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NONNEGATIVITY FOR HAFNIANS OF CERTAIN

MATRICES

KAMIL BRÁDLER, SHMUEL FRIEDLAND, AND ROBERT B. ISRAEL

Abstract. We show that a complex symmetric matrix of the form

A(Y,B) =

[

Y B

B⊤ Y

]

, where B is Hermitian positive semidefinite, has a

nonnegative hafnian. Some positive scalar multiples of matrices A(Y,B)
are encodable in a Gaussian boson sampler. Further, the hafnian of
this matrix is non-decreasing in B in the sense that haf A(Y,L) ≥

haf A(Y,B) if L � B.
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1. Introduction

Let A = [aij ] be a 2n × 2n symmetric matrix with entries in C. The
hafnian haf A is defined as the sum of

∏n
k=1 aikjk over all perfect matchings

(i1, j1), . . . , (in, jn) of the complete graph K2n. The pairs (i, j) for which
i 6= j and aij 6= 0 form the edges of a graph G with vertex set [2n]; we can
consider A (with diagonal entries ignored) as a weighted adjacency matrix
of G, and haf A is a weighted sum over the perfect matchings of G.

Assume that m = 2n and K2n = ([2n], E2n) is a complete graph on
[2n] vertices. Recall that M ⊂ E2n is a perfect match of K2n if ([2n],M)
is a 1-regular spanning subgraph of K2n. So M =

⋃

k∈[n]{(ik, jk)}, where

[2n] =
⋃

k∈[n]{ik, jk}. Let M2n be the set of perfect matchings in K2n.

Assume that A = [aij ] ∈ S2n.
Then the hafnian of A is defined as follows [7]:

haf A =
∑

M=
⋃

k∈[k](ik ,jk)∈M2n

n
∏

k=1

aikjk .

For various properties of the hafnian see, e. g., [4].
In particular we consider A of the form

A(Y,B) =

[

Y B
B⊤ Y

]

,(1.1)

where Y is a (complex) symmetric matrix and B is a hermitian positive
semidefinite matrix. The main result of this paper is

Theorem 1.1. Assume that A(Y,B) is of the form (1.1), where Y is com-
plex symmetric and B positive semidefinite Hermitian. Then haf A(Y,B) ≥
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0. If B has no zero row then haf A(Y,B) > 0. Furthermore, if L � B i.e.,
L−B is positive semidefinite Hermitian then haf A(Y,L) ≥ haf A(Y,B).

The inequality haf A(Y,B) ≥ 0 for B � 0 can be deduced from the
physical arguments stated in [6]. See Appendix.

Observe that A(0, B) for any B ∈ C
n×n is a weighted adjacency matrix of

the complete bipartite graph Kn,n, where the first part is [n] and the second
part is [n+ 1, . . . , 2n]. Permutations of [n] correspond to perfect matchings
of Kn,n, so that the permutation σ corresponds to the matching consisting
of pairs (j, n + σ(j)). Hence

haf A(0, B) = perB =
∑

σ∈Σn

n
∏

k=1

bkσ(k).

Assume that B is positive semidefinite. It is well known that perB ≥ 0.
This is a corollary of Schur’s theorem [11] that for a positive semidefinite
B we have the inequality perB ≥ detB. The latter is nonnegative (being
the product of the eigenvalues of B). See also [3]. Moreover, perB = 0
if and only if B has a zero row [10, Theorem 3]. Theorem 1.1 yields that
perL ≥ perB if L � B � 0. This inequality may be known but we did not
find it in the literature.

Remark 1.2. Note that the problem of computing the sign of the permanent
is in general hard [1]. Hence a similar result holds for the hafnian.

