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A NEW BOUNDARY HARNACK PRINCIPLE

(EQUATIONS WITH RIGHT HAND SIDE)

MARK ALLEN AND HENRIK SHAHGHOLIAN

Abstract. We introduce a new boundary Harnack principle in Lipschitz do-
mains for equations with a right hand side. Our approach, which uses compar-
isons and blow-ups, will adapt to more general domains as well as other types
of operators. We prove the principle for divergence form elliptic equations with
lower order terms including zero order terms. The inclusion of a zero order
term appears to be new even in the absence of a right hand side.
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1. Introduction

1.1. Background. The well-known boundary Harnack principle states that two
non-negative harmonic functions are comparable close to part of the boundary of
a given domain, where they both vanish. More exactly if u and v are harmonic
functions in D ∩B1 and vanish on ∂D ∩B1, with D a Lipschitz domain,1 then

1

C
v(x) ≤ u(x) ≤ Cv(x),

where C depends on space dimension and u(x0)/v(x0) for a fixed x0 in the domain.
We are interested in extending this result to the case of equations with right

hand side. Of course such a general result is doomed to fail, unless some further
restrictions are imposed. This can be seen through a simple 2-dimensional example
with

u(x) = x1x2(x
2
1 − x2

2), v(x) = x2(x1 − x2)

in the cone {x1 > x2 > 0} with aperture π/4. Consequently, there cannot exist2

C > 0 such that Cu ≥ v. Another simple (and discouraging) example is

u(x) = x2
1, v(x) = x1

in the set {x1 > 0}. Again, there cannot exist a constant C such that close to the
boundary Cu ≥ v.

There are two observations to make from the above examples:

1) In the first example the domain is too narrow, with a sharp corner at the
boundary.

Much of this work was completed while the first author visited KTH Royal Institute of Tech-
nology. Shahgholian was supported by Swedish Research Council.

1The boundary Harnack Principle holds in very general domains, such as NTA domains, and
uniform domains. It also holds for solutions to a large class of elliptic equations.

2 One can actually prove the failure of boundary Harnack between harmonic and super-
harmonic functions, in the first quadrant. This is illustrated in Example 1.2 in [11], in terms
of free boundary problems.
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2) In the second example we try to show subharmonic functions can dominate
harmonic functions, by multiplying with a constant; this in general fails.

To put things in perspective, let D = {x1 > 0} ∩ {x1 > x2}and consider the
following function

w(x) = x1(x1 − x2) in Dr = D ∩Br(0).

Now let u be the positive homogeneous harmonic function vanishing on the
boundary of the cone D. Then for v = u−w we have that u(x) > v(x), since w > 0
in D (by definition), and v > 0 since w ≈ r2 and u ≈ ra (a < 2), for r small. We
also have

∆u = 0, ∆v = −1 in D,

with zero boundary values. In particular we have a boundary Harnack principle
u(x) > v(x) where a harmonic function dominates a superharmonic one.

The difference between this example and the first example above is that the cone
is wider. The question that naturally arises is whether such a behaviour can be
structured through a general statement, and if so what are the conditions for such
a boundary Harnack principle.

A further observation is that when the domain D is uniformly C1,Dini then
a boundary Harnack principle holds, between a positive harmonic and a super-
harmonic functions (with bounded r.h.s.), vanishing on the boundary (∂D) ∩ B1.
This is an easy consequence of Hopf’s boundary point lemma and C1-regularity of
solutions. Indeed, let u be a non-negative harmonic function in D and v satisfy
∆v = −1 in D, both with zero Dirichlet data on (∂D) ∩ B1. Then by Hopf’s
boundary principle (applied to u) and that v is uniformly C1, we have

∂νu ≥ C0 > 0 on ∂D ∩B1, universal C0,

∂νv ≤ C1 on ∂D, universal C1,

where ν is the interior normal direction, on ∂D. Hence for k large, the function
wk := ku− v satisfies

∂νwk = k∂νu− ∂νv ≥ kC0 − C1 > 0 on ∂D ∩B1.

Hence wk > 0 in D in a small neighbourhood of the ∂D ∩B1 and inside D; this is
exactly the boundary Harnack we asked for.

1.2. Main Result. Our main result is the boundary Harnack principle mentioned
above between a superharmonic and a positive harmonic function, in Lipschitz do-
mains. For instructional reasons and for the benefit of the non-expert reader, we
first state and prove the theorem inside a cone; see Theorem 2.1. The proof in this
case presents the main ideas for the general case. Next, we do the same for a Lips-
chitz domain; see Theorem 3.10. We then apply the ideas to divergence operators,
see Theorem 4.7. Our result holds even when including zero-order terms. This
result appears to be new even when considering the standard boundary Harnack
principle without right hand side, i.e. for solutions rather than supersolutions.

In proving our new boundary Harnack principle, we will often utilize the bound-
ary Harnack principle (without right hand side) for two nonnegative solutions. To
avoid confusion we will always refer to this as the “standard boundary Harnack
principle”.
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1.3. Related results. As previously mentioned the boundary Harnack principle
has been proven on very general domains as well as for various operators. Recently,
De Silva and Savin in [5] generalized the result in a new direction by showing that
improving the regularity of the boundary improves the regularity of the boundary
Harnack inequality. Their result applies to elliptic operators in divergence form
with appropriate smoothness assumptions on the coefficients. Roughly speaking, if
u, v vanish on ∂Ω with Lu = 0 and Lv = f in Ω, and if u > 0 in Ω and ∂Ω ∈ Ck,β ,
then

∥

∥

∥

v

u

∥

∥

∥

Ck,β
≤ C (‖v‖L∞ + ‖f‖Ck−1,β) . (1.1)

As a corollary of Theorem 3.10 we obtain a similar estimate on Lipschitz domains
with small enough Lipschitz norm, see Corollary 3.12.

