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PARTIAL WORD AND EQUALITY PROBLEMS AND BANACH

DENSITIES

ANGELA CARNEVALE AND MATTEO CAVALERI

ABSTRACT. We investigate partial Equality and Word Problems for finitely gen-

erated groups. After introducing Upper Banach (UB) density on free groups, we

prove that solvability of the Equality Problem on squares of UB-generic sets

implies solvability of the whole Word Problem. In particular, we prove that solv-

ability of generic EP implies WP. We then exploit another definition of generic

EP, which turns out to be equivalent to generic WP. We characterize in different

ways the class of groups with unsolvable UB-generic WP, proving that it con-

tains that of infinite algorithmically finite groups, and it is contained in that of

groups with unsolvable generic WP.

1. INTRODUCTION

One of the most striking results of the last century in group theory is certainly

the existence of finitely presented groups with unsolvable Word Problem (WP),

independently proved in [3] and [28]. From a practical point of view, in com-

putability and complexity theory it is often interesting to know the behavior of an

algorithm on almost all inputs. A formalization of this approach, especially for

the classical decision problems for groups, was given in [16]: the generic version

of a problem is solvable if it is solvable on a generic subset of the input. A sim-

ilar idea was already developed in group theory, essentially by Gromov [14], and

was given a rigorous formulation by Arzhantseva and Olshanskii [1]. With this

new generic approach, most of the known examples of unsolvable decision prob-

lems on groups turned out to be generically solvable, possibly even in linear time;

see, for instance, [4, 5, 15, 16, 18, 19, 23]. This could be an issue, for example,

for applications in group-based cryptography [25]. Remaining in context of the

Word Problem, to the best of our knowledge, it is still unknown if there exists a

finitely presented group with unsolvable generic WP. Various partial results have

been obtained in this direction. In [22], computably presented, infinite, algorithmi-

cally finite groups (so-called Dehn monsters) were found. An algorithmically finite

group is a group for which the Equality Problem is “extremely undecidable”: it is

impossible to computably enumerate infinitely many pairwise distinct elements. It

turns out that, with a suitable definition of the partial Equality Problem (EP), in-

finite algorithmically finite groups can have solvable EP only on negligible sets.

Moreover, the work [22] raised the question about the existence of finitely pre-

sented Dehn monsters, or at least of finitely presented groups whose EP is solvable

only on non-generic sets. The first question is still open, other developments can

be found in [20, 21]. For the latter question, the second author exhibited finitely

presented groups with unsolvable generic Equality Problem [8].
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The following is the first main result of this article, settled in the context of

finitely generated groups, and it gives a more complete answer to the question

raised in [22, Problem 1.5, b]. It is proved at the end of Section 2. We refer the

reader to Section 1.1 for the relevant definitions.

Theorem A. Let Γ be a finitely generated group. If there exists a finite set of

generators X of Γ such that the Equality Problem is solvable on a set S × S,

where S ⊂ FX is generic (that is, the generic EP of Γ is solvable in the sense

of [22]), then Γ has solvable Word Problem.

In particular, no further assumptions are made on the group: this result holds for

groups which are not necessarily amenable, computably presented (as it instead

was in [8]). Note that, as a byproduct, this theorem shows for the first time that

the generic EP in the sense of [22] does not depend on the choice of the finite

set of generators. There is a simple idea behind this claim: up to left (or right)

translations, a generic set contains all information about the whole Word Problem.

We formalize this concept by introducing and studying Banach densities on free

groups, densities that are, in a precise way, invariant under the action of an infinite

sequence of translations. While the name of our densities refers to their classical

analogues on Z, the ideas leading to their definition and applications were partly

inspired from the densities defined and studied by Solecki for any discrete group

in [29].

They turn out to have other good invariance properties. For instance, the set of

trivial words is negligible in a strong sense (cf. Theorem 2.5), which is a funda-

mental feature for investigations in genericity problems [12,16]. We actually prove

the following stronger version of Theorem A, via the definition of Upper Banach

generic (UB-generic) sets; cf. Definition 2.1 and Theorem 2.9.

Theorem B. Let Γ be a finitely generated group. If there exists a finite set of

generators X of Γ such that the Equality Problem is solvable on a set S × S,

where S ⊂ FX is UB-generic, then Γ has solvable Word Problem.

This suggests that these new densities might be interesting per se: we investigate

the class of groups having solvable WP on UB-generic sets and characterize them

as follows, cf. Theorem 4.1.

Theorem C. Let Γ be a group generated by a finite set X. Then Γ has solvable

UB-generic WP with respect to X if and only if there exists an infinite computably

enumerable sequence of words in FX representing elements of strictly increasing

length in Γ.

