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Effectively constructible fixed points in Sacchetti’s

modal logics of provability

Taishi Kurahashi and Yuya Okawa

Abstract

We give a purely syntactical proof of the fixed point theorem for
Sacchetti’s modal logics K+�(�np→ p)→ �p (n ≥ 2) of provability.
From our proof, an effective procedure for constructing fixed points in
these logics is obtained. We also show the existence of simple fixed
points for particular modal formulas.

1 Introduction

Solovay’s arithmetical completeness theorem [11] states that the propo-
sitional modal logic GL is the provability logic of the standard Gödel
provability predicate PrPA(x) of Peano Arithmetic PA, that is, for any
modal formula A, A is provable in GL if and only if A is provable
in PA under any arithmetical interpretation where � is interpreted as
PrPA(x). From Solovay’s theorem, some aspects of metamathematics
of PA may be reflected in GL. In fact, metamathematical facts about
self-reference are already provable in GL, that is, the fixed point the-
orem holds for GL.

A modal formula A is said to be modalized in p if all occurrences
of p in A are under the scope of �. We say that a modal formula F
is a fixed point of a modal formula A(p) in GL if p does not appear
in F , all propositional variables appearing in F are already in A and
GL ⊢ F ↔ A(F ). The fixed point theorem for GL states that for any
modal formula A(p) which is modalized in p, there exists a fixed point
F of A(p) in GL (see also [3, 4, 5, 8]). The fixed point theorem for GL

was independently proved by de Jongh and Sambin [7] as one of early
achievements of the investigations of provability logic. Sambin’s proof
is purely syntactical, and gives an effective procedure for constructing
fixed points in GL.

The fixed point theorem for weaker modal logics were investigated
by Sacchetti [6]. Sacchetti introduced the modal logics wGLn =
K + �(�np → p) → �p for n ≥ 2 which are weaker than GL (here
“w” stands for “weak”), and proved the fixed point theorem for these
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modal logics. These modal logics are actually provability logics for
some nonstandard provability predicates, that is, Kurahashi [2] proved
that for each n ≥ 2, there exists a Σ2 provability predicate such that
wGLn is sound and complete with respect to the arithmetical interpre-
tation based on the provability predicate. Therefore we may say that
metamathematical aspects of arithmetic are also reflected in these log-
ics. In fact, for example, since the uniqueness of fixed points is proved
in wGLn (see Sacchetti [6, Proposition 3.6]), the corresponding arith-
metical statement written using such nonstandard provability predi-
cate is also provable in arithmetic.

Sacchetti’s proof of the fixed point theorem is based on Smoryński’s
semantical argument [9], and gives no effective procedure for construct-
ing fixed points in wGLn. Then Sacchetti asked the following question
(see the last paragraph of Sacchetti [6]):

Is there a constructive proof of the fixed point theorem
for K+�(�n−1p→ p)→ �p?

In this paper, we solve Sacchetti’s question affirmatively, that is, we
provide a purely syntactical proof of the fixed point theorem forwGLn,
and effectively constructible fixed points in wGLn are obtained from
our proof. As a result, in arithmetic, we can effectively construct
concrete fixed points of particular formulas of arithmetic written using
the nonstandard provability predicates introduced in [2].

2 Preliminaries

In this paper, we assume that the logical symbols in the language of
propositional modal logic are ⊥, → and �, and other symbols such
as ⊤, ∧ and ♦ are defined from these symbols in a usual way. For
each modal formula A, the set of propositional variables contained in
A is denoted by Var(A). The axioms of the modal logic K are Boolean
tautologies in the language of propositional modal logic and the modal
formula �(p→ q)→ (�p→ �q). The inference rules of K are modus
ponens, necessitation and substitution. For a modal formula A, let
K + A denote the logic axiomatized by adding a new axiom A to K.
For each natural number k, we define the expression �kA inductively
as follows: �0A ≡ A and �k+1A ≡ ��kA. Then the modal logics GL

and wGLn for n ≥ 2 are defined as follows:

1. GL := K+�(�p→ p)→ �p.

2. wGLn := K+�(�np→ p)→ �p.

The modal logic GL is known as the modal logic of provability
(see [1, 10]). We say that a modal formula A(p) is modalized in p if
all occurrences of p in A are under the scope of �. The fixed point
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theorem for GL was independently proved by de Jongh and Sambin
[7].

Theorem 2.1 (The fixed point theorem for GL). For any modal for-
mula A(p) which is modalized in p, there exists a modal formula F
such that GL ⊢ F ↔ A(F ) and Var(F ) ⊆ Var(A) \ {p}.

Such a modal formula F is said to be a fixed point of A(p) in GL.
Sambin’s proof of the fixed point theorem is purely syntactical, and
then we can extract an algorithm for constructing fixed points in GL

from his proof. Such an algorithm is said to be Sambin’s algorithm.

Theorem 2.2 (Sambin [7]). For any modal formula A(p) which is
modalized in p, a fixed point of A(p) in GL is effectively constructible.

