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Abstract

The purpose of this paper is to study the time average behavior of
Markov chains with transition probabilities being kernels of completely
continuous operators, and therefore to provide a sufficient condition for
a class of Markov chains that are frequently used in dynamic economic
models to be ergodic. The paper reviews the time average conver-
gence of the quasi-weakly complete continuity Markov operators to
a unique projection operator. Also, it shows that a further assump-
tion of quasi-strongly complete continuity reduces the dependence of
the unique invariant measure on its corresponding initial distribution
through ergodic decomposition, and therefore guarantees the Markov
chain to be ergodic up to multiplication of constant coefficients. More-
over, a sufficient and verifiable condition is provided for the ergodicity
in economic state Markov chains that are induced by exogenous ran-
dom shocks and a correspondence between the exogenous space and
the state space.

1 Introduction

Equilibria of dynamic models has been of great interest and importance
in Economics. In this paper, we first study the ergodic behavior in cer-
tain Markov operators, then provide conditions to approach and eventually
guarantee the ergodicity in the Markov operators that are induced by an
exogenous Markov process and a measurable selection of the upper hemi-
continuous correspondence between the exogenous space and the economic
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state space.

Due to Grandmont [1], it is possible to describe the temporary state of
an economy at a given time period by an exogenous variable e ∈ E and
an endogenous variable d ∈ D. Therefore, the state space of the economy
could be represented by X = E ×D and the state of the economy at time
t is represented by xt = (et, dt). We assume that all the randomnesses of
the economic evolution are captured by the exogenous shocks. Therefore,
(et)t≥0 is a stochastic process on some probability space (Ω,F , P ) with state
space (E, E , P e−1

t ), where et : Ω → E is an exogenous random variable. On
the other hand, it follows naturally from our assumption that the endoge-
nous variables are the direct consequence of the activities of the agents in
the economy and hence are fully deterministic. Since agents make decisions
based on the current exogenous shock and the historical economic states, it
is reasonable to assume the existence of some evolution laws to describe dt
based on et and (xs)s≤t−1. Since xt = (et, dt), we further assume the the
existence of evolution laws to describe xt based on et and (xs)s≤t−1.

Now, if the evolution of the economy is Markovian, we then have that
xt depends merely on et and xt−1. Let the evolution of the economy be
described by the correspondence F : X × E → E which is assumed to be
upper hemi-continuous, and assume the law of evolution f : X × E → E is
a measurable selection from F , we have xt = f(xt−1, et). Such a measurable
selection is possible due to the measurable selection theorem of Kuratowski
and Ryll-Nardzewski [2].

Moreover, let q : E × E → [0, 1] be the transition probability of the
Markov process (et)t≥0, and let Q denote the set of all exogenous transition
probabilities. For each measurable selection f from the correspondence F ,
we define an induced transition probability p : X×X → [0, 1] of the Markov
process (xt)t≥0 by p(x,A) := q(e, {e ∈ E : f(x, e) ∈ A}) for all A ∈ X . Let P
denote the set of all such induced transition probabilities on the state space.
Moreover, we can represent p(x,A) = q(πi(x), f

−1
x (A)) at each time period

i, where πi : X → E is defined by πi(x) :=
⋃

xi−1
{e ∈ E : f(xi−1, e) = x}

for each i ∈ N, and f−1
x : X → E by f−1

x (A) = {e ∈ E : f(x, e) ∈ A} for
each x ∈ X. The map f−1

x : X → E is continuous due to Blume [3] and the
p(x,A) is a probability transition probability on (X,X ) due to Jean-Michel
Grandmont and Werner Hildenbrand [4]. It remains to define the operators
that are induced by p.
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Let (M) denote the Banach space of all complex-valued countably ad-
ditive set functions on some measurable space (X,X , || · ||X) equipped with
the variation norm. Given each fixed Markov transition probability p on
(X,X , || · ||X), we define the induced operator T : (M) → (M) by Tµ(E) :=∫
E
µ(dt)p(t, E),∀µ ∈ (M),∀E ∈ X . Also, define T iµ := T (T i−1µ) induc-

tively for each i ∈ N with T 0 = I. Tµ(E) can be interpreted as the proba-
bility of event E if the initial distribution of (X,X ) is µ.