A first consequence of this characterization is that solvability of UB-generic WP

does not depend on the choice of the finite generating set. Moreover the class of

groups whose WP is unsolvable on every UB-generic set can only contain torsion

groups. Another straightforward consequence of Theorem C is the following, cf.

Corollary 4.3.

Corollary D. Let Γ be an infinite algorithmically finite group generated by a finite

set X. The WP of Γ is unsolvable on every UB-generic set.

Due to the exotic nature of algorithmically finite groups, we feel that their in-

clusion in a broader class of groups with nice and diverse characterizations can be

helpful (cf. Theorem 4.1). Moreover, since UB-genericity is a weaker notion than
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classic genericity, we prove that Dehn monsters also constitute the first example

of computably presented groups with unsolvable generic Word Problem. This was

obviously among the purposes of [22], but there the emphasis was on the Equality

Problem. In light of our results, it seems appropriate to turn the attention to par-

tial WP, or at least to consider a different definition for partial EP. In fact, proving

Theorems A and B has required an analysis of the connection between Equal-

ity and Word Problem, which had sometimes been previously considered, but not

deeply unraveled. This analysis revealed that the odd behavior exhibited in Theo-

rem A is essentially due to the particular way of defining solvability of generic EP

via Fubini-genericity: taking a more classical definition such as the one outlined

in [16], we prove the expected equivalence between the two generic problems in

Theorem 3.2.

Theorem E. Let Γ be a group generated by a finite set X. Then Γ has solvable

generic EP with respect to X in the sense of Definition 3.1 if and only if it has

solvable generic WP with respect to X.

Even if decidability of the generic EP is equivalent to that of the generic WP,

we do not know if this is the case for the complexity: the partial relations obtained

by our proofs are presented in Corollary 3.3 (see Remark 2.11 for the analogous

discussion about Theorem A).

We devote the final part of this paper to taking a unifying look at these new and

old classes of groups, defined according to the increasing level of (un)solvability of

the partial WP, asking a few questions on the still unknown relations among them.

1.1. Notation and preliminaries. Throughout this paper, Γ is a finitely generated

group. For a finite set of generators X we set |X| = d. We denote by π : FX → Γ
the canonical epimorphism from the free group on X to Γ. The normal subgroup

ker π � FX of trivial words is often called the Word Problem of Γ. We denote by

|g|Γ the word length of g in Γ with respect to X, for ω ∈ FX we simply write |ω|
instead of |ω|FX

. Note that |g|Γ = min{|ω| : ω ∈ FX , π(ω) = g}. For the k-th

direct power Fk
X of the free group FX we will consider the usual generators, so

that |(ω1, . . . , ωk)|Fk
X

= |ω1| + · · · + |ωk|. We denote with Sn(Γ) the sphere and

with Bn(Γ) the ball of radius n in Γ, respectively. For the free group we simply

write Sn instead of Sn(FX) and Bn instead of Bn(FX). We let e denote the empty

word in FX .

A set S ⊂ F
k
X is negligible if

(1.1) lim
n→∞

|S ∩Bn(F
k
X)|

|Bn(Fk
X)| = 0,

and generic if its complement in F
k
X is negligible. The set S is exponentially

negligible if it is negligible and the convergence in (1.1) is exponential, that is

βn |S∩Bn(Fk
X)|

|Bn(Fk
X)| → 0, for some β > 1. We say in this case that the complement is

exponentially generic (see also [12, 16]). We will call Fubini-generic the special

generic subsets of F2
X of the form S × S ⊂ F

2
X , with S generic in FX .

Setting α := 2d− 1, an easy computation ensures that, when d > 1, there exist

positive constants c2, cs, C1, C2 such that

|Sn| = csα
n, αn ≤ |Bn| ≤ C1α

n,

c2(n+ 1)αn ≤|Bn(F
2
X)| ≤ C2(n+ 1)αn.

(1.2)



4 ANGELA CARNEVALE AND MATTEO CAVALERI

This implies, together with Cesaro-Stolz, that S ⊂ FX is (exponentially) negligible

if and only the sequence
|S∩Sn|
|Sn| (exponentially) tends to zero. This sequence is

sometimes used in the literature to define, in an equivalent way, generic/negligible

subsets of FX .

For definitions and basic facts on algorithms we refer to [10]. The group Γ
has solvable Word Problem (WP) on a subset S ⊂ FX if there exists a partial

algorithm that stops at least for every ω ∈ S, and, if it stops, it establishes whether

ω is trivial or not. The group Γ has solvable WP with respect to X if it has solvable

WP on FX ; it has solvable generic WP with respect to X if it has solvable WP

on a generic subset S ⊂ FX . The group Γ has solvable Equality Problem (EP)

on a subset T ⊂ F
2
X if there exists a partial algorithm that stops at least for every

(ω1, ω2) ∈ T , and establishes if π(ω1) = π(ω2). The group Γ has solvable Fubini-

generic EP with respect to X if it has solvable EP on a Fubini-generic subset of F2
X ;

notice that this is exactly the definition of generic EP in the sense of [22].

