
ar
X

iv
:1

81
0.

12
88

7v
3

 [
m

at
h.

C
O

]
 1

6
D

ec
 2

02
0

Simultaneously Dominating all

Spanning Trees of a Graph

Sebastian S. Johann1, Sven O. Krumke1, and Manuel

Streicher1

1Technische Universität Kaiserslautern

December 17, 2020

We investigate the problem of simultaneously dominating all spanning
trees of a given graph. We prove that on 2-connected graphs, a subset
of the vertices dominates all spanning trees of the graph if and only if
it is a vertex cover. Using this fact we present an exact algorithm that
finds a simultaneous dominating set of minimum size using an oracle for
finding a minimum vertex cover. The algorithm can be implemented to run
in polynomial time on several graph classes, such as bipartite or chordal
graphs. We prove that there is no polynomial time algorithm that finds a
minimum simultaneous dominating set on perfect graphs unless P = NP.
Finally, we provide a 2-approximation algorithm for finding a minimum
simultaneous dominating set.

Keywords: Dominating Set, Simultaneous Domination, Factor Domination

1 Introduction

A dominating set in a graph G is a subset S ⊆ V (G) of the vertices such that every
vertex that is not contained in S has a neighbor in S. The dominating set problem,
that aims to find a minimum dominating set in a graph, was formalized by Berge in
1958 [Ber58] and Ore in 1962 [Ore62]. Since then several variants of the dominating set
problem have been studied. One example is the independent dominating set problem,
in which additionally no two vertices in the searched set may be adjacent, cf. [GH13].
Another example is the total dominating set problem in which every vertex has to be
adjacent to a vertex in the searched set, cf. [Hen09]. The dominating set problem is
well known to be NP-complete, see [GJ79], and so are most of it variants.

1

http://arxiv.org/abs/1810.12887v3

In this paper we consider a variation of the dominating set problem in which we
seek to simultaneously dominate all spanning trees of a graph. The concept of si-
multaneous domination in graphs was independently introduced by Sampathkumar in
[Sam89] under the name global domination and by Brigham and Dutton in [BD90]
who used the term factor domination. Following [BD90], given a graph G and a par-
tition of its edge set E1, . . . , Ek, a subset of the vertices is a factor dominating set
if it is dominating for all graphs (V (G), Ei). Whereas a susbet of the vertices is a
global dominating set if it is a subset of the vertices which is dominating in G and its
complement. Later on the term factor domination has also been used for subsets of the
vertices that dominate some set of arbitrary subgraphs of G on the same vertex set, see
e.g. [DHGL06] and [CH14]. In our studies we use the term simultaneous domination,
as in our definition the edge sets of the subgraphs are not required to be disjoint. In
the simultaneous dominating set problem regarded here we are given a graph G and
we aim for a minimum subset of vertices that is a dominating set in every spanning
tree of G. As we only regard simultaneous domination of all spanning trees, in the
following we often omit all spanning trees in order to shorten notation.
Simultaneous domination of all spanning trees has previously not been regarded in

the literature. We prove that in a 2-connected graph G a set S ⊆ V (G) dominates
all spanning trees if and only if it is a vertex cover. On general graphs we prove that
the size of a minimum size vertex cover and a minimum size simultaneous dominating
set may differ by a factor of two and give an example that this bound is tight. We
utilize the relation of simultaneous dominating sets to vertex covers in order to derive
an algorithm that finds a minimum size simultaneous dominating set. The algorithm
works on the block graph of a graph and uses an oracle for VertexCover. It can be
implemented to run in polynomial time on bipartite graphs, chordal graphs and graphs
with bounded treewidth. The polynomial running times strongly rely on the fact that
VertexCover is polynomial time solvable on these classes. However, the arguments
used are not applicable to all graph classes on which VertexCover is solvable in
polynomial time. In particular, it is well known that VertexCover is polynomial
time solvable on perfect graphs, cf. [Sch03]. Yet, one of our main results proves that
the same does not hold for simultaneous domination.

Theorem 7. SimultaneousDominatingSet is NP-complete when restricted to per-
fect graphs.

The theorem proves that VertexCover and SimultaneousDominatingSet are
not equivalent from the point of view of complexity theory. Another direct consequence
of the theorem is, that although SimultaneousDominatingSet is polynomial time
solvable on 2-connected, perfect graphs, it is NP-hard on all perfect graphs. In a
sense, one could say that the problem significantly simplifies when restricting it to
2-connected graphs. This is a property that is rarely seen among graph theoretic
problems, as polynomial time solvability for problems on 2-connected graphs often
implies polynomial time solvability of the corresponding problem on all graphs.
It is well known that minVertexCover may be approximated by a factor of 2,

cf. [Sch03], as well as that it cannot be approximated by any constant factor smaller

2

than 2, provided the unique games conjecture holds, cf. [KR08]. Here, we provide a 2-
approximation for minSimultaneousDominatingSet that is based on LP-rounding.
Note that the 2-approximability is not immediately implied from the 2-approximability
of minVertexCover, as the size of a minimum simultaneous dominating set and the
size of a minimum vertex cover may differ by up to a factor of 2, cf. Theorem 8.

Outline After we state some basic definitions in Section 2, we focus on the char-
acterization and the complexity of SimultaneousDominatingSet in Section 3. In
Section 4 we present an algorithm to find a minimum size simultaneous dominating
set on general graphs using an oracle for computing a minimum size vertex cover.
Afterwards, we show in Section 5 that we can solve SimultaneousDominatingSet

in polynomial time on bipartite graphs, on chordal graphs and on graphs of bounded
treewidth. Finally, we present a 2-approximation algorithm for minSimultaneous-

DominatingSet in Section 6.

2 Preliminaries

Most of our notation is standard graph terminology which can be found in [Die17].
For an introduction to graph theory from the algorithmic point of view we refer to
[KN12]. Nevertheless, we recall some basic notations in the following. All graphs
under consideration are undirected and simple. For a graph G, we refer to its vertex
set by V (G) and to its edge set by E(G). For an edge joining vertices u, v ∈ V (G) we
write uv. For a subset S ⊆ V (G) we denote by G[S] the graph induced by S, that has
vertex set S and contains all edges in G joining vertices in S. Further, we write G−S
for the graph G[V (G) \ S] and for E ⊆ E(G) we write G − E for for the graph with
vertex set V (G) and edge set E(G)\E. To simplify notation we write G−v and G−e
instead of G− {v} and G− {e} for v ∈ V (G) and e ∈ E(G).
A path P = u0 . . . , uk is a graph with vertex set V (P) = {u0, u1, . . . , uk} and edge

set E(P) = {u0u1, u1u2, . . . , uk−1uk}, where all the ui are distinct. A graph G is
called connected if any two vertices are linked by a path. As it facilitates arguments
in this contribution we make the following assumption for connected graphs.

Assumption 1. Any connected graph contains at least two vertices.

For a connected graph G a vertex v ∈ V (G) is called a cutvertex if G − v is not
connected. We call a graph 2-connected if it has at least three vertices and does not
contain a cutvertex. A block of G is a maximal connected subgraph of G that does not
contain a cutvertex. The block graph of G is a bipartite graph T , where one bipartition
set contains the cutvertices of G and the other bipartition set consists of the blocks
of G. For a cutvertex v in G and a block B we have vB ∈ E(T) if and only if v is
contained in B. If G is connected, then the block graph of G is a tree, cf. [Die17].
Note that the blocks and the block graph can be computed in linear time, cf. [HT73].
We call a block endpoint if it is a leaf in T . Further, we call the unique cutvertex in
an endpoint its connection vertex.

