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CLASSIFICATION OF SPHERICAL FUSION CATEGORIES OF

FROBENIUS-SCHUR EXPONENT 2

ZHEYAN WAN AND YILONG WANG

Abstract. In this paper, we propose a new approach towards the classification of spher-
ical fusion categories by their Frobenius-Schur exponents. We classify spherical fusion
categories of Frobenius-Schur exponent 2 up to monoidal equivalence. We also classify
modular categories of Frobenius-Schur exponent 2 up to braided monoidal equivalence. It
turns out that the Gauss sum is a complete invariant for modular categories of Frobenius-
Schur exponent 2. This result can be viewed as a categorical analog of Arf’s theorem on
the classification of non-degenerate quadratic forms over fields of characteristic 2.

1. Introduction

Let C be a spherical fusion category over C. The higher Frobenius-Schur indicators
νn(V ) of V ∈ Ob(C) and n ∈ Z are generalizations of the classical Frobenius-Schur indica-
tor for irreducible finite group representations (see [15] and the references therein). The
Frobenius-Schur indicators are important invariants of a spherical fusion category, espe-
cially when the category is in addition non-degenerately braided (in other words, modular).
For example, the congruence subgroup conjecture on the SL(2,Z) representations arising
from modular categories can be resolved using generalized Frobenius-Schur indicators [17].

The Frobenius-Schur exponent of a spherical fusion category C, denoted by FSexp(C),
is the smallest positive integer n such that νn(V ) = dimC(V ) for any object V ∈ Ob(C),
where dimC(V ) is the categorical dimension of V in C. It is shown in [15] that FSexp(C) is
equal to the order of the T-matrix of Z(C), the Drinfeld center of C. Moreover, the Cauchy
theorem for spherical fusion categories asserts that the prime ideals dividing FSexp(C)
and those dividing the global dimension dim(C) are the same in the ring of algebraic
integers [4]. It is then reasonable to pursue a classification of spherical fusion categories
by their Frobenius-Schur exponents, as opposed to the usual method of classification by
rank [18, 19, 3].

In this paper, we give a full classification of spherical fusion categories of Frobenius-
Schur exponent 2. We show that such a spherical fusion category C is equivalent, as a
fusion category, to Rep(Zn

2 ) for some positive integer n. In particular, the associativity
constraints of C are all identities. We then show that if C is in addition modular, then C
can be decomposed into a Deligne tensor product of two types of modular categories called
C(Z2

2, q1) and C(Z2
2, q2). It is worth mentioning that in [5, Theorem 3.2], the authors showed

that any modular category of Frobenius-Schur exponent 2 is a braided fusion subcategory
of Rep(Dω(Z2n

2 )) for some positive integer n. In this paper, we completely classify these
modular categories by a categorical analog of Arf’s theorem on the classification of non-
degenerate quadratic forms over fields of characteristic 2. It turns out, in this case, the
positive Gauss sum is a complete invariant.
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The paper is structured as follows. In Section 2, we give a quick review of basic concepts
and set up notations for future use. We also discuss the braided monoidal structure on
the category of G-graded vector spaces for a finite abelian group G. In Section 3, we
classify spherical fusion categories of Frobenius-Schur exponent 2. Finally, in Section 4,
we classify modular categories of Frobenius-Schur exponent 2.

2. Preliminaries

2.1. Basic concepts and notations.

Now let C be a fusion category over C over C [8]. In particular, C is rigid monoidal, C-
linear, semisimple with finitely many isomorphism classes of simple objects such that the
tensor unit 1 ∈ Ob(C) is simple. We fix a choice of representatives from the isomorphism
class of simple objects and denote the set of all such representatives by ΠC . The Frobenius-
Perron dimension of V ∈ Ob(C), denoted by FPdimC(V ), is the largest non-negative
eigenvalue of the fusion matrix of V . We define the Frobenius-Perron dimension of C by
FPdim(C) :=

∑

V ∈ΠC
FPdimC(V )2.

A fusion category C is called spherical if it has a pivotal structure such that the left
and right pivotal traces coincide on all endomorphisms. In this case, the left (or right)
pivotal trace of idV , the identity of V ∈ Ob(C), is called the categorical dimension of V .
We denote the categorical dimension of V ∈ Ob(C) by dimC(V ), and we define the global
dimension C by dim(C) :=

∑

V ∈ΠC
dimC(V )2.