The result in [5] illustrates the principle that improving the regularity of the
boundary gives a boundary Harnack principle for solutions with a right hand side.
Our result shows that Lipschitz regularity is a sufficient condition to obtain an
estimate of the form (1.1) when β = 0, and the allowed behavior for f is determined
by the Lipschitz constant.

Another related result is found in [12] where it is shown a superharmonic function
is comparable to the first eigenfunction for a domain in R2 with finitely many
corners and with an interior cone condition.

1.4. Applications. We present two applications of our boundary Harnack princi-
ple: to the Hele-Shaw flow and to the obstacle problem.

1.4.1. Hele-Shaw Flow. The Hele-Shaw flow may be formulated as follows: For
t > 0 we define ut(x) as the solution of

∆ut(x) = χΩt − χΩ0 − tδz in R
n,

where Ω0 is the initial domain (filled with liquid) and Ωt = {ut > 0}, and z ∈ Ω0

is the liquid-injection point. The Dirac mass at the point z means we inject more
fluid at that point. This formulation is obtained after a Baiocchi-transformation,
which is easily found in the classical literature for free boundary problems.

Now suppose we do the Hele-Shaw experiment on a “table” having corners of
various angels. More exactly suppose we consider

∆ut(x) = χΩt − χΩ0 − tδz in D, ut(x) = 0 on ∂D,

where D ⊃ Ω0 is a given domain. The zero boundary data on ∂D means that the
liquid, when reaching the edge of the table, will fall to the ground. The question
is whether the liquid will reach all points of the boundary of D in finite time
t ≤ t0 < ∞.

By a barrier argument (see [11]) one can show that in two dimensions corners
with angle smaller than or equal to π/2 will not get wet; an analogous result for
higher dimensions is a consequence of Theorem 2.3 in this paper. Now the question
is what can happen when the angle of the corner is larger than π/2; will the liquid
reach such a corner? The answer to this question is yes, see [11].

We now consider D with Lipschitz boundary with Lipschitz constant L < 1. As
a consequence of Theorem 3.10 we now show that every point of the boundary will
get wet. We need to show for large values of t that ut > 0 in D ∩ Br(z

1), for any
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z1 ∈ ∂D. We write ut(x) = ht(x) − k(x) where ht is the harmonic function in
Br(z

1) ∩D with boundary values ht = ut, and k (t-independent) satisfies

∆k = −1 in Br(z
1) ∩D,

with zero boundary values on ∂(Br(z
1)∩D). It suffices then to show that for large

values of t we have
ht ≥ k in Br(z

1) ∩D.

By Theorem 3.10, for fixed t there exists some large constant Ct such that
Cth

t ≥ k. By the standard boundary Harnack principle

sup
Br/2(z1)∩D

ht

hs
≤ C

ht(z2)

hs(z2)
,

for a fixed z2 ∈ Br(z
1) ∩D. Since lims→∞ hs(z2) = ∞, we choose s large enough

so that ht(z2)/hs(z2) < C−1/Ct. Then

sup
Br/2(z1)∩D

ht

hs
≤ C

ht(z2)

hs(z2)
≤ CC−1

Ct
,

so that hs ≥ Cth
t ≥ k to conclude that ut > 0 in Br/2(z

1) ∩D.

A related question to the Hele-Shaw flow reaching corners, is whether for D ⊂
Rn, with 0 ∈ ∂D, and ∂B1 ∩D 6= ∅, a solution to

∆vm = 1 in D ∩B1, vm = 0 on ∂D ∩B1 vm = m on ∂B1 ∩D,

will be non-negative in D ∩B1 for m large enough. The answer to this question is
already given in the discussion for Hele-Shaw experiment above.

1.4.2. Obstacle Problem. A further application can be made to the regularity theory
of the free boundary for the obstacle problem, that is formulated as a solution to

∆v = hχ{v>0}, v ≥ 0 in B1,

with h ≥ c0 > 0 Lipschitz, and a prescribed Dirichlet data on ∂B1. In proving
regularity of the free boundary for the obstacle problem one can show that if a
free boundary point z ∈ ∂{v > 0} ∩ B1/2 is not a cusp point, then for some r > 0
and direction e, ve > 0 in the set {v > 0} ∩ Br(z), and that the free boundary is
Lipschitz in Br(z).

One can actually show that Lipschitz norm can be taken as small as one wishes,
by taking the neighbourhood of z smaller. The proof for (non-uniform) Lipschitz
regularity is actually much simpler than proving uniform regularity. We refer to [10]
for background and details as well as other related original references.

The boundary Harnack principle in this paper allows us to deduce C1,α-regularity
of the free boundary for the obstacle problem, in an elementary way.3 Indeed, we
may consider the function H(x) = ve1 − Cv, which satisfies4

H > 0, ve1 > 0, ∆H = he1 − Ch ≤ 0 in {v > 0} ∩Br(z).

We will now apply Corollary 3.12 to the functions H = ve1 − Cv and ve for any
direction e orthogonal to e1. Both H and ve vanish on the free boundary ∂{v > 0}.
By taking a neighborhood of z ∈ ∂{v > 0}∩B1/2 small enough, the Lipschitz norm

3This was done for constant h in [1] using the standard boundary Harnak principle for Lipschitz
domains.

