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ABSTRACT

In this paper the geometric mean of partial positive definite matrices with missing
entries is considered. The weighted geometric mean of two sets of positive matrices is
defined, and we show whether such a geometric mean holds certain properties which
the weighted geometric mean of two positive definite matrices satisfies. Additionally,
counterexamples demonstrate that certain properties do not hold. A Loewner order
on partial Hermitian matrices is also defined. The known results for the maximum
determinant positive completion are developed with an integral representation, and
the results are applied to the weighted geometric mean of two partial positive def-
inite matrices with missing entries. Moreover, a relationship between two positive
definite completions is established with respect to their determinants, showing rela-
tionship between their entropy for a zero-mean,multivariate Gaussian distribution.
Computational results as well as one application are shown.
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Geometric mean, positive definite completions, maximum determinant, entropy,
covariance matrix.

1. Introduction

The geometric mean of two positive definite matrices A and B is given by an explicit
formula [1,44]:

A# 1

2
B = A

1

2 (A− 1

2BA− 1

2 )
1

2A
1

2 . (1)

This is known as the unique positive definite solution X of the Riccati equa-
tion XA−1X = B [34,37]. Moreover, it can be extended to the unique geodesic

t ∈ [0, 1] 7→ A#tB = A
1

2 (A− 1

2BA− 1

2 )tA
1

2 connecting from A to B for the Rieman-
nian trace distance on the open convex cone of positive definite matrices [12,13]. This
geodesic is called the weighted geometric mean of A and B. A various theories of ex-
tending two-variable geometric mean to multi-variable case have been developed: see
[2,14,26,31,38]. A general framework of multivariable operator means containing the
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multivariable geometric mean as a special case is considered [42]. Multi-variable geo-
metric means as well as the two-variable geometric mean of positive definite matrices
have been considered as important objects in many pure and applied areas, such as
data points in a diverse area of settings [4,40,45].

In many research, there is the potential for missing or incomplete data since data
obtained from physical experiments and phenomena are often corrupt or incomplete.
The issue with missing data is that nearly all classic and modern statistical and analyt-
ical techniques deal with complete data. It is vital to be able to deal with missing data
rather than to delete the incomplete data from the analysis. Over the past twenty years
techniques for dealing with missing data in the most appropriate and desirable way
possible have been extensively studied in many different fields such as data analysis,
statistics, optimization, matrix theory [6,16,36,43].

Covariance matrices are used as features for many signal and image processing ap-
plications, including biomedical image segmentation, radar detection, texture analysis,
etc. Recently new geometric approach has been developed for various problems, such
as how to measure the distance between two covariance matrices, how to find the aver-
age matrix of covariance matrices [3,5,8–10,19,25,46,47]. Especially, in [7] Riemannian
mean of covariance matrices to space-time adaptive processing is considered. Recently
it becomes more and more important to deal with incomplete covariance matrices in
perturbed environment [50]. General strategy for completing a partially specified co-
variance matrix was studied by Dempster [18]. A zero-mean, multivariate Gaussian
distribution on Rn with density

f(x) = (2π)−n/2|Σ|−1/2 exp

{
− 1

2
x⊤Σ−1x

}

is considered with a partially specified covariance matrix Σ. Dempster proposed a
completion which maximizes the entropy

H(f) = −
∫

Rn

log(f(x))f(x)dx (2)

=
1

2
log(det Σ) +

1

2
n(1 + log (2π)), (3)

implying that the completion has the maximum determinant. For more information
about the maximum determinant and the maximum entropy [15,22,41].

We consider the geodesic and the geometric mean of two covariance matrices as
space-time adaptive processing, additionally with missing entries, i.e., partially speci-
fied covariance matrices. As the process of averaging, the concept of geometric mean of
two positive definite matrices with missing entries will play a role to apply a geometric
mean to applications in such areas. In this paper we mainly study the geometric mean
of two partial positive definite matrices with missing entries. After a series of prelim-
inary definitions and known results for a graph, a partial matrix, and the weighted
geometric mean of two positive matrices in Section 2 that will be used throughout this
paper, we consider in Section 3 the weighted geometric mean of two subsets of the
positive cone. Several meaningful examples for the geometric mean of two subsets are
given, and topological properties for it are shown. Using the geometric mean of two
sets of positive definite completions, in Section 4 we define the geometric mean of two
partial positive definite matrices and show that it holds several of the known proper-
ties for the geometric mean of two positive definite matrices. In Section 5, we define
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a partial Loewner order for partial Hermitian matrices and characterize the difference
of two partial matrices. In Section 6, the known results for a positive definite com-
pletion of maximizing determinant are developed with an integral representation and
are applied to the weighted geometric mean of two partial positive definite matrices.
Some interesting computational results are found in Section 7.

2. Preliminary

2.1. Graph and Positive Matrix Completion

In 1981, H. Dym and I. Gohberg studied extensions of band matrices with band inverses
[21]. In 1984, R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz considered positive
definite completion of partial Hermitian matrices (some entries specified, some missing)
[24]. They showed that if the undirected graph of the specified entries is chordal,
a positive definite completion necessarily exists. Johnson, Lundquist, and Naevdal
studied positive definite Toeplitz matrix completions in 1997. In [30], they proved that
a pattern P of an (n + 1) × (n + 1) partial Toeplitz matrix is positive (semi)definite
completable if and only if P = {k, 2k, . . . ,mk} for some m ∈ N and k ∈ N.

Let V be the set of vertices, and let {x, y} denote the edge connecting two points
x, y ∈ V . A finite undirected graph is a pair G = (V,E) where the set V of vertices is
finite, and the set E of edges is a subset of the set {{x, y} : x, y ∈ V }. In general E
may contain loops which means that x = y. In this paper we assume that the graph
always has all loops. Without loss of generality we assume that V = {1, 2, . . . , n}.

Define a G-partial matrix as a set of complex numbers, denoted by [aij ]G or A(G),
where aij is specified if and only if {i, j} ∈ E. A completion of A(G) = [aij ]G is an
n× n matrix M = [mij ] which satisfies mij = aij for all {i, j} ∈ E. We say that M is
a positive (semi-)definite completion of A(G) if and only if M is a completion of A(G)
and M is positive (semi-)definite. A clique is a subset C ⊂ V having the property that
{x, y} ∈ E for all x, y ∈ C. A cycle in G is a sequence of pairwise distinct vertices
γ = (v1, . . . , vs) having the property that {v1, v2}, {v2, v3}, . . . , {vs−1, vs}, {vs, v1} ∈ E,
and s is referred to as the length of the cycle. A chord of the cycle γ is an edge
{vi, vj} ∈ E where 1 ≤ i < j ≤ s, {vi, vj} 6= {v1, vs}, and |i− j| ≥ 2.