A spherical fusion category admitting a braiding is called a braided spherical fusion
category (or premodular category). A braided spherical fusion category is called modular
if the braiding is non-degenerate, or equivalently, if its S-matrix is non-degenerate [14].
For example, Z(C), the Drinfeld center of a spherical fusion category C, is modular [14].

Objects of Z(C) are pairs (X,σX), where X ∈ Ob(C) and σX : X ⊗−
∼
→ −⊗X is a half

braiding. Since the pivotal structure of Z(C) is inherited from C, we have

(2.1) dimZ(C)(V, σV ) = dimC(V )

for any V ∈ Ob(C).

Let C be a spherical fusion category. For any n ∈ Z, and for any V ∈ Ob(C), the n-th
Frobenius-Schur indicator νn of V is defined to be the operator trace of a linear operator

E
(n)
V : HomC(1, V

⊗n) → HomC(1, V
⊗n) satisfying (E

(n)
V )n = id. Here, V ⊗n is understood

as inductively defined by V ⊗(m+1) = V ⊗V ⊗m for 1 ≤ m < n, and associativity constraints

are included in the definition of E
(n)
V , see [16]. In particular, if V is simple, then

(2.2) ν1(V ) = δ1,V .

We also have

(2.3) ν2(V ) = 0, if V 6∼= V ∗, ν2(V ) = 1 or − 1, if V ∼= V ∗

for all V ∈ ΠC .

The Frobenius-Schur exponent of an object V in a spherical fusion category C, denoted
by FSexp(V ), is defined to be the smallest positive integer n such that νn(V ) = dimC(V ).
The Frobenius-Schur exponent of C, denoted by FSexp(C), is defined to be the smallest
positive integer n such that νn(V ) = dimC(V ) for all V ∈ C [15]. When C is the category
of finite dimensional H-modules for a semisimple Hopf algebra H over C, FSexp(V ) is
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equal to the exponent of V as a finite dimensional H-module. In other words, FSexp(V )
is equal to the exponent of the image of G in GL(V,C) [11].

It is immediate from the definition and Equation (2.2) that if C is a spherical fusion
category such that FSexp(C) = 1, then for any V ∈ ΠC , dimC(V ) = δ1,V . According to [9,
Theorem 2.3], dimC(V ) 6= 0 for all V ∈ ΠC , hence C has the tensor unit 1 as its only simple
object. Therefore, C is monoidally equivalent to VecC, the category of finite dimensional
vector spaces over C.

It is worth mentioning that by [15], for any V ∈ Ob(C), FSexp(V ) does not depend on
the choice of pivotal structures. In addition, FSexp(C) of a spherical fusion category C
depends only on the equivalence class of the modular category Z(C).

2.2. Braided monoidal structure on G-graded vector spaces.

Let G be a finite multiplicative abelian group. Recall that the category VecωG of
finite-dimensional G-graded vector spaces has simple objects {Vg|g ∈ G} where (Vg)h =
δg,hC, ∀h ∈ G. The tensor product is given by Vg ⊗ Vh = Vgh, and the tensor unit
is V1, where 1 is the identity of G. The associator is given by a normalized 3-cocycle
ω ∈ Z3(G,C×)

ω(x, y, z) : Vx ⊗ (Vy ⊗ Vz) −→ (Vx ⊗ Vy)⊗ Vz.

Now we equip VecωG with a braiding given by a normalized 2-cochain c ∈ C2(G,C×)

c(x, y) : Vx ⊗ Vy −→ Vy ⊗ Vx

satisfying the hexagon axioms

(2.4)
c(xy, z)

c(x, z)c(y, z)

ω(x, y, z)ω(z, x, y)

ω(x, z, y)
= 1 =

c(x, yz)

c(x, y)c(x, z)

ω(y, x, z)

ω(x, y, z)ω(y, z, x)

for all x, y, z ∈ G. In other words, the pair (ω, c) is an Eilenberg-MacLane 3-cocycle of G.
Finally, we equip VecωG with the canonical (spherical) pivotal structure, which is simply
given by identities on objects, so that the categorical dimensions are all positive. We

denote this braided spherical fusion category by Vec
(ω,c)
G .