4Actually this conclusion is part of proving the Lipschitz regularity of the free boundary; see [4]
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of ∂{v > 0} ∩ B1/2 can be made arbitrarily small. Since ∆H ≤ 0 and |∆H | is
bounded, we may apply Corollary 3.12 with γ = 0 to conclude that

ve
ve1 − Cv

(1.2)

is Cα inside {v > 0} (close to the free boundary point z).
Next fix a level surface5 v = l, and denote the free boundary as a Lipschitz graph

x1 = G(x′). Consider v(G(x′), x′) = l, which after differentiation in the e-direction
gives

−Ge =
ve
ve1

,

inserting this into (1.2) gives us

ve
ve1 − Cv

=

ve
ve1

1− Cv
ve1

=
−Ge

1− Cl
ve1

,

is Cα, independent of l. Since6 ve1 ≈
√
l we have that

ve
ve1 − Cv

=
−Ge

1− Cl
ve1

→ −Ge,

as l → 0. Hence Ge is Cα.

1.5. Future directions. It seems plausible that the results presented in this paper
can be generalized to other operators, as well as more complicated domains. Here
we have chosen to treat the problem in Lipschitz domains only. In the final section
we consider second order elliptic equations of divergence form. The coefficients are
variable and assumed to be only bounded and measurable.

Key elements of our approach is the standard boundary Harnack principle, bar-
rier arguments, as well as scaling and blow-up invariance. Since our approach is
indirect and uses scalings, the core idea is to look at nonnegative solutions on global
domains. The technical difficulties that seem to arise for generalizitions of our result
concern the invariance of the domains in scaling.

The methods presented should also work to prove a boundary Harnack principle
for the positivity set of a solution to the thin obstacle problem as long as it is
assumed a priori that the free boundary is Lipschitz. Then we may argue in a
similar way as above for the thin obstacle problem, with equations having Lipschitz
right hand side; see [1] in combination with our result.

2. Boundary Harnack in Cones

We let C be any open cone in R
n, with vertex at the origin such that C ∩S

n−1 is
connected. If u is any harmonic function on C with u = 0 on ∂C, then in spherical
coordinates

u(r, θ) =

∞
∑

k=1

rαkfk(θ), (2.1)

where fk are the eigenfunctions to the Laplace-Beltrami on C∩∂B1. If u is harmonic
on C and nonnegative, then u is unique up to multiplicative constant to rα1f1(θ).

5The level surface is smooth since ve1 > 0 there.
6See e.g. [10]
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Theorem 2.1. Let C be a connected open cone in Rn with C ∩ Sn−1 an (n − 2)-
dimensional C1,α submanifold.7 Let rα1f1(θ) ≥ 0 be harmonic in C with zero
Dirichlet boundary data. Let u solve

∆u = 0 in C ∩B1,

u ≥ 0 in C ∩B1,

u = 0 on ∂C ∩B1,

and let v satisfy
0 ≥ ∆v(x) ≥ −C0|x|γ in C ∩B1,

v = 0 on ∂C ∩B1,

|v| ≤ C0 in C ∩B1,

(2.2)

with 2− α1 + γ > 0. If x0 ∈ C ∩B1, then there exists a constant C depending only
on C, 2− α1 + γ, dimension n, and dist(x0, ∂(C ∩B1)) such that

v(x)

u(x)
≤ C

v(x0)

u(x0)
for any x ∈ C ∩B1/2.

Theorem 2.1 is a boundary Harnack principle, but with a right hand side. Clearly,
a harmonic solution will control a subsolution. The significance of Theorem 2.1 is
that a harmonic solution can control a supersolution, and that the allowed behavior
for the right hand side depends on the opening of the cone or more explicitly on
α1. When the opening of the cone is large (so that α1 is small), then negative
values for γ are allowed, and the right hand side can have singular behavior near
the boundary. When the opening of the cone is small (so that α1 is large), then γ
must be positive and large, so that the right hand side must decay as it approaches
the boundary.

In order to prove Theorem 2.1, we will need the following convergence result.

Lemma 2.2. Let C be an open cone with ∂C∩Sn−1 an (n−2)-dimensional Lipschitz
submanifold. Fix 0 < ǫ < R and let γ > α1 − 2. For any sequence vk satisfying

|∆vk| ≤ C0|x|γ in C ∩BR,

|vk| ≤ C0 in C ∩BR,

vk = 0 on ∂C ∩BR,

then there exists a subsequence vk → v uniformly on C ∩BR−ǫ with v inheriting the
above properties.

Proof. Since C ∩ ∂BR is a Lipschitz submanifold, C is compactly contained in a
slightly larger cone C′ ⊃ C, and the unique nonnegative harmonic solution with
zero Dirichlet data on ∂C′ is given as rα1−δfδ. We note that fδ(θ) is uniformly
bounded away from 0 on C. We let v = M1r

α1−2δfδ with M1 chosen later. Then

∆v = M1[(α1 − 2δ)(α1 − 2δ + n− 2)− (α1 + δ)(α1 + δ + n− 2)]rα1−2fδ.

We note that α1 − 2− 2δ < γ, so that if M1 is chosen large enough,

∆v ≤ −C0|x|α1−2−2δ ≤ −C0|x|γ

Using v as a barrier, the convergence result will follow by standard techniques. �

7 The assumption that ∂C ∩ Sn−1 is an (n − 2)-dimensional manifold of class C1,α is not
necessary. As we will see in Section 3, ∂C ∩ Sn−1 may be a Lipshitz manifold provided the
Lipschitz constant is small enough depending on γ, that appears in (2.2)
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An alternate proof of the above lemma, for a more general domain and more
general operator, is given in the proof of Lemma 4.5.