The fixed point theorem is not specific to GL. Sacchetti [6] intro-
duced the modal logics wGLn and proved the fixed point theorem for
these logics.

Theorem 2.3 (Sacchetti’s fixed point theorem [6]). Let n ≥ 2. Then
for any modal formula A(p) which is modalized in p, there exists a fixed
point of A(p) in wGLn.

Sacchetti’s proof is based on Smoryński’s proof [9] of the fixed point
theorem for GL, and does not give an effective construction of fixed
points in wGLn. Sacchetti proposed the following problem.

Problem 2.4 (Sacchetti [6]). Is there a constructive proof of the fixed
point theorem of wGLn for n ≥ 2?

The main purpose of this paper is to give an affirmative answer to
this problem.

We denote by [[k]]A and [[k]]+A the formulas �A∧�2A∧ · · · ∧�kA
and A∧ [[k]]A, respectively. For any modal formula A(p), we define the
modal formula (A)k(p) for each k ∈ ω recursively as follows:

1. A0(p) ≡ p;

2. Ak+1(p) ≡ A(Ak(p)).

For each occurrence of a propositional variable p in a modal for-
mula A, the number of subformulas of the form �B of A containing
the occurrence is said to be the (modal) depth of the occurrence in A.
Moreover, we define the set dep(A, p) of (modal) depths of all occur-
rences of a propositional variable p in a modal formula A.

Definition 2.5. For any modal formula A and any propositional vari-
able p, we define the set dep(A, p) ⊆ ω recursively as follows:

1. If A is p, then dep(A, p) = {0};

2. If A is a propositional variable q 6≡ p or ⊥, then dep(A, p) = ∅;

3. If A is of the form B → C, then dep(A, p) = dep(B, p)∪dep(C, p);
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4. If A is of the form �B, then dep(A, p) = {x+ 1 : x ∈ dep(B, p)}.

Moreover, in considering fixed points inwGLn, the set of all depths
of occurrences of p in A modulo n plays an important role. For each
x ∈ ω, let [x]n := {y ∈ ω : y is congruent to x modulo n}.

Definition 2.6. For any modal formula A and any propositional vari-
able p, define depn(A, p) to be the set {[x]n : x ∈ dep(A, p)}.

Example 2.7. The depths of occurrences of p from left to right in the
modal formula A ≡ p ∧ �(p→ �2p) are 0, 1 and 3, respectively. Also
dep(A, p) = {0, 1, 3} and dep3(A, p) = {[0]3, [1]3}.

We prove some lemmas concerning the sets dep(A, p) and depn(A, p).

Lemma 2.8. For any modal formulas A(p) and B,

dep(A(B), p) = {x+ y : x ∈ dep(A, p) and y ∈ dep(B, p)}.

Proof. We prove by induction on the construction of A.
If A is p, then A(B) ≡ B and dep(A, p) = {0}. The statement

follows obviously.
If A is a propositional variable q 6≡ p or ⊥, then A(B) ≡ A and

dep(A, p) = ∅. Then the statement is trivial.
If A is of the form C0 → C1, and suppose that the statement holds

for C0 and C1.

dep((C0 → C1)(B), p) = dep(C0(B), p) ∪ dep(C1(B), p)

=
⋃

i=0,1

{x+ y : x ∈ dep(Ci, p), y ∈ dep(B, p)}

= {x+ y : x ∈ dep(C0, p) ∪ dep(C1, p), y ∈ dep(B, p)}

= {x+ y : x ∈ dep(A, p), y ∈ dep(B, p)}.

If A is of the form �C and suppose that the statement holds for C.

dep(�C(B), p) = {x+ 1 : x ∈ dep(C(B), p)}

= {x+ y + 1 : x ∈ dep(C, p), y ∈ dep(B, p)}

= {x+ y : x ∈ dep(A, p), y ∈ dep(B, p)}.

❑

Lemma 2.9. For any modal formulas A(p, q) and B,

dep(A(p,B), p) = {x+y : x ∈ dep(A, q) and y ∈ dep(B, p)}∪dep(A, p).

Proof. We prove by induction on the construction of A.
If A is p, then A(p,B) ≡ A, dep(A, p) = {0} and dep(A, q) = ∅.

Hence the statement holds.
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If A is q, then A(p,B) ≡ B, dep(A, p) = ∅, dep(A, q) = {0}. Then
the statement is true.

If A is r 6≡ p, q or ⊥, then A(p,B) = A, dep(A, p) = dep(A, q) = ∅.
This case is also trivial.

If A is of the form C0 → C1, and suppose that the statement holds
for C0 and C1.

dep((C0 → C1)(p,B), p)

=dep(C0(p,B), p) ∪ dep(C1(p,B), p)

=
⋃

i=0,1

({x+ y : x ∈ dep(Ci, q), y ∈ dep(B, p)} ∪ dep(Ci, p))

={x+ y : x ∈ dep(A, q), y ∈ dep(B, p)} ∪ dep(A, p).