An Eilenberg-MacLane 3-cocycle (ω, c) is called a coboundary if there exists a 2-cochain
h ∈ C2(G,C×) such that

(2.5) ω = δh and c(x, y) =
h(x, y)

h(y, x)
.

The Eilenberg-MacLane cohomology group H3
ab(G,C×) is then defined by

H3
ab(G,C×) = Z3

ab(G,C×)/B3
ab(G,C×),

where Z3
ab(G,C×) andB3

ab(G,C×) are respectively the abelian groups of Eilenberg-MacLane
3-cocycles and 3-coboundaries. To (ω, c) ∈ Z3

ab(G,C×), one can assign the function
q(x) := c(x, x), called its trace. It is easy to show that q(x) is a quadratic form (or a
quadratic function). In other words, we have

(1) q(xa) = q(x)a
2

for any a ∈ Z, and

(2) bq(x, y) :=
q(xy)

q(x)q(y) defines a bicharacter of G.
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We will use the pair (G, q) to denote a quadratic form q on the finite abelian group G.
When the group G is clear from the context, we will sometimes simply write q. Note that
given two quadratic forms (G, q) and (G′, q′), we can define a quadratic form on G ⊕G′,
denoted by q ⊕ q′, via the following formula:

(q ⊕ q′)(x, x′) := q(x)q′(x′)

for all (x, x′) ∈ G ⊕ G′. The quadratic form (G ⊕ G′, q ⊕ q′) is called the direct sum of
(G, q) and (G′, q′).

We recall a theorem of Eilenberg-MacLane ([6] and [7]).

Theorem (Eilenberg-MacLane). The map assigning (ω, c) to its trace induces an isomor-
phism of groups

H3
ab(G,C×)

∼=
−→ Q(G,C×)

where Q(G,C×) is the abelian group of quadratic forms from G to C
×.

We introduce the following notations before proceeding. Given a group homomorphism
f : G → G′ and a positive integer n, we use the standard notation for the n-fold product
of f :

fn : Gn → (G′)n, fn(g1, ..., gn) := (f(g1), ..., f(gn)).

For any n-cochain µ ∈ Cn(G′,C×), we define f∗(µ) := µ ◦ fn.

Two quadratic forms q : G → C
× and q′ : G′ → C

× are equivalent if there exists a
group isomorphism f : G → G′ such that q = f∗(q′).

Lemma 2.1. Vec
(ω,c)
G and Vec

(ω′,c′)
G′ are equivalent braided monoidal categories if and only

if the traces of (ω, c) and (ω′, c′) are equivalent quadratic forms.

Proof. If F : Vec
(ω,c)
G → Vec

(ω′,c′)
G′ is a braided monoidal equivalence with the natural

isomorphism µ(x, y) : F (Vx)⊗F (Vy) → F (Vx ⊗ Vy), then F induces a group isomorphism
f : G → G′ on simple objects. Moreover, the following diagrams commute:

(F (Vx)⊗ F (Vy))⊗ F (Vz)
µ(x,y)⊗id
−−−−−−→ F (Vx ⊗ Vy)⊗ F (Vz)

µ(xy,z)
−−−−→ F ((Vx ⊗ Vy)⊗ Vz)

ω′(f(x),f(y),f(z))

x





x





F (ω(x,y,z))

F (Vx)⊗ (F (Vy)⊗ F (Vz))
id⊗µ(y,z)
−−−−−−→ F (Vx)⊗ F (Vy ⊗ Vz)

µ(x,yz)
−−−−→ F (Vx ⊗ (Vy ⊗ Vz))

F (Vx)⊗ F (Vy)
c′(f(x),f(y))
−−−−−−−−→ F (Vy)⊗ F (Vx)

µ(x,y)





y





y

µ(y,x)

F (Vx ⊗ Vy)
F (c(x,y))
−−−−−−→ F (Vy ⊗ Vx)

Hence f∗(ω′) = ω ·δµ and f∗(c′)(x, y) = c(x, y)µ(x,y)
µ(y,x) . Therefore, (ω, c) and (f∗(ω′), f∗(c′))

differ by an Eilenberg-MacLane 3-coboundary. By the theorem of Eilenberg-MacLane,
q = f∗(q′).

