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GLOBAL W2!t¢ ESTIMATES FOR MONGE-AMPERE EQUATION
WITH NATURAL BOUNDARY CONDITION

OVIDIU SAVIN AND HUI YU

ABSTRACT. For the Monge-Ampére equation with a right-hand side bounded
away from O and infinity, we show that the solution, subject to the natu-
ral boundary condition arising in optimal transport, is in W21*¢ up to the
boundary.

1. INTRODUCTION

Let Q and Q* be two bounded convex domains in R?, and f be a function on
satisfying
1
1.1 — < f<A
(11) Ve
for some positive constant A . In this work, we study the regularity of convex
Alexandrov solutions to the following problem

det(D?u) = f in Q,
Vu(2) = Q.

For the definition of Alexandrov solutions to the Monge-Ampere equation, the
reader can consult Figalli [F'1] or Giutérrez [G]. Here we point out that this is the
natural boundary value problem arising from the study of the theory of optimal
transport.

To be precise, suppose v and v* are two probability measures supported on €2
and Q* with density functions g and g* respectively, then is satisfied by the
potential of the optimal transport that pushes-forward v = gdx to v* = g*dz [B][V].
In this case, the right-hand side is f = g*oﬁ.

When f is continuous, the regularity of solutions to has been studied ex-
tensively. Caffarelli showed that u is locally in W?2P? in the interior of Q for all
p >0 [CI]. If f is further assumed to be Holder continuous, Caffarelli showed that
D?y is Holder continuous in the interior of €. When the domains are C*!, Chen-
Liu-Wang [CLW] proved that these estimates hold up to the boundary of 2, based
on earlier results by Caffarelli [C3] and Urbas [U]. In two dimensions, we recently
established the optimal global W?2? estimate without any regularity assumptions
on the domains except their convexity [SY]. Still in two dimension, if the domains
are assumed to be C1®, D2y is shown to be Hélder continuous by Chen-Liu-Wang
[CLW2).

For several important applications, however, it is necessary to understand the
regularity of w when f fails to be continuous. In the optimal transport problem
described above, f does not enjoy any regularity if the density functions ¢g and g*

(1.2)
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are only assumed to be bounded away from 0 and infinity. This problem also has
deep implications in the study of semi-geomstrophic equations [F2].

When f satisfies but is allowed to be discontinuous, much less is known
about the regularity of u. Caffarelli showed that « is C*®° up to the boundary for
some small dimensional ag [C2]. In terms of Sobolev regularity, Wang [W] showed
that for any p > 1, one can find sufficiently large A such that u fails to be in W?2?
even in the interior of the domain. Nevertheless, for fixed A, De Philippis-Figalli
[DF] was able to show that u is in W21 in the interior of . This was later improved
to an interior W2 !¢ estimate independently by De Philippis-Figalli-Savin [DFS]
and Schmidt [Sch.

In this work, we extend this interior W?2!*%_estimate up to the boundary. To
be precise, our main result is

Theorem 1.1. Suppose Q and Q* are bounded convex domains in R%. Let u be an
Alezandrov solution to with % < f < A for some positive constant A.

Then there are positive constants €, depending only on d and A, and C, further
depending on the inner and outer radii of Q and Q*, such that

/ |D2u|1+s < C.
Q

The exponent 1+ ¢ is optimal due to the examples of Wang [W]. Also, the result
is sharp in the sense that the estimate has to depend on d, A and the inner and
outer radii of 2 and Q*.

We'd like to point out that no regularity of 2 and 2* is assumed. In this case, it
remains an interesting problem whether a global W?2P-estimate can be established
in the spirit of [SY].

This paper is structured as follows: in Section 2, we introduce some notations
and collect some useful preliminary results. In Section 3, we give estimates in
the normalized picture. The scaled versions of these estimates are applied to our
solution u in Section 4. In the last section we give the proof Theorem

2. PRELIMINARIES

2.1. Extension of the solution to R?. Let u be an Alexandrov solution to (1.2)),
we can extend it to the entire R¢ by

zeR! sup(u(y) + Vu(y) - ().