If A is of the form �C and suppose that the statement holds for C.

dep(�C(p,B), p)

={x+ 1 : x ∈ dep(C(p,B), p)}

={x+ y + 1 : x ∈ dep(C, q), y ∈ dep(B, p)} ∪ {x+ 1 : x ∈ dep(C, p)}

={x+ y : x ∈ dep(A, q), y ∈ dep(B, p)} ∪ dep(A, p).

❑

Lemma 2.10. For any modal formula A(p),

dep(�A, p) = dep(A(�p), p).

Proof. By Lemma 2.8,

dep(A(�p), p) = {x+ y : x ∈ dep(A, p) and y ∈ dep(�p, p)}

= {x+ 1 : x ∈ dep(A, p)}

= dep(�A, p).

❑

Lemma 2.11. For any i, k ∈ ω, if depn(A, p) = {[i]n}, then depn(A
k(p), p) =

{[ki]n}. In particular, depn(A
n(p), p) = {[0]n}.

Proof. We prove by induction on k. For k = 0, since A0(p) ≡ p and
dep(p, p) = {0}, depn(A

0(p), p) = {[0]n}.
Suppose depn(A

k(p), p) = {[ki]n}. Since Ak+1(p) ≡ A(Ak(p)), we
obtain

depn(A
k+1(p), p) = {[x]n + [y]n : x ∈ dep(A, p) and y ∈ dep(Ak, p)}.

by Lemma 2.9. Since depn(A, p) = {[i]n} and depn(A
k(p), p) = {[ki]n},

we have depn(A
k+1(p), p) = {[i]n + [ki]n} = {[(k + 1)i]n}. ❑
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3 Basic properties of wGLn

In this section, we prove several basic properties of wGLn used in our
proof of the fixed point theorem of wGLn.

Proposition 3.1 (See [6]). For any modal formula A,

wGLn ⊢ �A→ �n+1A.

Proof. Since A→ ((�nA ∧�2nA)→ (A ∧�nA)) is a tautology,

K ⊢ A→ (�n(A ∧�nA)→ (A ∧�nA)).

Then
K ⊢ �A→ �(�n(A ∧�nA)→ (A ∧�nA)).

By the axiom �(�n(A∧�nA)→ (A∧�nA))→ �(A∧�nA) of wGLn,
we obtain

wGLn ⊢ �A→ �(A ∧�nA).

We conclude wGLn ⊢ �A→ �n+1A. ❑

The following proposition is a variation of the result known as the
substitution lemma that holds for GL (see Boolos [1]).

Proposition 3.2. For any modal formulas Aj , Bj (1 ≤ j ≤ m) and
C(p1, . . . , pm),

wGLn ⊢ [[n]]+
m∧

j=1

(Aj ↔ Bj)→ (C(A1, . . . , Am)↔ C(B1, . . . , Bm)).

Proof. We prove by induction on the construction of C. We only prove
the case that C is of the form �D. By induction hypothesis, we have

wGLn ⊢ [[n]]+
m∧

j=1

(Aj ↔ Bj)→ (D(A1, . . . , Am)↔ D(B1, . . . , Bm)).

Then

wGLn ⊢ [[n+1]]
m∧

j=1

(Aj ↔ Bj)→ (�D(A1, . . . , Am)↔ �D(B1, . . . , Bm)).

By Proposition 3.1,

wGLn ⊢ [[n]]

m∧

j=1

(Aj ↔ Bj)→ (�D(A1, . . . , Am)↔ �D(B1, . . . , Bm)).

In particular, we conclude

wGLn ⊢ [[n]]+
m∧

j=1

(Aj ↔ Bj)→ (C(A1, . . . , Am)↔ C(B1, . . . , Bm)).

❑
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From our proof of Proposition 3.2, we also obtain the following
proposition.

Proposition 3.3. For any modal formulas Aj , Bj (1 ≤ j ≤ m) and
C(p1, . . . , pm),

wGLn ⊢ [[n]]

m∧

j=1

(Aj ↔ Bj)→ (�C(A1, . . . , Am)↔ �C(B1, . . . , Bm)).

The following proposition says that a Löb-like rule holds in wGLn.

Proposition 3.4. For any modal formula A,

wGLn ⊢ [[n]]([[n]]A→ A)→ [[n]]A.

Proof. First, we prove by induction on k that for any k (0 ≤ k ≤ n−1),

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+1A ∧ · · · ∧�nA)→ [[n]]A).

If k = 0, this is trivial.
Assume that the statement holds for k, that is,

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+1A ∧ · · · ∧�nA)→ [[n]]A).

Then

wGLn ⊢ [[n]]([[n]]A→ A)→ �((�k+1A ∧ · · · ∧�nA)→ [[n]]A).

By [[n]]([[n]]A→ A), we obtain

wGLn ⊢ [[n]]([[n]]A→ A)→ �((�k+1A ∧ · · · ∧�nA)→ A).

Therefore

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+2A ∧ · · · ∧�nA)→ �(�nA→ A)).