Conversely, assume there exists a group isomorphism f : G → G′ such that q = f∗(q′).
By the theorem of Eilenberg-MacLane, (ω, c) and (f∗(ω′), f∗(c′)) differ by an Eilenberg-
MacLane 3-coboundary. In other words, there exists a 2-cochain µ of G such that f∗(ω′) =

ω ·δµ and f∗(c′)(x, y) = c(x, y)µ(x,y)
µ(y,x) . Define F (Vx) := Vf(x) and µ(x, y) : F (Vx)⊗F (Vy) →
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F (Vx ⊗ Vy), then F together with µ extends to a braided monoidal equivalence between

Vec
(ω,c)
G and Vec

(ω′,c′)
G′ . �

Remark 2.2. In the light of the Eilenberg-MacLane Theorem, we will denote any repre-

sentative in the braided monoidal equivalence class of some Vec
(ω,c)
G by C(G, q) where q is

the trace of (ω, c). Then Lemma 2.1 can be rewritten as follows: C(G, q) ∼= C(G′, q′) as
braided monoidal categories if and only if q and q′ are equivalent quadratic forms.

3. Classification of spherical fusion categories of Frobenius-Schur

exponent 2

In this section, we classify spherical fusion categories of Frobenius-Schur exponent 2 up
to monoidal equivalence. Let C be such a category. The Frobenius-Schur exponent of Z(C)
is then also 2 by Corollary 7.8 of [15]. Consequently, for any V ∈ Ob(C), ν2(V ) = dimC(V ).
In addition, if V is simple, then ν2(V ) = 0,±1 (cf. Equation (2.3)). By [9, Theorem 2.3],
dimC(V ) 6= 0. Hence, we have

(3.1) dimC(V ) = ν2(V ) = ±1

for any V ∈ ΠC . By Proposition 8.22 of [9],

(FPdim(C))2 =
(dim(C))2

dimZ(C)((V, σV ))2

for some (V, σV ) ∈ ΠZ(C). Since (V, σV ) ∈ ΠZ(C) implies that V ∈ ΠC [14], by Equations

(2.1) and (3.1), we have (FP dim(C))2 = (dim(C))2. As both FPdim(C) and dim(C) are
positive [9, Theorem 2.3], we have FPdim(C) = dim(C). Hence, C is pseudo-unitary [9].
By Proposition 8.23 of [9], there exists a unique spherical pivotal structure on C such that
dimC(V ) = FPdimC(V ) > 0 for all V ∈ ΠC . Since our classification is up to monoidal
equivalence, we can assume without loss of generality that C is equipped with its unique
spherical pivotal structure described above.

According to Equation (3.1), for any V ∈ ΠC , V is self-dual. As a result, we have

dimC(V ⊗ V ∗) = dimC(V ⊗ V ) = dimC(V )2 = 1.

By rigidity, pseudo-unitarity and the fact that categorical dimension is a character of the
fusion ring, we have V ⊗ V ∼= 1. Therefore, ΠC is a group of exponent 2, or ΠC = Z

n
2 for

some positive integer n. As a result, C = Vecω
Zn
2
for some ω ∈ H3(Zn

2 ,C
×). By Theorem

9.2 of [15], for any finite group G, we have

FS exp(VecωG) = lcmg∈Gord(ω|〈g〉)ord(g),

where ω|〈g〉 denotes the restriction of ω on the subgroup generated by g. Since FS exp(C) =
2, we have ω|〈x〉 is trivial for all x ∈ Z

n
2 .

For any n ∈ Z, consider the map

b : H3(Zn
2 ,C

×) −→ {±1}2
n−1

λ 7→ (..., λC , ...)

where C ranges over the subgroups of Zn
2 of order 2, and

λC =

{

1 if the restriction of λ on C is trivial,

−1 otherwise.
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By [12, Proposition 2.2], b is injective. Therefore, ω|〈x〉 being trivial for all x ∈ Z
n
2 implies

that ω itself is cohomologous to the trivial 3-cocycle. Let [ω] be the cohomology class of ω
in H3(G,C×), we have [ω] = 1, and VecωZn

2
is monoidally equivalent to Vec1Zn

2
by a standard

argument. Note that the more familiar category of finite dimensional representations of
Z
n
2 , denoted by Rep(Zn

2 ), is nothing but an incarnation of Vec1Zn
2
as a fusion category.

We summarize the above discussion in the following theorem.