2. Proof of the main theorem

Let Q = (qst) be anm×n complex valued matrix and denote the transpose
and the conjugate transpose as Q⊤ and Q∗, respectively. The r-th induced
matrix Pr(Q) is defined as follows [9, p. 20]. Denote by Gk,n the totality of
nondecreasing sequences of k integers chosen from [n] = {1, . . . , n}. Let
α ∈ Gk,n. Then µ(α) is defined to be the product of the factorials of
the multiplicities of the distinct integers appearing in the sequence α. For

α ∈ Gk,m, β ∈ Gl,n we set Q[α, β]
df
= (qαsβt

) s=1...k
t=1...l

to be the k × l submatrix

of Q with the rows and columns in α and β, respectively. Now Pr(Q) is the
(

m+r−1
r

)

×
(

n+r−1
r

)

matrix whose entries are perQ[α, β]/
√

µ(α)µ(β) arranged
lexicographically in α = (α1, . . . , αr) ∈ Gr,m, β = (β1, . . . , βr) ∈ Gr,n. Recall
that Pr(Q

∗) = Pr(Q)∗ and if S is an n×pmatrix then Pr(QS) = Pr(Q)Pr(S)
[9].

Assume that B is an m×m Hermitian matrix. Then the spectral decom-
position of B is UDU∗ where D is a real diagonal matrix. Then

Pr(UDU∗) = Pr(U)Pr(DU∗) = Pr(U)Pr(D)Pr(U
∗) = Pr(U)Pr(D)Pr(U)∗.

Clearly, if D is a real diagonal matrix then Pr(D) is also a diagonal matrix
with real entries. Hence Pr(B) is Hermitian. Assume that B is positive
semidefinite. Hence D is a nonnegative diagonal matrix. It is straightfor-
ward to show that Pr(D) is also a nonnegative diagonal matrix. Hence, if
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B is an m × m positive semidefinite Hermitian matrix then Pr(B) is pos-

itive semidefinite. Let H be a diagonal matrix of order
(

m+r−1
r

)

whose

diagonal entries are
√

µ(α). If B is positive semidefinite then the matrix
Cr(B) = HPr(B)H is also positive semidefinite. Note that the entries of
Cr(B) are perB[α, β].

We now consider the hafnian of A = A(Y,B), where Y is complex sym-
metric and B Hermitian. A perfect matching of [2n] will match some α ⊆ [n]
with itself, while a subset n+β, β ⊂ [n] of n+[n] = {n+1, . . . , 2n} of equal
cardinality is matched to itself, and the remaining members [n]\α of [n] are
matched to n+([n] \β). The contribution to haf A(Y,B) of such matchings
for a particular α and β is

haf(Y [α,α]) per(B([n] \ α, [n] \ β)) haf(Y [β, β]),

where we take the hafnian or permanent of an empty matrix to be 1. The
total contribution of all of these for a given k, 0 ≤ k ≤ ⌊n/2⌋, is

∑

α:|α|=2k

∑

β:|β|=2k

haf(Y [α,α]) per(B([n] \ α, [n] \ β)) haf(Y [β, β]).(2.1)

Note that the matrix Fn−2k(B) whose entries are perB[γ, δ] for γ, δ all n−
2k-subsets of [n] is a principal submatrix of Cn−2k(B), hence Hermitian, and
positive semidefinite if B � 0. Hence the sum (2.1) is real and nonnegative
if B � 0. This shows that haf A(Y,B) ≥ 0. Recall [10, Theorem 3] that
perB > 0 if B has no zero row. Hence haf A(Y,B) > 0 if B has now zero
row.

Assume now that L � B � 0. We claim that Pr(L) � Pr(B) � 0. (The
last inequality was established above.) Assume first that detB > 0, i.e., B
is positive definite. Then B has a unique positive definite square root R,

and L � B is equivalent to L1
df
= R−1LR−1 � In, where In is the identity

matrix of order n. Thus we can diagonalize L1 = UDU∗, where U is unitary
and D is diagonal with diagonal entries and the eigenvalues of L1 are all
≥ 1. Recall that Pr(In) = I(n+r−1

r
) [9, 2.12.5]. Thus

Pr(L1) = Pr(UDU∗) = Pr(U)Pr(D)Pr(U)∗,

I(n+r−1
r

) = Pr(In) = Pr(UU∗) = Pr(U)Pr(U)∗.