By the axiom of wGLn, we have

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+2A ∧ · · · ∧�nA)→ �A). (1)

Whereas, by our assumption,

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+2A∧· · ·∧�n+1A)→ (�2A∧· · ·∧�nA)).

Hence, we have

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�A∧�k+2A∧· · ·∧�nA)→ (�2A∧· · ·∧�nA)).

By combining this with (1), we obtain

wGLn ⊢ [[n]]([[n]]A→ A)→ ((�k+2A ∧ · · · ∧�nA)→ [[n]]A).
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This means that the statement holds for k + 1.
For k = n− 1, we have wGLn ⊢ [[n]]([[n]]A→ A)→ (�nA→ [[n]]A)

and hence wGLn ⊢ [[n]]([[n]]A → A) → �(�nA → [[n]]A). Since
wGLn ⊢ [[n]]([[n]]A → A) → �([[n]]A → A), we obtain wGLn ⊢
[[n]]([[n]]A → A) → �(�nA → A). By the axiom of wGLn, we have
wGLn ⊢ [[n]]([[n]]A → A) → �A. Therefore, we obtain wGLn ⊢
[[n]]([[n]]A→ A)→ [[n]]A. ❑

From Proposition 3.4, we obtain the following corollary.

Corollary 3.5. For any modal formula A, if wGLn ⊢ [[n]]A → A,
then wGLn ⊢ A.

Proposition 3.6. For any modal formulas A and B, if wGLn ⊢
�nA→ (A↔ B), then wGLn ⊢ �A↔ �B.

Proof. Suppose wGLn ⊢ �nA → (A ↔ B). Then wGLn ⊢ A →
(�nA → B), and hence wGLn ⊢ �A → (�n+1A → �B). Since
wGLn ⊢ �A→ �n+1A by Proposition 3.1, wGLn ⊢ �A→ �B.

On the other hand, wGLn ⊢ B → (�nA→ A) by the supposition.
Then wGLn ⊢ �B → �(�nA→ A). Since wGLn ⊢ �(�nA→ A)→
�A, we obtain wGLn ⊢ �B → �A. ❑

We can refine Proposition 3.2 and Proposition 3.3 by considering
the sets depn(C, p).

Proposition 3.7. Let A,B and C(p) be any modal formulas.

1. If depn(C, p) = {[0]n}, then

wGLn ⊢ (A↔ B) ∧�n(A↔ B)→ (C(A)↔ C(B)).

2. If depn(C, p) = {[i]n} for 0 < i < n, then

wGLn ⊢ �i(A↔ B)→ (C(A)↔ C(B)).

Proof. First, note that if dep(C, p) = ∅, then

wGLn ⊢ (A↔ B)→ (C(A)↔ C(B))

trivially holds.
We prove clauses 1 and 2 simultaneously by induction on the con-

struction of C.
If C is p, then dep(C, p) = depn(C, p) = {[0]n} and wGLn ⊢ (A↔

B)→ (C(A)↔ C(B)).
Suppose that C is of the form D0 → D1. We only prove clause 1,

and clause 2 is proved in a similar way. If depn(C, p) = {[0]n}, then
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for each j = 0, 1, depn(Dj , p) = {[0]n} or depn(Dj , p) = ∅. In either
case, for each j = 0, 1, we have

wGLn ⊢ (A↔ B) ∧�n(A↔ B)→ (Dj(A)↔ Dj(B))

by induction hypothesis. Then we obtain

wGLn ⊢ (A↔ B) ∧�n(A↔ B)→ (C(A)↔ C(B)).

Suppose that C is of the form �D and depn(C, p) = {[i]n} for
0 ≤ i < n. Let j = i − 1 if i 6= 0, and let j = n − 1 if i = 0. Then
depn(D, p) = {[j]n}. If j 6= 0, by induction hypothesis, we have

wGLn ⊢ �j(A↔ B)→ (D(A)↔ D(B)).

Then
wGLn ⊢ �j+1(A↔ B)→ (C(A)↔ C(B)).

If j = 0, by induction hypothesis,

wGLn ⊢ (A↔ B) ∧�n(A↔ B)→ (D(A)↔ D(B)).

Then

wGLn ⊢ �(A↔ B) ∧�n+1(A↔ B)→ (C(A)↔ C(B)).

Since wGLn ⊢ �(A↔ B)→ �n+1(A↔ B) by Proposition 3.1,

wGLn ⊢ �(A↔ B)→ (C(A)↔ C(B)).

In either case, we have obtained the required conclusion. ❑

From our proof of Proposition 3.7, we also obtain the following
proposition.

Proposition 3.8. Let A,B and C(p) be any modal formulas. If
depn(C, p) = {[0]n} and 0 /∈ dep(C, p), then

wGLn ⊢ �n(A↔ B)→ (C(A)↔ C(B)).

Notice that for any modal formula C, 0 /∈ dep(C, p) if and only if
C is modalized in p.