3

A subset D ⊆ V (G) dominates a vertex v if v ∈ D or v is adjacent to a vertex in D.
The set D is a dominating set of G if every vertex of G is contained in D or dominated
by a vertex in D. Further, a subset C ⊆ V (G) is a vertex cover of G if every edge has
an endvertex in C. An alternative characterization for a vertex cover C in a graph is:

C is a vertex cover in G ⇔ ∀v ∈ V (G) : v ∈ C or N(v) ∈ C. (1)

Further, we use standard notation and basic results from linear and integer pro-
gramming. For a further introduction into this topic we refer to [GLS88].

3 Characterization and Complexity of

SimultaneousDominatingSet

In this section we introduce the basic definitions of simultaneous domination. After-
wards, we provide an alternative characterization for a simultaneous dominating set
and analyze the complexity of the related decision problem.

Definition 2. Let G be a connected graph and S ⊆ V (G). We call S a simultaneous
dominating set or SD-set of G if S is a dominating set in every spanning tree of G.
A vertex v ∈ V (G) is called simultaneously dominated by S if v is dominated by S in
every spanning tree of G. Similarly, a subset V ′ ⊆ V (G) is simultaneously dominated
by S if every vertex in V ′ is simultaneously dominated by S.

During this article we mainly investigate minSimultaneousDominatingSet which
consists of finding a simultaneous dominating set of minimum size. The decision
version of this problem is defined as follows:

SimultaneousDominatingSet

Instance: A connected graph G and an integer B ∈ N.
Question: Is there a subset S ⊆ V (G) with |S| ≤ B such that S is a simultaneous

dominating set in G?

Initially, it is not clear if SimultaneousDominatingSet is contained in NP. As
a graph can have an exponential number of spanning trees we cannot simply test
dominance of a given solution in every spanning tree. However, the following theorem
enables us to verify if a given set S is a simultaneous dominating set in polynomial
time.

Theorem 3. Let G be a connected graph. A set S ⊆ V (G) is a simultaneous domi-
nating set if and only if for every v ∈ V (G) it holds true that v ∈ S or:

(i) v is not a cutvertex in G and N(v) ⊆ S, or
(ii) v is a cutvertex in G that is contained in the blocks B1, . . . , Bk and for some

i ∈ {1, . . . , k} we have NBi
(v) ⊆ S.

Proof. By Assumption 1 any connected graph contains at least two vertices. Thus,
the neighborhood of a vertex in a connected graph is never empty. Let v ∈ V (G) \ S

4

be a vertex that is not a cutvertex in G. We claim that the vertex v is simultaneously
dominated by S if and only if all neighbors of v are in S:
If all neighbors of v are contained in S, then v is clearly dominated by S in every

spanning tree of G since there is at least one edge between v and one of its neighbors
in every spanning tree. Conversely, assume that v is simultaneously dominated by S.
Since G− v is connected there is a spanning tree of G− v. We obtain a spanning tree
of G by adding v and any edge incident to v in G. Thus, for any neighbor u of v in G
there is at least one spanning tree of G such that u is the only neighbor of v. Since v
is dominated in every spanning tree of G and v /∈ S we get that all neighbors of v are
contained in S.
Next consider the case that v is a cutvertex and is further contained in the blocks

B1, . . . , Bk. We show that v is simultaneously dominated by S if and only if there is
an i ∈ {1, . . . , k} such that w ∈ S for all w ∈ NBi

(v):
If for some i ∈ {1, . . . , k} we have w ∈ S for all w ∈ NBi

(v), then v is clearly domi-
nated by S in every spanning tree of G since there is at least one edge between v and
one of its neighbors in the block Bi. Conversely, assume that for each i ∈ {1, . . . , k}
there is an wi ∈ NBi

(v) that is not in S. We obtain a spanning tree T of G by using
a spanning forest in G − v and adding the vertex v and for every i ∈ {1, . . . , k} the
edge vwi. The vertex v is not dominated in T since neither the vertex v nor any of its
neighbors wi is in S. Hence, S is not an SD-set.

By Theorem 3 we can verify for a graph G if a given set S ⊆ V (G) is an SD-set
in polynomial time by simply checking conditions (i) and (ii) of Theorem 3 for every
vertex v ∈ V (G) \ S. Recall, that for a graph G a set C ⊆ V (G) is a vertex cover
if and only if for every vertex v ∈ V (G) it holds that v ∈ C or NG(v) ⊆ C, cf. (1).
Theorem 3 asks for exactly the same for non-cutvertices and hence we get:

Corollary 4. If G is a 2-connected graph, then S ⊆ V (G) is a simultaneous domi-
nating set if and only if S is a vertex cover in G.

VertexCover is one of Karp’s 21 NP-complete problems, cf. [GJ79]. It can be
observed that the problem remains NP-hard on 2-connected graphs and thus:

Corollary 5. SimultaneousDominatingSet is NP-complete.

Corollary 4 reveals a close connection between SimultaneousDominatingSet and
VertexCover. However, it is not immediately clear if and how we may use this
relation to efficiently compute a minimum size simultaneous dominating set in graphs
on which VertexCover can be solved in polynomial time. We later see examples of
such possibilities for certain graph classes such as bipartite or chordal graphs, but in
the following we proof that this is not always the case.
Recall the definition of a perfect graph. A graph G is perfect if for every induced

subgraph the chromatic number equals the clique number. The chromatic number is
the minimum number of labels needed, such that every vertex has an assigned label and
no two adjacent vertices have the same label. The clique number is the size of a largest
induced subgraph that is complete. It is well known that minVertexCover can be
solved in polynomial time on perfect graphs, cf. [Sch03]. However, in the following

5

we prove that SimultaneousDominatingSet is NP-complete when restricted perfect
graphs.
To do so we make use of the Strong Perfect Graph Theorem proven by Chudnovsky

et al. in [CRST06]. Recall that for a graph G an odd hole of G is an induced subgraph
of G which is a cycle of odd length at least 5. An odd antihole of G is an induced
subgraph of G whose complement is an odd hole in Ḡ.

Theorem 6 (Strong perfect graph theorem, [CRST06]). A graph G is perfect if and
only if G has no odd hole and no odd antihole.

Theorem 7. SimultaneousDominatingSet is NP-complete when restricted to per-
fect graphs.

Proof. By Theorem 3 SimultaneousDominatingSet restricted to perfect graphs is
contained in NP.
It is well known that VertexCover is NP-complete and it can be observed that it

remains NP-complete on 2-connected graphs. Therefore, let G be a simple, 2-connected
graph. For every edge uv ∈ E(G) we denote by Huv the graph with

V (Huv) = {u, v, xuv
1 , xuv

2 , xuv
3 , xuv

4 , yuv1 , yuv2 , zuv1 , zuv2 } and

E(Huv) = {uxuv
1 , xuv

1 xuv
2 , xuv

2 xuv
3 , xuv

3 xuv
4 , xuv

4 v, , xuv
1 yuv1 , yuv1 yuv2 , xuv

3 zuv1 , zuv1 zuv2 }.

