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Abstract

Game coloring is a well-studied two-player game in which each

player properly colors one vertex of a graph at a time until all the ver-

tices are colored. An “eternal” version of game coloring is introduced

in this paper in which the vertices are colored and re-colored from a

color set over a sequence of rounds. In a given round, each vertex is

colored, or re-colored, once, so that a proper coloring is maintained.

Player 1 wants to maintain a proper coloring forever, while player 2

wants to force the coloring process to fail. The eternal game chromatic

number of a graph G is defined to be the minimum number of colors

needed in the color set so that player 1 can always win the game on G.

We consider several variations of this new game and show its behavior

on some elementary classes of graphs.

1 Introduction

The eternal graph coloring problem was introduced by Klostermeyer in [6]
and is defined as follows. Let G = (V,E) be a finite, undirected graph with
n vertices. Let f0 : V → Z+ be a proper vertex coloring of G. An infinite
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sequence of vertex requests R = r1, r2, . . . must be handled as follows. After
ri is revealed, the color assigned to ri, fi−1(ri), must be changed, yielding
a proper coloring fi. We may formalize this problem as a two-player game:
player 1 chooses an initial proper coloring of G with at most k colors; the
players then alternate turns with player 2 (the adversary) choosing a vertex
and player 1 changing the color of that vertex while still maintaining a proper
coloring ofG with at most k colors. Player 2 wins if player 1 has no valid move
at some turn and player 1 wins otherwise. The smallest positive integer k for
which player 1 can win the game on graph G, for any possible sequence of
moves by player 2, is the eternal chromatic number of G, is denoted χ∞(G).
In other words, how many colors are needed to ensure player 1 can win
the game? The game may be viewed as starting from some initial proper
coloring, with player 1 maintaining χ∞(G) independent sets, dynamically
moving vertices from one set to another as requests from player 2 are made
so that each set remains an independent set at all times.

The vertex coloring game was introduced in 1981 by Brams (see [5]) and
rediscovered later by Bodlaender [1]. It is a two-player game played accord-
ing to the following rules:

• Alice and Bob properly color the vertices of a graph G with a fixed set of
k colors (the colors are assumed to be integers in the range 1, . . . , k).
• Alice and Bob take turns, coloring properly any uncolored vertex (in the
standard version of the game, Alice begins).
• If a vertex v is impossible to color properly (that is, for any color in the
color set, v has a neighbor colored with that color), then Bob wins.
• If all vertices in the graph are colored properly, then Alice wins.

The game chromatic number of G, denoted by χg(G), is the minimum
number of colors needed in the color set to guarantee that Alice wins the
vertex coloring game on G.

The purpose of this paper is to define a new graph coloring game which
extends game coloring to an “eternal” model of graph coloring that is played
by two players over a series of rounds. We define several versions of this
game, present some basic results, and pose some questions.
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2 Eternal Game Chromatic Number

We define the eternal vertex coloring game on finite, undirected graph G as
follows.

• Alice and Bob properly color the vertices of a graph G with a fixed set of
k colors (the colors are assumed to be integers in the range 1, . . . , k).
• Alice and Bob take turns, choosing and coloring (or re-coloring) properly
one vertex at a time, with Alice going first:

• if a vertex v is uncolored and is chosen by Alice or Bob, then it must
be properly colored

• if a vertex v is colored color c and is chosen by Alice or Bob, then it
must be assigned a color other than c which is not used on one of its neigh-
bors (this new color is chosen by the player whose turn it is)

• all vertices must be chosen t times prior to any vertex being chosen t+1
times, for every integer t ≥ 1
• If a vertex v is chosen and is impossible to color properly (that is, for every
color in the color set other than its current color, v has a neighbor colored
with that color), then Bob wins.
• If Bob cannot win the game, then Alice wins.

In other words, the colorings take place over a series of rounds: each
vertex is colored, or re-colored, once during each round. The number of
rounds is infinite if Alice wins. We note that if n is odd, the second round,
and all even numbered rounds, have Bob going first. We shall sometimes
refer to this as the A-game.

Let χ∞

g (G) be the minimum number of colors needed in the initial color set
to guarantee Alice to win the eternal vertex coloring game on G. We call χ∞

g

the eternal game chromatic number. As an example, trivially χ∞

g (K2) = 3.
Not so trivially, χ∞

g (P3) = 3. To see this, let P3 = uvw. Alice colors v red,
Bob colors u blue, and Alice colors w blue. There are now two cases for
Bob’s second turn:

Case 1) If Bob colors v green, then Alice colors w red, Bob colors u red,
and we are back to a 2-coloring of G and we can start the process over with
Alice moving next.