4 Effectively constructible fixed points in

wGLn

In this section, we prove the following main theorem of this paper.
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Theorem 4.1. For any modal formula A(p) which is modalized in p,
a fixed point of A(p) in wGLn is effectively constructible.

First, we show that for a proof of Theorem 4.1, we may consider
only a certain restricted case, that is, it suffices to give an effective
construction of fixed points of modal formulas which are of the form
�A(p). This reduction procedure is due to Linsdtröm [3].

Theorem 4.2. For any modal formula �A(p), a fixed point of �A(p)
in wGLn is effectively constructible.

Lemma 4.3. Suppose that Theorem 4.2 holds. Then for any modal
formulas �B1(p1, . . . , pm), . . . ,�Bm(p1, . . . , pm), we can effectively find
modal formulas F1, . . . , Fm such that for any i (1 ≤ i ≤ m),

wGLn ⊢ Fi ↔ �Bi(F1, . . . , Fm).

Proof. We prove by induction on m. The case of m = 1 is ex-
actly Theorem 4.2. Suppose that the statement holds for m. Let
�B1(p1, . . . , pm, pm+1), . . ., �Bm+1(p1, . . . , pm, pm+1) be any modal
formulas. Then by induction hypothesis, we can effectively find modal
formulas F1(pm+1), . . . , Fm(pm+1) such that for any i (1 ≤ i ≤ m),

wGLn ⊢ Fi(pm+1)↔ �Bi(F1(pm+1), . . . , Fm(pm+1), pm+1).

By Theorem 4.2, a fixed point F of the formula�Bm+1(F1(qm+1), . . . , Fm(qm+1), qm+1)
with respect to qm+1 can be found effectively. Then the modal formulas
F1(F ), . . . , Fm(F ) and F satisfy the required condition. ❑

Lemma 4.4. Suppose that Theorem 4.2 holds. Then Theorem 4.1
holds.

Proof. Let A(p) be any modal formula which is modalized in p. Then
there exists a modal formula �C1(p), . . . ,�Cm(p) and B(p1, . . . , pm)
such thatB(p1, . . . , pm) does not contain� andA(p) ≡ B(�C1(p), . . . ,�Cm(p)).
By Lemma 4.3, we can effectively find modal formulas F1, . . . , Fm such
that for any i (1 ≤ i ≤ m),

wGLn ⊢ Fi ↔ �Ci(B(F1, . . . , Fm)).

Then B(F1, . . . , Fm) is a fixed point of A(p) in wGLn. ❑

In the rest of this section, we prove Theorem 4.2. In the case of
GL, �A(p) has a simple fixed point.

Fact 4.5 (See [7, 10]). For any modal formula �A(p),

GL ⊢ �A(⊤)↔ �A(�A(⊤)).
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The fixed point theorem of GL immediately follows from Lemma
4.4 and Fact 4.5. In wGLn for n ≥ 2, a fixed point of �A(p) is not
so simple in general. However, we can prove the following proposition
which is a counterpart of Fact 4.5 in wGLn.

Proposition 4.6. If depn(�A, p) = {[0]n}, then

wGLn ⊢ �A(⊤)↔ �A(�A(⊤)).

Proof. We have depn(A(�p), p) = depn(�A, p) = {[0]n} because by
Lemma 2.10, dep(A(�p), p) = dep(�A, p). It is obvious that 0 /∈
dep(A(�p), p). Then by Proposition 3.8,

wGLn ⊢ �nA(⊤)→ �n(⊤ ↔ A(⊤))

→ (A(�⊤)↔ A(�A(⊤)))

→ (A(⊤)↔ A(�A(⊤))).

By Proposition 3.6, we conclude

wGLn ⊢ �A(⊤)↔ �A(�A(⊤)).

❑

Related to Proposition 4.6, in the next section, we show that if
depn(�A, p) is a singleton, then �A has the fixed point (�A)n(⊤) in
wGLn (Theorem 5.3). In general, depn(�A, p) is more complex than a
singleton, and so Proposition 4.6 and Theorem 5.3 do not guarantee the
existence of fixed points of such a formula �A. To overcome this situ-
ation, we reduce the existence of fixed-points of such complex formulas
to that of formulas with the depth {[0]n} modulo n. Our strategy is to
transform a formula of the form �A into another formula so that the
fixed points are preserved. In the following, we introduce two types
of transformation of formulas. The first one is to remove [0]n from
depn (Definition 4.7 and Lemma 4.8). The second one is to shift the
elements of depn (Definition 4.11 and Lemma 4.12).

We introduce the first transformation of formulas.

Definition 4.7. We say that a modal formula �A′(p) is the 0-instance
of �A(p) if �A′(p) is obtained by replacing all occurrences of p in �A
whose depths are congruent to 0 modulo n with ⊤.

Lemma 4.8. For any modal formulas �A(p) and F , if F is a fixed
point of the 0-instance of �A(p) in wGLn, then F is also a fixed point
of �A(p) in wGLn.