Assume V = {1, . . . , n}, and let A(G) = [aij ]G be a G-partial matrix. We say that
A(G) is a partial positive (semi-)definite if

aji = āij for all {i, j} ∈ E

and for any clique C of G, this principal submatrix [aij ]i,j∈C of A(G) is positive (semi-
)definite. The graph G is called positive (semi-)definite completable if any G-partial
positive (semi-)definite matrix has a positive (semi-)definite completion.

The following proposition shows that the terms “positive definite completable” and
“positive semi-definite completable” coincide [24].

Proposition 2.1. A graph G is positive definite completable if and only if G is positive
semi-definite completable.

From now on, we will henceforth only use the term ”completable”. A graph G is
chordal if there are no minimal cycles of length ≥ 4. Equivalently, every cycle of length
≥ 4 has a chord. This concept characterizes completable graphs [24].
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Theorem 2.2. The graph G is completable if and only if G is chordal.

Example 2.3. Let G = (V,E) be a graph with V = {1, 2, 3, 4} and

E = {{1, 1}, {1, 2}, {1, 4}, {2, 2}, {2, 3}, {3, 3}, {3, 4}, {4, 4}}.

1

2 3

4

Example 2.3 : Non-chordal graph.

1

2 3

4

Example 2.4 : A chordal graph.

Since the graph G is not chordal, by Theorem 2.2 there exists a partial positive
definite matrix A(G) which does not have any positive completions. For example,
the following partial positive definite matrix does not have a positive (semi-)definite
completion.

N =




1 −1 ? 0
−1 2 2 ?
? 2 3 1
0 ? 1 1




whose missing entries are denoted by ?.

Example 2.4. Let G = (V,E) be a graph with V = {1, 2, 3, 4} and

E = {{1, 1}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {3, 3}, {3, 4}, {4, 4}}.

Since the graph G is chordal, by Theorem 2.2 any matrix A(G) has a positive
(semi-)definite completion. That is, the following partial positive definite matrix has
a positive definite completion.

A(G) =




∗ ? ∗ ∗
? ∗ ∗ ?
∗ ∗ ∗ ∗
∗ ? ∗ ∗




whose missing entries are denoted by ? and specified entries are denoted by ∗. For
example, since the G-partial matrices

A(G) =




1 ? 1 1
? 5 1 ?
1 1 3 1
1 ? 1 2


 and B(G) =




4 ? 2 −1
? 3 1 ?
2 1 6 1
−1 ? 1 3




are partial positive definite, they have positive definite completions.

Let Mm×n := Mm×n(C) be a set of all m× n matrices with entries in the field C of

4



complex numbers. We equip on Mm×n with the inner product defined as

〈A,B〉 := tr(A∗B) =

m,n∑

i,j=1

aijbij ,

for A = [aij ], B = [bij] ∈ Mm×n, where A∗ = ĀT is a complex conjugate transpose
of A. The inner product naturally gives us an l2 norm, known as the Frobenius norm
and Hilbert-Schmidt norm, defined by

‖A‖2 = [tr(A∗A)]1/2.

We simply denote as Mn := Mn×n. We also denote as GLn the general linear group in
Mn.

Remark 2.5. The operator norm of A ∈ Mn is defined as

‖A‖ := max
‖x‖2=1

‖Ax‖2.

Note that

‖A‖2 =
[

n∑

i=1

σ2
i (A)

]1/2

and ‖A‖ = σ1(A),

where σ1(A) ≥ · · · ≥ σn(A) are (non-negative) singular values of A in decreasing order.
Since ‖A‖ ≤ ‖A‖2 ≤ n‖A‖2, two norms ‖ · ‖2 and ‖ · ‖ are compatible.

Let H ⊂ Mn be the real vector space of all Hermitian matrices, and let P ⊂ H

be the open convex cone of n × n positive definite matrices. Then the closure P of P
consists of all n × n positive semi-definite matrices. For any A,B ∈ H we denote as
A ≤ B if and only if B − A ∈ P, and A < B if and only if B − A ∈ P. This is known
as the Loewner partial ordering [28, Section 7.7].

The Frobenius norm ‖ · ‖2 gives rise to the Riemannian trace metric on P given by

δ(A,B) = ‖ log(A−1/2BA−1/2)‖2 (4)

for any A,B ∈ P. Then P is a Cartan-Hadamard manifold, a simply connected complete
Riemannian manifold with non-positive sectional curvature. The curve

[0, 1] ∋ t 7→ A#tB := A1/2(A−1/2BA−1/2)tA1/2

is the unique geodesic from A to B, called the weighted geometric mean of positive
definite matrices A and B. Note that A#B := A#1/2B is the unique midpoint be-
tween A and B for the Riemannian metric. We review several known properties of the
weighted geometric mean on the open convex cone P of positive definite matrices.

Theorem 2.6. The weighted two-variable geometric mean satisfies the following: for
any A, B, C, D ∈ P and t ∈ [0, 1]

(1) A#tB = A1−tBt if A and B commute.
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(2) (aA)#t(bB) = a1−tbt(A#tB) for any a, b > 0.
(3) A#tB = B#1−tA.
(4) A#tB ≤ C#tD whenever A ≤ C and B ≤ D.
(5) [0, 1] × P× P ∋ (t, A,B) 7→ A#tB ∈ P is continuous.
(6) S∗(A#tB)S = (S∗AS)#t(S

∗BS) for any invertible S ∈ GLn.
(7) [(1−λ)A+λB]#t[(1−λ)C+λD] ≥ (1−λ)(A#tC)+λ(B#tD) for any λ ∈ [0, 1].
(8) (A#tB)−1 = A−1#tB

−1.
(9) det(A#tB) = (detA)1−t(detB)t.

(10) [(1− t)A−1 + tB−1]−1 ≤ A#tB ≤ (1− t)A+ tB for any t ∈ [0, 1].

Remark 2.7. Item (5) can be described as the map [0, 1] × P × P ∋ (t, A,B) 7→
A#tB ∈ P is continuous with respect to the Riemannian trace metric δ:

δ(A#sB,C#tD) ≤ δ(A#sB,A#tB) + δ(A#tB,C#tD)

≤ |s− t|δ(A,B) + (1− t)δ(A,C) + tδ(B,D)

for any A,B,C,D ∈ P and s, t ∈ [0, 1].

Remark 2.8. One can define the weighted geometric mean for positive semi-definite
matrices A and B such as

A#tB := lim
ǫ→0+

(A+ ǫI)#t(B + ǫI). (5)

By Theorem 2.6 (4), (A + ǫI)#t(B + ǫI) is monotone decreasing on ǫ > 0 and is
bounded below by O. So it converges, and thus, the equation (5) is well-defined.

3. Weighted geometric mean of two subsets of the positive cone

In this paper we deal with the following weighted geometric mean of two subsets of P
and see its geometric properties.

Definition 3.1. Let S ⊂ P and T ⊂ P, and let t ∈ [0, 1]. The weighted geometric
mean of two subsets of positive definite matrices is defined by

S#tT := {S#tT | S ∈ S, T ∈ T }.