The graph Huv is illustrated in Figure 1.

u xuv

1
xuv

2
xuv

3
xuv

4 v

yuv

1

yuv

2

zuv

1

zuv

2

u xuv

1
xuv

2
xuv

3
xuv

4 v

yuv

1

yuv

2

zuv

1

zuv

2

Figure 1: Construction of two SD-sets in Huv.

We regard the graph

H =
⋃

uv∈E(G)

Huv

and claim that H is perfect. Further, we claim that G has a vertex cover of size at
most k if and only if H has an SD-set of size at most k + |E(G)|.
To show that the graph H is perfect we use the Strong Perfect Graph Theorem,

cf. Theorem 6, and show that there is no odd hole nor an odd antihole. First note that
the only vertices in H that can possibly have degree larger than 5 are the ones also
contained in G. As none of these are adjacent in H there cannot be an odd antihole
of size 7 or larger. Further, the only cycle completely contained inside of some Huv

for uv ∈ E(G) is of the form xuv
1 xuv

2 xuv
3 xuv

1 and has length 3. Any other cordless

6

cycle C in H that passes through Huv has to use the path uxuv
1 xuv

3 xuv
4 v as otherwise

it contains the chord xuv
1 xuv

3 . However, this path has length 4 and since this holds for
every Huv we get that C has even length and there is no odd hole in H . Since an odd
anti-hole of size 5 is the same as an odd hole of size 5 it already follows by the Strong
Perfect Graph Theorem that H is perfect.
Next we show that G has a vertex cover of size at most k if and only if H has an

SD-set of size at most k + 4|E(G)|.
Let C ⊆ V (G) be a vertex cover of G of size k. Consider the set S that contains all

vertices from C and for every uv ∈ E(G) the vertices xuv
1 , xuv

3 , yuv1 , zuv1 if u /∈ C and
xuv
2 , xuv

4 , yuv1 , zuv1 if u ∈ C, cf. Figure 1. Clearly, |S| = k+4|E(G)| and we claim that S
is a simultaneous dominating set of H . To this end regard some uv ∈ E(G). Since
yuv1 and zuv1 are in S and xuv

1 and xuv
3 are cutvertices in H Theorem 3 implies that

xuv
1 and xuv

3 are simultaneously dominated. For w ∈ {xuv
2 , xuv

4 , yuv1 , yuv2 , zuv1 , zuv2 } we
have that either w itself is in S or all neighbors of w are in S. Thus, by Theorem 3 all
vertices in Huv except possibly u and v are simultaneously dominated. If u /∈ S, then
by definition of S all neighbors of u in H are contained in S and u is simultaneously
dominated. If v /∈ S, then it must be the case that u ∈ S as C ⊂ S is a vertex cover
of G. Again it follows by the definition of S that all neighbors of v are contained in S
and w is simultaneously dominated by S. Overall, we conclude that S is a simultaneous
dominating set in H .
Now let S ⊆ V (H) be an SD-set in H of size k + |E(G)|. First we show that for

each uv ∈ E(G) we have |S ∩ (V (Huv) \ {u, v})| ≥ 4. To this end note, that

|S ∩ {yuv1 , yuv2 , zuv1 , zuv2 }| ≥ 2. (2)

Further, xuv
2 and xuv

4 are not cutvertices inH asG is 2-connected. Thus, by Theorem 3,
we either have xuv

3 /∈ S in which case xuv
2 , xuv

4 ∈ S, or xuv
3 ∈ S in which case xuv

1 ∈ S
or xuv

2 ∈ S. We conclude that for each uv ∈ E(G) we have

|S ∩ (V (Huv) \ {u, v})| ≥ 4. (3)

As G is 2-connected we have for every edge uv ∈ E(G) that neither u nor v is a
cutvertex in H . If both, u and v, are not contained in S, we have by Theorem 3
that xuv

1 as well as xuv
4 are in S. Further, as xuv

2 is not a cutvertex in H we have
xuv
2 ∈ S or xuv

3 ∈ S. By (2) it follows that |S ∩ V (Huv)| ≥ 5. Replacing the elements
in S ∩ V (Huv) by the elements in the set {u, xuv

2 , xuv
4 , yuv1 , zuv1 } yields an SD-set of no

larger cardinality which contains v. Thus we may assume that for every uv ∈ E(G)
we have u ∈ S or v ∈ S. Therefore, the set C = S ∩ V (G) is a vertex cover and by (3)
|C| ≤ k.

Theorem 7 demonstrates that SimultaneousDominatingSet and VertexCover

differ in their complexity on some graph classes, unless P 6= NP. However, in the
following we show that the gap between a minimum size simultaneous dominating set
and a minimum size vertex cover cannot be too large. In particular, we demonstrate
that a minimum size vertex cover may be at most twice as large as a minimum size
SD-set. For an integer k ∈ N let G be a graph on 3k vertices, where k vertices form a

7

clique and each vertex of the clique has a dangling path of length two attached to it,
cf. Figure 2. A vertex cover in G contains at least k−1 vertices of the clique as well as

...

Figure 2: Vertex cover of minimum size
in G

...

Figure 3: SD-set of minimum size in G

one more for each dangling path. Hence, a vertex cover of G has size at least 2k − 1.
See Figure 2 for a possible minimum size vertex cover.
On the other hand there is an SD-set of size k since the edges of every dangling path

are contained in a spanning tree of G, cf. Figure 3. As for every dangling path at least
one of its vertices has to be contained in an simultaneous dominating set the described
SD-set is of minimum size. Now we show that this is the largest gap possible.

Theorem 8. Let G be a connected graph and S an SD-set. We can extend S to a
vertex cover C by adding at most |S| − 1 vertices. In particular, if C′ is a minimum
size vertex cover and S′ is a minimum size SD-set, then it holds that |C′| ≤ 2|S′| − 1.
The given bound is tight.

Proof. Let G be a connected graph and denote the block graph of G by T . Further,
let S be an SD-set. By definition there is at least one vertex in S and thus, there is a
block B such that S ∩ V (B) 6= ∅. We root T at such a block Br. Denote by CV the
set of cutvertices of G. For every cutvertex with children B1, . . . , Bk in T let

S(v) = S ∩

(

k
⋃

i=1

NBi
(v)

)

,

i.e., S(v) consists of the neighbors of v that are in S and in the blocks that are children
of v in T . We claim that C is a vertex cover of size at most 2|S| − 1, where

C := S ∪ {v ∈ CV: S(v) 6= ∅}.

An example for such a set C is illustrated in Figure 4.

8

v1

v1

u1

u2

u3

B
v1

1
B

v1

2

v1

u4

v2

v2

w3w2

B
v2

1
B

v2

2

v2

w1

Figure 4: Part of the block graph of a graph G: One can observe the cutvertices v1
and v2 together with their children. The solid and dotted edges are edges
in the block graph. The dashed edges are edges in the graph G. The blue
vertices are in S and the yellow vertices are in C \ S.