Proof. If [0]n /∈ depn(�A(p), p), then the 0-instance of �A(p) is �A(p)
itself, and hence the lemma is trivial. We may assume [0]n ∈ depn(�A(p), p).
Let q be some propositional variable not contained in �A(p), and let
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�B(p, q) be the modal formula obtained by replacing all occurrences
of p in �A(p) whose depths are congruent to 0 modulo n with q. Then
�B(p,⊤) is the 0-instance of �A(p). Since depn(�B, q) = {[0]n}, by
Proposition 4.6,

wGLn ⊢ �B(p,⊤)↔ �B(p,�B(p,⊤)).

Let F be a fixed point of �B(p,⊤). Then

wGLn ⊢ F ↔ �B(F,⊤)

↔ �B(F,�B(F,⊤))

↔ �B(F, F )

≡ �A(F ).

This means that F is also a fixed point of �A(p). ❑

Before introducing the second transformation of formulas, we prove
that an iterative substitution of �A(p) into p in �A(p) preserves fixed
points.

Definition 4.9. Let �A(p) be any modal formula. We say a sequence
{�Ai}i∈ω of modal formulas is a �A(p)-substitution sequence if the
following conditions hold:

1. �A0 ≡ �A.

2. �Ai+1 is obtained by replacing several occurrences of p in �Ai

with �A.

Lemma 4.10. Let {�Ai}i∈ω be a �A(p)-substitution sequence. Then
for any i ∈ ω and any modal formula F , if F is a fixed point of �Ai

in wGLn, then F is also a fixed point of �A in wGLn.

Proof. Since the lemma trivially holds for i = 0, we may assume i > 0.
Suppose that F is a fixed point of �Ai in wGLn.

Let j be any natural number with j < i. By the definition of
�A(p)-substitution sequences, there exists a modal formula �Bj(p, q)
which is obtained by replacing several occurrences of p in �Aj with
q such that �Aj+1(p) ≡ �Bj(p,�A(p)). By applying Proposition 3.3
for �Bj(F, q), we have

wGLn ⊢ [[n]](F ↔ �A(F ))→ (�Bj(F, F )↔ �Bj(F,�A(F ))).

This means

wGLn ⊢ [[n]](F ↔ �A(F ))→ (�Aj(F )↔ �Aj+1(F )).

Since this statement holds for all j < i, we have

wGLn ⊢ [[n]](F ↔ �A(F ))→ (�A(F )↔ �Ai(F )).
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Since wGLn ⊢ F ↔ �Ai(F ), we obtain

wGLn ⊢ [[n]](F ↔ �A(F ))→ (F ↔ �A(F )).

By Corollary 3.5, we conclude

wGLn ⊢ F ↔ �A(F ).

❑

We introduce the second transformation of formulas.

Definition 4.11. Let k be any natural number. We say a �A(p)-
substitution sequence {�Ai}i∈ω is k-shifting if for each i, �Ai+1 is
obtained by replacing all occurrences of p in �Ai whose depths are
congruent to k + i modulo n with �A.

Lemma 4.12. Let k be any natural number with 1 ≤ k < n. Suppose
that

depn(�A, p) ⊆ {[x]n : 1 ≤ x ≤ k}

and let {�Ai}i∈ω be the k-shifting �A(p)-substitution sequence. Then

depn(�An−k, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1}.

Proof. We prove by induction on i that for all i with k + i ≤ n,

depn(�Ai, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1 or k + i ≤ x ≤ n+ k − 1}.

For i = 0, this is trivial because

{[x]n : 0 ≤ x ≤ k − 1 or k ≤ x ≤ n+ k − 1} = {[x]n : 0 ≤ x ≤ n− 1}.

Suppose the statement holds for i. Assume k + i + 1 ≤ n and let
�Bi(p, q) be the modal formula obtained by replacing all occurrences
of p in �Ai whose depths are congruent to k + i modulo n with q.
Then �Ai+1 ≡ �Bi(p,�A), depn(�Bi, q) = {[k + i]n} and

depn(�Bi, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1 or k + i+ 1 ≤ x ≤ n+ k − 1}.

By Lemma 2.9, dep(�Bi(p,�A), p) is equal to

{x+ y : x ∈ dep(�Bi, q) and y ∈ dep(�A, p)} ∪ dep(�Bi, p).

Hence depn(�Ai+1, p) is equal to

{[x]n + [y]n : x ∈ dep(�Bi, q) and y ∈ dep(�A, p)} ∪ depn(�Bi, p).
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Since k + i+ k ≤ n+ k − 1, we have

{[x]n + [y]n : x ∈ dep(�Bi, q) and y ∈ dep(�A, p)}

⊆{[k + i]n + [y]n : 1 ≤ y ≤ k}

={[x]n : k + i+ 1 ≤ x ≤ k + i+ k}

⊆{[x]n : k + i+ 1 ≤ x ≤ n+ k − 1}.

Hence we obtain

depn(�Ai+1, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1 or k + i+ 1 ≤ x ≤ n+ k − 1}.

In particular, for i = n− k,

depn(�An−k, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1 or n ≤ x ≤ n+ k − 1}.