We now give a proof of the main theorem in this Section.

Proof of Theorem 2.1. Fix x0 ∈ C ∩ B1/2, and consider the nonnegative homoge-
neous solution u = rα1f1(θ). By the standard boundary Harnack principle, any
solution u as given in the statement of Theorem 2.1 will be comparable, and con-
sequently bounded from below up to a multiplicative constant, by rα1f(θ). Thus,
we consider u = rα1f(θ). Furthermore, any function v as given in the statement of
Theorem 2.1 will be bounded from above by a constant multiple of the superhar-
monic function defined by

∆v = −|x|γ in C ∩B1,

v ≥ 0 in C ∩B1,

v = 0 on ∂C ∩B1,

v = 1 on C ∩ ∂B1.

Thus, it suffices to prove the theorem for v as defined above and with u = rα1f(θ).
In the following we use r as a scaling parameter which may coincide with r as the

polar axis for homogeneous functions. We first show that there exists some constant
C such that v(rx0) ≤ Cu(rx0) for all 0 < r ≤ 1/2. Suppose by way of contradiction
that no such C exists, so that if v(tx0) = tα1h(t), then lim supt→0 h(t) = ∞. We
note that h is continuous away from the origin since v is continuous. For 0 < r < 1,
we consider the rescaled functions

wr(x) :=
v(rx) − v(rx0)

u(rx0)u(rx)

supB1∩C |v(rx) − v(rx0)
u(rx0)u(rx)|

,

defined on B1/r. We point out that wr(x
0) = 0 and supB1∩C |wr | = 1. We also

define

ak := sup
B1∩C

∣

∣

∣

∣

v(2−kx)− v(2−kx0)

u(2−kx0)
u(2−kx)

∣

∣

∣

∣

2−kα1 .

By letting x = tx0, we have

v(rx) − v(rx0)

u(rx0)
u(rx) = [rα1h(tr) − h(r)tα1 ]rα1 .

If rk = 2−k, and if 1/2 ≤ t ≤ 1 we have

osc[rk/2,rk]h ≤ ak.

Since lim supt→0 h(t) = +∞, it follows that

∑

ak = +∞. (2.3)

By the definition of wr we have

sup
B

2j

|wrk(x)| =
supB

2j
|v(rkx)− v(rkx

0)
u(rkx0)u(rkx)|

akr
α1

k
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We use the triangle inequality to obtain

|v(rkx)−
v(rkx

0)

u(rkx0)
u(rkx)| ≤ |v(rkx)−

v(2jrkx
0)

u(2jrkx0)
u(rkx)|

+

j−1
∑

i=0

∣

∣

∣

∣

v(2j−irkx
0)

u(2j−irkx0)
u(rkx)−

v(2j−i−1rkx
0)

u(2j−i−1rkx0)
u(rkx)

∣

∣

∣

∣

.

(2.4)
To bound the first term in the above inequality, we have by definition that

sup
B

2j

|v(rkx)−
v(2jrkx

0)

u(2jrkx0)
u(rkx)| = ak−j(2

jrk)
α1 . (2.5)

To bound the second term in the inequality, we note that
∣

∣

∣

∣

v(2j−irkx
0)

u(2j−irkx0)
u(2j−i−1rkx

0)− v(2j−i−1rkx
0)

u(2j−i−1rkx0)
u(2j−i−1rkx

0)

∣

∣

∣

∣

=

∣

∣

∣

∣

v(2j−irkx
0)

u(2j−irkx0)
u(rk2

j−i−1x0)− v(2j−i−1rkx
0)

∣

∣

∣

∣

≤ ak−(j−i)(2
j−irk)

α1 .

Also, since there exists C depending on x0 such that if |x| = 1 then u(rx) ≤
Cu(rx0). If we utilize the homogeneity of u, we conclude that

sup
B

2j

u(rkx) ≤ Cu(2jrkx
0).

We use this and the homogeneity of u to obtain

sup
B

2j

∣

∣

∣

∣

v(2j−irkx
0)

u(2j−irkx0)
u(rkx) −

v(2j−i−1rkx
0)

u(2j−i−1rkx0)
u(rkx)

∣

∣

∣

∣

= sup
B

2j

u(rkx)

u(2j−i−1rkx0)

×
∣

∣

∣

∣

v(2j−irkx
0)

u(2j−irkx0)
u(2j−i−1rkx

0)− v(2j−i−1rkx
0)

∣

∣

∣

∣

≤ Cu(2jrkx
0)

u(2j−i−1rkx0)
ak−(j−i)(2

j−irk)
α1

= Cak−(j−i)(2
j+1rk)

α1

(2.6)

We will now bound the Laplacian of wrk . From (2.3) we may apply Lemma A.1
to the sequence {ak} to conclude that there exists a subsequence kl such that for
any j ∈ N,

lim sup
kl→∞

∑j
i=1 akl−i

akl

≤ j.