Case 2) If Bob colors u green, then Alice colors w green and Bob colors
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v blue. Again, we are back to a 2-coloring of G and we can start the process
over with Alice moving next. �

Of course, for all G, χg(G) ≤ χ∞

g (G).

Conjecture 2.1 For every graph G, χg(G) < χ∞

g (G).

One might suspect that χ∞(G) ≤ χ∞

g (G) for all G. However this is not
always the case. From [6] we know that χ∞(K1,7) = 4, but below we show
that χ∞

g (K1,7) > 4. On the other hand, χ∞(P3) = 4 and χ∞

g (P3) = 3.

Obviously χ∞(Kn) = χ∞

g (Kn) = n+1. Similarly, χ∞(Kn−e) = χ∞

g (Kn−
e) = n + 1.

We sometimes call the previous game the A-game, since Alice starts. We
can also define the following variations on the A-game:

• the B-game: same as the A-game except that Bob goes first.
• the A’-game: the same as the A-game except that Alice goes first in each
round (so Alice may have two consecutive turns in the case n is odd).
• the B’-game: same as the A’-game except that Bob goes first in each round.

Note that P3 is an example in which the A-game and B’-game differ, since
χ∞

g (P3) = 3, but four colors are needed if Bob goes first. To see the latter,
let P3 = uvw and suppose Alice can win with three colors. Bob colors v red,
Alice colors u green, and Bob colors w blue. Bob then attempts to re-color v
and but cannot properly color it with the available colors, resulting in a win
for Alice.

In fact, P3 is an example in which the A-game and B-game differ. Let
P3 = uvw and suppose Alice can win the B-game with three colors. Bob
colors v red, Alice colors u green, and Bob colors w blue. Alice must now
color w green (same as coloring u blue) else she loses the game. Bob now
colors u blue, and Alice loses the game on her next turn.

However in general, we suspect there is little difference – perhaps one ad-
ditional color in some cases – in the various games defined in this section. In
the next section, we consider the A-game. In Section 4 we consider variations
on the game and in Section 5, we propose two more.
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3 Results

Theorem 3.1 Let G be a graph with maximum degree ∆(G). Then χ∞

g (G) ≤
∆(G) + 2.

Proof: The standard proof technique showing that χ(G) ≤ ∆(G) + 1 can be
applied to show that χ∞

g (G) ≤ ∆(G) + 2. �

Proposition 3.2 Let Pn be a path with n ≥ 4. Then χ∞

g (Pn) = 4.

Proof: That four colors suffice follows from Theorem 3.1. To see that four
colors are necessary, suppose to the contrary we can color P4 with three
colors; the argument is similar when n > 4 (and, in fact, easier in the odd
cases). Let P4 = uvwx. There are two cases depending on which vertex
Alice colors first in round 1 (up to symmetry). If she colors u with, say, color
1, then Bob colors w with color 2, Alice colors x with color 1 (or color 3,
but color 1 is a better choice), and Bob colors v with color 2. On the other
hand, if Alice colors v with color 1 first, then Bob colors x with color 2, then
Alice colors u with color 3 (or 2, it doesn’t matter), and Bob color w with
color 3. In either case, there is a vertex with all three colors in its closed
neighborhood. Let us suppose that vertex is w, Alice must then change the
color of a neighbor of w. But then Bob changes the color of the other vertex
in w’s neighborhood. This then will force Bob to win when w is re-colored.
�

Any cycle is an example with χ∞

g (G) = ∆(G) + 2. One can verify that
χ∞

g (Pn) = 4 when n > 3. For comparison sake, it is known that for every
graph G, χ(G) ≤ χg(G) ≤ ∆(G) + 1, see [4]. We ask whether or not it is
always true that for any cubic graph G, χ∞

g (G) = 5?

The graph K1,n is called a star. When n > 1, the unique vertex of degree
greater than one is called the center. We note that χ∞(K1,n) = 4 when n > 2
(see [6]) and χg(K1,n) = 2 when n ≥ 1 (see [3]). The eternal game chromatic
number of stars, however, is quite different, as we show next. Recall that
above we showed that χ∞

g (K1,2) = 3.