Let M∗ denote the Banach space of all complex-valued bounded Borel
measurable functions on (X,X , || · ||X) equipped with the supreme norm.
Given a fixed Markov transition probability p on (X,X , ||·||X ), we define the
induced operator T ∗ by T ∗l(x) :=

∫
X
l(t)p(x, dt),∀l ∈ M∗,∀x ∈ X. Also,

define (T ∗)il := T ∗((T ∗)i−1l) inductively for each i ∈ N with (T ∗)0 = I.
T ∗l(x) can be interpreted as the expectation of l if starting at x ∈ X.

We call the operator T Markov operator since it is induced by a Markov
transition probability p, and we say p is the kernel of T . Also, we call T ∗ the
dual of T . It is not difficult to see that there is a one-to-one relationship be-
tween a Markov operator and its kernel. Also, it is not hard to see that T and
and its dual are connected by

∫
X
µ(dt)T ∗l(t) =

∫
X
µ(dt)(

∫
X
p(t, ds)l(s)) =∫

X
l(s)(

∫
X
µ(dt)p(t, ds)) =

∫
X
Tµ(ds)l(s),∀µ ∈ (M), l ∈ M∗.

We achieve two main results in this paper: The first is an explicit the
ergodic decomposition formula of the invariant distribution for each given
initial distribution under a quasi-strongly completely continuous Markov
operator. The explicit formula shows an ergodicity up to a multiplicative
constant in the restriction of p to each ergodic parts on the state space if the
induced p is the kernel of a quasi-strongly completely continuous Markov op-
erator. We state it in Theorem 1 and Corollary 1. The second main result is
a sufficient condition on the correspondence F and the exogenous transition
probability q such that every measurable selection f from F together with a
q on E will induce an ergodic transition probability p onX. That is, the time
average of the Markov process based on p converges uniformly to the space
average with respect to a unique invariant probability distribution µ∗ on the
state space, where µ∗ is independent of the initial distribution. Or, equiv-
alently, ∃!µ∗ such that ∀x ∈ X, limn→∞

1
n

∑n−1
i=0 (T

∗)ig(x) =
∫
X
g(x)µ∗(dx)

for all bounded linear functionals g on X. We state it in Theorem 2 and
Corollary 2.
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In section 2, we first show the uniform ergodicity of quasi-strongly com-
pletely continuous operators by following the pioneer work from from Yosida
and Kakutani, “Operator-Theoretical Treatment of Markoff’s Process and
Mean Ergodic Theorem.”[5] In section 3, we apply the uniform ergodic the-
orem to the general dynamic economic model to drive and prove the two
main results of this paper. Finally, in part 4, we conclude this paper and
show further research questions.

2 Uniform Ergodic Theorem

Given a Markov process, the behavior of the repeated operations and the
time average has long been interesting to Mathematicians. Neumann stud-
ied the classic Mean Ergodic Theorem. Bogolyubov studied the ergodicity of
operators under the assumption of quasi-strongly complete continuity. De-
oblin studied the ergodicity of Markov transition probability induced transi-
tion under certain assumptions. Yosida and Kakutani found that Deoblin’s
condition actually implies the quasi-strongly complete continuity. In this
section, we study the classic Uniform Ergodic Theorem and apply the the-
orem to the semi-group of operators that are induced by Markov transition
probabilities.

2.1 (Quasi-) Weakly Completely Continuity

Given a Banach space (B, || · ||B), a bounded linear operator T : B → B is
called weakly completely continuous if the image of the unit ball under T
is weakly compact in B, i.e. T ({µ ∈ B : ||µ||B ≤ 1}) is weakly compact.
A bounded linear operator T : B → B is called quasi− weakly completely
continuous if there exists a finite n ∈ N and weakly completely continuous
operator V such that ||T n − V ||op < 1.

In 1941, Yosida and Kakutani showed that, under a boundedness as-
sumption, a quasi-weakly continuous operator has convergent time average.
We state it as Lemma 1.

Lemma 1. If T : B → B is a quasi-weakly completely continuous operator
satisfying that ∃C,< ∞, ||T i||op ≤ C for all i ∈ N, then ∀µ ∈ B, the sequence
{ 1
n

∑n
i=1 T

iµ}n∈N converges strongly to a µ̄ and the map T1 : B → E1(T )
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by T1(µ) = µ̄ is well-defined and satisfies: TT1 = T1T = T 2
1 = T1 and

||T1||op ≤ C.