Example 3.2. The weighted geometric mean of two subsets of P has a very important
concept in the theory of operator, matrix means, and approximation. In order to see
this insight, we give several examples in the following.

(1) The weighted geometric mean A#tB of A and B in P is a special example of
that of two subsets S = {A} ⊂ P and T = {B} ⊂ P. Moreover, if two subsets S
and T have cardinalities of p and q, respectively, then the cardinality of S#tT
is less than or equal to pq.

(2) For given A,B ∈ P, consider S = {A + ǫI : ǫ1 > 0} and T = {B + ǫ2I : ǫ > 0}.
Then S,T ⊂ P, and

(A+ ǫ1I)#t(B + ǫ2I) ∈ S#tT ,

which is a generalized form of the right-hand side in the limit of (5).
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(3) For A,B,C,D ∈ P let S = [A,B] = {X ∈ P : A ≤ X ≤ B} and T = [C,D] =
{Y ∈ P : C ≤ Y ≤ D}. Then by monotonicity of the geometric mean in Theorem
2.6 (4),

S#tT ⊆ [A#tC,B#tD].

(4) For A,B ∈ P let S = {X ∈ H : ‖A−X‖ ≤ r1} and T = {Y ∈ H : ‖B−Y ‖ ≤ r2}.
Then S,T ⊂ P for sufficiently small r1, r2 > 0. So the weighted geometric mean
of S and T , S#tT , can be considered as a set of approximations of A#tB.

Especially, for the case of (3) in Example 3.2 the following property which is similar
to [37, Theorem 3.4] holds.

Proposition 3.3. Assume that two subsets S and T of P are totally ordered with
respect to Loewner order. Then

M#N = max

{
X ∈ H :

(
A X
X B

)
≥ 0, A ∈ S, B ∈ T

}
, (6)

where M is the maximum element of S and N is the maximum element of T .

Proof. It is known from Theorem 4.1.3 (iii) in [12] that for given A ∈ S, B ∈ T

A#B = max

{
X ∈ H :

(
A X
X B

)
≥ 0

}
.

Since two subsets S and T of P are totally ordered with respect to Loewner order,
A ≤ M for all A ∈ S and B ≤ N for all B ∈ T . By the monotonicity of geometric
mean in Theorem 2.6 (4), A#B ≤ M#N , and hence, we obtain (6).

Theorem 3.4. Let S,T ⊂ P, and let t ∈ [0, 1]. Then

(1) if S and T are bounded, then so is S#tT ,
(2) if S and T are closed, then so is S#tT .

Hence, S#tT is compact whenever S,T are compact.

Proof. Note that it is enough to show (1) and (2) for compactness, since P is a subset
of Euclidean space H.

(1) Assume that S and T are bounded. By Remark 2.5 ‖A‖ ≤ c for all A ∈ S and
some constant c > 0, and ‖B‖ ≤ d for all B ∈ T and some constant d > 0. Then
0 < A ≤ cI for all A ∈ S, and 0 < B ≤ dI for all B ∈ T . By Example 3.2 (3),
and Theorem 2.6 (1) and (4), it follows that

0 < A#tB ≤ c1−tdtI.

That is, ‖A#tB‖ ≤ c1−tdt, and thus, S#tT is bounded.
(2) Let S and T be closed. Assume that sequences An ∈ S and Bn ∈ S converge

to A ∈ S and B ∈ T with respect to the Riemannian distance, respectively. By
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continuity of the geometric mean in Theorem 2.6 (5) and Remark 2.7,

An#tBn → A#tB ∈ S#tT .

Thus, S#tT is closed.

Remark 3.5. Note that the union of a finite number of compact subsets of P is
compact and the intersection of any family of compact subspace of P is compact. If
{Si} and {Tj} are collections of compact subsets of P, then

( n⋃

k=1

Sik

)
#

( m⋃

k=1

Tjk
)

and

(⋂

i

Si

)
#

(⋂

j

Tj
)

are compact.

Remark 3.6. Assume that S,T ⊂ P are convex. Let A,B ∈ S and C,D ∈ T . Since
S and T are convex, (1 − λ)A + λB ∈ S and (1 − λ)C + λD ∈ T for any λ ∈ [0, 1],
and hence, [(1 − λ)A + λB]#t[(1 − λ)C + λD] ∈ S#tT . On the other hand, it holds
from the joint concavity of geometric mean in Theorem 2.6 (7) that

[(1 − λ)A+ λB]#t[(1− λ)C + λD] ≥ (1− λ)(A#tC) + λ(B#tD)

for any λ ∈ [0, 1]. It is questionable whether or not (1−λ)(A#tC)+λ(B#tD) ∈ S#tT .
If it is true, then we can say that S#tT is convex.

4. Geometric mean of partial positive matrices

From now on, we consider the geometric mean of partial positive matrices. In this
paper, we assume that any graph G always includes all loops. That is, any partial
matrix does not have missing entries on diagonal. Recall that H ⊂ Mn is the real
vector space of all Hermitian matrices, P ⊂ H is the open convex cone of n × n
positive definite matrices, and the closure P̄ of P consists of all n × n positive semi-
definite matrices. We define

H(G) : = {A(G) : A(G) is a n× n G-partial Hermitian matrix.},
P(G) : = {A(G) ∈ H(G) : A(G) is a partial positive definite matrix.}.

For a given G-partial matrix A(G), we denote as p[A(G)] and p+[A(G)] the sets of
all positive semi-definite and positive definite completions of A(G), respectively.

Theorem 4.1. Let A(G) be a partial positive semidefinite matrix with a completable
graph G. Then p[A(G)] is nonempty, convex, and compact.

Proof. Since G is a positive completable graph and A(G) is a partial positive semi-
definite matrix, clearly p[A(G)] is nonempty. If M,N ∈ p[A(G)], then (1− t)M + tN ∈
p[A(G)] for t ∈ [0, 1], so p[A(G)] is convex. Since we assume that diagonal entries are
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given, p[A(G)] is bounded, since

‖M‖2 =

[
n∑

i=1

λ2
i (M)

]1/2

≤ tr(M) =

n∑

i=1

mii < ∞

for any M ∈ p[A(G)], where λi(M) denotes the non-negative eigenvalue of M .

Now we show that p[A(G)] is closed. Let Mk = [m
(k)
ij ] be a sequence in p[A(G)]

converging to M = [mij ] in the Frobenius norm. Since Mk ∈ P for all k, we have
M ∈ P. Moreover, since

|m(k)
ij −mij| ≤ ‖Mk −M‖2,

we have that m
(k)
ij → mij as k → ∞ for all 1 ≤ i, j ≤ n. Since m

(k)
ij = mij for all k and

{i, j} ∈ E, taking the limit as k → ∞ yields that mij = aij for all {i, j} ∈ E. So, M
is a positive semi-definite completion of A(G), that is, M ∈ p[A(G)].

Remark 4.2. For a partial positive definite matrix A(G) with a completable graph
G, one can see easily that p+[A(G)] ∈ P(G) is nonempty, convex, and bounded.