The resulting function, still denoted by u, is a convex function solving the following
equation in the Alexandrov sense [C2]:

2.1) {det(DQu) = fxao inR%

Vu(2) = Q.

For a set S, xs denotes its characteristic function.

We assume u € C?(2) in the rest of the paper, and prove Theorem for such
solutions. This implies the estimate for general solutions via a standard approxi-
mation procedure.
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2.2. Sections and their properties. Sections are a fundamental tool in the study
the Monge-Ampere equation. Among several related notions of sections, the cen-
tered section introduced in [CI] is the most convenient for our purpose. We give
its definition here.

Definition 2.1. Let 29 € Q, h > 0, the centered section of u of height h at z is
defined by

Snlu)(zo) = {y € Ry < u(wo) +p- (y — o) + h}.
Here p € R? is chosen such that the center of mass of Sy, [u](z¢) stays at z, that is,
1

e ydy = xo.
Sl @) Js, tacen) ’

For the existence of such p, see [C2].

By the convexity of u, these sections are bounded convex subsets of R%. In order
to describe their shapes, we need the following lemma due to Fritz John [J]:

Lemma 2.1 (John’s lemma). For any bounded convex subset S of R, there is an
ellipsoid E with the same center of mass as S such that

EcScaoyF.
This factor ag depends only on the dimension d.

Such ellipsoid E is called the John ellipsoid of S.

For a set S and a positive constant ¢, ¢S denotes the dilation of S by a factor of
¢ with respect to the center of mass of S.

When FE is an ellipsoid, we write E = 2 4+ ) A\jw; when x is the center of E,
w;’s are the directions of the principal axises of I/, and \;’s are the length of the
axis in the direction of w;.

To each such ellipsoid E =z + > \jw;, we associate the matrix

1
(2.2) Mg=>Y" W ©w;,
J
where ® denotes the tensor product. This is the matrix that maps F to a unit ball.
Sections share many properties with Euclidean balls. In particular, one has a
Besicovitch-type covering lemma with sections. The following is based on Caffarelli-
Giutiérrez [CG:

Lemma 2.2. Let A be a subset of Q2. Suppose for each x € A, a section Sy, [u](z)
is chosen such that the heights h, are uniformly bounded. Let F denote this family
of sections.

There are constants ng € (0,1) and K, depending only on d and A, such that
there is a countable subfamily {Sy,[u](x;)} of F satisfying the following:

(1) A C USh;[ul(z;);

(2) 22X Syon, lul(ay) < K-

3. ESTIMATES FOR NORMALIZED SOLUTIONS

In this section we establish several key estimates in the normalized picture. Later
these are applied to our solution after rescaling. The methods are motivated by De
Philippis-Figalli [DF] and De Philippis-Figali-Savin [DFS|]. However, since we are
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dealing with global regularity estimates, we need more detailed analysis concerning
the interaction between the sections and the boundary of the domain.
The following assumptions are in effect throughout this section:
(1) U is a convex domain in R? containing a point zo;
(2) v is a C? convex function in U extended to R? by
z = sup(v(y) + Vo(y) - (z —y));
yeU
(3) Z := {v < 0} is centered at zg and normalized in the sense that By (zg) C
Z C Ba,(zg), where aq4 is the constant in Lemma
(4) |[Vv| < Lo in Z;
(5) det(D?*v) = gxy in Z with |ZAU| <g< \ZﬁU|7
(6) E =3 \je; is the John ellipsoid for Z NU. Here {e;} is the standard basis
of R?. In particular, Z N U is centered at 0.
Throughout this section, constants depending only on d, A and Ly are called
universal constants.
Denote
ho = |inf
0 ‘H% ’U|,
assumptions (3) and (5) imply that 0 < ¢ < hg < C for some universal ¢ and C.
Inside Z NU, we expect v to behave like the parabola p(z) = (Mgx) - z, where
Mg is the matrix defined in (2.2). An application of the ABP estimate [G] shows
that this is indeed true in a large portion of Z:

Lemma 3.1. Let Z,,, = Sy, [v](20), where ng is the constant in Lemma. Then
there are universal constants Cy and 6y such that
|Zpy NUN{Cy ' Mg < D?v < CoMg}|

|ZNU| -
Proof. Step 1: Construction of comparison functions. By the engulfing property
[G], there is a universal constant 0 < c¢o < 1 such that ¢oZ C Z,, C Z. Conse-
quently, the ellipsoid E = cyaq >~ Aje; satisfies a—E C Zy,NU C E.

Define a quadratic polynomial j : E — R by p(z) = Z Coald/\ x], and extend p

to the entire R? by p(x) = sup, ¢ 5 (P(y) + Vi(y) - (z —y)).
Then one has

(3.1)

sup [Vp(y)| < sup [Vp(y)| < 1,
y€ERT yeE

and

(3.2) 0<p<Cin Zy,

for some universal C.

Up to subtracting an affine function, we have v = nohg along 0Z,,, and v(z¢) =
0.

In particular, if we define p = %nohoﬁ—i— %Uoho, where C'is the constant in (3.2)),
then

p < wvon 0Z,,
and )
5770% <p < noho in Z,,.

Let w=v —p.
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Then
w > 0 on 0Zy,,

and )
inf w| > =noho.
| 1Zgow\ > Sioho
Step 2: The ABP estimate. If Iy, is the convex envelop of w in Z,,, then the
ABP estimate [G] implies
(3.3) chd <|VTw(Zy, N{Ty = w})|
for some dimensional c.
For z € Z,, N {T"y, = w}, there is an affine function £ such that
{+p<vin Z,,
and
6(z) + p(z) = v(T).
In particular, one has
VUZ) + Vp(Z) = Vo(T).
Step 8: Localizing to U. By assumption (2) at the beginning of this section,
either Z € U, or there is a point § € Z,, N U such that Vu(§) = Vu(Z), and that v

is affine along the line segment between z and 7.
By convexity, one has

(@) +p() = (L+p)(x) + V(+p)(7) - (§ - 7)
= () + Vo(z) - (§ - 7)
= v(y)-

Together with ¢ +p < v in Z,, this implies y € Z,, N {w =T, }.
In particular,

Ty(z) =Viz) =VLeUg) € Tyw(Zy,y, NUN{w =T4}).
Since this is true for all z € Z,,; N {I",, = w}, we conclude
VIw(Zy, N{T'y = w}) C VI (Zy, NU N{T, = w}).

Step 4: Proof of (3.1]). Using this inclusion in (3.3)) and note that DT, < D%v
in {T'y, = w}, we have

chg < |VTW(Zyy NUN{T, = w})|

< / det(D?T,)
ZpoNUN{Lw=w}

< / det(D?v)
ZnoNUN{Tyy=w}

A
<—_—— |z T, = wl.

For the last inequality, we used assumption (5) at the beginning of this section.
Since hg is universal, the estimate above implies

| Zyy VU N {Ty = w}| > 60| ZNU|

for some universal dg > 0.
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To get (3.1), it suffices to note that in Z,, NU N{T, = w}, one has
D%y > D2p =cMg
for some universal c. O

We now use the previous lemma to estimate the integral of pure second deriva-
tives of v in Z N U in terms of the integral over ‘the good set’. We first estimate
second order derivatives in the directions along the axises of R¢:

Lemma 3.2. Under the same assumptions as in Lemma[3]], there is a universal
constant C' such that

(3.4) Vjj

/ vj; <C
zZnU ZyoNUN{Cy ' Mp<D2v<CoMg}
for each j =1,2,...,d.
Proof. To simply our notations, let’s denote ‘the good set’ by
G=2Z,, NUN{Cy' Mg < D*v < CoMpg}.
With Lemma the right-hand side of can be bounded from below by