Proof. See “Operator-Theoretical Treatment of Markoff’s Process and Mean
Ergodic Theorem” by Yosida and Kakutani. [5]

Due to the property TT1 = T1T = T 2
1 = T1, we have T1 : B → E1(T ) is

a projection from the Banach space to the eigen space of T with respect to
eigen value 1. In other word, for all µ ∈ E1(T ), we have Tµ = µ.

Lemma 1 is powerful in application because the assumptions can be eas-
ily satisfied. In particular, let’s again consider the operators that are induced
by a Markov transition probability. Since ||T n||op ≤ 1,∀n ∈ N, we have the
boundedness assumption is always satisfied for all Markov operators. Fur-
thermore, if B is Lp, 1 < p < ∞, then condition 2 is also satisfied due to
the locally weak compactness of Lp,∀p such that 1 < p < ∞. But since L1

is not a locally weakly compact space, we have to impose more condition in
order to have condition 2 satisfied in L1 to serve our purpose.

Lemma 2. If ∃f(x, t) such that T ∗l(x) :=
∫
X
l(t)p(x, dt) =

∫
X
l(t)f(x, t)dt,

then T is weakly completely continuous if and only if f is uniformly inte-
grable, i.e. ∀ǫ > 0,∃σ > 0 such that ∀E ∈ X satisfying ||E||X < σ, we have∫
E
f(x, t)dt < ǫ,∀x ∈ X.

Proof. See “Stochastic Processes with an Integral-Valued Parameter” by
Doob [6].

Therefore, given a dynamic model in Economics, if we are only inter-
ested in the existence of a unique temporary equilibrium that depends on
the initial probability distribution on the economic state space, a condition
that guarantees the quasi-weakly complete continuity of the induced T is
sufficient. And, Lemma 2 has provided an equivalent condition that is more
verifiable than the weakly compactness condition that is not straight-forward
to verify.

2.2 (Quasi-) Strongly Completely Continuity

Now, in order to further approach the existence of µ∗ and derive the conver-
gence of limn→∞

1
n

∑n−1
i=0 (T

∗)il(x) =
∫
X
l(x)µ∗(dx),∀x ∈ X, for all bounded

linear functionals l on X, we need to show the uniform convergence of
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{ 1
n

∑n
i=1 T

i}n∈N to implies the uniform (in both x ∈ X and E ∈ X con-

vergence of { 1
n

∑n
i=1 p

(i)(x,E)}n∈N, where p(i) is the kernel of T i for each
i ∈ N. To that end, we need to introduce strongly completely continuity
and quasi-strongly completely continuity.

A bounded linear operator T : B → B is called strongly completely
continuous if it maps the unit ball in B to a strongly compact set in B,
i.e. T ({µ ∈ B : ||µ||B ≤ 1}) is strongly compact. And, a bounded linear
operator T : B → B is called quasi − strongly completely continuous if
∃n ∈ N, n < ∞ and a strongly completely continuous operator V such that
||T n − V ||op < 1.

Since it is clear that quasi-strongly complete continuity implies quasi-
weakly complete continuity, we have the same results in Lemma 1. if a
quasi-strongly completely continuous T satisfies ||T i||op < C,∀i ∈ N. In
fact, Yosida and Kakutani have shown that the strong convergence in the the
results of Lemma 1 are uniform convergence when assuming quasi-strongly
complete continuity of T .

Lemma 3. If T : B → B is a quasi-strongly completely continuous linear
operator that satisfies ∃C < ∞,∀n ∈ N, ||T n||op < C, then we have:
1. dim(σ(T ) ∩ {λ ∈ C : |λ| = 1}) = k < ∞;
2. Let {λi}

k
i=1 := σ(T ) ∩ {λ ∈ C : |λ| = 1}, then ∀i ≤ k,dim(Eλi

(T )) < ∞;
3. ∀i ≤ k,∃Tλi

s.t. TTλi
= Tλi

T = λiT ;
4. Tλi

Tλj
= Tλj

Tλi
= Tλi

or 0 if i = j or otherwise, and ||Tλi
||op < C;

5. Let S := T −
∑k

i=1 Tλi
, T n = Sn +

∑k
i=1 λ

n
i Tλi

, STλi
= Tλi

S = 0,∀i;
6. ∃M, ǫ > 0 s.t. ||Sn||op ≤

M
(1+ǫ)n .