All the previous generic problems can be stated in exponentially generic ver-

sions. Also, in all the previous problems we can replace solvability with solvability

in a (time) complexity class C , see [16] for formal definitions and details. No-

tice that we will work with freely reduced words, that is words in FX instead of

(X ∪ X−1)∗. This is not relevant in our setting, since we assume, from now on,

that complexity classes are defined by collections of complexity bounds which are

also closed under addition of linear functions.

Not much is known about the invariance of generic solvability problems under

change of the finite generating set X (see [16, Section 3]). Clearly solvability of

the whole WP does not depend on X; as a consequence, thanks to our Theorem A,

solvability of Fubini-generic EP does not depend on the choice of the finite set of

generators either.
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2. UPPER BANACH GENERIC WORD PROBLEM

We give our main definition concerning densities of subsets of free groups.

Definition 2.1. Let S be a subset of FX . We define the Lower and the Upper

Banach densities (µ and µ, respectively) of S as:

µ(S) := lim inf
n→∞

min
ω∈FX

|S ∩ ωBn|
|Bn|

, µ(S) := lim sup
n→∞

max
ω∈FX

|S ∩ ωBn|
|Bn|

.

A set S ⊂ FX is Upper Banach generic (UB-generic for short) if µ(S) = 1. A

set N ⊂ FX is UB-negligible if its complement is UB-generic, that is if µ(N) =
0. Similarly, a set S ⊂ FX is Lower Banach generic (LB-generic for short) if
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µ(S) = 1 and N ⊂ FX is LB-negligible if its complement is LB-generic, that is if

µ(N) = 0.

The following proposition characterizes UB-generic subsets of free groups as

those containing translates of any balls, and thus of any finite sets.

Proposition 2.2. A subset S ⊂ FX is UB-generic if and only if for all n ∈ N there

exists ωn ∈ FX such that ωnBn ⊂ S.

Proof. The existence of a sequence {ωn}n∈N ⊂ FX such that ωnBn ⊂ S for all n

clearly implies the UB-genericity of S. For the converse, suppose S is UB-generic.

We denote by N := Sc the complement of S, which is UB-negligible. Suppose by

contradiction that there exists k ∈ N such that ωBk 6⊂ S (equivalently, ωBk∩N 6=
∅) for all ω ∈ FX . One can check that (see, for instance, [8, Lemma 5.3]), for n

big enough, the ball of radius n contains |Sn−2k| disjoint translates of Bk:

Bn ⊃
|Sn−2k|
⊔

i=1

ωiBk,

and then, for every ω ∈ FX we have ωBn ⊃ ⊔i ωωiBk. Since N contains at least

a word for each translate of Bk, we have |N ∩ ωBn| ≥ |Sn−2k|, independently

of ω. Then if d > 1, by Equation (1.2)

min
ω∈FX

|N ∩ ωBn|
|Bn|

≥ |Sn−2k|
|Bn|

≥ csα
n−2k

C1αn
> 0,

that is impossible since µ(N) = 0. The case d = 1 is actually a classical result (see

[27, Lemma 1]), in our setting it is enough to notice that ωBn contains ⌊nk ⌋ ∼
|Bn|
2k

disjoint translates of Bk. �

Remark 2.3. It follows from the above proposition that if S is UB-generic, then

S−1S ⊃ (
⋃

ωnBn)
−1(
⋃

ωnBn) ⊃ FX .

It is clear from Definition 2.1 that UB-genericity is weaker than genericity, which

is in turn weaker than LB-genericity. For a fixed non-trivial word ω ∈ FX and

some f : N → N, define Tf :=
⋃∞

n=1 ω
f(n)Bn (analogous sets were considered,

for instance, in [8, Remark 5.4]). The set Tf is always UB-generic but, choosing f

growing fast enough, it is also negligible. Conversely, the set T c
f is always non-LB-

generic and, for the chosen f , it is also generic. Moreover, it is an easy exercise to

define a set S such that S−1S = FX and |S ∩ Sn| ≤ 1 for all n. The last property

ensures that such a set is not UB-generic. To summarize, the following hold.

S LB-generic =⇒
6⇐= S generic =⇒

6⇐= S UB-generic =⇒
6⇐= S−1S = FX .

Definition 2.4. Let Γ be a group generated by a finite set X. We say that Γ has

solvable UB-generic WP with respect to X if it has solvable WP on an UB-generic

subset of FX .

Note that our Theorem 4.1 implies, a posteriori, that this definition does not

depend on the choice of the finite set of generators; cf. Corollary 4.2.