1
/ vjj = C 1y|G\
G J
1
> 0t 8|Z N U
Aj

Since E =) Aje; is the John ellipsoid for Z N U, we have
|ZﬂU‘ ZC/\l/\Q.../\d

for some dimensional c. As a result,

(35) / Vjj Z C)\lAQ . >\d/>\j
G

for some universal c.
Now we estimate the left-hand side of (3.4]).
Define vy, (z) = v(My'2) = v(\21, Aaa, . .., Agza), then
0 7]

'vME(x) =A

9 ~1
oz, I v(M ™ z).

By assumption (4) at the beginning of this section, we have |52-var,| < LoA; in
Mg(2).
The left-hand side of (3.4) can be computed as

[ owi= [ s ) det(M
ZnU Mg (Z0U)

2
:det(Mbil)/ L 9

oy
2 5.2 YMg
Mg (ZNU) )‘j 8%’

(z)dx

1 0
:det(M_l)—/ — VNV - €,
B )\3 OMg(ZNU) dxj F !

where v is the outward unit normal to Mg(Z NU).
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Consequently,

1
/ g < det(M5") 3, CAH ™ (OMp(Z 0 D))
Znu 5

< CMda.. A/

for some universal C'. Here we used By C Mg(ZNU) C By, to control the (d—1)-
dimensional Hausdorff measure of 0Mg(Z NU).
Combining this with (3.5)), we get the desired estimate. O

For a general vector £ = Y &je; in RY, define vge := (D?v€)-£. A similar estimate
as the one in Lemma [3.2] holds for these second order derivatives.

Lemma 3.3. Under the same assumptions as in Lemma[3]], there is a universal
constant C' such that

(36) Veg-

/ vge <C
zZnU ZnoNUN{Cy " Mp<D2v<CoMg}
Proof. Again we write
G=Z,, NUN{Cy'Mg < D*v < CoMpg}.
By convexity of v, D?v > 0. Thus for 1 < {,j < d one has
VijVjj = v?j.
Therefore,

d
vee = 3 _0i&0 + 3 vii&i&;
j=1 oy

d
1
< Zngf]z T3 Z(ngzz + vjjf?)
=1 i
<d) vt
Combining this with Lemma we can estimate the left-hand side of (3.6) as
vee < d 52 / Vs
/ZmU ¢ Z " Jzow
S Cdz sz/ Ujj.
G
Now note that on G, C'O_lM < D2y < CyM. Thus
1
D vk <Gy
J
and )
2 -1 2
(D*v€) - € > O, ergj.
Therefore we can continue the previous estimate by

vee < Cd 524/11-4
[ zeese o

SCng/vgg.
G
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This is the desired estimate. O

4. ESTIMATES IN SECTIONS OF OUR SOLUTION

In this section we rescale the estimates from the previous one, so that they
can be applied to our solution u. These computations are more or less standard.
Nevertheless, we include them here for completeness.

Lemma 4.1. Suppose u is a solution to . For a point xg € Q and h > 0, let
A be the symmetric matriz such that By(xg) C A(Skh[u](xo)) C Bay,(zo).

Up to rotation and translation, suppose E = ) Aje; is the John ellipsoid for
Sh [u](xo) naQ.

Then there are constants C' and Cy, depending only on d and A, such that for

all € € R
/ uge < C/ Uge,
Sl (@o)NQ

where G = Syonfu)(z) N Q2N {Cy 'hAME < D*u < CohAME}.

The existence of this normalizing A is a consequence of Lemma [2.1]
Here 79 is the constant in Lemma Mg is the matrix defined in (2.2)).

Proof. Let p be the vector such that Sp[u](zo) = {ylu(y) < u(zo)+p-(y—x0)+h}.
Let ¢ be the affine function z — p - (x — zg) + h.