Since p+[A(G)] ⊂ p[A(G)], we have p+[A(G)] ⊂ p[A(G)] = p[A(G)] by Theorem

4.1, where p+[A(G)] is the closure of p+[A(G)]. On the other hand, it is questionable

that p[A(G)] ⊂ p+[A(G)].

Let G and F be given completable graphs. One can naturally ask to define the geo-
metric mean of partial positive definite matrices A(G) and B(F ). Using the geometric
mean of subsets of P in Definition 3.1, we define the geometric mean of two partial
positive definite matrices A(G) and B(F ) as

A(G)#tB(F ) := p
+[A(G)]#tp

+[B(F )], (7)

where t ∈ [0, 1].

Remark 4.3. Using Remark 2.8, one can define the geometric mean of partial positive
semi-definite matrices A(G) and B(F ) as

p[A(G)]#tp[B(F )].

There are some results for the geometric mean of positive semi-definite matrices [34],
but it holds more limited properties than that of positive definite matrices. So we
consider in this article the geometric mean of partial positive definite matrices.

Remark 4.4. By Theorem 3.4 and Reamrk 4.2, A(G)#tB(F ) is bounded for partial
positive definite matrices A(G) and B(F ) with completable graphs G and F .

It would be interesting to find some properties for A(G)#tB(F ) corresponding to
those in Theorem 2.6.

Remark 4.5. Note that A(G)#tA(G) 6= p+[A(G)], since A1#tA2 may not be a pos-
itive definite completion of A(G) even though A1, A2 ∈ p+[A(G)]. For instance, see
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Example 2.4. Let

A1 =




1 1 1 1
1 5 1 1
1 1 3 1
1 1 1 2


 , A2 =




1 −1 1 1
−1 5 1 −1
1 1 3 1
1 −1 1 2


 .

Then A1 and A2 are positive definite completions of A(G). However,

A1#A2 ≈




0.8750 −0.0769 1 0.8750
−0.0769 4.1251 1 −0.0769

1 1 3 1
0.8750 −0.0769 1 1.8750


 ,

which is not a positive definite completion of A(G). Clearly, it holds that p+[A(G)] ⊂
A(G)#A(G).

For A(G), B(G) ∈ H(G) with a given graph G, the sum of two G-partial matrices
and the scalar product of a G-partial matrix, denoted by A(G)+B(G) and αA(G) are
defined by

[A(G) +B(G)]ij =

{
aij + bij if {i, j} ∈ E,

missing otherwise,

[αA(G)]ij =

{
αaij if {i, j} ∈ E,

missing otherwise,

where A(G) = [aij ]{i,j}∈E and B(G) = [bij ]{i,j}∈E, respectively.
Note that A(G)+B(G) and αA(G) are in H(G). It is natural to define the difference

of two G-partial matrices as A(G) −B(G) := A(G) + (−1)B(G).
Let S ⊂ P and let α > 0. For convenience, we denote

αS : = {αA : A ∈ S},
S−1 : = {A−1 : A ∈ S}.

Note that αS,S−1 ⊂ P. It is trivial that

αp+[A(G)] = p
+[αA(G)], p

+[A(G) +B(G)] = p
+[A(G)] + p

+[B(G)].

Proposition 4.6. For completable graphs G and F , let A(G) and B(F ) be partial
positive definite matrices. Then the following hold:

(1) a1−tbt (p+[A(G)]#tp
+[B(F )]) = (ap+[A(G)])#t(bp

+[B(F )]) for any a, b > 0,
(2) p+[A(G)]#tp

+[B(F )] = p+[B(F )]#1−tp
+[A(G)], and

(3) (p+[A(G)]#tp
+[B(F )])

−1
= p+[A(G)]−1#tp

+[B(F )]−1.

Proof. Let A(G) ∈ P(G) and B(F ) ∈ P(F ).

(1) Let A#tB ∈ p+[A(G)]#tp
+[B(F )], where A ∈ p+[A(G)] and B ∈ p+[B(F )].
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Then aA ∈ ap+[A(G)] = p+[aA(G)], and bB ∈ p+[bB(G)]. By Theorem 2.6 (2),

a1−tbt(A#tB) = (aA)#t(bB) ∈ (ap+[A(G)])#t(bp
+[B(F )]).

So a1−tbt (p+[A(G)]#tp
+[B(F )]) ⊆ (ap+[A(G)])#t(bp

+[B(F )]).
Let C#tD ∈ (ap+[A(G)])#t(bp

+[B(F )]), where C ∈ p+[aA(G)] and D ∈
p+[bB(F )]. Then a−1C ∈ p+[A(G)] and b−1D ∈ p+[B(F )], and furthermore, by
Theorem 2.6 (2)

C#tD = a1−tbt[(a−1C)#t(b
−1D)] ∈ a1−tbt

(
p
+[A(G)]#tp

+[B(F )]
)
.

(2) By Theorem 2.6 (3), A#tB = B#1−tA for any A ∈ p+[A(G)] and B ∈ p+[B(F )].
Thus, it is proved.

(3) By Theorem 2.6 (8), (A#tB)−1 = A−1#tB
−1 for any A ∈ p+[A(G)] and B ∈

p+[B(F )]. Thus, it is proved.

5. Difference of partial matrices and Loewner order on partial matrices

Analogous to the Loewner order on H, we define the relation for G-partial semi-definite
matrices.

Definition 5.1. For a given completable graph G, we define the relation ≤ on H(G)
as follows:

(i) A(G) ≥ B(G) if and only if A(G) −B(G) ∈ P(G);
(ii) A(G) > B(G) if and only if A(G) −B(G) ∈ P(G).

Theorem 5.2. The relation ≤ is indeed a partial order on H(G) with a completable
graph G.

Proof. Let G be a completable graph.
(Reflexive) Since A(G) − A(G) is the zero matrix, it holds A(G) ≤ A(G) for all
A(G) ∈ H(G).
(Anti-symmetric) Suppose that A(G) ≤ B(G) and B(G) ≤ A(G) for A(G), B(G) ∈
H(G). Since A(G) − B(G) and A(G) − B(G) partial positive semidefinite, then the
diagonal entries of A(G)−B(G) must be 0, implying A(G)−B(G) = 0. Thus A(G) =
B(G).
(Transitive) Suppose that A(G) ≤ B(G) and B(G) ≤ C(G) for A(G), B(G), C(G) ∈
H(G). Let α ⊂ {1, 2, . . . , n} such that A(G)[α] be a fully specified principal submatrix.
Clearly, M = (A(G)−B(G))[α] and N = (B(G)−C(G))[α] are fully specified principal
submatrices of A(G)−B(G) and B(G)−C(G), respectively. Since A(G)−B(G) and
B(G) − C(G) are partial positive semidefinite, M and N are positive semidefinite.
Note that M +N is a fully specified principal submatrix of A(G)−C(G) and positive
semidefinite. Since α is arbitrary, every fully specified submarix of A(G) − C(G) is
positive semidefinite, implying A(G) ≤ C(G).
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Example 5.3. Consider the following G-partial (positive) matrices:

A(G) =




3 ? 2 1
? 6 1 ?
2 1 4 1
1 ? 1 5


 , B(G) =




1 ? 1 1
? 5 1 ?
1 1 3 1
1 ? 1 2


 .