It is well known that if Γ is infinite, the set ker π ⊂ FX , i.e. the set of the Word

Problem, is negligible. For this reason, in order to study generic Word Problem,

one can restrict the attention to the behavior of an algorithm on the non-trivial

words. On the other hand, in the investigation of UB-generic WP, the negligibility
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of kerπ is not enough, essentially because the intersection of an UB-generic set

and a generic set can even be empty (e.g. the sets Tf and T c
f in Remark 2.3). This

is not the case for the intersection of an UB-generic set and a LB-generic set: one

can easily check that this intersection is always UB-generic. The next theorem

establishes that, if Γ is infinite, the set of trivial words is not only negligible, but

also LB-negligible, thus ensuring that a set S is UB-generic if and only if S \ker π
is UB-generic.

Theorem 2.5. Let Γ be an infinite group generated by a finite set X and let π :
FX → Γ denote the canonical projection. Then µ(ker π) = 0. Equivalently, ker π
is LB-negligible.

Proof. If X consists of a single generator the claim is clear since Γ must be cyclic

and ker π is trivial; we assume d > 1. Let ω ∈ FX with π(ω) = g. Note that

if ω′ ∈ FX is such that π(ω′) = g, then |ker π ∩ ωSn| = |ker π ∩ ω′Sn|, and

thus this quantity does not depend on the choice of representatives of g. Denot-

ing by γ ∈ (
√
2d− 1, 2d − 1] the cogrowth of Γ (cf. [13]), the ratio

|ker π∩ωSn|
γn

tends to zero uniformly for g ∈ Γ (cf. [30, Theorem 2]). Therefore, we have

limn→∞maxω∈FX

| ker π∩ωSn|
|Sn| = 0, since

(2.1)
|ker π ∩ ωSn|

|Sn|
=

|ker π ∩ ωSn|
γn

γn

|Sn|
and, being γ ≤ 2d− 1, the sequence

{

γn

|Sn|

}

is uniformly bounded.

By Cesaro-Stoltz, also

lim
n→∞

∑n
i=0maxω∈FX

| ker π ∩ ωSi|
∑n

i=0 |Si|
= 0.

The result follows, as

max
ω∈FX

| ker π ∩ ωBn|
|Bn|

≤
∑n

i=0maxω∈FX
| ker π ∩ ωSi|

∑n
i=0 |Si|

.

�

Remark 2.6. If Γ is infinite, by combining [30, Theorem 2], Equation (2.1) and

the cogrowth criteria [9, 13], we get that ker π is exponentially LB-negligible if

and only if Γ is non-amenable. On the other hand, an UB-negligible set S is al-

ways exponentially UB-negligible, since in light of Proposition 2.2 the sequence
{

minω∈FX

|S∩ωBn|
|Bn|

}

n∈N
of Definition 2.1 is eventually 0.

For our comparisons between Equality and Word Problems, we need to switch

between subsets of F2
X and of FX . To this purpose we define the following map

(2.2) τ : FX × FX → FX , (ω1, ω2) 7→ ω−1
1 ω2.

Lemma 2.7. Let Γ be a group generated by a finite set X. Then Γ has solvable

Equality Problem on a set T ⊂ FX × FX if and only if Γ has solvable Word

Problem on the set τ(T ) ⊂ FX .

Proof. Let us denote with A the algorithm solving the Equality Problem on T , we

are going to describe an algorithm solving the Word Problem on the set τ(T ). For

every ω, v ∈ FX , the word ω is trivial if and only if π(v) = π(vω). Let us denote

by {vn}n∈N a computable enumeration of FX . The algorithm takes ω as an input
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and runs the algorithm A simultaneously on the pairs (vn, vnω): if there exists

n ∈ N such that (vn, vnω) ∈ T , then the algorithm stops establishing if ω is in

ker π or not. We conclude observing that {ω : ∃ v ∈ FX : (v, vω) ∈ T} = τ(T ).
For the other direction, it is easy to see that solvability of WP on a set S ⊂ FX

implies solvability of EP on all pairs of words having image through τ in S itself,

namely τ−1(S). But if S = τ(T ) for some T ⊂ F
2
X then T ⊂ τ−1(τ(T )). �

For T ⊂ F
2
X , if we denote with T := τ−1(τ(T )), solvability of EP on T implies

solvability of EP on T . For S ⊂ FX , if we also denote, by slight abuse of notation,

S := {α−1ωα : ω ∈ S, α ∈ FX} = SFX , solvability of WP on S implies

solvability of WP on S. These facts can be also directly proved noticing that

T ⊂ {(αω1β, αω2β) : (ω1, ω2) ∈ T, α, β ∈ FX}.
Even if solvability of the EP on T is equivalent to that on T , the complexity classes

of these two problems are, a priori, different.