First we prove that C is in fact a vertex cover. To do so, we show for every vertex
v ∈ V (G) \ C that NG(v) ⊆ C. First of all, if v is not a cutvertex, then all its
neighbors in G are in S by condition (i) of Theorem 3 and thus in C. Next assume
that v is a cutvertex with children B1, . . . , Bk and parent B in T . Since v /∈ C we have
S(v) = ∅ and thus no neighbor of v in the children B1, . . . , Bk is in S. Condition (ii) of
Theorem 3 implies that all neighbors of v in B are in S and hence in C. Now consider
a vertex w ∈ N(v) ∩ Bi for i ∈ {1, . . . , k}. If we show that w ∈ C, then the claim
follows. Since neither v nor w is in S the vertex w needs to be a cutvertex, otherwise
w would not satisfy condition (i) of Theorem 3. Further, the block Bi is the parent of
w in T and since v /∈ S we have that w is simultaneously dominated in a block that is
its child in T . In particular, we have S(w) 6= ∅ and by the definition of C it is w ∈ C.
Overall, this shows that NG(v) ⊆ C and hence C is a vertex cover.
Next we show |C| ≤ 2|S| − 1. This follows if we can find an injective mapping from

C \ S to S \ V (Br) since |S ∩ V (Br)| ≥ 1. By the definition of C there is for every
v ∈ C \ S a vertex w ∈ S(v) ⊆ S \ V (Br). If we map v to w, then we obtain an
injective mapping: If w is not a cutvertex, then w is contained in exactly one block
and v is the unique parent of this block. Otherwise, if w is a cutvertex, then it is itself
a child of the block containing v and w in T . Hence, every block containing w is either
a child of v or a child of w and since w ∈ S no other vertex in C \ S is mapped to w.
This shows that the mapping is injective and hence |C| ≤ 2|S| − 1.
We already observed before the statement of this theorem, that there exists a graph

G with minimum vertex cover C and minimum SD-set S such that |C| = 2|S| − 1,
cf. Figure 4. Thus, the provided bound is in fact tight.

9

4 An Exact Algorithm for SimultaneousDominatingSet

using an Oracle for VertexCover

In the previous section we saw that on 2-connected graphs SimultaneousDominat-

ingSet is equivalent to VertexCover. However, we have also highlighted some
differences. On the one hand we showed that in general graphs the size of a minimum
size SD-set and a minimum size vertex cover may differ by a factor of two. On the other
hand we proved that SimultaneousDominatingSet is NP-complete when restricted
to perfect graphs whereas VertexCover is solvable in polynomial time. In this sec-
tion we concentrate on the algorithmic aspect of SimultaneousDominatingSet. In
particular, we show how we can find a minimum size SD-set in general graphs using
an oracle for a minimum size vertex cover. To this end we need some further notation.
In the following we assign colors to vertices. To get an intuition what these colors

represent for a vertex v we give an interpretation of them:

• color 2 indicates that v is fixed to be in the SD-set,

• color 1 indicates that v is not in the SD-set yet but it is simultaneously dominated
and

• color 0 indicates that v is not in the SD-set and it is not simultaneously dominated
yet.

We call color 2 better than color 1 and 0 and say that color 1 is better than color 0.
For a subset col ⊆ {2, 1, 0} we denote the best color of col by best(col).
Now we briefly describe the idea of the algorithm:

Explanation 9. Let G be a graph in which we want to compute a minimum size
SD-set. Our algorithm is based on the structure of the block graph of G. We start
with an endpoint H and its connection vertex v of the graph G. We take out of all
minimum size sets S ⊆ V (H) that simultaneously dominate all vertices in V (H) \ {v}
one with the best coverage for v, i.e., the best color for v. We then remove H − v
from G and continue with the next endpoint.
In later stages of the algorithm we may have vertices in our endpoint, that are

already simultaneously dominated or even contained in an SD-set for free. This has
to be taken into account when computing such a minimum size set of a block that
was originally not an endpoint. The crucial point of this procedure is, that any vertex
can be simultaneously dominated by adding only one vertex, namely the vertex itself.
Thus, if the connection vertex v is not simultaneously dominated in one of its endpoints
by any of the minimum size SD-sets, then we can simply simultaneously dominate it
later on in a subsequent step of the algorithm. This is true, as we can be sure that
it never costs us more than it would cost us to simultaneously dominate it within the
current block.

To formalize this setup where some vertices are already simultaneously dominated
or even in the SD-set we need a generalized version of simultaneous dominating sets.

10

Definition 10. Let G be a connected graph and f : V (G) → {2, 1, 0} a coloring. We
call a subset S ⊆ V (G) an f -respecting simultaneous dominating set if the following
conditions hold:

• f−1(2) ⊆ S and

• f−1(0) is simultaneously dominated by S.

If we do not specify the coloring, then we also use the term color respecting simulta-
neous dominating set.

Thus, a color respecting SD-set S is an SD-set such that all vertices with assigned
color 2 are contained in S and all vertices with assigned color 1 do not have to be
simultaneously dominated by S. Clearly this is a generalization of an SD-set as if all
vertices are assigned color 0, then a color respecting SD-set and an SD-set are the
same thing.
In the following we present an algorithm that computes a minimum size color re-

specting SD-set in a connected graph without a cutvertex and afterwards, we show
how we can use this algorithm to obtain an SD-set in general graph. To this end let G
be a connected graph without a cutvertex and f : V (G) → {2, 1, 0} a coloring of the
vertices of G. Algorithm 1 describes how to find a minimum size f -respecting SD-set in
G using an oracle MinVertexCover for solving the well known minVertexCover

as a black box algorithm. Before we use the oracle to obtain such a vertex cover, we
modify the graph. Recall that all vertices with color 2 have to be in S and therefore
we remove them from G. The vertices with color 1 do not have to be simultaneously
dominated and hence we remove the edges between vertices with color 1. In Theo-
rem 11 we prove that a minimum size vertex cover in the modified graph is in fact a
f -respecting SD-set in the original graph.

Algorithm 1: crSDS(G, f): Finding a minimum size color respecting si-
multaneous dominating set in a connected graph G without a cutvertex

Input: A connected graph G without a cutvertex and a colouring
f : V (G) → {2, 1, 0}

Output: A minimum f -respecting simultaneous dominating set and its size
1 G = G− f−1(2)
2 G = G− E(G[f−1(1)])
3 S = MinVertexCover(G)
4 return S ∪ f−1(2), |S ∪ f−1(2)|

Theorem 11. Given a connected graph G without a cutvertex and a coloring f : V (G) →
{2, 1, 0} Algorithm 1 returns a minimum size f -respecting simultaneous dominating
set. It can be implemented to run in polynomial time if MinVertexCover can be
implemented to run in polynomial time.

Before we start with the proof note that this running time is also called oracle
polynomial given the oracle MinVertexCover. As oracle algorithms are not our
focus and we just use it here we do not formally introduce this form of algorithms.

11

Proof. Let S⋆ be the set returned by the algorithm. We begin by proving that S⋆ is an
f -respecting simultaneous dominating set. Clearly f−1(2) ⊆ S⋆ and thus, as G does
not contain a cutvertex and by Definition 10 we only need to prove that for all vertices v
with f(v) = 0, we have v ∈ S⋆ or NG(v) ⊆ S⋆. So let v ∈ V (G) with f(v) = 0. After
having deleted all vertices with color 2 we do not delete edges incident to v. Thus, the
vertex cover computed either contains v itself or all neighbors of v which do not have
color 2. As all deleted vertices are contained in S⋆ the required condition follows and
we conclude that S⋆ is indeed an f -respecting simultaneous dominating set.
Let G′ = (G−f−1(2))−E(G[f−1(1)]). To see that the algorithm returns a minimum

size f -respecting simultaneous dominating set we show that for every f -respecting
simultaneous dominating set S it holds that S \ f−1(2) is a vertex cover in G′. So
let S be any f -respecting simultaneous dominating set and let e = uv ∈ E(G′). Then
at least one endpoint of e, say v, has color 0 and neither u nor v has color 2. By
Definition 10 this means that v or all vertices in NG(v) are contained in S. We have
u ∈ NG′(v) and thereby u ∈ S \ f−1(2) or v ∈ S \ f−1(2). As e was an arbitrary edge
in E(G′) we conclude that S \ f−1(2) is a vertex cover in G′.
Clearly all steps of the algorithm, except possibly the call to MinVertexCover

can be implemented to run in polynomial time.