Proof. See “Operator-Theoretical Treatment of Markoff’s Process and Mean
Ergodic Theorem” by Yosida and Kakutani. [5]

Since the series
∑∞

i=1 z
i converges for all complex number on the unit cir-

cle except 1, we have from Theorem 2 that ∀λ ∈ {λ ∈ C : |λ| = 1},∃M > 0
such that || 1

n
(
∑n

i=1(
T
λ
)i)−Tλ||op ≤ M

n
and therefore || 1

n
(
∑n

i=1 T
i−T1)||op ≤

M
n
. That is, the time average of the Markov operator induced by the Markov

transition probability converges in operator norm to a unique operator that
is a projection mapping the Banach space to the eigen space of the induced
operator corresponding to eigen value 1.
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3 Application of Uniform Ergodic Theorem

In this part, we will apply our results in part 2 to the operators that are
induced by the Markov transition probabilities.

Our goal is to use the results in part 2 to approach a sufficient condition
on the Markov transition probability q on (E, E) and the upper hemicon-
tinuous correspondence F : E → 2X for the induced Markov transition
probability p on the economic state space (X,X ) to be ergodic, i.e. ∃!µ∗

such that 1
n

∑n−1
i=0 T iµ converges to µ∗ for all probability distribution µ.

To this end, we first show that the uniform convergence of 1
n

∑n
i=1 T

i

to T1 implies the uniform (in both x ∈ X and E ∈ X ) convergence of
1
n

∑n
i=1 p

(i) to p1, the the kernel of T1 in the following lemma.

Lemma 4. If a Markov operator T : (M) → (M) satisfies 1
n

∑n
i=1 T

i con-

verges uniformly to a operator T1, then
1
n

∑n
i=1 p

(i) converges uniformly (in
both x ∈ X and E ∈ X ) to a Markov transition probability p1, and p1 is the
kernel of T1.

Proof. Since the uniform convergence in operators space is equivalent to op-
erator norm convergence, but operator norm convergence in Markov opera-
tors is also equivalent to the supreme norm convergence in the corresponding
kernels, we are done due to the one-to-one correspondence between a Markov
operator and its kernel.

After acquiring the result in Lemma 4, we have the following corollary
from Lemma 3 and Lemma 4. We state it as Lemma 5.

Lemma 5. If T is quasi-strongly completely continuous, then for each n ∈
N, we have p(n)(x,E) =

∑k
i=1 λ

n
i pλi

(x,E) + S(n)(x,E), where:
1. k = dim(σ(T ) ∩ {λ ∈ C : |λ| = 1}) < ∞;

2. sup
x∈X,A∈X

| 1
n

∑n
i=1

p(i)(x,A)
λi

− pλi
(x,A)| ≤ M

n
;

3.
∫
X
p(n)(x, dt)pλi

(t, E) =
∫
X
pλi

(x, dt)p(n)(t, E) = λn
i pλi

(x,E);
4.

∫
X
pλi

pλj
=

∫
X
pλj

pλi
= pλi

(x,E) or 0 if i = j or otherwise;
5.

∫
X
S(x, dt)pλi

(t, E) =
∫
X
pλi

(x, dt)S(t, E) = 0,∀i ∈ {1, 2, ..., k};

6. supx∈X,A∈X |S(n)(x,A)| ≤ M
(1+ǫ)n ;

where M and ǫ are positive constants independent of n, and
∫
X
pλi

pλj
:=∫

X
pλi

(x, dt)pλj
(t, E).

7



It is clear that Lemma 5 follows entirely from Lemma 3 and Lemma 4.
Before stating our main results, it still remains to show the ergodic decom-
position of both the state space and the eigen space with respect to eigen
value 1, given a quasi-strongly completely continuous Markov operator T .
Such ergodic decompostions have been proved by Yosida and Kakutani in
[5]. We state the results in Lemma 6.

Lemma 6. If T is quasi-strongly completely continuous and p1 is the kernel
of T1, then p1(t, E) =

∑l
α=1 yα(t)να(E), and X =

∑l
α=1 Eα +∆ such that:

1. {να}
l
α=1 forms a basis for {µ ∈ (M) : µ ≥ 0, ||µ||va = 1, Tµ = µ} and µα

are mutually singular;
2. {yα}

l
α=1 forms a basis for {y ∈ M∗ : T ∗y = y} satisfying T ∗yα = yα, yα ≥

0, and
∑l

α=1 yα(x) = 1,∀x ∈ X;
3.