By choosing rkl
and combining the above inequality with (2.4), (2.5), and (2.6) we

conclude

sup
B

2j

|wrk(x)| ≤ Cj2jα1 . (2.7)

From the choice of akl
in Lemma A.1 and the fact that

∑

ak = +∞ it follows
that eventually akl

≥ l−2
k , so that if rkl

= 2−kl , then

akl
≥ [ln(1/rk)]

2.
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We now use the assumption 2 − α1 + γ > 0. Since ∆u = 0 and ∆v = −|x|γ we
have that for a sequence rkl

→ 0 there holds

|∆wk| ≤
r2+γ
k |x|γ

supB1∩C |v(rx) − v(rx0)
u(rx0)u(rx)|

≤ Cr2−α1+γ
k [ln(1/rk)]

2|x|γ → 0, (2.8)

as long as 2− α1 + γ > 0.
By Lemma 2.2 there exists a subsequence wk → w uniformly in BR ∩ C for any

R > 0. Furthermore w will satisfy

(i) ∆w = 0 from (2.8),

(ii) sup
B1∩C

|w| = 1 ,

(iii) w(x0) = 0,

(iv) w(x) ≤ C|x|α1 ln(|x|+ 1) for |x| ≥ 1 from (2.7).

By property (ii) we have that w is not identically zero. By property (iii) we have
that w changes sign, so that by (2.1) we have supBR

|w| ≥ cRα2 for R ≥ 1. Since
|x|α1 ln(|x|+ 1) < |x|α2 , for large x, this contradicts property (iv).

Thus, we have shown that for any x0 ∈ C there exists a constant C depending
on x0 such that

v(rx0) ≤ Cu(rx0) for any 0 < r ≤ 1/2.

For any other point x1 ∈ C ∩ B1/2, we rescale by v(x|x1|/2), and note that

|∆v(x|x1|/2)| ≤ |x1/2|2|x|γ , so that |∆v(x|x1|/2)| ≤ C1 in C ∩ (B3/4 \ B1/4). We

now restrict ourselves to the situation in which x1/|x1| is uniformly bounded away
from ∂C. Since v(x0|x1|/2) ≤ C2|x1|α1 , we use the (interior) Harnack inequality on
C ∩ (B3/4 \B1/4) to conclude that

v(x1) ≤ C3(C2|x1|α1 + C1|x1|2+γ) ≤ C4|x1|α1 ,

where in the second inequality we have used 2− α1 + γ > 0, and |x1| < 1.
The constant C3 does not remain bounded as x1 approaches ∂C. Furthermore,

we also have that f1(x
1/|x1|) goes to zero as x1/|x1| approaches ∂C ∩Sn−1. If x1 is

close to ∂C, we employ the boundary Harnack principle (1.1) with right hand side
as given in [5] which is applicable as long as ∂C ∩ (B3/4 \ B1/4) ∈ C1,β . We may
then conclude that

v(x1) ≤ C5u(x
1)(‖v‖L∞ + |x1|2+γ) ≤ C6u(x

1) = C6|x1|α1f1(x
1/|x1|),

and this concludes the result.
�

We now show that the assumption that 2 − α1 + γ > 0 is essential. We first
consider the easier case when 2 − α1 + γ < 0, and show that Theorem 2.1 cannot
possibly hold. For clarity of exposition we restrict the analysis to the case when
γ = 0, so that the right hand side is constant.

Theorem 2.3. Let u and v be as in the statement of Theorem 2.1, and assume
∆v = −1 with 2− α1 < 0. Then for any C > 0, there exists ρ > 0 such that

Cu < v in C ∩Bρ.
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Proof. We note that by the standard boundary Harnack inequality, it is enough to
consider u = rα1f1(θ). We normalize f1 so that sup f1 = 1. Fix C > 0, and let
z ∈ Br ∩C. Define h(x) := |x− z|2/(2n). We note that h is constant on ∂Br(z). If
there exists y ∈ ∂Br(z) with h(y) ≤ Cu(y)− v(y), then

r2

2n
= h(y) ≤ Cu(y)− v(y) ≤ Crα1 .

For small enough r, the above inequality cannot hold since 2 < α1. Then for small
enough r, we have h ≥ Cu− v on ∂Br(z), and hence also on ∂(Br(z) ∩ C). By the
comparison principle h ≥ Cu − v in Br(z) ∩ C, and so 0 = h(0) ≥ Cu(z) − v(z),
so that Cu(z)− v(z) ≤ 0. Since C was arbitrary, for any δ > 0, we may choose r0
such that if r < r0 and x ∈ Br ∩ C, then (C + δ)u(x) − v(x) ≤ 0. Since u > 0 in
Br ∩ C it follows that Cu(x) − v(x) < 0 for any x ∈ Br ∩ C. �

We can show that Theorem 2.1 is sharp by considering the critical case when
2− α1 = 0. When dimension n = 2 this result was shown in [11].

Theorem 2.4. Let C be a cone in Rn with α1 = 2. Then the boundary Harnack
principle with right hand side does not hold.

Proof. Let v be as in the statement of the Theorem, and let u = rα1f1(θ). Suppose
that there exists C > 0 such that

C−1u(x) ≤ v(x) ≤ Cu(x) for all x ∈ C ∩B1/2. (2.9)

We now use a Weiss-type monotonicity formula for superharmonic functions as
in [9]. The function

W (r, v) :=
1

rn+2

ˆ

Br∩C

(|∇v|2 − 2v) − 2

rn+3

ˆ

∂Br∩C

v2,

is monotonically increasing in r and is constant if and only if v is homogeneous.
We now consider the rescaled functions vr(x) := v(rx)/r2 . From (2.9) and the fact
that u is homogeneous of degree 2 we have that for any fixed x ∈ C ∩ B1, there
exists Cx such that

C−1
x r2 ≤ vr(x) ≤ Cxr

2 for any 0 < r < 1. (2.10)

From Lemma 2.2 we obtain that for a sequence rk → 0, vrk → v0 uniformly in
C ∩BR for any R > 0. Furthermore, we will show that v0 satisfies

(i) v0 is homogeneous of degree 2,

(ii) v0 ≥ 0,

(iii) v0 = 0 on ∂C,
(iv) ∆v0 = −1 in C,
(v) v is not identically zero.