Theorem 3.1. If C is a spherical fusion category of Frobenius-Schur exponent 2, then
C is pseudo-unitary. Moreover, C is monoidally equivalent to Rep(Zn

2 ) for some positive
integer n. �

Remark 3.2. We can also obtain this result by the explicit formula of the normalized
3-cocycle [10],

ω(x, y, z) =

n
∏

r=1

(−1)arir [
jr+kr

2
]

∏

1≤r<s≤n

(−1)arskr[
is+js

2
]

∏

1≤r<s<t≤n

(−1)arstkrjsit

where x = (i1, . . . , in), y = (j1, . . . , jn), z = (k1, . . . , kn), ir, jr, kr, ar, ars, arst ∈ {0, 1}.

ω(x, x, x) =

n
∏

r=1

(−1)ari
2
r

∏

1≤r<s≤n

(−1)arsiris
∏

1≤r<s<t≤n

(−1)arstirisit = 1.

Take x = (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the r-th position, we get ar = 0 for 1 ≤
r ≤ n. Take x = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) where the first 1 is at the r-th posi-
tion, the second 1 is at the s-th position, we get ars = 0 for 1 ≤ r < s ≤ n. Take
x = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) where the first 1 is at the r-th position, the
second 1 is at the s-th position, the third 1 is at the t-th position, we get arst = 0 for
1 ≤ r < s < t ≤ n. Hence [ω] = 1.

4. Classification of modular categories of Frobenius-Schur exponent 2

In this section, we use the result in the previous section to classify modular categories of
Frobenius-Schur exponent 2 up to braided monoidal equivalence. Let C be such a modular
category. By the same argument as in the previous section, C is pseudo-unitary, and we will
equip C with its canonical spherical pivotal structure such that dimC(V ) = FPdimC(V ) > 0
for all V ∈ ΠC . According to Theorem 3.1, C is equivalent to Rep(Zn

2 ) as a fusion category

for some n. Consequently, as a braided fusion category, C ∼= Vec
(ω,c)
Zn
2

for some Eilenberg-

MacLane 3-cocycle (ω, c). By the same argument as in the previous section, [ω] = 1.

Therefore, C ∼= Vec
(1,c)
Zn
2

with (1, c) an Eilenberg-MacLane 3-cocycle. By Equation (2.4),

we have c(1, x) = c(x, 1) = 1, and q(x)2 = c(x, x)2 = 1 for all x ∈ Z
n
2 , in particular, q takes

value in {±1}. Therefore, by definition (cf. Section 2.2), the bilinear form associated to q
is given by

bq : Z
n
2 ⊕ Z

n
2 → {±1}, bq(x, y) =

q(xy)

q(x)q(y)
= c(x, y)c(y, x)

for any (x, y) ∈ Z
n
2 ⊕ Z

n
2 . Moreover, since bq(x, y) is the entry of the S-matrix of C

[8], the modularity of C then implies that q is a non-degenerate quadratic form. Hence,
bq is a non-degenerate alternating form (in particular, bq(x, x) = 1 for any x ∈ Z

n
2 ).

Therefore, n = 2m is even. Moreover, there exists a symplectic basis {e1, ..., em, f1, ..., fm}
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of Z2m
2 , with respect to which bq(ej , ek) = bq(fj , fk) = 1, and bq(ej , fk) = (−1)δj,k for any

j, k = 1, ...,m.

For any non-degenerate quadratic form q : Z2m
2 → {±1}, we define its additive version

Q : Z2m
2 → Z2 such that (−1)Q(x) = q(x) for any x ∈ Z

2m
2 . Then the Arf invariant of q,

denoted by Arf(q), is given by the classical Arf invariant of Q. More precisely, we have

Arf(q) := Arf(Q) =

m
∑

j=1

Q(ej)Q(fj),

where {e1, ..., em, f1, ..., fm} is the symplectic basis given above. Note that the Arf invari-
ant takes value in Z2, where we use the standard notation Z2 = {0, 1}. We also view Z2

as a field here.

Arf showed in [1] that the Arf invariant is independent of the choice of basis, and
is additive with respect to the direct sum of quadratic forms. More importantly, Arf
showed that the dimension 2m (of Z2m

2 as a vector space over Z2) and the Arf invariant
Arf(q) completely determine the equivalence class of a non-degenerate quadratic form
(Z2m

2 , q) over Z2. The readers, especially those who are not fluent in German, are highly
recommended to consult Appendix 1 of [13] for a beautiful exposition of Arf invariant.