∫
X
να(dx)yβ(x) = 1 or 0 if α = β or otherwise;

4. xα(Eβ) = 1 or 0 if α = β or otherwise;
5. p(x,Eα) = 1,∀x ∈ Eα;
6. sup

x∈Eα,A⊂Eα

| 1
n

∑n
i=1 p

(i)(x,A)− να(E)| ≤ M
n
;

7. sup
x∈X

1
n

∑n
i=1 p

(i)(x,∆) ≤ M
n
;

where M is a positive constant independent of n, and {Eα}
l
α=1 a system of

mutually disjoint sets.

Proof. See “Operator-Theoretical Treatment of Markoff’s Process and Mean
Ergodic Theorem” by Yosida and Kakutani. [5]

Finally, we derive an explicit formula for the the ergodic decomposition
of the invariant probability measure for each initial distribution, under the
assumption of quasi-strongly complete continuity of T . We state the result
in Theorem 1.

Theorem 1. If T : (M) → (M) has quasi-strongly complete continuity,
then for any initial probability measure µ on (X,X ), there exists a system
of mutually disjoint sets {Eα}

l
α=1 and a system of mutually singular set

functions {να}
l
α=1 such that 1

n
(
∑n−1

i=0 T iν(E)) converges uniformly (in E ∈

X ) to
∑l

α=1 ν(Eα)µα(E ∩ Eα).

Proof. By the quasi-strongly complete continuity of T , we have: p(n)(t, E) =∑k
i=1 λ

n
i pλi

(t, E) + S(n)(t, E) from Lemma 5; 1
n
(
∑n

i=1 T
i) converges uni-

formly to T1 and the kernel of T1 is decomposible: p1(t, E) =
∑l

α=1 yα(t)να(E)

8



from Lemma 6; and X =
∑l

α=1 Eα + ∆, where Eα is defined by y−1
α ({1})

from Lemma 6. Now, let µ ∈ (M) be an arbitrary initial probability measure
on X, then we have:

1

n
(

n−1∑
i=0

T iµ(E)) =
1

n
(

n−1∑
i=0

∫
X

µ(dt)p(i)(t, E))

=

∫
X

(

n−1∑
i=1

(p(i)(t, E)
1

n − 1

n− 1

n
+

1

n
1E))µ(dt)

=
n− 1

n

∫
X

(
1

n− 1

n−1∑
i=1

(p(i)(t, E))µ(dt) +
1

n
µ(E)

=
n− 1

n

∫
X

(
1

n− 1

n−1∑
i=1

(

k∑
j=1

λi
jpλj

(t, E) + S(i)(t, E))µ(dt) +
1

n
µ(E)

Let n goes to infinity →

∫
X

p1(t, E)µ(dt)

=
l∑

α=1

∫
X

yα(t)να(E)µ(dt)

=
l∑

α=1

l∑
β=1

∫
Eβ

yα(t)να(E ∩ Eβ)µ(dt)

=

l∑
α=1

∫
Eα

να(E ∩ Eα)µ(dt)

=

l∑
α=1

µ(Eα)να(E ∩Eα)

The second line follows from p(0)(t, E) = 1E, the forth from Lemma 5,
the fifth from Lemma 5 and the fact that 1

n

∑n
i=1 λ

i → 0 as n → ∞ for all
λ ∈ {λ ∈ C : |λ| = 1, λ 6= 1}, the sixth and the seventh from Lemma 6,
the eighth from the fact that yα(t) = 1 if t ∈ Eα and yα(t) = 0 otherwise.
Therefore, we have finished our proof.

Notice here the {ν}lα=1 and {Eα}
l
α=1 depend merely on T , and the coef-

ficients µ(Eα) are the initial probability measure of the ergodic parts. More-
over, it is not hard to see from Theorem 1 that, if we consider Eα as a space
itself, then for any µ ∈ {µ ∈ (M) : ||µ||va = 1}, we have 1

n

∑n−1
i=0 T iµ|Eα con-
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verges uniformly (in E ∈ X ) to µ(Eα)να. Therefore, we have the following
corollary.

Corollary 1. If p is the kernel of a quasi-strongly completely continuous
operator T , let {Eα}

l
α=1 be the ergodic parts, we have p|Eα is ergodic for

each α ∈ {1, 2, ..., l}. Moreover, let µ be an initial distribution, then ∀f ∈
M∗, 1

n

∑n−1
i=0 (T

∗)if1Eα converges uniformly (in x ∈ X) to µ(Eα)
∫
Eα

f(x)να(dx),
α ∈ {1, 2, ..., l}.