Theorem 3.3 When n is odd χ∞

g (K1,n) ≥ ⌈n
2
⌉ + 2. When n ≥ 4 is even

χ∞

g (K1,n) ≥
n
2
+ 3.
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Proof: We first explain the case when n is even. Bob’s strategy in round 1 is
to color at least n/2 of the leaves using distinct colors for each – or as many
distinct colors as possible depending on the number of available colors (note
that Alice may try to use one or more of these colors on other leaves). He
then will force an additional color by choosing the center vertex on the first
turn in round 2. It is easy to see that Bob will win the game unless at least
n
2
+2 colors are available. We can do one better than that by a more careful

analysis which we now perform which will show that n
2
+3 colors are needed.

Suppose to the contrary that only n
2
+ 2 colors are available.

There are two cases.

Case 1. Suppose during round 1, Alice does not color the center vertex.
Then Bob and Alice use ⌈n

2
⌉ + 1 colors on the leaves, a different color on

the center vertex, and then on Bob’s first move during round 2, he picks the
center vertex and forces an additional color.

Case 2. Suppose during round 1, Alice does color the center vertex (and we
can assume without loss of generality that she does so on her first move). If
Alice colors all leaves the same color, at the end of round 1, at most ⌈n

2
⌉+ 1

colors are used. Bob starts round 2 and plays a new color on the center
vertex. He can then ensure that all ⌈n

2
⌉ + 2 are used on vertices by the end

of round 2. In round 3, Alice cannot play the center vertex first, else an
extra color is needed, so she plays a leaf, changing it from c to c′. Bob then
executes a “mirroring” strategy, changing a leaf with color c′ to c. At the
end of the round, all ⌈n

2
⌉ + 2 are used on vertices. Bob then forces a new

color on the first move of round 4.

Now suppose n is odd and thus Alice will go first on each round. We are
claiming in this case that χ∞

g (K1,n) ≥ ⌈n
2
⌉+2. Suppose to the contrary that

only ⌈n
2
⌉+ 1 colors are available.

Bob will again try to use as many different colors as possible on the leaves.
There are two cases.

Case 1. Suppose Bob colors the leaves with n
2
distinct colors in round 1

(which occurs if Alice colors the central vertex in round 1). Then the total
number of colors used in round 1 is n

2
+1. If Alice colors the center vertex on

the first move in round 2, then an additional color is needed and we are done.
So suppose Alice colors a leaf on her first move in round 2. Whatever move
she makes, Bob mirrors it on his next move (e.g., if she re-colors a vertex
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from c to c′, Bob will re-color a vertex from c′ to c.). Eventually, Bob can
re-color the center vertex on his last turn in round 2, forcing the use of an
additional color.

Case 2. Suppose Bob colors the leaves with n
2
− 1 distinct colors in round

1 (which occurs if Alice does not color the central vertex in round 1 and she
uses at least one of the same colors as Bob on one or more leaves). Then
each of these colors Bob uses is distinct from the color Alice uses on the first
leaf. Bob then uses color n

2
+ 1 on the last move of round 1. The remainder

proceeds as in Case 1. �

We next show the lower bound from the previous result is tight.

Theorem 3.4 When n is odd χ∞

g (K1,n) ≤ ⌈n
2
⌉ + 2. When n ≥ 4 is even

χ∞

g (K1,n) ≤
n
2
+ 3.

Proof: We assume n > 2 as the result is easy to see when n ≤ 2. Let c(v)
denote the color assigned to v at any given time (initially null) and in each
case we shall assume the number of colors specified in the statement of the
theorem are available.

First suppose n is odd, which means Alice goes first on each round. Sup-
pose without loss of generality that the coloring of the graph done in round
1 uses ⌈n

2
⌉+ 1 colors, because Alice’s strategy is to color leaves with color 1

on each of her turns. Thus, c(v) = 1 for ⌈n
2
⌉ of the leaves. We may assume

that Bob uses a distinct color other than 1 on each of his turns on each of
the remaining vertices. Alice’s strategy in the next round is to change any
vertex not colored 1 to 1, and then Bob will do one of two things on his first
turn of round 2.