Since the difference

C(G) := A(G)−B(G) =




2 ? 1 0
? 1 0 ?
1 0 1 0
0 ? 0 3




is partial positive definite, by the definition A(G) > B(G).

Remark 5.4. In general, the existence of positive completions of two partial matrices
A(G) and B(G) does not guarantee the existence of positive completion of A(G) −
B(G). For example, the partial matrices A(G) and B(G) in Example 5.3 have positive
definite completions (see Example 2.4). Since the difference C(G) is partial positive
definite with positive completable graph G, it also has positive definite completions.
On the other hand, the partial matrix A(G)−3B(G) does not have any positive (semi-
)definite completion since it is not partial positive (semi-)definite although A(G) ≥ 0,
3B(G) ≥ 0, and they have positive (semi-)definite completions.

Lemma 5.5. Let G be a given completable graph. Suppose that A(G) and B(G) are
partial positive definite matrices. Then p+[A(G) −B(G)] ⊂ p+[A(G)] − p+[B(G)].

Proof. Let G = (V,E) be a given completable graph. If p+[A(G) − B(G)] = ∅, it
is trivial. Let C ∈ p+[A(G) − B(G)]. Then C is a positive definite completion of
A(G) − B(G). That is, there exist a positive definite matrix C = [cij ] such that
cij = aij − bij for all {i, j} ∈ E, where A(G) = [aij ]{i,j}∈E and B(G) = [bij ]{i,j}∈E.

Let B = [bij] ∈ p+[B(G)]. Since B > 0 and C > 0, we have B + C > 0. Since
bij + cij = aij for all {i, j} ∈ E, it follows that B+C ∈ p+[A(G)]. Since B is arbitrary,
it holds that B + C ∈ p+[A(G)] for all B ∈ p+[B(G)]. Thus, C = (B + C) − B ∈
p+[A(G)] − p+[B(G)].

Remark 5.6. (i) For a completable graph G, assume that A(G) and B(G) are par-
tial positive semi-definite matrices. Then p[A(G)−B(G)] ⊂ p[A(G)]−p[B(G)] by
following the proof of Lemma 5.5 similarly to positive semi-definite completions.

(ii) Since p+[A(G)] − p+[B(G)] may or may not include an element which is not a
positive definite matrix, in general, p+[A(G) − B(G)] 6= p+[A(G)] − p+[B(G)].
For example, consider the following partial positive definite matrices.

A(G) =



2.5 1 ?
1 2.5 1
? 1 2.5


 , B(G) =



2 1 ?
1 2 1
? 1 2
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Then it is clear that

A =



2.5 1 1
1 2.5 1
1 1 2.5


 ∈ p[A(G)], B =



2 1 0
1 2 1
0 1 2


 ∈ p[B(G)],

and

A−B =



0.5 0 1
0 0.5 0
1 0 0.5


 ∈ p

+[A(G)] − p
+[B(G)].

However, A − B /∈ p+[A(G) − B(G)] since A − B is not positive definite. This
shows that A(G) < B(G) does not imply A < B for all A ∈ p+[A(G)] and
B ∈ p+[B(G)].

Theorem 5.7. Let G be a given completable graph. Suppose that A(G) and B(G) are
G-partial matrices with 0 < B(G) < A(G). Then

p
+[A(G) −B(G))] = (p+[A(G)] − p

+[B(G)]) ∩ P.

That is, all positive completions of A(G)−B(G) are expressed as differences of positive
completions of A(G) and B(G).

Proof. Let C ∈ p+[A(G)−B(G)]. Then by Lemma 5.5 it follows that C ∈ p+[A(G)]−
p+[B(G)]. Since C is positive definite, it follows that C ∈ (p+[A(G)]− p+[B(G)]) ∩ P,
so p+[A(G)−B(G)] ⊂ (p+[A(G)]−p+[B(G)])∩P. Let D ∈ (p+[A(G)]−p+[B(G)])∩P.
Then there exist M ∈ p+[A(G)] and N ∈ p+[B(G)] such that D = M −N is positive
definite. Since M −N ∈ p+[A(G) −B(G)], we have that D ∈ p+[A(G)−B(G)].

6. Maximizing the determinant

For a given completable graph G, we see in this section several interesting conse-
quences for positive definite completions of G-partial positive matrices maximizing
the determinant with the previous notions of geometric mean and order relation.

Lemma 6.1. [24, Lemma 1] The function f(A) = log det (A) is strictly concave on
p+[A(G)].

Theorem 6.2. Let G be a given completable graph, and let A(G) be a G-partial matrix
with A(G) > 0. Then there exists a unique positive definite completion of A(G), say

Â, such that

det(Â) = max {det(M) : M ∈ p
+[A(G)]}.

Furthermore, Â is the unique positive definite completion of A(G) whose inverse C =
[cij ] satisfies

cij = 0 for all {i, j} /∈ E.

13



Proof. It follows by Lemma 6.1 amd Theorem 4.1 (see [24]).

Now we investigate relationship between Â and other positive definite completions
for their determinants.

Theorem 6.3. Let G be a given completable graph, and let A(G) be a G-partial matrix

with A(G) > 0. For 0 < k < det(Â), there exists A ∈ p+[A(G)] such that det(A) = k.

Proof. Since p[A(G)] is convex, it is also path-connected, hence connected. Since the
determinant, det : p[A(G)] → R, is a continuous function on p[A(G)], the range of the
determinant function is connected. By the inequality of Hadamard, it follows that

0 ≤ det(A) ≤
n∏

i=1

aii for all A ∈ p[A(G)].

So, det(p[A(G)]) is bounded in R, i.e., det(p[A(G)]) = [a, b] for some 0 ≤ a < b. Claim
that a = 0. It is enough to show that there exist S ∈ p[A(G)] such that det(S) = 0.

Let Z ∈ p[A(G)] with det (Z) 6= 0. Pick one missing entry of A(G), say x. We
fix all entries of Z except x and convert Z into the block matrix of the form (11) via
permutation similarity to place x in the (1, n) spot. Set Z̃ = [z̃ij ] as the matrix obtained

by taking x =
√
ab, where a, b are entries in the (1, 1) and (n, n) spots, respectively.

Since the determinant of the principal submatrix Z̃[1, n] is zero, det (Z̃) = 0. By
Proposition 2.3 in [17], Z̃ ≥ 0, so Z̃ ∈ p[A(G)].

Using the similar proof of [20, Theorem 1], one can have an integral representation
for determinants of two positive definite completion of a G-partial matrix.