Now, it is clear from the corollary that if we have a condition on q and
F such that the induced transition probability p becomes a kernel of some
quasi-strongly completely continuous operator, then the condition guaran-
tees the ergodic decomposition of the economic state space such that the
restriction of p on each ergodic part becomes ergodic.

Although the invariant probability distribution is still depending on the
initial distribution under the assumption of quasi-strong complete continu-
ity, it is clear from the explicit ergodic decomposition formula in Corollary 1
that the dependence on the initial distribution becomes extremely limited as
merely the coefficients changes if µ changes. Moreover, if the quasi-strongly
completely continuous operator induced by p has exactly one ergodic part,
then we conclude that p is ergodic.

In 1979, in the paper “The Ergodic Behavior of Stochastic Processes of
Economic Equilibria,” Blume provided a condition on F such that, for a
large subset Q (actually a dense set), every measurable selection of evolu-
tion law f from a F satisfying his condition will induce an ergodic p on
the economic state space. However, he did not notice that his condition is
actually a special case of Doeblin condition. Also, the conclusion under his
condition is not sharp because he did not show a specific condition for q to
be in that dense set of Markov transition probability on (E, E). But Blume’s
conclusion following from the Banach Fixed Point Theorem distinguishes it-
self by its extreme simplicity.

Now, we are ready to state the second main result of this paper, which
provides an applicable condition on q and F such that the induced p has
ergodicity.

Theorem 2. If the correspondence F and q satisfies:
1. ∃K ∈ X s.t. f(x, e) ∈ K,∀e ∈ E, x ∈ X, measurable selection f ,

10



2. ∃e∗, x∗, n ∈ N s.t. f (n)(x, e∗) = x∗,∀x ∈ K, measurable selection f ,
3. ∃ǫ > 0, q(e, {e∗}) ≥ ǫ,∀e ∈ E,
then the induced p is ergodic.

Note Theorem 2 tells us that if: 1. there exists a small set K on the eco-
nomic state space such that, starting from any point on the state space, the
Markov chain will visit K infinitely often; 2. there exists a special exogenous
point such that, starting from any point on the small set K, the Markov
chain will arrive at a fixed point after finite time periods if the special ex-
ogenous point happens repeatedly; 3. all the points on the exogenous space
are communicative to the special exogenous condition; then there exists a
probability distribution µ∗ on the economic state space such that, the time
average converges to the space average with respect to µ∗, independent of
the initial distribution.

Proof. Assume F and q satisfies the condition in Theorem 2, let f be an arbi-
trary measurable selection from F , and define f (n)(x, e) := f(f (n−1)(x, e), e)
by induction. Also, define an operator V : (M) → (M) by V µ(A) :=∫
X
ǫnδx∗(A)µ(dx) for all µ ∈ (M). We claim here that V is strongly com-

pletely continuous. Indeed, given B(M) := {µ ∈ (M) : ||µ||v ≤ 1}, we have
V (B(M)) = {cδx∗ : c ∈ [0, ǫn]}. Since {cδx∗ : c ∈ [0, ǫn]} is isometric isomor-
phic to [0, ǫn], and [0, ǫn] is clearly compact, we have V (B(M)) is compact
in norm. Hence, V is strongly completely continuous by definition.

Now, let p be the transition probability that is induced by f and q, de-
fine T by Tµ(·) :=

∫
X
p(x, ·)µ(dx) on µ ∈ {µ ∈ (M) : µ ≥ 0, ||µ||v = 1} as

usual, we have (T − V )µ(·) =
∫
X
(p(x, ·) − ǫnδx∗(·))µ(dx) on (M). But for

each A ∈ X , we have p(x,A)− ǫnδx∗(A) ≤ p(x,X −{x∗})− 0 < 1 if x∗ /∈ A,
and p(x,A) − ǫnδx∗(A) ≤ p(x,A) − ǫn < 1 if x∗ ∈ A. In both cases, we
have (T −V )µ(·) =