Now that we know how to find a color respecting SD-set on connected graphs without
a cutvertex we focus on minimum size SD-sets in a general graph G. As already
described in Explanation 9 we make use of the tree structure of the block graph of
G. In particular, we do not consider the whole graph G at once but successively work
with endpoints of the block graph and their connection vertex. Since we have to make
some adjustments to the used coloring during the algorithm we need further notation
to make the arguments more clear and formally correct.

Definition 12. Let G be a graph and f : V (G) → {2, 1, 0} some coloring of the
vertices. For any induced subgraph H of G we denote by fH the coloring f restricted
to the nodes of H . Further, for any fixed vertex v ∈ V (H) and i ∈ {2, 1, 0} we
denote by fH

v=i the coloring of V (H) with fH
v=i(v) = i and fH

v=i(w) = fH(w) for all
w ∈ V (H) \ {v}. Finally, we denote by SH

v=i a minimum fH
v=i-respecting simultaneous

dominating set in H for i ∈ {2, 1, 0}. If H = G, then we omit the superscript H in
the notation.

Algorithm 2 shows a pseudo code version of the complete procedure. Within the
algorithm we use the algorithm crSDS and the black box algorithm GetEndPoint.
The latter one takes as input a graph G that is not 2-connected and returns an end-
point B of the block graph of G and the parent v ∈ B of the endpoint B in the block
graph. Note that if a vertex in V (B) is simultaneously dominated in B, then this
vertex is simultaneously dominated in G by Theorem 3. Therefore, a color respecting
simultaneous dominating set in B suffices to ensure that every vertex in V (B) \ {v}
with color 0 is simultaneously dominated in G. We save the current color of v and
compute a color respecting simultaneous dominating set in B for every possible color
of v. We use the color respecting simultaneous dominating set in B, which is the
smallest among the three possibilities, where ties are broken by the best coverage of v.

12

Afterwards, we delete B−v from G and continue with the remaining graph. Before we
formally prove the correctness of Algorithm 2 and discuss its running time, we prove
two lemmas, which make life easier in the proof of the algorithm.

Algorithm 2: Computing a color respecting SD-set of minimum size

Input: A connected graph G and a coloring f : V (G) → {2, 1, 0}
Output: An f -respecting SD-set of minimum size in G

1 S = ∅
2 while G contains a cutvertex do

3 B, v = getEndPoint(G)
4 c⋆ = f(v)
5 for c ∈ {2, 1, 0} do

6 f(v) = c

7 Sc,#c = crSDS(B, fB)

8 f(v) = c⋆

9 if #2 = #0 = #1 then

10 f(v) = 2
11 S = S ∪ S2

12 else if #2 > #0 = #1 then

13 f(v) = best{(}c⋆, 1)
14 S = S ∪ S0

15 else

16 S = S ∪ S1

17 G = G− (V (B) \ {v})

18 SG,# = crSDS(G, f)
19 return S ∪ SG

Before we formally prove the correctness of Algorithm 2 and discuss its running time,
we prove two lemmas, which make life easier in the proof of the algorithm. Lemma 13
shows that if we only change one color in a coloring of a connected graph G without
a cutvertex, then the size of a minimum color respecting SD-set changes at most by
one.

Lemma 13. Let G be a connected graph without a cutvertex, v ∈ V (G) a fixed vertex
in G and f : V (G) → {2, 1, 0} some coloring. Then the following two statements hold:

(i) |Sv=1| ≤ |Sv=0| ≤ |Sv=2|.
(ii) |Sv=2| − |Sv=1| ≤ 1.

Proof. First we show that every fv=0-respecting SD-set S is also fv=1-respecting.
Clearly we have f−1

v=1(2) = f−1
v=0(2) ⊆ S. Further f−1

v=1(0) ⊆ f−1
v=0(0). Thus, f−1

v=1(0)
is simultaneously dominated by S and S is also fv=1-respecting. With similar argu-
ments we get that any fv=2-respecting SD-set is also fv=0-respecting. These two small
observations directly imply 13.(i).

13

To see that 13.(ii) holds, let Sv=1 be a minimum fv=1-respecting SD-set. Then Sv=1∪
{v} is fv=2-respecting, as

f−1
v=2(2) = f−1

v=1(2) ∪ {v} ⊆ Sv=1 ∪ {v}

and f−1
v=2(0) ⊆ f−1

v=1(0). This already implies that the minimum fv=2-respecting SD-set
has at most one element more than Sv=1.

The next lemma justifies how the algorithm combines such a color respecting SD-set
of an endpoint and one of the rest of the graph to obtain a color respecting SD-set
for the whole graph G. For better readability we abuse notation in Lemma 14 and
Theorem 15 and write G−H instead of G− V (H). As we only use this in these two
statements we do not introduce this notation formally.

Lemma 14. Let G be a graph with some coloring f : V (G) → {2, 1, 0} and H ′ be
some endpoint of G with connection vertex v ∈ V (G) and let H = H ′ − v. Then the
following three statements hold true:

• If |SH′

v=1| = |SH′

v=0| = |SH′

v=2|, then SH′

v=2 ∪ SG−H
v=2 is a minimum f -respecting

simultaneous dominating set in G.

• If |SH′

v=1| < |SH′

v=0| = |SH′

v=2|, then SH′

v=1 ∪ SG−H
v=f(v) is a minimum f -respecting

simultaneous dominating set in G.

• If |SH′

v=1| = |SH′

v=0| < |SH′

v=2|, then SH′

v=0 ∪ SG−H
v=best({f(v),1}) is a minimum f -

respecting simultaneous dominating set in G.

Proof. It is easy to see that all claimed sets are f -respecting simultaneous dominating
sets in G, we now focus on their minimality. To this end let S be a minimum f -
respecting simultaneous dominating set in G.
We begin with the case that |SH′

v=1| = |SH′

v=0| = |SH′

v=2|. If v ∈ S, then the first
statement holds as S is minimum restricted to H ′ and therefore it is for free in S when
considering G −H . So assume v /∈ S and regard S ∩ V (H ′). This set simultaneously
dominates all vertices in H ′ with respect to f except possibly v. As SH′

v=1 is minimum
among these sets we have |S∩V (H ′)| ≥ |SH′

v=1| = |SH′

v=2| and we can replace S∩V (H ′)
by SH′

v=2 without making it larger. We now have a minimum f -respecting simultaneous
dominating set in H ′ containing v and get that SH′

v=2 ∪ SG−H
v=2 is also simultaneously

dominating with respect to f .
Next assume that |SH′

v=1| < |SH′

v=0| = |SH′

v=2|. If v is not simultaneously dominated
by S ∩ V (H ′) we are done, so assume v is simultaneously dominated by S ∩ V (H ′)
and hence |S ∩ V (H ′)| > |SH′

v=1|. If v ∈ S by Lemma 13.(i) we have |S ∩ V (G−H)| ≥
|SG−H

v=2 | ≥ |SG−H
v=f(v)| and hence,

|S| = |S ∩ V (H ′)|+ |S ∩ V (G−H)| − 1 > |SH′

v=1|+ |SG−H
v=f(v)| − 1.