Remark 2.8. Let Γ be a group generated by a finite set X. If the WP on τ(T ) ⊂
FX is solvable in some complexity class C then the EP on T ⊂ F

2
X is solvable in

the complexity class C . It follows in fact from the proof of the previous lemma

that the algorithm solving the EP on T is induced by the algorithm solving the

WP on τ(T ) without altering the complexity. If the EP on T ⊂ F
2
X is solvable

in the complexity class C and T = T , then WP on τ(T ) ⊂ FX is solvable in the

complexity class C . Indeed, if T = T , then (e, ω) ∈ T for every ω ∈ τ(T ) so the

steps performed to establish if ω is trivial are exactly those of A on (e, ω).

Theorem 2.9. Let Γ be a group generated by a finite set X. If Γ has solvable

Equality Problem on a set S × S, where S ⊂ FX is UB-generic, then Γ has

solvable Word Problem.

Proof. By virtue of Remark 2.3, if S is UB-generic then τ(S × S) = FX . By

Lemma 2.7, the group Γ has solvable Word Problem. �

Proof of Theorem A. Suppose that Γ has Fubini-generic solvable EP, that is the EP

is solvable on a set S × S with S ⊂ FX generic. It follows from Remark 2.3

that the subset S is also UB-generic. By virtue of Theorem 2.9 the group Γ has

solvable WP. �

As a consequence, while considering the Equality Problem on “small” square

subsets S×S ⊂ F
2
X produces new concepts such as the algorithmic finiteness, con-

sidering its Fubini-generic solvability is simply equivalent to solvability of the clas-

sical WP, from the point of view of pure decidability. However, Fubini-genericity

is still worth investigating in connection with complexity and with other decision

problems, as we observe in the following remarks.

Remark 2.10. Note that an analogue of Theorem A for the Conjugacy Problem

cannot exist. Indeed, in [4,5] it is proved that, under suitable hypotheses on H , the

Miller groups G(H) have solvable Conjugacy Problem on exponentially Fubini-

generic (and in fact even bigger) sets. On the other hand, they have unsolvable

Conjugacy Problem.

Remark 2.11. Even if solvability of the WP on Γ is equivalent to solvability of the

EP on S×S for any UB-generic set S ⊂ FX , their complexity classes are, a priori,

different and possibly depend on the shape of S. Indeed, Proposition 2.2 only
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ensures that for an UB-generic set S the function US(n) := min{|ω| : ωBn ⊂ S}
is finite-valued but the natural upper bound for the complexity of our algorithm

(described in the proof of Lemma 2.7) depends on the growth rate of US(n).

One might still want to investigate the partial Equality Problem. A possible way

to do it is to employ the natural definition of genericity in products (as already

defined in [16]). As we show in the next section, considering the generic EP with

this notion of genericity does not lead to new behavior either.

3. GENERIC WORD PROBLEM AND GENERIC EQUALITY PROBLEM

Definition 3.1. We say that a group Γ generated by a finite set X has solvable

generic EP with respect to X, if it has solvable EP on a generic set of F2
X (in the

sense of Equation (1.1)).

Theorem 3.2. Let Γ be a group generated by a finite set X. Then Γ has solvable

generic Word Problem with respect to X if and only if it has solvable generic

Equality Problem with respect to X. Moreover, the Word Problem on Γ is solvable

only on negligible subsets of FX if and only if the Equality Problem on Γ is solvable

only on negligible subsets of F2
X .

An easy consequence of the previous theorem and Remark 2.8 is the following.

Corollary 3.3. Let Γ be a group generated by a finite set X. If the generic WP

with respect to X is solvable in some complexity class C then the generic EP with

respect to X is solvable in the complexity class C . Vice versa, if the EP on a

generic set T ⊂ F
2
X , with T = T , is solvable in some complexity class C , then the

generic WP with respect to X is solvable in the complexity class C .

To prove Theorem 3.2 we will need two lemmas to compare densities of subsets

of FX and of FX × FX . Recall that |X| = d and α = 2d − 1, and recall the

definition of the map τ : FX × FX → FX in Equation (2.2). For s ∈ FX and

n ∈ N, we define the subset

P (s, n) := {ω ∈ FX : |ω|+ |ωs| ≤ n},
which we will need to estimate the density of preimages under τ .

Lemma 3.4. For every reduced word s = sksk−1 · · · s1 ∈ FX , si ∈ X ∪ X−1,

with |X| > 1, we have

P (s−1, n) =
k
⋃

i=0

Bn−k
2

si · · · s1.

Proof. Informally, we want to show that in the left Cayley graph of FX the set

P (s−1, n) is the “neighborhood of radius n−k
2 ” of the geodesic from the empty

word to s.