Theorem 6.4. Let C be a nonempty convex subset of P. Let A0 and A1 be in C. Define
A(λ) := (1− λ)A0 + λA1 for all λ ∈ [0, 1]. Then,

det(A1) = det(A0) exp

{∫ 1

0
tr(A(λ)−1(A1 −A0))dλ

}
.

Proof. Let M(λ) = [mij(λ)]ij be a n × n Hermitian matrix whose entries mij(λ)
are functions of a parameter λ on I = [a, b] and its determinant be denoted by ∆(λ).
Assume that the functions mij(λ) are differentiable on I for all i, j and det (M(λ)) 6= 0
for all λ ∈ I. Then by the trace theorem [35, p. 83], it follows that

d∆(λ)

dλ
= ∆(λ) tr

(
M(λ)−1 dM(λ)

dλ

)
, (8)

where
dM(λ)

dλ
is the matrix whose elements are

d(mij(λ))

dλ
. Clearly, A(λ) ⊂ C ⊂ P for

all λ ∈ [0, 1]. Since
dA(λ)

dλ
= A1 −A0, by (8) it follows that

d∆(λ)

dλ
= ∆(λ) tr

(
A(λ)−1(A1 −A0)

)
. (9)
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Since ∆(λ) 6= 0, the equation (9) can be rewritten as

d∆(λ)

∆(λ)
= tr

(
A(λ)−1(A1 −A0)

)
dλ. (10)

Since A(λ)−1 is continuous, tr (A(λ)−1(A1 −A0)) is a continuous function of λ on
[0, 1]. Also, ∆(λ) is a polynomial of λ. By integrating both sides of the equation (10)
we have

ln (|∆(1)/∆(0)|) =
∫ 1

0
tr(A(λ)−1(A1 −A0))dλ.

Note that ∆(0) = det(A0) and ∆(1) = det(A1).

Consider a zero-mean, multivariate Gaussian distribution on Rn,

f(x) = (2π)−n/2|Σ|−1/2 exp

{
− 1

2
x⊤Σ−1x

}
,

where the covariance matrix Σ(G) is partial positive definite with a completable graph
G. Recall that H(f) in (3) is the Shannon entropy.

Theorem 6.5. Let f0, f1 be zero-mean, mutivariate Gaussian distributions on Rn

with covariance matrices Σ0,Σ1 ∈ p+[Σ(G)], respectively. Then the following are true:

(1) the difference between Shannon entropy for two distributions can be expressed as

H(f1)−H(f0) =
1

2

∫ 1

0
tr(Σ(λ)−1(Σ1 − Σ0))dλ,

where Σ(λ) = (1− λ)Σ0 + λΣ1.
(2) for a zero-mean, multivariate Gaussian distribution on Rn with the covariance

matrix Σ0#tΣ1, says f0#tf1, it holds that

H(f0#tf1) = (1− t)H(f0) + tH(f1).

Proof. (i) By Eq. (3) and Theorem 6.4, it holds. (ii) by Eq. (3) and Theorem 2.6 (9),
it follows that

H(f0#tf1) =
1

2
log(det Σ0#tΣ1) +

1

2
n(1 + log (2π))

=
1

2
((1− t) log(detΣ0) + t log(det Σ1)) +

1

2
n(1 + log (2π))

= (1− t)H(f0) + tH(f1).

Especially, when t = 1/2, it shows that entropy of distribution with the geometric
mean of two covariances is the average of entropy of two distributions with each
covariance.
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Corollary 6.6. Let A(G1) > 0 and B(G2) > 0 be given partial matrices with com-
pletable graphs G1 and G2. Suppose that A(G1)#tB(G2) is convex. Then the determi-
nant of A#tB in A(G1)#tB(G2) can be expressed as

det(Â)1−t det(B̂)t · exp
{∫ 1

0
tr(St(λ)

−1Tt)dλ

}
,

where St(λ) = (1− λ)(Â#tB̂) + λ(A#tB) and Tt = Â#tB̂ −A#tB.

Theorem 6.7 (Fischer’s Inequality[28]). Let a (m+ n)× (m+n) Hermitian positive
definite matrix H have the partitioned form

H =

[
A X
X B

]
,

where A ∈ Mm and B ∈ Mn. Then

detH ≤ (detA)(detB)

with equality if and only if X = 0.

The following is a similar result to Fischer’s Inequality for partial matrices.

Proposition 6.8. Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint completable graphs
with V1 ∩ V2 = ∅. Let G = (V,E) with V = V1 ∪ V2 and E = E1 ∪ E2. Let

H(G) =

[
A(G1) X
X B(G2)

]
,

where all entries of X are missing. If A(G1) > 0 and B(G2) > 0, then

detH ≤ (det Â)(det B̂) for all H ∈ p[A(G)]

with equality if and only if X = 0. Here Â and B̂ are the maximum determinant
positive definite completions of A(G1) and B(G2), respectively.

Proof. Since G1 and G2 are chordal, so is G. By Theorem 2.2, the graph G is com-
pletable. Since A(G1) > 0 and B(G2) > 0 , it is clear that H(G) > 0 , implying
p+[H(G)] 6= ∅. By Theorem 6.2, the graphs A(G1), B(G2) have the maximum deter-

minant positive definite completions, say Â, B̂ respectively. By Theorem 6.7, it follows
that det(H) ≤ (detA)(detB) ≤ (det Â)(det B̂) for all H ∈ p[H(G)], A ∈ p[A(G1)],

and B ∈ p[B(G2)]. When X = 0, the equality holds. If det(H) = (det Â)(det B̂), then
X = 0 by Theorem 6.7.

Lemma 6.9. The map f : P × P → P defined by f(A,B) = log det(A#tB) for any
t ∈ [0, 1] is strictly jointly concave.

Proof. By Theorem 2.6 (1), the function f on P× P can be written as

f(A,B) = log det(A#tB) = (1− t) log detA+ t log detB.
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Since the map log det : P → R is strictly concave, so is f .

Remark 6.10. We can show the joint concavity of the map f in Lemma 6.9 by using
the joint concavity of geometric mean. Indeed, by Theorem 2.6 (7),

[(1 − λ)A1 + λA2]#t[(1− λ)B1 + λB2] ≥ (1− λ)(A1#tB1) + λ(A2#tB2)

for any A1, A2, B1, B2 ∈ P and any λ ∈ [0, 1]. Since 0 < A ≤ B implies 0 < detA ≤
detB from [28, Corollary 7.7.4], the logarithmic map log : (0,∞) → R is monotone
increasing, and the map log det : P → R is strictly concave,

f((1− λ)(A1, B1) + λ(A2, B2)) = log det[(1− λ)A1 + λA2]#t[(1− λ)B1 + λB2]

≥ log det[(1− λ)(A1#tB1) + λ(A2#tB2)]

≥ (1− λ)f(A1, B1) + λf(A2, B2).

Theorem 6.11. Let G and F be a given completable graph, and let A(G) and B(F )
be partial matrices with A(G) > 0 and B(F ) > 0. For t ∈ [0, 1] there exists a unique
positive definite completion H of A(G)#tB(F ) such that

det(H) = max {det(M#tN) : M#tN ∈ A(G)#tB(F )}.