Case 1) If Bob decides to choose the center vertex, he must choose a ⌈n
2
⌉+2nd

color. Then, Alice chooses another vertex v with c(v) 6= 1 and re-colors it
to 1, and Bob (in order to maximize the number of colors used) either (a)
mirrors her actions by choosing a vertex v with c(v) = 1 and changing it to
the color (which is not equal to 1) that was the previous color on the vertex
Alice chose or (b) he could also change it to the previous color of the center
vertex. He continues to ensure that he does not use the same color twice
during the round. When Alice runs out of vertices that are not colored 1,
she chooses one of the remaining two vertices (both of color 1) to change to
any of the colors Bob used on another leaf during round 2. On Bob’s final
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turn of the round, there are two colors of the ⌈n
2
⌉ + 2 used thus far that

have not yet been used during round 2. This is because Bob had one fewer
turn on the leaves than Alice (so he could not counteract her actions each
time), and there is already one more color in the set than necessary for the
initial coloring. Thus, Bob picks one of the remaining colors, and the other
is free for the same process to repeat in the following round without needing
to force the use of any more colors. Therefore, ⌈n

2
⌉ + 2 colors suffice.

Case 2) If Bob selects a leaf to re-color, then in order to maximize the num-
ber of colors used on the leaves, he will use a mirroring strategy to counteract
Alice’s turns (i.e, if Alice re-colors a vertex from c to c′ , he will do the op-
posite). This can continue on the leaves until one remains of color 1 and it
is Alice’s turn. She will pick a color which Bob used to re-color another leaf.
Bob then chooses the center vertex and uses a ⌈n

2
⌉ + 2nd color. This leaves

the initial color of the center vertex free for the same process to repeat on
the next round. ⌈n

2
⌉+ 2 colors suffice.

Now suppose n is even, which means Alice goes first on each odd-numbered
round. Again, Alice’s general strategy is to color as many leaves as possi-
ble with the same color. Since she can color at least n

2
of them the same

color, at most n
2
+ 1 different colors are used on the leaves at the end of any

given round, plus possibly an additional color for the center vertex. Since
the center vertex needs to change colors in each round, we claim that n

2
+ 3

colors suffice. To see this, note that at some point in a round in which Bob
goes first, Bob can change the color of a leaf, thus (temporarily) there may
be n

2
+ 2 different colors on leaves. However, on Alice’s next move, she can

choose a leaf to re-color that reduces the number of different colors on the
leaves to n

2
+ 1. �

It is easy to verify that χ∞

g (K2,2) = 4.

It is known that χg(Kn,n) = 3 when n and m are both larger than 1, see
[3].

Proposition 3.5 χ∞

g (Kn,n) ≤ 5 when n ≥ 5.

Proof: Let the vertex parts ofKn,n be A = {a1, . . . , an} and B = {b1, . . . , bn}.
Alice’s strategy is to ensure that at the end of each round, there are at least
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two distinct colors used on A and at least two distinct colors used on B. This
then allows vertices in each part to switch back and forth between those two
colors each time they are re-colored. This is easily seen to be possible when
n ≥ 5. We note that in total, five colors are needed, since Bob can force a
third color onto either A or B whilst Alice is trying to ensure there are at
least two colors on both A and B. �

This demonstrates that χ∞

g does not have hereditary properties, since
K1,n is an induced subgraph of Kn,n.

Proposition 3.6 χ∞

g (Kn,n) ≥ 4 when n ≥ 3.

Proof: Suppose to the contrary that three colors suffice. Let the vertex parts
be A = {a1, . . . , an} and B = {b1, . . . , bn}. Observe that Bob can ensure that
at the end of round 1, vertices in A use two distinct colors – colors 1 and 2 –
and each vertex in B is color 3 (without loss of generality). On Alice’s first
move in round 2, she cannot re-color any vertex in B, as this would require a
fourth color. If she re-colors a vertex in A so that there are still two distinct
colors in A, Bob will be unable to move on his turn if he chooses a vertex
in B. So suppose Alice re-colors, say, a1 so that all the vertices in A are the
same color, say color 2. Bob now re-colors a vertex in B with color 1, so
that B now contains vertices of two distinct colors. Alice now needs a fourth
color if she chooses a vertex in A, so she chooses a vertex in B. Bob now
chooses a vertex in A and needs a fourth color, winning the game.

We note that if n ≥ 4, Bob can ensure that at the end of round 1, vertices
in A use two distinct colors 1 and 2 and vertices in B use two distinct colors.
Therefore, Bob can win the game more quickly in round 2. We discuss this
issue further in the last section of the paper. �

Proposition 3.7 χ∞

g (Kn,n) ≥ 5 when n ≥ 5.