As each diagonal entry of D is at least 1 we deduce that Pr(D) � Pr(Im) =
I(n+r−1

r
). Thus, each eigenvalue of Pr(L1) is at least 1. Hence Pr(L1) �

I(n+r−1
r

). Observe next

Pr(L1) = Pr(R
−1LR−1) = Pr(R)−1Pr(L)Pr(R)−1 � I(n+r−1

r
).

Use the previous observation to deduce that Pr(L) � Pr(R)Pr(R) = Pr(R
2) =

Pr(B). This concludes the proof in the case that B is nonsingular. For the
general case, we note that haf A(Y,L + ǫIn) ≥ haf A(Y,B + ǫIn) for ǫ > 0
and take the limit as ǫ → 0+ (the hafnian being a continuous function).
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Appendix A. Gaussian Boson Sampling

In this appendix we discuss the connection of our results to Gaussian
Boson Sampling. To keep this section aligned with the notation of the
physics literature we replace the integer n by the integer M .

A link between hafnians of certain matrices and covariance matrices of
quantum-optical Gaussian states was put forward in [8] and further explored
in [6]. Ref. [8] introduced a Gaussian boson sampler (GBS) as a generaliza-
tion of the boson sampler [2] where an M -mode linear interferometer is fed
by a product of M single-mode squeezed states and its output is sampled
by an array of M photon number-resolving detectors. It turns out that the
probability of detecting exactly one photon in each output detector is pro-
portional to the hafnian of a certain matrix A (for a generalization to all
possible multiphoton events see [6]).

The complex covariance matrix describing the input to the interferome-
ter has dimension 2M × 2M and encodes the covariances of the canonical
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operators ξ = (a1, . . . , aM , a†1, . . . , a
†
M ):

(A.1) σij =
1
2〈ξiξj + ξjξi〉 − 〈ξi〉〈ξj〉.

The symbol † denotes Hermitian conjugation and 〈.〉 denotes the operator
expectation value. The physical covariance matrix is Hermitian, positive
semidefinite and its symplectic eigenvalues are greater than 1/2 [12]. The
authors of [8] did not offer the most general form of A leading to a physical

covariance matrix. Instead, they use A =

[

Y B
B⊤ Y

]

for an arbitrary complex

B and complex symmetric Y ; however the corresponding covariance matrix
may be non-physical. The physical relevance of knowing what A can be
encoded in the GBS device is related to the question of which weighted
undirected graphs can have their hafnians sampled by a GBS device [5].
In [8] the canonical form A = Y ⊕ Y was used, as this always leads to a
physical covariance matrix. However, this comes at the expense of ‘doubling’
the adjacency matrix [5], leading to lower detection probabilities.

We claim that Corollary 3 of [6] holds for complex matrices as well:

Lemma A.1. Let R =

[

R11 R12

R21 R22

]

be a 2M × 2M complex symmetric

matrix. Then there exists a Gaussian covariance matrix σ such that

(A.2) cR = X2M [I2M − (σ +
1

2
I2M )−1],

where

X2M =

[

0 IM

IM 0

]

if and only if:

(1) R11 = R22 and R12 = R⊤
21.

(2) R12 is Hermitian and positive semidefinite.
(3) c ∈ (0, 1/‖R‖2)

Proof. Since R is complex symmetric we must have that R11, R22 are com-
plex symmetric and R21 = R⊤

12. Set Y = R11, B = R12 in (1.1). Let
F = cX2MR for some c > 0. Then equality (A.2) shows that X2MR is
Hermitian. Therefore B is Hermitian and R22 = Y . Set F = cR and use
Lemma 2 in [6]. �
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