If v /∈ S Lemma 13 implies |S ∩ V (G−H)| ≥ |SG−H
v=1 | ≥ |SG−H

v=f(v)| − 1 and we get

|S| = |S ∩ V (H ′)|+ |S ∩ V (G−H)| > |SH′

v=1|+ |SG−H
v=f(v)| − 1.

14

Both cases then imply |S| ≥ |SH′

v=1|+ |SG−H
v=f(v)|.

Finally, assume |SH′

v=1| = |SH′

v=0| < |SH′

v=2|. First note that this implies v /∈ SH′

v=0. Let
the set S′ = (S \ V (H)) ∪ SH′

v=0. Then |S′| ≤ |S| and S′ is still simultaneously dom-
inating with respect to f . Furthermore, it holds that |S′ \ V (H)| ≥ SG−H

v=best({f(v),1})

and we get

|S| ≥ |S′| = |S′ \ V (H)|+ |S′ ∩ V (H)| ≥ |SH′

v=0|+ |SG−H
v=best({f(v),1})|,

which implies the desired result.

Now we show that the algorithm works in fact as desired and argue about the
running time.

Theorem 15. For a connected graph G and a coloring f : V (G) → {2, 1, 0}, Algo-
rithm 2 correctly computes a minimum size f -respecting simultaneous dominating set S
in G. It can be implemented to run in polynomial time if crSDS can be implemented
to run in polynomial time.

Before we start with the proof note that this running time is also called oracle
polynomial given the oracle crSDS. As oracle algorithms are not our focus and we
just use it here we do not formally introduce this form of algorithms.

Proof. The proof of correctness can be regarded as a direct consequence of Lemma 14.
Nevertheless, we give a formal proof here for the sake of completeness. To this end,
note that Algorithm 2 can be regarded as a recursive algorithm, where in each step
one endpoint except its connection vertex is cut off the graph. We do induction on
the number of blocks of G. If G is connected and has no cutvertex the claim trivially
holds. So let H ′ be an endpoint of G with connection vertex v and set H = H ′ − v.
In the algorithm we now compute SH′

v=i for i ∈ {2, 1, 0}. By Lemma 13 the three case
distinction made in the algorithm (concerning the sizes of these sets) are the only cases
that may occur. The algorithm now handles the cases as follows:

• If |SH′

v=1| = |SH′

v=0| = |SH′

v=2|, then it adds SH′

v=2 to the current set and maps
color 2 to v. Thus, by induction the algorithm returns SH′

v=2 ∪ SG−H
v=2 , which is a

minimum f -respecting simultaneous dominating set in G by Lemma 14.

• If |SH′

v=1| < |SH
v=0| = |SH′

v=2|, then it adds SH′

v=1 to the current set and leaves the
color as it was. Thus, by induction the algorithm returns SH′

v=1 ∪ SG−H
v=f(v), which

is a minimum f -respecting simultaneous dominating set in G by Lemma 14.

• If |SH′

v=1| = |SH′

v=0| < |SH′

v=2|, then it adds SH′

v=0 to the current set and sets the
color of v to best({f(v), 1}). Thus, by induction the algorithm returns SH′

v=0 ∪
SG−H
v=best({f(v),1}), which is a minimum f -respecting simultaneous dominating set

in G by Lemma 14.

As we can see in all considered cases the algorithm correctly computes a minimum
f -respecting simultaneous dominating set in G.

15

Considering the running time of Algorithm 2, note that we can find all blocks in
linear time, cf. [HT73]. With a small adjustment of the usual lowpoint algorithm by
Hopcroft and Tarjan [HT73] we can get the blocks in an order such that each time we
regard the next component it is an endpoint of the remaining graph. Doing this as a
preprocessing step, each call to GetEndPoint takes constant time and the deletion
of H is done implicitly. In each iteration, besides the three calls to crSDS we only do
steps that can be realized in polynomial time, thus, if crSDS can be implemented to
run in polynomial time so can Algorithm 2.

5 Simultaneous dominating sets on Special Graph

Classes

In this section we focus on simultaneous dominating sets on special graph classes.
In particular, we present some classes, where we can solve SimultaneousDominat-

ingSet in polynomial time. From Theorem 15 and Theorem 11 we get the following
theorem:

Theorem 16. Let H′ be a class of graphs on which vertex cover is solvable in poly-
nomial time. Further, let H be a class of graphs such that for all G ∈ H and subsets
U,W ⊆ V (G) with U ∩W = ∅ we have (G− U)− E(G[W]) ∈ H′. Then we can solve
SimultaneousDominatingSet in polynomial time on graphs from H.

We now regard some graph classes, where Theorem 16 is applicable:

Bipartite Graphs Recall that a graph G is bipartite if its vertex set can be parti-
tioned into two sets, such that no edge of G is between vertices in the same set of
the partition. It is easy to see that bipartite graphs are hereditary, i.e., every induced
subgraph is again bipartite. Even if we delete edges in the graph it remains bipartite.
With the help of König’s Theorem [Sch03] and a maximum flow algorithm (for ex-
ample the Hopcroft-Karp algorithm [HT73]) we can compute a minimum size vertex
cover for bipartite graphs in polynomial time. By Theorem 16 Algorithm 2 solves
SimultaneousDominatingSet on bipartite graphs in polynomial time.

Graphs of Bounded Treewidth For a fixed κ ∈ N regard the class H of graphs
of treewidth at most κ. We can find a tree decomposition of graphs in H in linear
time, cf. [Bod98]. Arnborg and Proskurowski showed in [AP89] that a vertex cover
of minimum size can be computed for a graph of bounded treewidth and given tree
decomposition in linear time. As deleting vertices or edges does not increase the
treewidth, by Theorem 16 we can compute an SD-set of minimum size in polynomial
time for graphs from H.
Wit bipartite graphs and graphs of bounded treewidth we saw two classes of graphs

where H = H′ in Theorem 16. Next we consider the class of graphs where this is not
the case and therefore the proof that we can apply Theorem 16 is a bit more involved.

16

Chordal Graphs Recall that a graph G is chordal if any cycle of G with length at
least 4 contains a chord, i.e., an edge between non subsequent edges in C. Also
note that chordal graphs are perfect, cf. [Die17]. Chordal graphs are hereditary but
if we delete edges in a chordal graph, it is possible that the resulting graph is not
chordal anymore. However, with the help of the Strong Perfect Graph Theorem,
cf. Theorem 6 or [CRST06], we can show that the graph after the edge deletion done
in Algorithm 1 is perfect. In perfect graphs we can compute a minimum size vertex
cover in polynomial time, cf. [Sch03]. This leads to a polynomial-time algorithm for
solving SimultaneousDominatingSet on chordal graphs by Theorem 16.
It remains to show that for chordal graphs the graph obtained after the edge dele-

tion is perfect. To do so we use the Strong Perfect Graph Theorem, cf. Theorem 6
or [CRST06] and show that the obtained graph does not contain an odd hole nor an
odd anti hole.