Proof: Suppose to the contrary that four colors suffice. Let the vertex parts
be A = {a1, . . . , an} and B = {b1, . . . , bn}. Let the color set be 1, 2, 3, 4 and
let c(v) denote the color assigned to v at any given time (initially null). First
suppose that at the end of round 1, there is only one color used on A, say
color 1. In this case, Bob can ensure that at least three colors are used on
B. If Alice chooses a vertex in A for her first move in round 2, a fifth color
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must be used. Hence she must choose a vertex in B. In other to avoid a fifth
color being played on A on Bob’s first move in round 2, Alice must change
the color of a vertex v ∈ B such that v is the only vertex in B with that
color, say color 4, which she changes to 3. Note that Bob can have assured
that there are at least two vertices in B of color 2 and at least two vertices
of color 3 at the end of round 1. Bob now changes a vertex in A to color 4,
and Alice must use a fifth color on her next turn.

We now claim that in fact Bob can force there to be only one color on
B. Assume without loss of generality that Alice colors a1 first with color 1.
Then Bob chooses a2 and colors it 2. If Alice chooses b1 and colors it 3, and
then Bob colors a3 with color 4, then all vertices in B will have to be colored
with 3 in round 1. If, on the other hand, Alice choose a3 and colors it 1 or 2
(note that if she colored it with color 3, then Bob would color a4 with 4 and
there would be no colors available for B), then Bob colors a4 with 4, again
forcing all of B to be the same color. �

Proposition 3.8 χ∞

g (K4,4) = 4.

Proof: We show that χ∞

g (K4,4) ≤ 4. If Alice can force there to be at least
two distinct colors used on A and two distinct colors used on B at the end
of round 1, she can successfully proceed with 4 colors, as described above.
Suppose this is not the case and that only 1 color, say color 1, is used on
A during round 1. In order for Bob to do this, Alice can ensure that only
colors 2 and 3 are used on B during round 1. On her first move in round 2,
Alice re-colors a vertex in A with color 4. This then forces the vertices in B
to swap between colors 2 and 4 and color 4 to be used on the remainder of
A. The process can be repeated in subsequent rounds. �

Proposition 3.9 χ∞

g (K3,3) = 4.

Proof: Similar to Proposition 3.8. �

Theorem 3.10 Let G be a connected graph other than K1, K2, or P3. Then
χ∞

g (G) > 3.

Proof: We can assume G has at least four vertices, since χ∞

g (K3) > 3. We
also assume that ∆(G) > 2, else G is a cycle and thus four colors are needed.
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Of course, G may be a tree, but not necessarily so. Let v be a vertex of
degree at least three, with x, y, z three of the neighbors of v. Suppose to the
contrary that 3 colors suffice. Our general strategy is as follows. Assume
without loss of generality that c(v) = 1. Bob can force at least two distinct
colors, other than color 1, be used on {x, y, z} in round 1. If Bob moves first
in round 2, he can force a fourth color by choosing v. Otherwise, Bob can
still force that, at any time, it is either Alice’s turn and there are two distinct
colors on {x, y, z} or it is his turn and there are either (i) two distinct colors
on {x, y, z} (ii) there is only one distinct color on {x, y, z} but at least one
of these three vertices has yet to be re-colored. Hence a fourth color will be
needed unless there is a vertex w 6= v that is also adjacent to each of x, y, z
and Alice manages to color w with color 2, whilst c(v) = 1. This then forces
x, y, z to all have color 3. If Bob gets to color one of these five vertices first
in round 2, obviously he forces a fourth color. So assume Alice colors one of
these first. Then it must be that she re-colors v with color 2 (or equivalently
w with color 1). But then Bob can re-color w with color 1 (equivalently w
with color 2) and then a fourth color will be forced on one of x, y, z. �

Proposition 3.11 (a) χ∞

g (K2,n) = 4 if n ∈ {2, 3}.
(b) χ∞

g (K2,n) ≥ n/2 + 3 if n > 3 is even.
(c) χ∞

g (K2,n) ≥ ⌊n
2
⌋+ 3 if n > 3 is odd.

Proof: Part (a) is not difficult to verify by hand. For parts (b) and (c), Let
the vertex parts be A = {a1, a2} and B = {b1, . . . , bn}. Let us first suppose
n is even. Bob’s basic strategy in both (b) and (c) will be to make sure both
vertices in A have the same color and then use as many different colors on
B as possible (which will be n/2 + 1).

For part (b), observe that Bob can ensure both vertices in A have the same
color after round 1 (and, in fact, after all subsequent rounds). Therefore, Bob
can ensure n/2 + 2 colors are used in round 1 in total (n/2 + 1 on B and
one on A). An additional color will be needed on A in round 2, regardless of
when a vertex in A in chosen (since if Alice chooses to play a vertex v ∈ B
first in round 2, she must change its color to that of another vertex u ∈ B;
then on Bob’s turn he can change u’s color to the original color of v).