Since {[x]n : n ≤ x ≤ n+ k− 1} = {[x]n : 0 ≤ x ≤ k− 1}, we conclude

depn(�An−k, p) ⊆ {[x]n : 0 ≤ x ≤ k − 1}.

❑

We finish our proof of Theorem 4.2.

Proof of Theorem 4.2. We define a sequence �B0(p), . . . ,�Bn−1(p) of
modal formulas recursively as follows:

1. �B0(p) :≡ �A(p).

2. Suppose that �Bk(p) is already defined. Let �B′

k(p) be the
0-instance of �Bk(p), and let {�Ck,i(p)}i∈ω be the (n − k −
1)-shifting �B′

k(p)-substitution sequence. Define �Bk+1(p) :≡
�Ck,k+1(p).

We prove that �Bn−1(⊤) is a fixed point of �A(p) in wGLn. For
this, we prove by induction on k that for all k < n, the following two
conditions hold:

1. depn(�Bk(p), p) ⊆ {[x]n : 0 ≤ x ≤ n− k − 1}.

2. Every fixed point of �Bk(p) in wGLn is also a fixed point of
�A(p) in wGLn.

For k = 0, these are trivial. We suppose that the two conditions hold
for k. Assume k + 1 < n.

1. By the definition of the 0-instances, depn(�B′

k(p), p) ⊆ {[x]n :
1 ≤ x ≤ n− k − 1}. Since {�Ck,i(p)}i∈ω is (n− k − 1)-shifting,

depn(�Ck,n−(n−k−1)(p), p) ⊆ {[x]n : 0 ≤ x ≤ n− k − 2}

by Lemma 4.12. Since �Bk+1(p) ≡ �Ck,k+1(p), we obtain

depn(�Bk+1(p), p) ⊆ {[x]n : 0 ≤ x ≤ n− (k + 1)− 1}.
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2. Let F be any fixed point of�Bk+1(p) inwGLn. Since {�Ck,i(p)}i∈ω

is a �B′

k(p)-substitution sequence, F is also a fixed point of �B′

k(p)
by Lemma 4.10. Then F is a fixed point of �Bk(p) by Lemma 4.8.
Therefore F is also a fixed point of �A(p) by induction hypothesis.

In particular, depn(�Bn−1(p), p) ⊆ {[0]n}. Then �Bn−1(⊤) is
a fixed point of �Bn−1(p) in wGLn by Proposition 4.6. Therefore
�Bn−1(⊤) is also a fixed point of �A(p) in wGLn. ❑

5 Examples

In our proof of Theorem 4.2, we gave an effective procedure for con-
structing fixed points in wGLn. More precisely, from an input �A(p),
we constructed the sequence�B0(p),�B′

0(p),�B1(p),�B′

1(p), . . . ,�Bn−1(p)
of modal formulas, and then we concluded that the modal formula
�Bn−1(⊤) is a fixed point of �A(p) in wGLn.

For example, we execute this procedure for the cases n = 2 and
n = 3.

Example 5.1 (wGL2). Let �A(p) be any modal formula and let
�B(p, q) be the modal formula obtained by replacing all occurrences
of p in �A(p) whose depths are congruent to 0 modulo 2 with q.

1. �B0(p) ≡ �A(p).

2. �B′

0(p) ≡ �B(p,⊤).

3. �B1(p) ≡ �B(�B(p,⊤),⊤).

4. �B1(⊤) ≡ �B(�A(⊤),⊤) is a fixed point of �A(p) in wGL2.

The case of wGL3 is slightly complicated.

Example 5.2 (wGL3). Let �A(p) be any modal formula and let
�B(p2, p1, p0) be the modal formula obtained by replacing all occur-
rences of p in �A(p) whose depths are congruent to i modulo 3 with
pi for every 0 ≤ i ≤ 2.

1. �B0(p) ≡ �A(p).

2. �B′

0(p) ≡ �B(p, p,⊤).

3. �B1(p) ≡ �B(�B(p, p,⊤), p,⊤).

4. �B′

1(p) ≡ �B(�B(p,⊤,⊤), p,⊤).

5. �B2(p) ≡ �B′

1(�B′

1(�B′

1(p))).

6. �B2(⊤) ≡ �B′

1(�B′

1(�B′

1(⊤))) is a fixed point of �A(p) in
wGL3.

As shown in this example, in general, fixed points of �A(p) in
wGLn are complicated. On the other hand, Proposition 4.6 states that
if depn(�A, p) = {[0]n}, then �A(p) has a simple fixed point �A(⊤)
in wGLn. Moreover, we prove that if depn(�A, p) is a singleton, then
�A(p) also has a simple fixed point.
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Theorem 5.3. If depn(�A, p) = {[i]n} for 0 < i < n, then

wGLn ⊢ (�A)n(⊤)↔ (�A)n+1(⊤).