Define v(z) = +(u — )(A™'), Z = A(Splu)(z0)), U = A(Q) and g(z) =
ﬁf(Ailx). Then it is not difficult to see the assumptions (1)-(3) and (5) at the
beginning of Section 3 are satisfied, up to a dimensional change of the value of A.

Moreover, by the doubling property, Z’ = {v < 1} is at a positive distance to
7, where the distance depending only on d and A. Therefore, the value Ly as in
assumption (4) in Section 3 depends only on d and A.

Let E = A(E). Then E is the John ellipsoid for Z N U as in assumption (6)
at the beginning of Section 3. Suppose E = Z)\ €;. Denote by M the matrix
S % €; ® €, where ® denotes the tensor product. Then Lemma applied to the

direction £ = A€, gives

Vs

/ &=/, oz
A(Sh[u](zg)ﬁQ) Snon [u](z0)N)N{Cy ' M<D2v<Co M}

for some C and Cj depending only on d and A.
Back to the original variables, this means

/ (D?u€) € < C / (Dut) - €
Sh[u](zo)N2 G

G = Sponlul(z0) NQ N {Cy hAM A < D*u < CohAM A}.
To conclude, it suffices to note that MA = Mg. ([

where

Up to a dimensional constant, this can be upgraded to an estimate for the integral
of | D?ul:
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Proposition 4.1. Under the same assumptions as in Lemma[{.1} there are con-
stants C' and Cy, depending only on d and A, such that

/ D2 < c/ D2
Sh[u](acg)ﬁﬂ G

for G = Sy nu)we) NN {Cy " hAME < D*u < CohAME}.

Proof. By summing up the estimate in Lemma in d orthogonal directions, we
get a similar estimate where the integrand is Au. From here it suffices to note that
for convex functions |D?u| < Au < d|D?ul. O

Under the assumptions as in Lemma the matrix that defines the ‘good set’
G associated with Sp[u](zg) is hAMpg. The next result says that this matrix has
the correct behaviour when h is large and when h — 0.

To simplify our notations, let’s define the matrix A; and M), to be the matrices
A and Mg as in Lemma [4.1| for the section Sp[u](zo).

Let T}, = hA,M;,. Then one has

Proposition 4.2. There is a constant Cy, depending only on d, A, and the inner
and outer radii of Q0 and Q*, such that

1
— <T) < (4.
c,=11=4

There is a constant Cs, depending only on d, such that for h > 0 small,
Lo 2
FD u(xzg) < Ty, < CaDu(xg).
2

Proof. By Lipschitz estimate and uniform strict convexity of u [C2], we have
B, (z0) C Si[u](x0) C Br, (o)

for some r; and R; depending on d, A, and inner and outer radii of Q and Q*.

Consequently, A; is bounded from both sides by constants depending only on d,
A, and inner and outer radii of Q and Q*.

Meanwhile, Si[u](zo) N C Bg,(x0) and |S1[u](zo) N Q| > |By (zo) N Q| >
¢| By, (z9)] for some ¢ depending only on the inner and outer radii of Q.

As a result, the John ellipsoid for Sp[u](z¢) N2 has a diameter that is bounded
from above and a volume that is bounded from below. Thus M, is also bounded
from both sides by constants depending only on d, A, and inner and outer radii of
Q and Q*.

Therefore, C% < Ty = A1 M; < (C; for some C; depending only on d, A, and
inner and outer radii of 2 and Q*.

To see the second statement in the proposition, we first note that when h is
small, Sp[u](xo) C Q since zg € Q.

Consequently Ay, = M}, for small h and T}, = hA3.

By C? regularity of u inside Q, up to subtracting an affine function,

u(z) = (D*u(z0)(x — 20)) - (x — o) + o(|z — xo[*).
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Up to a rotation,

0 0 Nd
Then Sp[u](zg) is comparable to g + Z(%)l/%j. Therefore, up to a dimensional

constant, Ay is comparable to

SR 0
o ()0
0 0 ()12
0 0 (T2

As a result, T), = hA3? is comparable D?u(z() up to a dimensional constant for
small h. 0

5. PROOF OF THEOREM [L.1]

In this final section of the paper, we give the proof of the main result.