Lemma 17. Let G be a chordal graph and I ⊆ V (G). Let G′ be the graph obtained
by deleting all edges between the vertices of I in G, i.e.

G′ = G− E(G[I]).

Then G′ is perfect.

Proof. Assume G′ has an odd hole C2k+1. At most k vertices of C2k+1 can be in I
since I is an independent set in G′. Hence, there are two consecutive vertices on C2k+1

which are not in I. Since these two vertices do not have a common neighbor in C2k+1

and only edges between vertices of I are deleted there exits a cycle in G of length at
least four that is contained in G but has no chord. In this case G is not chordal which
contradicts the assumptions and hence G′ cannot have an odd hole.
Now assume that G′ has an odd antihole C̄2k+1, where C2k+1 = u1 . . . u2k+1u1. We

claim that the subgraph of G induced by {u1, . . . , u2k+1} has exactly one additional
edge in comparison to the subgraph C̄2k+1 of G′. Otherwise if there is no additional
edge in G[{u1, . . . , u2k+1}], then it follows that G[{u1, . . . , u2k+1}] = C̄2k+1 since no
edge is deleted but this contradicts the assumption that G is chordal and hence per-
fect. If there are two or more additional edges, then at least three of the vertices
are in I. Since all the edges between the vertices in I are deleted, C̄2k+1 cannot be
an odd antihole in G′. So assume that the additional edge is between u2 and u3 in
G[{u1, . . . , u2k+1}] and thus, these two vertices are the only vertices of V (C̄2k+1) in I.
Then the cycle C = (u2, u3, u1, u4, u2) is contained in G and has length four but no
chord. Again this contradicts the assumption that G is chordal and hence G′ has no
odd antihole.
The claim follows by the Strong Perfect Graph Theorem, cf. Theorem 6 or [CRST06].

This lemma shows that for a chordal graph the graph obtained after the edge deletion
of Algorithm 1 is perfect. We get the following corollary from Theorem 16:

Corollary 18. In bipartite graphs, chordal graphs and graphs of bounded treewidth we
can compute a minimum size simultaneous dominating set in polynomial time.

17

At this point we refer to Theorem 7 again which states that SimultaneousDomi-

natingSet is NP-complete when restricted to perfect graphs. This shows that even
though VertexCover is solvable in polynomial time on perfect graphs, Theorem 16
is not applicable to this class.

6 A 2-Approximation Algorithm for

SimultaneousDominatingSet

For minVertexCover there is an easy 2-approximation algorithm using maximal
matchings, cf. [Die17]. Together with the result of Theorem 8 we directly obtain a
4-approximation for minSimultaneousDominatingSet. However, we can do better.
In this section we show that there is a 2-approximation algorithm for minSimulta-

neousDominatingSet. The following idea is deduced from another 2-approximation
algorithm for VertexCover using LP-relaxation of the IP-formulation of the prob-
lem, cf. [Sch03]. However, it is more involved than the approximation for Vertex-

Cover and therefore worth to be described in detail. We begin by formulating an inter
program for minSimultaneousDominatingSet and prove its correctness. Then, we
use the solution of its LP-relaxation to obtain an integral solution of at most twice
the optimal objective function value of the LP and thus at most twice the optimal
objective function value of the IP.
(IP 4) describes minSimultaneousDominatingSet for a connected graph G. Let

CV be the set of cutvertices in G and NCV := V (G)\CV. For every v ∈ CV we denote
by Bv the set of blocks of G that contain the vertex v. In a solution the variable xv

states if a vertex v is in the SD-set or not. The variable yv,B is only used if v is a
cutvertex and states if v is simultaneously dominated by the block B.

(IP 4) min
x, y

∑

v∈V (G)

xv (4a)

s.t. xu + xv ≥ 1 ∀v ∈ NCV and u ∈ NG(v) (4b)

xu ≥ yv,B ∀v ∈ CV, ∀B ∈ Bv, ∀u ∈ NB(v) (4c)
∑

B∈Bv

yv,B + xv ≥ 1 ∀v ∈ CV (4d)

xv, yv,B ∈ {0, 1} ∀v ∈ V (G) (4e)

Lemma 19. Let G be a graph and x ∈ {0, 1}|V (G)|. The set S = {v ∈ V (G) : xv = 1}
is an SD-set of minimum size if and only if there is a y such that (x, y) is an optimal
solution for (IP 4).

Proof. The lemma follows if we show that the set S = {v ∈ V (G) : xv = 1} is an
SD-set if and only if there is a y such that (x, y) is a feasible solution of (4b)–(4e).
First let (x, y) be a feasible solution for (4b)–(4e) and let S = {v ∈ V (G) : xv = 1}.

Note that by (4e) the entries in xv and yv,B are only 0 or 1. By (4b) we have for every

18

non-cutvertex that either itself or all its neighbors are in S and thus condition (i) of
Theorem 3 is fulfilled. Condition (4d) makes sure that every cutvertex v is in S or for
at least one block B containing v that yv,B has value 1. Hence, together with (4c) all
neighbors of v in B are in S. This implies (ii) of Theorem 3 and hence it follows that
S is a SD-set.
Now assume that S is a SD-set. Set xv = 1 if v ∈ S and xv = 0 otherwise. For every

cutvertex v we have that v itself is in S or it is simultaneously dominated, i.e., there
is a block B containing v such that all neighbors of v in B are in S. We set yv,B = 1
if and only if the latter case is true. This immediately shows that (4c) and (4d) are
fulfilled. Condition (4b) is also satisfied by condition (i) of Theorem 3. This shows
that (x, y) is a feasible solution of (4b)–(4e).

Next consider the LP-relaxation:

(LP 5) min
x, y

∑

v∈V (G)

xv (5a)

s.t. xu + xv ≥ 1 ∀v ∈ NCV and u ∈ NG(v) (5b)

xu ≥ yv,B ∀v ∈ CV, ∀B ∈ Bv, ∀u ∈ NB(v) (5c)
∑

B∈Bv

yv,B + xv ≥ 1 ∀v ∈ CV (5d)

xv, yv,B ≥ 0 ∀v ∈ V (G) (5e)

Let (x, y) be an optimal solution for (LP 5). We construct a new solution (x′, y′) that
is integral in the end and at most doubles the objective function value of (x, y).
The idea is to round at least one variable in (5b) up so (4b) is fulfilled. It remains

to ensure that (4c) and (4d) are satisfied for the cutvertices in G. To do so we use the
block graph T of G. We regard the cutvertices of G bottom up in the tree T and if
necessary round up the x-variable of the cutvertex itself, while decreasing some x-values
of neighbors of the cutvertex in order to maintain the approximation quality. During
all rounding steps we ensure that the current solution remains feasible for (LP 5) such
that after making all variables integral the resulting solution automatically induces an
SD-set. Further, any variable that is at some point set to 1 is never changed again,
implying that only fractional variables are rounded down.

First Rounding Step: For all v ∈ V (G) set x′
v := 1 if xv ≥ 1

2 and otherwise x′
v := xv.