Let ω ∈ P (s−1, n). Suppose that the product of ω with s−1 = s−1
1 · · · s−1

k
induces exactly i cancellations: this implies that ω = vsi · · · s1 for some v not

ending in s−1
i or si+1 and |ωs−1| = |vs−1

i+1 · · · s−1
k | = |v| + k − i. Since ω ∈

P (s−1, n) we have

n ≥ |ω|+ |ωs−1| = |v|+ i+ |v| + k − i,

that is |v| ≤ n−k
2 and therefore P (s−1, n) ⊂ ⋃k

i=0Bn−k
2

si · · · s1.
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To prove the other inclusion, let now ω ∈ ⋃k
i=0Bn−k

2

si · · · s1. This means that

there exist i with 0 ≤ i ≤ k and v ∈ Bn−k
2

such that ω = vsi · · · s1. Then

|ω|+ |ωs−1| = |vsi · · · s1|+ |vs−1
i+1 · · · s−1

k | ≤ 2

(

n− k

2

)

+ i+ k − i ≤ n,

that is ω ∈ P (s−1, n). �

Lemma 3.5. For any S ⊂ FX , for any T ⊂ F
2
X , the following hold:

(1) S is (exponentially) negligible if and only if τ−1(S) is (exponentially) neg-

ligible;

(2) S is (exponentially) generic if and only if τ−1(S) is (exponentially) generic;

(3) if T is (exponentially) generic then τ(T ) is (exponentially) generic;

(4) if τ(T ) is (exponentially) negligible then T is (exponentially) negligible.

Proof. When d = 1 all claims follow from simple computations in the lattice Z
2.

Suppose d > 1. Observe that

|τ−1(S) ∩Bn(F
2
X)| =

∑

s∈S
|{(ω1, ω2) : |ω1|+ |ω2| ≤ n, ω−1

1 ω2 = s}|(3.1)

=
∑

s∈S
|P (s, n)|.

Notice that, if |s| > n, the set P (s, n) is empty. We are going to prove that if S is

(exponentially) negligible, then τ−1(S) is (exponentially) negligible.

By virtue of Equation (1.2) and Lemma 3.4, we have, for any s ∈ Sk, |P (s, n)| ≤
(k + 1)|B(n−k)/2| ≤ C1(k + 1)α(n−k)/2. As a consequence

|τ−1(S) ∩Bn(F
2
X)|

|Bn(F2
X)| ≤

∑

s∈S |P (s, n)|
c2(n+ 1)αn

≤ C1

c2

n
∑

k=0

|S ∩ Sk|
α

n+k
2

.

Assume that β ≥ 1 is such that βn |S∩Bn|
|Bn| → 0. Note that this is equivalent to S

being negligible when β = 1, and S being exponentially negligible when β > 1.

Without loss of generality we can also assume β <
√
α. By Equation (1.2), we

have that βn |S∩Sn|
αn ≤ βn |S∩Bn|

αn → 0.

In particular, for every ε > 0, there exists k̄ such that βk |S∩Sk|
αk < ε for every

k > k̄. Moreover, for every fixed k̄ there exists n̄ ∈ N such that n̄ > k̄ and
(

β√
α

)n̄
∑k̄

k=0
|S∩Sk|
αk/2 < ε. For any n > n̄ we have

βn |τ−1(S) ∩Bn(F
2
X)|

|Bn(F2
X)| ≤ C1

c2





βn

αn/2

k̄
∑

k=0

|S ∩ Sk|
αk/2

+

n
∑

k=k̄+1

βk |S ∩ Sk|
αk

(

β√
α

)n−k




≤ C1

c2





(

β√
α

)n̄ k̄
∑

k=0

|S ∩ Sk|
αk/2

+ ε

n
∑

k=k̄+1

(

β√
α

)n−k




≤ C1

c2

(

ε+ ε

∞
∑

t=0

(

β√
α

)t
)

≤ ε
C1

c2

(

1 +

√
α√

α− β

)

.

Therefore τ−1(S) is negligible, and if β > 1 even exponentially negligible.
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Now suppose that S is not (exponentially) negligible. By Lemma 3.4 we have

that |P (s, n)| = n + 1 for s ∈ Sn. Combining with Equation (3.1) and Equation

(1.2) we have

|τ−1(S) ∩Bn(F
2
X)|

|Bn(F
2
X)| ≥

∑

s∈Sn
|P (s, n)|

C2(n+ 1)αn
≥ 1

C2

|S ∩ Sn|
αn

proving that τ−1(S) is not (exponentially) negligible. This completes the proof

of (1).