To simplify our notations, define x = max{CyCy, C2}, where Cj is the constant
in Proposition [f1] and Cs is the constant in Proposition [I.2] In particular,
depends only on d and A.

For each integer m, let’s define

D,, = {x € Q||D*u(z)| > ™}.

The W2 !*+¢_estimate is a direct consequence of the following lemma concerning the
decay of integrals over D,,:

Lemma 5.1. Suppose u is a solution to (2.1). There is a constant 7 € (0,1),
depending only on d and A, such that

/ |D2u\ < (1 77)/ |D2u|
Dt Do,
for each m > my.

Here my is an integer depending on d, A, and the inner and outer radii of ) and
Q*.

Proof. Step 1: Covering Dy,4+1 by sections with the correct height. For x € D,,41,
|D?u(x)] > k™. By Proposition |T| ranges from 1/Cy to k™1/Cy as h
changes from 1 to 0. T}, is the matrix defined before Proposition [£:2]
By our choice of k, Cor™ < k™1 /Cy. We can also choose mg, depending also
on the inner and outer radii of Q and Q*, such that C '™+ > Cy ™ot > 1/Cy.
Thus we can pick h, > 0 such that

C()Klm < |ThT| < Co_llierl.

Let F denote the family of sections corresponding to such choice of heights,
namely, F = {Sy,[u](%)}seD,, .- Then Lemma gives a countable subfamily
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{Sh;[u](x;)} such that
Dm+l C UShj [U](I’j), andZXS,,O;LJ [u](z;) < K.

Step 2: Estimate in each section. Let Sp[u](x) denote a generic section in this
subfamily. Then Proposition [£.1] implies

/ |D?u| < 0/ | D?u|
Shu]l(z)NQ2 G

where G = Snoh[u](z) nan {CO_ITh < D%*u < CoTp}.
Now by our choice of h, Cox™ < |Ty| < Cy 'x™F1. In particular, we have

G C Syonful(x) NN {E™ < [D?ul < K™} C Syonfui(a) N (D \Dims1).

Hence the previous estimate leads to

/ D2 < c/ D2,
Sp[u](z)NQ Snohiul (@) (DPm\Dm1)

Step 3: The covering argument. With this estimate and the two properties at
the end of Step 1, we have the following

|D%u| < / |D?ul
/D.,”+1 Z Shj [u](z;)NQ
<>cf D%

Snohjlul(e;) N(Dm\Dm1)

=C |D2u‘ XS u](x;
Dm\Dm+1 Z nohJ[ ]( ])

< C’K/ | D?u|
D7n\DnL+1

=CK/ | D?u —CK/ | D?ul.
Dy, Doy

CK
R e
Do 1+CK Jp,

where C and K are constants depending only on d and A. ([l

Consequently,

Now Theorem [I.1] follows from a standard iteration:
Proof of Theorem[I.1. For t > £™°, we find an integer k such that

K,}moJrkJ S t < Hmo+k+1’

that is, k <log,t —mo <k + 1.
An iteration of Lemma [5.1] gives

/ |D?u| < / | D?u|
{\D2u|2t}ﬂﬂ Dm0+k

<ot [ o

mo

< (1 _ T)—l—mo _tlogm(l—r) / |D2u|
Do
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Note that

/ |D2u\§/Au: Vu-v<C
D Q oQ

mo

for come C depending only on d and the inner and outer radii of 2 and Q*, the

previous estimate gives
/ |D?u| < Ct~*0,
{ID?u|=t}NQ

where €y > 0 depends only on d and A, and C depends further on the inner and
outer radii of 2 and *.
By Markov’s inequality, this gives [{|D?*u| >t} N Q| < Ct~17% for t > k™o,
Therefore, we can pick ¢ € (0,20) depending only on d and A. Then it follows