Proof. By Lemma 2.11, depn((�A)n(p), p) = {[0]n}. Let C(p) be the
modal formulaA((�A)n−1)(�p). Since (�A)n(p) ≡ �A((�A)n−1(p)) ≡
�A((�A)n−1)(p), we obtain depn(C(p), p) = {[0]n} by Lemma 2.10.
Also 0 /∈ dep(C(p), p).

Claim. wGLn ⊢ (�A)n(⊤)↔ (�A)2n(⊤).

Proof of Claim. Since

wGLn ⊢ �nC(⊤)→ �n(⊤ ↔ C(⊤)),

we obtain

wGLn ⊢ �nC(⊤)→ (C(⊤)↔ C(C(⊤))) (2)

by Proposition 3.8. Then by Proposition 3.6, we obtain

wGLn ⊢ �C(⊤)↔ �C(C(⊤)).

Here

wGLn ⊢ �C(⊤)↔ �A((�A)n−1)(�⊤)

↔ (�A)n(�⊤)

↔ (�A)n(⊤).

Also

wGLn ⊢ �C(C(⊤))↔ �A((�A)n−1)(�C(⊤))

↔ (�A)n(�C(⊤))

↔ (�A)n((�A)n(⊤))

↔ (�A)2n(⊤).

We conclude
wGLn ⊢ (�A)n(⊤)↔ (�A)2n(⊤).

❑

Since

wGLn ⊢ �nA((�A)n)(⊤)→ �n(⊤ ↔ A((�A)n)(⊤)),

we also have

wGLn ⊢ �nA((�A)n)(⊤)→ (C(⊤)↔ C(A((�A)n)(⊤)))
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by Proposition 3.8. Here

wGLn ⊢ C(A((�A)n)(⊤))↔ A((�A)n−1)(�A((�A)n))(⊤)

↔ A((�A)2n)(⊤)

↔ A((�A)n)(⊤)

by Claim. Hence

wGLn ⊢ �nA((�A)n)(⊤)→ (C(⊤)↔ A((�A)n)(⊤)).

By Proposition 3.6,

wGLn ⊢ �C(⊤)↔ �A((�A)n)(⊤).

This means
wGLn ⊢ (�A)n(⊤)↔ (�A)n+1(⊤).

❑

We close this paper with the following example showing that our
fixed points given in this paper might not be simplest.

Example 5.4. LetA(p) be�¬p. Since dep3(�A, p) = {[2]3},�A(�A(�A(⊤)))
is a fixed point of �A(p) in wGL3 by Theorem 5.3. Moreover, we show
that �A(�A(⊤)) is also a fixed point. Here

• �A(�A(⊤)) ≡ �2♦2⊤,

• �A(�A(�A(⊤))) ≡ �2♦2�2⊥.

Then it suffices to prove wGL3 ⊢ �2♦2⊤ ↔ �2♦2�2⊥.
(←): Since K ⊢ �2⊥ → ⊤, it is easy to derive K ⊢ ♦2�2⊥ → ♦2⊤

and K ⊢ �2♦2�2⊥ → �2♦2⊤.
(→): Notice that for any modal formulas B and C, K ⊢ ♦kB ∧

�kC → ♦k(B∧C). LetD be the modal formula ♦2⊤∧�2♦2⊤∧�3♦2⊤.
Then by Proposition 3.1,

wGL3 ⊢ D → ♦2⊤ ∧�2♦2⊤ ∧�3♦2⊤ ∧�5♦2⊤ ∧�6♦2⊤

→ ♦2(♦2⊤ ∧�♦2⊤ ∧�3♦2⊤ ∧�4♦2⊤)

→ ♦3D.

We have proved wGL3 ⊢ �3¬D → ¬D. By Corollary 3.5, wGL3 ⊢
¬D. Also

wGL3 ⊢ �2♦2⊤ ∧ ♦2�2♦2⊤ → �2♦2⊤ ∧ ♦2�2♦2⊤ ∧�5♦2⊤

→ ♦2D.

Since wGL3 ⊢ ¬♦2D, we have wGL3 ⊢ �2♦2⊤ → ¬♦2�2♦2⊤. This
means wGL3 ⊢ �2♦2⊤ → �2♦2�2⊥.
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6 Future works

As shown in Example 5.2, our method produces slightly complex fixed
points. On the other hand, Example 5.4 indicates that the existence
of a method producing simpler fixed points. We propose the following
problem.

Problem 6.1. Does there exist a method to produce simpler fixed
points of formulas in wGLn than that obtained by our method?

It is easily shown by a semantical argument that the intersection
of all wGLn’s is exactly the logic K. Thus there exists no minimum
normal logic among the normal modal logics for which the fixed point
theorem holds because the fixed point theorem does not hold for K.
Relating to this observation, we propose the following problem.

Problem 6.2. Is there a minimal modal logic among the normal modal
logics for which the fixed point theorem holds?

A negative answer to Problem 6.2 follows from an affirmative an-
swer to the following problem.

Problem 6.3. Does the fixed point theorem hold for the intersection
of two logics for which the fixed point theorem holds?
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