For part (c), the argument is similar to (b), except that Bob cannot
necessarily force both vertices in A to be the same color after each round
(otherwise, Bob can force ⌊n

2
⌋+2 colors be used in round 1 and an additional
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color in round 2). So suppose the vertices in A have two different colors at
the end of some round. One can easily verify in this case that Bob can ensure
that at least ⌊n

2
⌋+ 1 colors are used on B. �

4 Alternate Games

An alternate version of game chromatic number called game chromatic num-
ber II was introduced in [2]. In this version, Bob can only use the colors that
have been already used on the graph, unless he is forced to use a new color to
guarantee that the graph is colored properly. The number of colors needed
for G in this game is denoted by χ∗

g(G). It was shown in [2] that χ∗

g(T ) ≤ 3
for any tree T , as compared to the bound of 4 for χg(T ), see [4].

We define the eternal vertex coloring game II in the obvious manner and
use χ∞∗

g (G) to denote the number of colors needed when this game is played
eternally on G: that is, the game is played over a series of rounds and in each
round Bob can only use colors that have already been introduced unless he
is forced to use a new color. Of course, χ∞∗

g (G) ≤ χ∞

g (G). K3 is an example
where χ∞∗

g (G) < 2χ∗

g(G) and P4 is an example where χ∞∗

g (P4) = 4 = 2χ∗

g(P4).

We shall consider stars again and begin by noting that χ∞∗

g (K1,3) = 3
and χ∞∗

g (K1,4) = 4. Interestingly, we shall see in next result that it may take
Bob several rounds to force the number of colors needed. The next result is
also a good example of the power Bob gets when the number of vertices is
odd.

Theorem 4.1 Then (a) if n is odd then χ∞∗

g (K1,n) = 3 and (b) if n ≥ 4 is
even then χ∞∗

g (K1,n) =
n
2
+ 2.

[Note: does this proof need work?]

Proof: Part (a) is easy to see, noting that Alice can choose the center vertex
of the star on the first turn in each round, coloring it with the smallest color
possible. For part(b), note that two colors are used in round 1. Bob can
then force colors 3 and 4 to be used during round 2: he does so by choosing
a leaf on his first turn and the center vertex on his second turn. Subsequent
to that, for the next several rounds, Bob can force an additional color to be
used on either each round or every other round by coloring the leaves with
as many different colors as possible during each round, eventually forcing the

12



center vertex to use a new color – it may need to wait until a round in which
Bob goes first for each new color to be introduced (as in round 2). Bob can
eventually force the use of n

2
different colors on the leaves, once that many

colors have brought into play. At which point the game is the same as the
A-game and thus the result follows as in Theorem 3.3. �

One could also consider a more restrictive version of this game in which
Bob must color whatever vertex he chooses with the smallest color possible
(as opposed to being able to use any color, once a color becomes allowable).
We call this the Greedy Coloring Game. Denote the number of colors needed
for this game as χ2

g(G) when only one round is played and χ∞2
g (G) when the

game is played eternally.

It is then natural to ask if there exist any graphs where this restriction
changes the number of colors needed versus χ∞∗

g (G). The answer is “yes”, as
we show next.

Theorem 4.2 χ∞2
g (K1,n) = 3 when n is odd and χ∞2

g (K1,n) = 4 when n ≥ 4
is even.

Proof: First consider K1,n when n > 3 is odd and thus Alice goes first in each
round. In this case, only 3 colors are needed. Alice chooses the center vertex
of the star first in each round, giving it color 1 in odd numbered rounds and
all other vertices getting color 2) and color 3 in even numbered rounds (and
all other vertices getting color 1).

When n ≥ 4 is even, we show K1,n = 4. That fours colors are necessary
is easy to see, so we show that four colors suffice. On round 1, Alice plays
color 1 on the center and then color 2 gets played on all the leaves. In round
2, Bob goes first. If he plays the center, he will use color 3 and then color 1
gets played on all the leaves (which is no advantage to Bob). So assume Bob
plays a 3 on a leaf. Then Alice plays 1 on a leaf, Bob plays 4 on the center,
and 1’s gets played on the remaining leaves. Alice, starting the next round,
re-colors the lead that is color 3 with color 2. Then either remaining leaves
get color 2 and the center gets color 1 (which puts us back in a previous
configuration), or Bob plays 3 on the center on some turn in this round and
the remainder of the leaves get color 1. However, this coloring completes
the round with only two different colors, 1 and 3, on the vertices, which is
essentially the same at this point as the configuration in which only 1 and 2
are used. �
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Conjecture 4.3 For every graph G, χ2
g(G) < χ∞2

g (G).