/\D2u|1+€=/ |D2u|1+s+/ |D2u‘1+s
Q D {|D2u|<k™0}NQ

mo

< cs/ #1{|D?u| > t} NQJdt + 0 (+)|Q
K0

< C/ t71750+6dt+ /{m“(1+€)|Q|

mo

— Climg(E—Eo) + Hm0(1+5)‘Q|.

which is controlled by a constant depending on d, A and the inner and outer radii
of Q0 and Q*. O

REFERENCES

[B] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.
R. Acad. Sci. Paris Sér. I. Math. 305 (1987), 805-808.

[C1] L. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5
(1992), no. 1, 99-104.

[C2] L. Caffarelli, Boundary regularity of maps with convez potentials, Comm. Pure Appl. Math.
45 (1992), no. 9, 1141-1151.

[C3] L. Caffarelli, Boundary regularity of maps with convex potentials II, Ann. of Math. (2) 144
(1996), no. 3, 453-496.

[CG] L. Caffarelli, C. Gutiérrez, Real analysis related to the Monge-Ampére equation, Trans.
Amer. Math. Soc. 348 (1996), no. 3, 1075-1092.

[CLW] S. Chen, J. Liu, X.J. Wang, Global regularity for the Monge-Ampére equation with natural
boundary condition, eprint arXiv:1802.07518.

[CLW2] S. Chen, J. Liu, X.J. Wang, Boundary regularity for the second boundary-value problem
of Monge-Ampére equations in dimension two, eprint larXiv:1806.09482.

[DF] G. De Philippis, A. Figalli, W21 regularity for solutions of the Monge-Ampére equation,
Invent. Math. 192 (2013), no. 1, 55-69.

[DFS] G. De Philippis, A. Figalli, O. Savin, A note on interior W21%€ estimates for the Monge-
Ampére equation, Math. Ann. 357 (2013), no. 1, 11-22.

[F1] A. Figalli, The Monge-Ampére equation and its applications, Zurich Lectures in Advanced
Mathematics. European Mathematical Society, Ziirich, 2017.

[F2] A. Figalli, Global existence for the semigeostrophic equations via Sobolev estimates for
Monge-Ampeére , Partial Differential Equations and Geometric Measure Theory, 1-42, Lec-
ture Notes in Math., CIME, Springer, Cham, 2018.

[G] C. Gutiérrez, The Monge-Ampére equation, Progress in Nonlinear Differential Equations
and their Applications, 89. Birkhauser/ Springer, Cham, 2016.

[J]  F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays
Presented to R. Courant on his 60th Birthday, Interscience, New York (1948), 187-204.

[SY] O. Savin, H. Yu, Regularity of optimal transport between planar conver domains, eprint
arXiv:1806.06252.


http://arxiv.org/abs/1802.07518
http://arxiv.org/abs/1806.09482
http://arxiv.org/abs/1806.06252

GLOBAL W?21*t¢ ESTIMATES FOR MONGE-AMPERE EQUATION WITH NATURAL BOUNDARY CONDITIOIS

[Sch] T. Schmidt, W21+ estimates for the Monge-Ampére equation, Adv. Math. 240 (2013),
672-689.

[U] J. Urbas, On the second boundary value problem for equations of Monge-Ampére type, J.
Reine Angew. Math. 487 (1997), 115-124.

[V] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58. Ameri-
can Mathematical Society, Providenc, RI, 2003.

[W] X.J. Wang, Some counterexamples to the regularity of Monge-Ampére equations, Proc.
Amer. Math. Soc. 123 (3), 841-845.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, USA
E-mail address: savin@math.columbia.edu

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, USA
E-mail address:  huiyu@math.columbia.edu



	1. Introduction
	2. Preliminaries
	2.1. Extension of the solution to Rd.
	2.2. Sections and their properties.

	3. Estimates for normalized solutions
	4. Estimates in sections of our solution
	5. Proof of Theorem 1.1
	References

