereditary saturated set H = {u} and in this case, the
quotient graph E\H does not satisfy condition (L). Then there are infinitely
many maximal non-graded ideals each generated by f(c) where f(x) is an irre-
ducible polynomial in K[x, x−1] which all contain N . Also, let Q be the graded
ideal generated by the hereditary saturated set H = {w}. In this case, the
quotient graph E\H satisfy condition (L). Hence, Q is a maximal ideal.

LK(E) has a infinitely many maximal ideals, one of them is graded, namely
Q and infinitely many are non-graded ideals whose graded part is N .

It is an interesting question to answer when all non-zero prime ideals are
maximal, as these rings are called rings with Krull dimension zero. In fact,
Leavitt path algebras with prescribed Krull dimension are studied in [12]. We
conclude this article with two results from [12].

Theorem 2.5.8. [12, Theorem 6.1] Let E be an arbitrary graph and K be any
field. Then every non-zero prime ideal of the Leavitt path algebra LK(E) is
maximal if and only if E satisfies one of the following two conditions:

Condition I: (i) E0 is a maximal tail; (ii) The only hereditary saturated
subsets of E0 are E0 and ∅; (iii) E does not satisfy the Condition(K).

Condition II: (a) E satisfies the Condition(K); (b) For each maximal tail
M, the restricted graph EM contains no proper non-empty hereditary saturated
subsets; (c) If H is a hereditary saturated subset of E0, then for each u ∈
BH ,M(u) $ E0\H
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When E is finite, the answer is much simpler.

Corollary 2.5.9. Let E be a finite graph. Then every non-zero prime ideal
of LK(E) is maximal if and only if either LK(E) ∼= Mn(K[x, x−1]) for some
positive integer n or E satisfies the Condition(K) and, for each maximal tail
M , the restricted graph EM contains no proper non-empty hereditary saturated
subsets of vertices.
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