As a consequence of Arf’s theorems, for any positive integer m, there are only two
equivalence classes of non-degenerate quadratic forms on Z

2m
2 , and they can be obtained as

direct sums from two inequivalent quadratic forms on Z
2
2. We give explicit representatives

for the two equivalence classes of non-degenerate quadratic forms on Z
2
2 as follows:

(4.1) q1 : Z
2
2 → {±1}, q1(x, y) = (−1)xy

and

(4.2) q2 : Z
2
2 → {±1}, q2(x, y) = (−1)x

2+xy+y2

for any x, y ∈ Z2. In other words, we have Q1(x, y) = xy and Q2(x, y) = x2 + xy + y2.
Therefore, any quadratic form (Z2m

2 , q) is equivalent to qa1 ⊕ qm−a
2 for some a ≥ 0. The

presentation of q may not be unique, but they are all equivalent to the representatives
given as follows.

By direct computation, we have Arf(q1) = 0, Arf(q2) = 1. Therefore, Arf(q1 ⊕ q1) =
Arf(q2 ⊕ q2) = 0. Since both q1 ⊕ q1 and q2 ⊕ q2 are quadratic forms on Z

4
2, by Arf’s

theorem, q1 ⊕ q1 is equivalent to q2 ⊕ q2. As a result, if a non-degenerate quadratic form
(Z2m

2 , q) is equivalent to qa1 ⊕ qm−a
2 for some a ≥ 0, then its Arf invariant is given by

Arf(q) =

{

0, if m− a is even,

1, otherwise.

by the additivity of the Arf invariant. Now that we can change any summand of the form
q2 ⊕ q2 into q1 ⊕ q1 without changing the equivalence class of q, we have q is equivalent to
qm1 if Arf(q) = 0, and q is equivalent to qm−1

1 ⊕ q2 if Arf(q) = 1. We will assume for the
rest of this article, that any non-degenerate quadratic form (Z2m

2 , q) is represented in this
way.
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Next, we analyze the categorical interpretation of the direct sum of quadratic forms (c.f.
Section 2.2). Let (G, q) and (G′, q′) be two non-degenerate quadratic forms. We consider
the Deligne tensor product of the modular categories C(G, q) and C(G′, q′), denoted by
D := C(G, q)⊠C(G′, q′) [8]. By definition, D is also a modular category, and its fusion rule
is given by the multiplication of the abelian group G⊕G′. Therefore, ΠD = G⊕G′, hence

D ∼= Vec
(ω,c)
G⊕G′ for some Eilenberg-MacLane 3-cocycle (ω, c) of G ⊕G′. Let p(x) = c(x, x)

be the corresponding trace. In other words, D ∼= C(G ⊕G′, p).

Let (ω1, c1) and (ω2, c2) be representatives of the Eilenberg-MacLane 3-cohomology
classes corresponding to q and q′ respectively. By the definition of the Deligne tensor
product, the associativity constraints in D is the tensor product of those in C(G, q) and
C(G′, q′). In other words, for any (x1, x2), (y1, y2), (z1, z2) ∈ G⊕G′, we have

ω((x1, x2), (y1, y2), (z1, z2)) = ω1(x1, y1, z1)ω2(x2, y2, z2).

Similarly, we have the following equality from the definition of the braiding on D

c((x1, x2), (y1, y2)) = c1(x1, y1)c2(x2, y2).

In particular, for any (x1, x2) ∈ G⊕G′, we have

p(x1, x2) = q(x1)q
′(x2) = (q ⊕ q′)(x1, x2).

Therefore, by Lemma 2.1, we have D ∼= C(G⊕G′, p) ∼= C(G ⊕G′, q ⊕ q′).

We summarize the above discussion in the following lemma.

Lemma 4.1. C(G⊕G′, q ⊕ q′) ∼= C(G, q) ⊠ C(G′, q′) as modular categories. �

Combining the discussions in this section gives rise to the following classification result.