The second claim easily follows from (1) by taking complements and observing

that τ−1(Sc) =
(

τ−1(S)
)c

. Finally, (3) and (4) easily follow by taking S = τ(T )

and observing that T ⊂ T = τ−1(τ(T )). �

Proof of Theorem 3.2. Suppose Γ has solvable WP on S ⊂ FX generic. This

means, by virtue of Lemma 2.7, that Γ has solvable EP on τ−1(S), which by

Lemma 3.5 is generic. For the converse, suppose Γ has solvable EP on a generic

set T ⊂ F
2
X . By virtue of Lemma 2.7, the group Γ has solvable WP on τ(T ),

which by Lemma 3.5 is generic.

Suppose that solvability of the WP on S ⊂ FX implies that S is negligible.

Assume that Γ has solvable EP on T with T non-negligible. Then, by Lemma 3.5

the subset τ(T ) is non-negligible and by Lemma 2.7 the group Γ has solvable

WP on τ(T ), that is a contradiction. An analogous argument proves that if EP is

solvable only on negligible sets, then the same is true for the WP. �

Remark 3.6. Clearly, Theorem 3.2 holds true replacing generic (resp. negligible)

with exponentially generic (resp. exponentially negligible).

In [12] (and elsewhere), the length in FX × FX used to define genericity is

ℓ(ω1, ω2) := max{|ω1|, |ω2|}. The ball of radius n in F
2
X with respect to this

length is Bn×Bn. An analogue of Lemma 3.5 (and therefore of Theorem 3.2) can

be proved in this setting by using similar arguments. The role of the set P (s, n)
is played, in that case, by the set Bn ∩ Bns. One can indeed show, similarly to

Lemma 3.4, that Bn ∩Bns is the ball of radius n− |s|
2 centered in the middle point

of the geodesic from the empty word to s. Moreover, this analogue of Lemma 3.5

gives a generalization of [12, Lemma 3.2] which holds in non-exponential setting.

4. UPPER BANACH GENERIC WORD PROBLEM AND ALGORITHMIC

FINITENESS

A group Γ generated by a finite set X is algorithmically finite if there does not

exist a computable enumeration of an infinite set of words in FX projecting onto

pairwise distinct elements of Γ, or, equivalently if (cf. [22]):

• solvability of EP on S × S implies that π(S) is finite;

• for any infinite computably enumerable set S ⊂ FX we have that S−1S ∩
kerπ 6= e;

• solvability of WP on S−1S implies that π(S) is finite (Lemma 2.7).

Note that algorithmic finiteness does not depend on the choice of the finite gener-

ating set, cf. [22, Lemma 2.4].

We now characterize, in a similar fashion, solvability of the UB-generic WP (see

Definition 2.4), and therefore groups without this property.
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Theorem 4.1. Let Γ be an infinite group generated by a finite set X. The following

are equivalent:

(1) Γ has solvable UB-generic WP with respect to X;

(2) there exists S ⊂ FX computably enumerable, UB-generic and such that

S ∩ kerπ = ∅;

(3) there exists a computably enumerable sequence {ωn}n∈N ⊂ FX such that

|ωn|Γ > n for all n ∈ N;

(4) there exists a computably enumerable sequence {ωn}n∈N ⊂ FX such that

|ωn+1|Γ > |ωn|Γ for all n ∈ N.

Proof.

(1) ⇐⇒ (2)
Suppose Γ has solvable UB-generic WP, then there exists an algorithm solving

the Word Problem on an UB-generic subset of inputs S′ ⊂ FX . The subset

S := S′ \ kerπ is computably enumerable and, by virtue of Theorem 2.5, UB-

generic. Vice versa, the computable enumeration of S solves the WP on the UB-

generic set S.

(2) ⇐⇒ (3)
Suppose that S is a computably enumerable UB-generic subset of non-trivial words.

By an elementary argument, the subset Ω := {(n, ω) : ωBn ⊂ S} ⊂ N × FX is

also computably enumerable. By virtue of Proposition 2.2, the set Ωn := {ω :
(n, ω) ∈ Ω} is non-empty for all n ∈ N. Let us denote by ωn the first element

of Ωn in the computable enumeration of Ω. Clearly {ωn}n∈N is computably enu-

merable. Finally, ωnBn ∩ ker π ⊂ S ∩ ker π = ∅ implies that |ωn|Γ > n. Con-

versely, S :=
⋃

n∈N ωnBn is computably enumerable, UB-generic and such that

S ∩ ker π = ∅.

(3) ⇐⇒ (4)
Suppose that {ωn}n∈N is a computably enumerable sequence of FX such that

|ωn|Γ > n for all n ∈ N. We define inductively a subsequence {ωkn}n∈N as

follows: k1 := 1 and kn+1 := |ωkn | for all n ≥ 1. The new sequence is still

computably enumerable and with the property that, for every n ∈ N,

kn < |ωkn |Γ ≤ kn+1,

and thus |ωkn+1
|Γ > |ωkn |Γ for all n ∈ N. For the reverse implication notice that

if the sequence of non-negative integers {|ωn|Γ}n∈N is strictly increasing, then

{|ωn+2|Γ}n∈N is superlinear. Therefore {ωn+2}n∈N ⊂ FX is a sequence with the

desired property. �

The equivalence of (1) and (3) (and (4)), yields the following.