∫
X
(p(x, ·)− ǫnδx∗(·))µ(dx) <

∫
X
1X(x)µ(dx) = 1. Since

our choice of µ is arbitrary, we have shown ||T − V || < 1 by definition and
T is quasi-strongly completely continuous. Therefore, we have 1 ∈ σ(T ),
E1(T ) 6= ∅, and ∃{να}

l
α=1 be a mutually singular basis for E1(T ) by Lemma

6. That completes our proof for existence.

It remains to show the uniqueness of the invariant measure. Let’s first
derive a Stopping Markov process {yi}

∞
i=0 on (X,X ) from {xi}

∞
i=0 by y0 :=

x0, y1 := xτK , and yi be the i-th member in {xi}
∞
i=0 that arrives K. Also,

define the transition probability for {yi}
∞
i=0 by:

11



pK(x,E) = P (yi+1|yi = x)

= p(x,E) +

∫
Kc

p(x, dy)p(y,E) +

∫
Kc

p(x, dy)

∫
Kc

p(y, dz)p(z,E) + ...

where E ⊂ K. Now, let µ∗ be an invariant probability measure satis-
fying µ∗(·) =

∫
X
µ∗(dx)p(x, ·). Such µ∗ exists since we have shown the

quasi-strongly complete continuity of T above. We have µ∗ must satisfy
µ∗(K) = 1. Indeed, if µ∗(K) < 1, ∃E ⊂ Kc such that µ∗(E) > 0. But
since p(x,K) = 1 for all x ∈ X, we have µ∗(E) =

∫
X
µ∗(dx)p(x,E) = 0, a

contradiction.

Next, we assume that K = K1∪K2, where K1,K2 are mutually disjoint,
and assume W.O.L.G. that δx∗(K1) = 1 and δx∗(K2) = 0. Then, the fact
p(x, x∗) ≥ ǫ > 0 for all x ∈ K implies that P (yi ∈ K2,∀i ∈ N) 6= 1. That
is, K cannot be decomposed into two disjoint ergodic parts for {yi}

∞
i=0.

Therefore, pK is ergodic on K, and ∃ a unique invariant probability measure
µK on K such that limn→∞

1
n

∑n−1
i=0 T i

K(µ) = µK , where TK is the operator
induced by pK . But notice that for all E ⊂ K, we have:

µ∗(E) =

∫
X

µ∗(dx)p(x,E)

=

∫
K

µ∗(dx)p(x,E) +

∫
Kc

µ∗(dx)p(x,E)

=

∫
K

µ∗(dx)p(x,E) +

∫
Kc

∫
X

µ∗(dx)p(x, dt)p(t, E)

Fubini → =

∫
K

µ∗(dx)p(x,E) +

∫
X

µ∗(dx)

∫
Kc

p(x, dt)p(t, E)

=

∫
K

µ∗(dx)(p(x,E) +

∫
Kc

p(x, dt)p(t, E)) +

∫
Kc

∫
Kc

=

∫
K

µ∗(dx)(p(x,E) +

∫
Kc

pp+

∫
Kc

∫
Kc

ppp) +

∫
Kc

∫
Kc

∫
Kc

where
∫
Kc

∫
Kc :=

∫
Kc

∫
Kc µ

∗(dx)p(x, dt)p(t, E),
∫
Kc pp :=

∫
Kc p(x, dt)p(t, E),

and other abbreviations are defined similarly for convenience.

Notice that if we continue this process, the first term on the right side be-
comes

∫
X
µ∗(dx)pK(x,E) by definition, and the second term on the right side

is always non-negative. Therefore, we have µ∗(E) ≥
∫
X
µ∗(dx)pK(x,E). We

12



claim µ∗(E) =
∫
X
µ∗(dx)pK(x,E). Indeed, if µ∗(E) >

∫
X
µ∗(dx)pK(x,E),

then there exists a set E ⊂ K such that µ∗(E) >
∫
X
µ∗(dx)pK(x,E), be-

cause µ∗(K) =
∫
X
µ∗(dx)pK(x,K) = 1 as they are both probability measure

on K. But then we have µ∗(K −E) <
∫
X
µ∗(dx)pK(x,K −E), a contradic-

tion. Therefore, µ∗(E) =
∫
X
µ∗(dx)pK(x,E). That is µ∗ is invariant under

TK . Since our choice of µ∗ is arbitrary, we conclude that if µ∗ is invariant
under T , then it is invariant under TK .