One could further restrict the rules so as to force Alice to also choose
smallest color for each vertex she chooses. We call this the Very Greedy
Coloring Game. Denote the number of colors needed for this game as χ3

g(G)
when only one round is played and χ∞3

g (G) when the game is played eternally.
Recall that the coloring number of G, denoted col(G), is the smallest integer
k such that every subgraph of G has a vertex of degree less than k. Though
intuitively, there seems to be some relationship between col(G) and χ3

g(G),
in fact they are not the same: col(Kn,n) = n + 1 and χ3

g(Kn,n) = 2; whereas
col(P4) = 2 and χ3

g(P4) = 3.

It is clear that χ∞2
g (G) ≤ χ∞3

g (G) and χ∞2
g (G) ≤ χ∞∗

g (G) ≤ χ∞

g (G) for
all G.

Question 1 Is it true that χ∞3
g (G) ≤ χ∞∗

g (G) for all graphs G?

Theorem 4.4 When n is odd, χ∞3
g (K1,n) = 3, when n ≥ 4 is even, χ∞3

g (K1,n) =
4.

Proof: The case when n is odd is trivial. So suppose n ≥ 4 is even. It is
easy to see that χ∞3

g (K1,n) ≥ 4, as Bob can force color 4 to be used during
round 2. In order to see that four colors suffice, the key observation is that
Alice can maintain the invariant that, at the end of each round and prior to
the re-coloring of the center vertex during each round, the leaves are colored
with at most two distinct colors. We strengthen this invariant as follows: (a)
no leaf is ever color 4 and (b) if the center is color 1 after a round and the
leaves have two distinct colors, then the color that appears on fewer leaves
appears at most twice.

Note that in order for Bob to force a fifth color, it would have to be
the case that there are three distinct colors on the leaves. Of course, after
the center vertex is re-colored during a round, it may be possible that three
distinct colors are used on the leaves for a short time, until the end of the
round at which point we claim that our invariant will be true. We now prove
that the invariant can be maintained, from which the theorem follows. It
is trivially true during and after round 1: Alice ensures this by coloring the
center first and then all the leaves must get color 2. Now let us move past
round 1. If all the leaves are the same color after some round, then they all
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get changed to the same color during the next round until the center vertex is
re-colored, at which point the remaining leaves may get changed to a second
color – however, by Alice choosing the center vertex as soon as possible, our
invariant is assured. We note that if there are two distinct colors on the
leaves at the end of the round in this case, one of these colors on the leaves
must be color 1.

Now suppose the leaves are colored with two colors after some round. It
is easy to see that we never use color 4 on a leaf: since when assigning the
color to a leaf, one only needs to consider its current color and the color of
the center; hence one of colors 1, 2, 3, will be available to assign to each leaf.

First suppose the center vertex is some color c > 1 and some leaf is color
1. If the center is re-colored first (which is Alice’s preference if she goes first),
it cannot get color 1 (since some of the leaves have color 1), which means
that each leaf will be re-colored color 1. If the center vertex is not re-colored
first (meaning Bob goes first), then the leaves that are re-colored prior to
the center getting re-colored get color 1, the center is re-colored some color
other than 1, and the remaining leaves get color 1. Thus the invariant is
maintained.

Now suppose the center vertex is some color c > 1 and no leaf is color
1. Then it must be the case that either all the leaves have the same color,
which we addressed earlier, or else some leaf is color 4, which we know cannot
happen.

Next suppose the center vertex is color 1. If the center is re-colored first
(which is Alice’s preference if she goes first), it gets some color which is ei-
ther 2, 3, 4 (since the leaves use at most two different colors). Therefore the
leaves all get color 1 during this round. If the center is not re-colored first
(meaning Bob goes first), there are two cases.

Case 1. Suppose Bob first chooses a color that appears on at most two
leaves. Then Alice simply “mirrors” Bob’s moves during the round, choosing
another leaf of the same color Bob just chose. This guarantees the invariant
is maintained.