Theorem 4.2. If C is a modular category of Frobenius-Schur exponent 2, then C is pseudo-
unitary, and C is braided monoidally equivalent to C(Z2m

2 , q) for a positive integer m and a
non-degenerate quadratic form q. Moreover, we have the following Deligne tensor product
decomposition

C ∼=











C(Z2
2, q1)

⊠m if Arf(q) = 0,

C(Z2
2, q1)

⊠(m−1)
⊠ C(Z2

2, q2) if Arf(q) = 1,

where q1 and q2 are given in Equations (4.1) and (4.2). �

Remark 4.3. A braiding of C(Z2
2, q1) can be given by

c1((x, y), (a, b)) = (−1)xb,

and a braiding of C(Z2
2, q2) can be given by

c2((x, y), (a, b)) = (−1)xa+yb+ay .

We would like to interpret the Arf invariant in the modular category setting. Firstly,
note that for any non-degenerate quadratic form (Z2m

2 , q), by direct computation, we have

(−1)Arf(q) =
1

√

|Z2m
2 |

∑

x∈Z2m
2

q(x) =
1

2m

∑

x∈Z2m
2

q(x)

(by Arf’s theorems, we only have to check this equality for (Z2
2, q1) and(Z

2
2, q2), which is

immediate). In the literature, the above quantity is also referred to as the Gaussian sum
for the quadratic form q on the finite abelian group Z

2m
2 (for example, see [20]).
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On the category-theoretical side, recall (for example, [8]) that the positive Gauss sum
of a modular category C is defined by

τ+ :=
∑

X∈ΠC

θX dimC(X)2,

where θX is the twist of the simple object X. It is standard [2] that in a modular category
C, the global dimension is the square of the complex absolute value of τ+. In other words,

dim(C) = |τ+|
2.

The multiplicative central charge of C is defined by

ξ :=
τ+(C)

√

dim(C)
=

τ+
|τ+|

.

Note that ξ(C) is well-defined as dim(C) is a totally positive algebraic integer [8].

In particular, when C = C(Z2m
2 , q) for a non-degenerate quadratic form (Z2m

2 , q), we can
compute the dimension m and the Arf invariant Arf(q) of (Z2m

2 , q) by the positive Gauss
sum τ+ as follows. We have ΠC = Z2m

2 . We also have, for any x ∈ Z2m
2 , that dimC(x) = 1,

hence

(4.3) |τ+|
2 = dim(C) =

∑

x∈Z2m
2

dimC(x)
2 = |Z2m

2 | = 22m,

in particular, |τ+| = 2m, or m = log2(|τ+|). Moreover, since for any x ∈ Z
2m
2 , θx = q(x)

[8], we have

(4.4)
τ+
2m

=
τ+
|τ+|

= ξ(C(Z2m, q)) =
1

√

|Z2m
2 |

∑

x∈Z2m
2

q(x) = (−1)Arf(q).

Hence, Arf(q) is 0 or 1 depending on whether τ+ is positive or negative, respectively.

Conversely, by Equations (4.3) and (4.4), we have τ+ = (−1)Arf(q)2m.

The argument above shows that both the dimension and the Arf invariant of the qua-
dratic form (Z2m

2 , q) are completely determined by positive Gauss sum τ+ of the modular
category C(Z2m

2 , q) and vice versa.

Recall that by Arf, a non-degenerate quadratic form is completely determined (up to
equivalence) by its dimension and its Arf invariant. In the same vein, we restate Theorem
4.2 as a categorical analog of Arf’s theorem.

Theorem 4.4. If C is a modular category of Frobenius-Schur exponent 2, then C is pseudo-
unitary, and C is completely determined, up to braided monoidal equivalence, by its positive
Gauss sum τ+. More precisely, we have

C ∼=











C(Z2
2, q1)

⊠ log2(|τ+|) if τ+ > 0,

C(Z2
2, q1)

⊠(log2(|τ+|)−1)
⊠ C(Z2

2, q2) if τ+ < 0.

�

Finally, we make a remark on the prime factorization of modular categories.
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A modular category is non-trivial if its rank is larger than 1. A non-trivial modular
category called a prime modular category if it is not braided monoidally equivalent to a
Deligne tensor product of two non-trivial modular categories.

A direct consequence of Theorem 4.2 is that there are only two (pseudo-unitary) prime
modular categories of Frobenius-Schur exponent 2. In view of [4, Lemma 2.4], there are
finitely many prime modular categories of Frobenius-Schur exponent 2.
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