Finally, Assume there exists another probability measure µ∗
1 that is in-

variant under T , then we must have µ∗
1(K) = µ∗(K) = 1 and hence ∃E ⊂ K

such that µ∗
1(E) 6= µ∗(E). But we also have µ∗

1 being invariant under T −K.
That implies µ∗

1 is invariant under TK and therefore µ∗
1(E) = µ∗(E),∀E ⊂ K

by the uniqueness of invariant probability measure under TK . The contra-
diction shows the uniqueness of invariant probability measure under T and
completes our proof.

Here, we have used quasi-strongly complete continuity to prove the ex-
istence, and created a stopping Markov process to show the uniqueness. In
fact, there is an easier way to prove Theorem 2 by using the classic Harris
positive recurrence condition.[7] Before showing an alternative proof, we first
state two classic conditions for Markov operators to have a unique invariant
probability measure and hence to be ergodic:

∃µ ∈ {µ ∈ (M) : µ ≥ 0, ||µ||v = 1} on (X,X ), ǫ > 0,

such that p(x,E) ≥ ǫµ(E),∀x ∈ X,∀E ∈ X . (D)

∃µ ∈ {µ ∈ (M) : µ ≥ 0, ||µ||v = 1},K ∈ X , k ≥ 1, ǫ > 0 such that

sup
x∈X

ExτK < ∞, and p(k)(x,E) > ǫµ(E),∀x ∈ K,∀E ∈ X . (H)

Here, (D) is the Doeblin’s condition and (H) is the Harris positive recur-
rence condition. It is not hard to see that Harris condition implies Doeblin’s
condition if we consider the entire space X as K in Harris condition. Notice
that our proof for Theorem 2 actually suggests that Harris’ condition im-
plies quasi-strongly complete continuity. But that is not a surprising result
because Yosida and Kakutani have shown that Doeblin condition implies
quasi-strongly complete continuity in [5] and Harris condition can be con-
sidered as a generalization of Doeblin condition.
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In fact, we show in a second proof for Theorem 2 that our condition
implies Harris’ condition. Since Blume’s condition in [3] coincides with Doe-
blin’s condition, our condition is a generalization of his condition.

Alternative Proof. Since p(x,K) = q(πi(x), f
−1
x (K)) = q(πi(x), E) = 1 for

all x ∈ X, regardless of i ∈ N, we have supx∈X ExτK = 1 < ∞. Now, let
µ := δe∗ . Since p(n)(x,A) ≥ (infe∈E q(e, {e∗}))n ≥ ǫn if x∗ ∈ A, we have
p(n)(x, ·) ≥ ǫnµ(·). Therefore, we have shown that the induced p satisfies the
Harris’ condition. It is a well-known result from Harris [7] that if p satisfies
the Harris’ condition, there exists a unique invariant measure ν such that∫
X
p(x, ·)ν(dx) = ν(·) on X . The ergodicity of p follows immediately.

Finally, one classic characterization of ergodicity is the time average
converges to the space average. We state it as a corollary below.

Corollary 2. If F and q satisfies the assumptions in Theorem 2, then the in-
duced p satisfies ∃µ∗,∀f ∈ M∗, 1

n

∑n−1
i=0 (T

∗)if(x) converges to
∫
X
f(x)µ∗(dx)

for all x ∈ X.

4 Conclusion

In this paper, we first show in Lemma 1 that the convergence of 1
n

∑n
i=1 T

i

to a projection map under the assumption of quasi-weakly complete conti-
nuity and hence show the existence of an invariant distribution that depends
fully on the initial distribution. Then we show in Theorem 1 that a further
assumption of quasi-strong complete continuity leads to the ergodicity up
to a multiplicative coefficient in the restriction of p to each ergodic parts on
the state space. That is, the influence from a change in the initial distribu-
tion on the invariant measure has been limited to a change in the constant
coefficients of that invariant measure. Finally, we provide a condition on F
and q such that the induced p satisfies the Harris’ condition, which not only
implies quasi-strongly complete continuity and hence ensures the existence
of ergodic decomposition, but also guarantees the uniqueness of the ergodic
part and therefore the ergodicity of p.

In further research on this topic, I would like to provide more verifiable
condition on F and q to guarantee the quasi-strongly complete continuity
assumption in Theorem 1, since the conclusion in Theorem 1 is already inter-
esting enough due to the very limited dependence of the invariant probability
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measure on the initial distribution. Also, I would study the applicability of
Theorem 2 to real dynamic models in Economics.
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