Case 2. Suppose Bob first chooses a color that appears on more than two
leaves. Note that this may create a situation where there are three distinct
colors on the leaves – otherwise Bob has changed the color of a leaf to the color
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that exists on another leaf and Alice can simply chooses the center vertex on
her next move and we will be guaranteed the invariant is maintained. (Or
alternatively, Alice can essentially duplicate what Bob just did, choosing a
leaf of the same color Bob just chose and this will also allow the invariant to
be preserved). So suppose we now have three colors on the leaves – the only
way this occurs is if the leaves were colored with colors 2 and 4 before the
round started. Since no leaves are color, 4, we are done. �

Question 2 Can we differentiate between χ∞2
g (G) and χ∞3

g (G)? That is,
does there exist a graph G such that χ∞2

g (G) 6= χ∞3
g (G)?

We observe that χ3
g(T ) ≤ 3 for any tree T , as the proof that χ∗

g(T ) ≤ 3
applies to χ3

g(T ) (and thus also for χ2
g(T )).

Question 3 Is there an integer c such that for all trees T with χ∞3
g (T ) ≤ c?

Likewise χ∞2
g (T ).

Caterpillars are one class of trees that are easy to analyze, as it is not
hard to show that χ∞3

g (T ) ≤ 6 for any caterpillar T .

Conjecture 4.5 (a) For every graph G, χ3
g(G) < χ∞3

g (G). (b) For every
graph G, χ2

g(G) < χ∞2
g (G). (c) For every graph G, χ∗

g(G) < χ∞∗

g (G).

Problem 4.6 Characterize for each of these models discussed in this section
the graphs needing three or four colors.

Question 4 Let G be a graph with subgraph, or induced subgraph, H. Is it
necessarily true that χ∞2

g (H) ≤ χ∞2
g (G)? Is it necessarily true that χ∞3

g (H) ≤
χ∞3
g (G) ?

5 Further Questions

Question 5 What is the computational complexity of each of the eternal
coloring games?

Question 6 Characterize the connected graphs (or the trees) with χ∞

g (G) =
4.
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In seems an interesting future direction to consider χ∞2
g , χ∞3

g , and χ∞

g as
well as χ2

g, χ
3
g, and χ∗

g for various classes of graphs. For example, it is easy
to show that for a grid graph G with a sufficiently large number of rows and
columns, 5 ≤ χ∞

g (G) ≤ 6.

Problem 5.1 Determine a tight bound on χ∞2
g , χ∞3

g , and χ∞

g for large grid
graphs. We conjecture at most five colors suffice for the greedy game and
probably also for the very greedy game.

Question 7 Is it true that if χ∞

g (G) = k then Alice can win the A-game on
G with a color set of k + 1 colors?

In the following question, we note the proof of Theorem 3.3, in which it
appears to take Bob four rounds to win on a star.

Question 8 Suppose the A-game is played on some graph G with k < χ∞

g (G)
colors and Bob wins the game. Is it necessarily the case that Bob can win
the game prior to the beginning of round 3? What is the maximum number
of rounds it takes Bob to win to any graph?

Question 9 Are there any graphs G with χ∞(G) = χ∞

g (G) and χ∞(G) <
∆(G) + 2?

Question 10 Can we characterize the graphs with χ(G)+1 = χ∞

g (G)? Like-
wise for the other graph coloring games introduced in this paper.

We raise an issue regarding the definition of the eternal vertex coloring
game (and some of its variants). Suppose Bob chooses vertex v to re-color
(in round 2 or later) and Bob has no legal move on this vertex, however Bob
does have a legal move on vertex u 6= v. As we have defined the game now,
Bob wins. But should we force Bob to choose some other vertex, such as u,
where he has a legal move? It may be worth exploring this version of the
game. One way to do this is to consider the alternate game discussed in
Section 4. Two obvious other variations come to mind:

• (Strong Eternal Game Coloring) We require that Bob must choose a
vertex on his turn that can be re-colored properly, if one exists (as opposed
to being able to choose any vertex); or
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• (Ordered Eternal Game Coloring) The vertices must be chosen in the
same order (pre-determined or fixed after round 1) each round.

We know that χ∞(C5) = χ∞

g (C5) = 4. However, if one follows the Strong
Eternal Game Coloring rules, three colors suffice. To see this, a 3-coloring
results from round 1. On the first move in round 2, Bob must choose a vertex
that can be re-colored (a vertex adjacent to two vertices of the same color),
as opposed to a vertex adjacent to two different colors (which would have
necessitated the use of a fourth color). It is not hard to see that round 2 can
be successfully completed with three colors and the subsequent rounds can
continue in a similar manner.
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