Property (i) follows from the Weiss-type monotonicity formula in the following
manner. One may easily check thatW (ρr, v) = W (ρ, vr). SinceW (r, v) is monotone
in r it follows that

W (ρ, v0) = lim
rk→0

W (ρ, vrk) = lim
rk→0

W (ρrk, v) = W (0+, v) for any ρ > 0.

Since W (ρ, v0) is constant, then v0 is homogeneous of degree 2, see [9]. Properties
(ii)-(iv) follow easily from the definition of vr and the uniform convergence. Finally,
property (v) follows from (2.10). Then v0 = r2g where the spherical piece g satisfies
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2ng +∆θg = −1. We now utilize the Fredholm Alternative for existence for weak
solutions, see Chapter 6 in [6]. Since f1 (in (2.1)) is a nontrivial solution, the
solution g exists if and only if

0 = 〈−1, h〉 =
ˆ

C∩∂B1

−h,

for all h such that 2nh+∆θh = 0 (since the operator 2n+∆θ is self-adjoint). We
recall that 2nf1 +∆θf1 = 0. Then a necessary condition for g to exist is that

0 = 〈−1, f1〉 =
ˆ

C∩∂B1

f1.

Since f1 > 0 in C∩∂B1, the above equality cannot be true. Consequently, a solution
g cannot exist, and we have a contradiction. �

3. Boundary Harnack in Lipschitz domains

In this section we consider Lipschitz domains ΩL,R where

ΩL,R := {(x′, xn) ∈ BR : xn > g(x′)},

and g is Lipschitz with constant L, that is |g(x′) − g(y′)| ≤ L|x′ − y′|. We will
assume g(0) = 0, and will write ΩL when R = 1 and ΩL,∞ if R = ∞. Also, we
define u ∈ S(ΩL,R) if

∆u(x) = 0 in ΩL,R,

u(x) = 0 on Ωc
L,R ∩BR,

and for γ ∈ R we define u ∈ S(ΩL,R, d
γ) if

|∆u(x)| ≤ (dist(x, ∂ΩL,R ∩BR))
γ in ΩL,R,

u(x) = 0 on Ωc
L,R ∩BR.

It will be necessary to use the solutions on right circular cones as barriers. Conse-
quently, we define

CL := {(x′, xn) : xn > L|x′|}.
If u ∈ S(CL,∞) and u ≥ 0, then as noted in Section 2, we have u = rα1f1(θ) (and
unique up to multiplicative constant), and we will denote rα1f1 by uL. We note
that the definition of C−L still makes sense when −L < 0; although, the cone C−L

is not convex. In this situation we write C−L and similarly u−L for the nonnegative
solution with zero boundary data on C−L.

In order to prove a boundary Harnack principle with a right hand side for Lips-
chitz domains we will adapt the proof from Section 2 in the following manner:

• We will employ compactness methods and thus need a convergence result
provided by Lemma 3.2.

• We will need to bound the behavior of a nonnegative harmonic function at
the boundary from above and below which is given in Lemma 3.3.

• We will need a Liouville type result which is given in Lemma 3.6.
• We will then adapt the proof of Theorem 2.1 (again using compactness
techniques) to obtain the proof of Theorem 3.10.
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Lemma 3.1. Let L ≤ M and u ∈ S(ΩL) with u ≥ 0. Let x ∈ ∂ΩL ∩B1/2 and let
y ∈ ΩL with dist(y, ∂ΩL) > δ. Then there exists a constant C = C(n,M, δ) such
that

sup
Br(x)

u ≤ Cu(y) for all r ≤ 1/4,

sup
B1/4

u ≥ C−1u(y).

We give later a proof of a more general version of this lemma; see Lemma 4.4 in
Section 4.

Lemma 3.2. Let ΩLk,Rk
be a sequence of domains with Lk ≤ M , Rk ≥ 1, and

0 ∈ ∂ΩLk
. Let uk ∈ S(ΩLk,Rk

, dγ), and let α be the degree of homogeneity for uM ,
and assume 2− α+ γ > 0. We further assume either

(1) uk ≥ 0 and sup
B1/2

uk ≤ 1, or

(2) sup
Br

uk ≤ Crβ for r ≤ 1 and some constants C, β > 0.

Then there exists a subsequence with a limiting domain ΩL0,R0
and a limiting func-

tion u0 ∈ S(ΩL0,R0
, dγ) such that

sup
Br

|uk − u0| → 0 as k → ∞,

for all r < R0.

We give later a proof of the more general Lemma 3.2 in Section 4 that implies
Lemma 3.2.

Lemma 3.3. Let u ∈ S(ΩL) with u ≥ 0. Let L < M and let α1 be the degree
of homogeneity for uM and β the degree of homogeneity for u−M . There exists
constants c1, c2 depending only on n,M, and M−L such that for any x ∈ ∂ΩL∩B1/2

(1) sup
Br(x)

u ≥ c1u(en/2)r
α1 ,

(2) sup
Br(x)

u ≤ c2u(en/2)r
β ,

for any r ≤ 1/4.