Moreover, for each cutvertex v and each block B with v ∈ V (B) we set

y′v,B := min{x′
u : u ∈ NB(v)}. (6)

Whenever we make a change to a variable x′ in any rounding step we update all re-
spective variables y′ and thus assume that (6) remains valid throughout the procedure.
After the first rounding step, all constraints (4b) are already fulfilled as by (5b) one

of the two variables is greater or equal to 1
2 . Since we never decrease a variable with

value 1 this does not change during the preceding rounding steps. Further, note that

19

all variables now have a value of 1 or less than 1
2 . We keep this invariant throughout

the remaining rounding steps.
Now regard the block graph T of G and root it at any cutvertex. It is easily observed

that we may now recursively choose a cutvertex v such that all descendants of v in T
that are cutvertices have already been regarded. If for some block B containing v we
have y′v,B ≥ 1

2 , then by (6) it holds that y′v,B = 1, which implies that the vertex v is
simultaneously dominated by block B and we can safely go to the next cutvertex. So
assume that y′v,B < 1

2 for all blocks containing v. We denote by B′ the parent of v

in T and by B1, . . . , Bk its children. As y′v,B′ < 1
2 , by constraint (5c) it holds that

x′
v +

k
∑

i=1

y′v,Bi
≥

1

2
.

For every i = 1, . . . , k there exists some node ui fulfilling x′
ui

= y′v,Bi
by (6). We can

use these vertices to define our next rounding step.

Second Rounding Step For every cutvertex v moving bottom up in the block graph T
of G, test if y′v,B ≥ 1

2 for some block B containing v. If none such block exists, set
x′
v = 1 and x′

ui
= 0 for all i = 1, . . . , k.

Note that after each of these rounding steps if we increase x′
v we may safely set y′v,Bi

to 0, as the constraint (4d) is satisfied due to x′
v = 1. Thus, all constraints (4c) corre-

sponding to the cutvertex v are satisfied after the rounding step. Further, decreasing
variables that have value less than 1

2 does not violate any constraint, as all constraints
corresponding to vertices in the children of v are satisfied solely by variables that are
already set to 1. With these arguments we can be sure that after any second rounding
step, the solution remains feasible. Note that it is possible that we have to update
some y′ variables, as we changed the value of some x′ variables and the minimum in (6)
may have changed.
We argue later that these rounding steps do not increase the objective value of the

current solution too much.

Third Rounding Step After iterating through all cutvertices we set all remaining
fractional variables to 0.

Theorem 20. The described algorithm is a 2-approximation algorithm for minSimul-

taneousDominatingSet and runs in polynomial time.

Proof. First we show that the objective value of (x′, y′) is at most twice the optimal
objective value of (IP 4). In every first or second rounding step we replace the value
of a subset of variables, which have summed up value at least 1

2 , by the value 1. This
clearly implies that the defined solution has objective value at most twice the objective
value of the optimal LP solution.
We now show that (x′, y′) is a feasible solution for (IP 4). All entries in x′ and y′

are integral. In (5b) xu or xv was greater or equal to 1
2 and hence x′

u or x′
v was set to

1. We do not decrease it later on, so (4b) is satisfied. Moreover, we made sure that for

20

every cutvertex v at least one of the variables x′
v or y′v,B for some block B containing v

equals 1 and hence, (4d) is fulfilled. Condition (4c) is also satisfied since we set y′v,B
only to 1 if all the corresponding xu equal 1 otherwise we set it to 0.
This shows that (x′, y′) is a feasible solution for (IP 4) that has at most twice the

value of the objective function value of an optimal solution of (LP 5) and hence, of
(IP 4).
We need polynomial time to set up and solve (LP 5), cf. [Sch03]. All rounding steps

can be implemented to run in polynomial time.

7 Conclusion

We considered the problem of simultaneously dominating every spanning tree in a
graph. We proved that in a 2-connected graph a subset of the vertices is a simulta-
neous dominating set if and only if it is a vertex cover. Although finding a minimum
vertex cover and finding a minimum simultaneous dominating set is thereby strongly
related, crucial differences remain. On the one hand we proved that the size of a min-
imum simultaneous dominating set and the size of a minimum vertex cover may differ
by a factor of 2 and that this bound is tight. On the other hand, we proved that Simul-
taneousDominatingSet is NP-complete on perfect graphs, whereas VertexCover

is polynomial time solvable. This also implies that SimultaneousDominatingSet

is solvable in polynomial time on 2-connected, perfect graphs. Afterwards, we pre-
sented an algorithm that solves SimultaneousDominatingSet by decomposing it
into smaller subproblems that can be solved by some preprocessing and an oracle for
the minVertexCover. We argued that the algorithm can be implemented to run
in linear time, when the input graph is restricted to bipartite graphs, chordal graphs,
or graphs of bounded treewidth. Finally, we presented a 2-approximation based on
LP-rounding.

21

References

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-
hard problems restricted to partial k-trees. Discrete Applied Mathematics,
23(1):11–24, 1989.

[BD90] Robert C. Brigham and Ronald D. Dutton. Factor domination in graphs.
Discrete Mathematics, 86(1):127–136, 1990.

[Ber58] Claude Berge. Théorie des graphes et ses applications. Collection univer-
sitaire de mathématiques. Dunod, 1958.

[Bod98] Hans L. Bodlaender. A partial k -arboretum of graphs with bounded
treewidth. Theoretical Comput. Sci., 209(1–2):1–45, 1998.

[CH14] Yair Caro and Michael A. Henning. Simultaneous domination in graphs.
Graphs and Combinatorics, 30(6):1399–1416, 2014.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas.
The strong perfect graph theorem. Annals Of Mathematics, 164:51–229,
2006.

[DHGL06] Peter Dankelmann, Michael A. Henning, Wayne Goddard, and Renu
Laskar. Simultaneous graph parameters: Factor domination and factor
total domination. Discrete Mathematics, 306(18):2229–2233, 2006.

[Die17] Reinhard Diestel. Graph Theory: 5th edition. Springer Graduate Texts in
Mathematics. Springer-Verlag, © Reinhard Diestel, 2017.

[GH13] Wayne Goddard and Michael A. Henning. Independent domination in
graphs: A survey and recent results. Discrete Mathematics, 313(7):839 –
854, 2013.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA,
1979.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algo-
rithms and Combinatorial Optimization, volume 2 of Algorithms and Com-
binatorics. Springer, 1988.

[Hen09] Michael A. Henning. A survey of selected recent results on total domination
in graphs. Discrete Mathematics, 309(1):32 – 63, 2009.

[HT73] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms
for graph manipulation. volume 16, pages 372–378, New York, NY, USA,
1973. ACM.

[KN12] Sven O. Krumke and Hartmut Noltemeier. Graphentheoretische Konzepte
und Algorithmen. Leitfäden der Informatik. Vieweg+Teubner Verlag, 2012.

22

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate
to within 2− ǫ. Journal of Computer and System Sciences, 74(3):335–349,
2008.

[Ore62] Øystein Ore. Theory of Graphs. American Mathematical Society collo-
quium publications. American Mathematical Society, 1962.

[Sam89] E. Sampathkumar. The global domination number of a graph. J. Math.
Phys. Sci., 23(5):377–385, 1989.

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Effi-
ciency. Springer, 2003.

23

	1 Introduction
	2 Preliminaries
	3 Characterization and Complexity of SimultaneousDominatingSet
	4 An Exact Algorithm for SimultaneousDominatingSet using an Oracle for VertexCover
	5 Simultaneous dominating sets on Special Graph Classes
	6 A 2-Approximation Algorithm for SimultaneousDominatingSet
	7 Conclusion