Furthermore, H = Â#tB̂, where Â and B̂ are the maximum determinant positive
definite completions of A(G) and B(F ), respectively.

Proof. Since det(M) ≤ det(Â) and det(N) ≤ det(B̂) for all M ∈ p+[A(G)]
and N ∈ p+[B(F )], it is clear that det(M#tN) = (det(M))1−t(det(N))t ≤
(det(Â))1−t(det(B̂))t = det(Â#B̂). We just show the uniqueness. Suppose that there

exists C ∈ p+[A(G)] and D ∈ p+[B(F )] such that det (C#tD) = det(Â#tB̂).

Then, (det(C))1−t(det(D))t = (det(Â))1−t(det(B̂))t. Setting x = det(C)/det(Â),

y = det(D)/det(B̂), we have x1−tyt = 1, implying that (t − 1) log x = t log y. Since

x ≤ 1 and y ≤ 1, it must be x = y = 1 for some 0 < t < 1. Therefore, det(Â) = det(C)

and det(B̂) = det(D). By the uniqueness of Â and B̂, it holds that Â = C and

B̂ = D.

In other words, the positive definite completion of A(G)#tB(F ) can uniquely be
expressed as positive definite completions of A(G) and B(F ) with respect to maximum
determinant.

Corollary 6.12. Let G1 = (V1, E1) and G2 = (V2, E2) be disjoint completable graphs
with V1 ∩ V2 = ∅. Let G = (V,E) with V = V1 ∪ V2 and E = E1 ∪ E2. Let

A(G) =

[
A1(G1) X

X A2(G2)

]
and B(G) =

[
B1(G1) Y

Y B2(G2)

]
,

where all entries of X and Y are missing. If Ai(Gi) > 0 and Bi(Gi) > 0 for i = 1, 2,
then

det (A#tB) ≤ det (A1#tB1) det (A2#tB2) for all A#tB ∈ A(G)#tB(G)

with equality if and only if X = Y = 0.
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Proof. By Proposition 6.8 and Theorem 2.6 (9) it is trivial.

Theorem 6.13. Let G be a given completable graph. If 0 < A(G) ≤ B(G), then

0 < det(Â) ≤ det(B̂).

Proof. Since the graph G = (V,E) is completable and B(G)−A(G) > 0, the partial
matrix B(G)−A(G) has the maximum determinant positive definite completion, say

M̂ . Let Â be the maximum determinant positive definite completion of A(G). Let bij
be entries of B(G) for {i, j} ∈ E. Since M̂ij + Âij = bij for all {i, j} ∈ E, M̂ + Â is a
positive definition completion of B(G). Then it follows that

0 < det (Â) < det (M̂) + det (Â) ≤ det (M̂ + Â) ≤ det (B̂)

Note that det (A) + det (B) ≤ det (A+B) for A,B ∈ P (see p.511, [28]).

7. Computational results

Consider finding the maximum determinant positive definite completion among
A(G)#B(G) when A(G) and B(G) are n × n G-partial positive definite matrices
with only one missing entry in the (1, n) position, respectively.

Theorem 7.1 ([29]). Consider the following partial matrix with the only one missing
entry:

H(x) =



a vT x
v C w
x wT b


 , (11)

where all entries are given except x. If H(x) is partial positive definite, H(x) has a
positive definite completion. Indeed, the set of all such completions is given by the
inequality

|x− vTC−1w|2 <
detAdetB

(detC)2
.

Two endpoints of this interval give singular positive semidefinite completions of H(x).
When x = vTC−1w, the positive definite completion has the maximum determinant

det (A) det (B)

(detC)2
,

where

A =

[
a vT

v C

]
and B =

[
C w
wT b

]
.

Clearly it holds that H(x) > 0 if and only if A > 0 and B > 0. In [23] a robust and
fast algorithm based on the preceding theorem is introduced. Suppose that a partial
matrix with one or possibly more then one missing entries is given. We fix all but one
entry and then place the position in the (1, n) spot via permutation similarity. Then
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Figure 1. (a) the determinant of A(x)#B(y); (b) the maximum eigenvalue of A(x)#B(y); (c) the second
maximum eigenvalue of A(x)#B(y); (d) the smallest eigenvlue of A(x)#B(y).

by Theorem 7.1 the maximum determinant completion can be found. Repeating this
process, the sequence of completion matrices is constructed with respect to each of
missing entries. It is shown that the sequence converges to the unique global maximum
determinant completion (for more information, see [23, Theorem 2]).

Now using Theorem 7.1 behaviors of A(G)#tB(F ) are shown computationally. All
graphs in Figure 1–4 are generated by a MATLAB program [48].

Example 7.2. Consider the following partial matrices.

A(x) =




3 −1 x
−1 3 2
x 2 4


 , B(y) =



4 3 y
3 5 −1
y −1 2


 ,

where x and y are missing entries. Since A(x) > 0 and B(y) > 0, by Theorem 7.1
they have positive definite completions when −10/3 < x < 2 and (−3

√
11 − 3)/5 <

y < (3
√
11 − 3)/5. The determinant and each eigenvalue of A(x)#B(y) with respect

to such values x and y are shown in Figure 1. Also, it is shown that A(x)#B(y) have
the maximum determinants when x = −2/3 and y = −3/5, respectively.

Example 7.3. We consider the geometric mean of same partial matrices. Let

A(x) =




3 −1 1 1 x
−1 3 −1 1 0
1 −1 3 2 1
1 1 2 4 2
x 0 1 2 4




and B(y) =




3 0 1 2 y
0 1 0 −1 0
1 0 5 −1 1
2 −1 −1 3 0
y 0 1 0 4




,
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Figure 2. (a) the determinant of A(x)#B(y); (b) the largest eigenvalue of A(x)#B(y); (c) the second largest
eigenvalue of A(x)#B(y); (d) the third largest eigenvlue of A(x)#B(y); (e) the fourth eigenvlue of A(x)#B(y);
(f) the smallest eigenvlue of A(x)#B(y).

where x and y are missing entries. Since A(x) > 0 and B(y) > 0, by Theorem 7.1 they
have positive definite completions when (10−

√
1036)/3 < x < (10+

√
1036)/3 and (4−√

34)/9 < y < (4+
√
34)/9. The determinant and each eigenvalue of A(x)#B(y) with

respect to such values x and y are shown in Figure 2. Also, it is shown that A(x)#B(y)
have the maximum determinants when x = 10/13 and y = 4/9, respectively.