Proof. Let x ∈ ∂ΩL ∩ B1/2. From Lemma 3.1 we have u(y) ≥ C1u(en/2) for any
y ∈ ∂B1/4(x)∩(CM+x). We now consider the translated function uM (y−x) which is
unique up to multiplicative constant and homogeneous of degree α1. By multiplying
uM (y − x) by a positive constant, we may assume that supB1/4(x)

uM (y − x) =

C1u(en/2). Then uM (y − x) ≤ u(y) on ∂B1/4(x) ∩ (CM + x). Since uM (y − x) = 0
on ∂(CM+x), then from the comparison principle we conclude that uM (y−x) ≤ u(y)
on B1/4(x) ∩ (CM + x). Then

sup
Br(x)

u(y) ≥ sup
Br(x)

uM (y − x) = C1u(en/2)r
α1 ,

which proves (1). In a similar manner we obtain property (2) by bounding u from
above by u−M . �
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Corollary 3.4. (To Lemma 3.3) Let u ∈ S(ΩL) with L < M , and let β be the degree
of homogeneity for u−M . There exists a constant C depending only on dimension
n,M, and M − L such that for any x ∈ ∂ΩL ∩B1/2

sup
Br(x)

|u| ≤ C(sup
B1

|u|)rβ ,

for any r ≤ 1/4.

Proof. We consider the solution

∆v = 0 in ΩL,

v = 0 on Ωc
L ∩B1,

v = sup
B1

u on ∂B1 ∩ ΩL.

From Lemma 3.3 we have that

v ≤ Cv(0, 1/2)rβ ≤ C(sup
B1

v)rβ .

From the comparison principle we have that u ≤ v on B1. By considering −v we
obtain a similar bound from below to conclude the proof. �

Remark 3.5. A rescaling and translation to the origin of Corollary 3.4 shows that
if L < M and β is the degree of homogeneity for u−M , then if u ∈ S(ΩL, R) with
R > 2, then

(sup
B1

|u|)Rβ ≤ c2 sup
BR

|u|.

Lemma 3.6. Let u, v ∈ S(ΩL,∞) with u, v ≥ 0, then u = cv for some constant
c ≥ 0.

Proof. Consider w = u + v. Then w ≥ u. Let c ≥ 1 be the largest constant such
that cu ≤ w. Then there exists a sequence {xk} ∈ ΩL,∞ such that

lim
k→∞

cu(xk)

w(xk)
= 1. (3.1)

We now invoke the standard boundary Harnack principle for Lipschitz domains on
the nonnegative harmonic functions w − cu and w. There exists C1 > 0 such that

sup
Brk

w − cu

w
≤ C1 inf

Brk

w − cu

w
≤ C1

(

1− cu(xk)

w(xk

)

, (3.2)

with rk := max{2|xk|, k}. From (3.1) the right hand side of (3.2) goes to zero.
Then w ≡ cu, and the result follows. �

Lemma 3.7. Let u, v ∈ S(ΩL,∞) with u ≥ 0. If there exist constants C,R > 0
such that

sup
Br

|v| ≤ C sup
Br

u for r ≥ R,

then v = cu for some c ∈ R.

Remark 3.8. The significance of Lemma 3.7 is that we do not require v ≥ 0.
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Proof. Let vr satisfy
∆vr = 0 in Br ∩ ΩL,∞

vr = v+ on ∂(Br ∩ ΩL,∞).

By Lemma 3.3 we have that

sup
B2r

|v| ≤ C sup
Br

|v| for r ≥ 1,

and some constant C independent of r. Then

vr(r/2, 0, . . . , 0) ≤ C sup
Br

|v| ≤ C sup
Br/2

|v| ≤ C sup
Br/2

u ≤ Cu(r/2, 0, . . . , 0)

with the last inequality following form Lemma 3.1. By the standard boundary
Harnack principle

sup
Br/2

v+

u
≤ sup

Br/2

vr
u

≤ C
v(r/2, 0, . . . , 0)

u(r/2, 0, . . . , 0)
≤ C1.

Since the constants are independent of r ≥ 1, we conclude that v+ ≤ C1u in ΩL,∞.
The same argument holds for v− so that |v| ≤ C1u in ΩL,∞.

Let w = C1u − v ≥ 0. Then from Lemma 3.6 we have that w = cu for some
constant c, so that v = (C1 − c)u. �

We will need an improvement over the previous lemma.

Lemma 3.9. Let u, v ∈ S(ΩL,∞) with u ≥ 0. If there exist constants C,R > 0
such that

sup
Br

|v| ≤ C(ln(r + 1)) sup
Br

u for r ≥ 1,

then v = cu for some c ∈ R.

In Section 4 we give a proof of a more general result in Theorem 4.2.

Theorem 3.10. Let 0 ∈ ∂ΩL,2 with L < M , and fix x0 ∈ ΩL. Assume further that
B1 ∩ {xn > 1/4} ⊆ ΩL,2. Let α1 be the degree of homogeneity for uM . Let u, v ≥ 0
and u, v ∈ S(ΩL,2, d

γ) with ∆u,∆v ≤ 0 and u(x0) = v(x0) = 1, and assume that
2 − α1 + γ > 0. Then there exists a uniform constant C > 0 (depending only on
dimension n, Lipschitz constant M , M − L, and dist(x0, ∂ΩL,2)) such that

C−1v(x) ≤ u(x) ≤ Cv(x), (3.3)

for all x ∈ B1/2.