Corollary 4.2. If Γ has solvable UB-generic WP with respect to a finite generating

set X then it has solvable UB-generic WP with respect to any finite generating set.

This shows that using the Upper Banach density to measure the Word Problem

is a natural choice. In order to study intrinsic properties of Γ it is maybe even more

natural than the classical density. In particular, the relation with the length in Γ
allows us to state the following corollary.

Corollary 4.3. Let Γ be a infinite, finitely generated group. If Γ is algorithmically

finite then it has unsolvable UB-generic Word Problem and therefore unsolvable

generic Word Problem with respect to any finite set of generators.
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Proof. The existence of the sequence in (4) of Theorem 4.1 contradicts the defini-

tion of algorithmic finiteness. �

Let us denote with C1,C2 and,C3 the classes of infinite finitely generated groups

defined by the following properties:

C1 := {Γ : WP on S =⇒ |π(S)| < ∞},
C2 := {Γ : WP on S−1S =⇒ |π(S)| < ∞},
C3 := {Γ : WP on S =⇒ S is not UB-generic}.

Equivalently,

C1 = {Γ : S computably enumerable, |π(S)| = ∞ =⇒ S ∩ kerπ 6= ∅},
C2 = {Γ : S computably enumerable, |S| = ∞ =⇒ S−1S ∩ ker π 6= e},
C3 = {Γ : S computably enumerable, UB-generic =⇒ S ∩ ker π 6= ∅}.

Note that the properties defining the classes C1,C2 and C3, hold equivalently for

one or for all finite sets of generators, which we omit in the definition. We let

C4 := {Γ : WP on S ⊂ FX =⇒ S is not generic, for all finite generating sets X},
equivalently,

C4 = {Γ : S ⊂ FX c. e., generic =⇒ S∩ker π 6= ∅ for all finite generating sets X}.
Finally let us denote with C5 the class of infinite finitely generated groups with

unsolvable word problem.

The below chain of inclusions swiftly follows from our investigation

(4.1) C1 ⊂ C2 ⊂ C3 ⊂ C4 ⊂ C5.

Since we can always assume that a finitely generated group Γ has solvable WP on a

finite set S, the WP is solvable on its conjugacy closure S. This easily implies that

all the conjugacy classes of a group in C1 are finite. It was already observed in [22]

that algorithmically finite groups (our class C2) must be periodic. This is also the

case for groups with unsolvable UB-generic WP (our class C3): in fact, an element

of infinite order provides a sequence like in (4) of Theorem 4.1. The computably

presented groups in C5 have infinitely many conjugacy classes, as stated in [24,

Corollary 1]. Indeed, assuming that ker π is computably enumerable and that there

exists a finite set S ⊂ FX containing an element of each non-trivial conjugacy

class, it is easy to see that FX \ker π = S ·ker π and then also the set of non-trivial

words is computably enumerable.

To our best knowledge, the only strict inclusion in (4.1) is that of C4 in C5.

Moreover, the only examples of computably presented groups in C4 actually live

in C2. This inspires the following questions.

Question 4.4. Are any of the inclusions in (4.1) strict and/or trivial? Or one could

ask the same question within various subclasses of computably presented groups,

such as

• residually finite (see also [22, Problem 3.3] and [20, 21]);

• amenable (see also [22, Problem 3.4] and [12, Theorem 2.3]); with com-

putable Følner sets [7]; of intermediate growth;

• sofic; with subrecursive sofic dimension (see [6]).
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If Γ is amenable there exist notions of Banach densities with respect to a Følner

sequence (see, for instance, [11]), which are generalizations of the classical Banach

density for Z, cf. [27]. Once more, these densities are closely related to those

considered in [29] where, moreover, it is proved that they exhibit peculiar behavior

on amenable groups; cf. also [2]. These notions allow to formulate the extension

of Erdős Sumset conjecture to amenable groups: if A ⊂ Γ has positive UB-density

(with respect to a Følner sequence) then there exist two infinite subsets B,C ⊂ Γ
such that BC ⊂ A (this conjecture was recently proved in [26]).

Question 4.5. Are the Banach densities of A in Γ and π−1(A) in FX related?

Analogous investigations were carried out in [17] for free abelian groups. A

positive answer to this question could lead to intriguing implications and new

questions in relation with Question 4.4 and the aforementioned conjecture–now

theorem.
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