Example 7.4. Let

In(x) =



1 0 x
0 I 0
x 0 1


 ,

where I is the (n−2)×(n−2) identity matrix. By Theorem 7.1, In(x)#In(y) has posi-
tive definite completions when x, y ∈ (−1, 1) and has the maximum determinants when
x = y = 0. The determinant and each eigenvalue of I(x)#I(y) with respect to such
values x and y are shown in Figure 3. Note that each graph looks like symmetric with
respect to y = −x and y = x since In(x)#In(y) = In(y)#In(x) = In(−x)#In(−y).
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Figure 3. (a) the determinant of I10(x)#I10(y); (b) the largest eigenvalue of I10(x)#I10(y); (c) the second
largest eigenvalue of I10(x)#I10(y); (d) the smallest eigenvlue of I10(x)#I10(y).

Example 7.5. Let

A(x, y) =



2 1 x
1 2 y
x y 2


 , B =



4 3 0
3 5 −1
0 −1 2


 ,

By simple calculations, it can be shown that A(x, y)#B has positive definite comple-
tions if and only if |x| < 2, |y| < 2, and 6+3xy−2x2−2y2 > 0, and has the maximum
determinants when x = y = 0. The determinant and each eigenvalue of A(x, y)#B
with respect to such values x and y are shown in Figure 4.

Example 7.6. Consider the following positive definite matrix. For sufficiently small
ǫ > 0,

A =



1.5 1 1
1 1 1/3 + ǫ
1 1/3 + ǫ 1




Setting a23 = 0.33333333, the matrix A will lose positivity. So, arbitrarily small per-
turbations of a positive definite matrix eject one from the cone of positive definite
matrices. Thus, for any positive definite matrix B, A#B will be changed fast as even
very small perturbation occurs.
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Figure 4. (a) the determinant of A(x, y)#B; (b) the largest eigenvalue of A(x, y)#B; (c) the second largest
eigenvalue of A(x, y)#B; (d) the smallest eigenvlue of A(x, y)#B.

8. Application in Computer Vision

Let I be a 1-dimensional intensity or 3-dimensional color image and F be the feature
image extracted from I. For a given rectangular region R ⊂ F , let {zk}1≤k≤m be the
d-dimensional feature points on R. The Region covariance(RC) descriptor is the d× d
covariance matrix of the feature points which is defined by

CR =
1

m− 1

m∑

k=1

(zk − µ)(zk − µ)⊤, (12)

where µ is the mean of the points (see [33]).
The RC descriptor has recently become a popular method in several areas such as

computer vision and applications of these topics to problems in optimization, machine
learning, medical image, and etc [49]. The RC descriptors are symmetric positive
definite matrices which is relatively low-dimensional descriptors extracted from several
different features computed at the level of regions. Since a single covariance matrix
extracted from a region is usually enough to match the region in different views and
poses, RC descriptor consequently reduces the computational cost of classification.
In [32] an image classification scheme based on the generalized geometric mean of
positive definite matrices computed from features of all sub-regions in a given medical
image, specifically a breast histological image is proposed. Indeed, an image region
R can be divided into n small non-overlapping sub-regions {R1, . . . , Rn} to calculate
the corresponding RC descriptors CRk

, k = 1, . . . , n. Note that the regional covariance
descriptors computed from sub-image are points lying on the Riemannian manifold
of positive definite matrices. Therefore, a representative of different RC descriptors
calculated from sub-images can be considered as the generalized geometric mean of
positive definite matrices. There are several different symmetric weighted geometric
means for positive definite matrices, but we deal with the Karcher mean as follows:
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for a positive probability vector ω = (w1, . . . , wn)

Λ(ω;A1, . . . , An) := argmin
X∈P

n∑

k=1

wiδ
2(X,Ai), (13)

where δ(·, ·) is defined in (4). It is shown that there exists the unique minimum for
the optimization problem (13) if the matrices all lie in a convex ball in a Riemannian
manifold (see [11, section 6.15] and [31]). For more information, see [13,40]. Thus, the
representative of RC descriptors for sub-regions can then be combined through the
generalized geometric mean as Λ(ω;CR1

, . . . , CRn
).

However, missing entries of RC descriptor in practice can occur due to various
reasons, such as poor imaging quality or detector noise. Considering missing entries as
the zero values or some values possibly reduces precision or encourage such matrix to
lose its positivity. Assuming that CR1

(G1), . . . , CRn
(Gn) are partial positive definite

matrices with completable graphs G1, . . . , Gn, the representative of RC descriptors for
sub-regions with missing entries is the generalized geometric mean of partial positive
definite matrices, which is Λ(ω;CR1

(G1), . . . , CRn
(Gn)).

Here, we shortly introduce the recent result, called no dice theorem [27,39], to com-
pute the Karcher mean. For a positive probability vector ω = (w1, . . . , wn), we denote

ω := (w1, . . . , wn, w1, . . . , wn, . . .),

and s(N) :=

N∑

i=1

ωi for each N ∈ N, where ωi is the ith component of the infinite-

dimensional vector ω. The sequence of weighted inductive means is defined by

S1 = A1, SN = Ak# s(N−1)

s(N)

SN−1

for natural numbers N ≥ 2, where k ∈ {1, . . . , n} is chosen so that k ≡ N (mod n).
Then

lim
N→∞

SN = Λ(ω;A1, . . . , An). (14)

This is the special case of law of large numbers on the Hadamard space of positive
definite matrices. Using the convergence in (14), we can find approximately the Karcher
mean of partial positive definite matrices to meet our needs.

9. Final remarks

We have studied the weighted geometric mean of two partial positive definite matrices
including some numerical computation with missing entries. We finally close with some
open problems arisen during our study. Let G and F be completable graphs.

(1) For A,B ∈ P, set

A0 = A, B0 = B, An+1 =

(
A−1

n +B−1
n

2

)−1

, Bn+1 =
An +Bn

2
.
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It is known from [37] that

An ≤ An+1 ≤ A#B ≤ Bn+1 ≤ Bn

for all n ≥ 1, and the sequences {An} and {Bn} converge monotonically to A#B.
For subsets S and T of P, we can define the harmonic mean and arithmetic mean
such as

(S−1 + T −1

2

)−1

and
S + T

2

via the natural definitions of scalar multiplication, sum, and inversion in Section
4. It is questionable that the sequences {Sn} and {Tn} of subsets of P constructed
by the above mean iteration converge to S#T . It may be applied to the geometric
mean p+[A(G)]#p+[B(F )] of partial positive definite matrices A(G) and B(F ).

(2) One can naturally ask the geometric characterization of the geometric mean of
partial positive definite matrices. In Theorem 4.1 and Remark 4.2 we have seen
that p+[A(G)] is nonempty, convex, and bounded. So p+[A(G)]#tp

+[B(F )] is
bounded by Remark 4.4, but it is unknown that p+[A(G)]#tp

+[B(F )] is convex
for t ∈ [0, 1]. This is connected with the question in Remark 3.6.

(3) In Theorem 6.13 we have seen that A(G) ≤ B(G) for partial positive definite

matrices A(G) and B(G) implies det(Â) ≤ det(B̂), where Â is the maximum

determinant positive definite completion of A(G). It naturally occurs that Â ≤
B̂. If it is true, then Theorem 6.13 holds automatically.
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