Proof. It will suffice to assume ∆u = 0 in ΩL,2 and show that v ≤ Cu in B1/2. We

initially prove the theorem for a fixed x0 ∈ CM ∩ ∂B1/2.
Suppose by way of contradiction that the theorem is not true. Then there exists

uk ∈ S(ΩLk,2) and vk ∈ S(ΩLk,2, d
γ) with ∆vk ≤ 0 and vk(x

0) = uk(x
0) = 1 and

points xk ∈ ΩLk,2 ∩B1/2 such that

kuk(xk) < vk(xk). (3.4)

Harnack chains work on Lipschitz domains; therefore, from the interior Harnack
inequality, by multiplying vk and uk by constants (uniformly bounded above and
below), we may assume that

vk(x
′
k, en) = uk(x

′
k, en) = 1. (3.5)
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Because of the interior Harnack inequality, in order for (3.4) to occur, it is necessary
that dist(xk, ∂ΩLk

) → 0. We let yk = (x′
k, en), and similar to the proof of Theorem

2.1 we define

wr,k(x) :=
vk(rx) − vk(ryk)

uk(ryk)
uk(rx)

supB1∩C |vk(rx) − vk(ryk)
uk(ryk)

uk(rx)|
,

and

ak,m := sup
B1∩C

|vk(2−mx)− vk(2
−myk)

uk(2−myk)
uk(2

−mx)| sup
B

2−m

uk.

For fixed m, it follows by the standard boundary Harnack Principle that

bm := sup
k

ak,m < ∞.

Just as in the proof of Theorem 2.1, by the assumption (3.4) we necessarily obtain
that

∑

bm = ∞.

From Lemma A.1 there exists a subsequence bml
such that for any fixed j we have

lim sup
ml→∞

∑j
i=1 bml−i

bml

≤ j.

For any N > 0 with N ∈ N, there exists Ñ ∈ N, such that if ml ≥ Ñ , then there is
a k = k(ml) such that ak,ml

satisfies

∑j
i=1 ak,ml−i

aml

≤ Cj for j ≤ N. (3.6)

If we let rk = 2−ml , then for those chosen k we have that

sup
B

2j

|wrk,k(x)| =
supB

2j
|vk(rkx) − v(rkyk)

u(rkyk)
u(rkx)|

supBrk
uk

,

and
∣

∣

∣

∣

vk(2
j−irkyk)

uk(2j−irkyk)
uk(2

j−i−1rkyk)−
vk(2

j−i−1rkyk)

uk(2j−i−1rkyk)
uk(2

j−i−1rkyk)

∣

∣

∣

∣

=

∣

∣

∣

∣

vk(2
j−irkyk)

uk(2j−irkyk)
uk(rk2

j−i−1yk)− v(2j−i−1rkyk)

∣

∣

∣

∣

≤ ak,ml−(j−i) sup
B

2j−irk

uk.
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Also we have that

sup
B

2j

∣

∣

∣

∣

vk(2
j−irkyk)

uk(2j−irkyk)
uk(rkx)−

vk(2
j−i−1rkyk)

uk(2j−i−1rkyk)
u(rkx)

∣

∣

∣

∣

= sup
B

2j

uk(rkx)

uk(2j−i−1rkyk)

×
∣

∣

∣

∣

vk(2
j−irkyk)

uk(2j−irkyk)
uk(2

j−i−1rkyk)−
vk(2

j−i−1rkyk)

uk(2j−i−1rkyk)
uk(2

j−i−1rkyk)

∣

∣

∣

∣

≤ sup
B

2j

uk(2
jrkx)

uk(2j−i−1rkyk)
aml−(j−i) sup

B
2j−irk

uk

≤ Caml−(j−i)
uk(2

jrkyk)

uk(2j−i−1rkyk)
uk(2

j−irk)uk(yk)

≤ Caml−(j−i)uk(2
jrkyk),

(3.7)

with the last inequality following from the bounds in Lemma 3.3. Then combining
estimates (3.6) and (3.7) we obtain

sup
B

2j

|wrk,k(x)| ≤ Cj
supB

2j
uk(rkx)

supB1
uk(rkx)

. (3.8)

We now use Lemma 3.2 as rk → 0 to obtain limiting functions and domains. By
choosing a subsequence we first consider the limit function

u = lim
rk→0

uk(rkx)

supBrk
uk

.

We also obtain a limiting global Lipschitz domain Ω on which u is the unique
(up to multiplicative constant) nonnegative harmonic function that vanishes on the
boundary. A further subsequence guarantees yk → y0 ∈ Ω. As in the proof of
Theorem 2.1, as rk → 0 we have that |∆wrk,k| → 0. Then by picking a further
subsequence, as rk → 0 we obtain a limiting global Lipschitz domain function w
with the following properties

(i) ∆w = 0 in Ω and w = 0 on Ωc,

(ii) sup
B1

|w| = 1 ,

(iii) w(y0) = 0,

(iv) w(x) ≤ Cu(x) ln(|x|+ 1) for |x| ≥ 1 from (3.8).

From property (iv) Lemma 3.9 guarantees w(x) = cu(x), but then both properties
(ii) and (iii) cannot hold since u(y0) > 0.

An interior Harnack inequality with a Harnack chain will also give the result for
x0 ∈ B1/2 ∩ΩL and the constant C depending on dist(x0, ∂ΩL). �

Remark 3.11. If one does not assume that B1 ∩ {xn > 1/4} ⊆ ΩL, then one
may modify the proof at the expense that (3.3) holds for x ∈ Br with r ≤
min{(2L)−1, 1/2}.
Corollary 3.12. Let u, v,Ω have the same assumptions as in Theorem 3.10 with
the exception that v is no longer required to satisfy ∆v ≤ 0 and v ≥ 0. Assume
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that γ = 0 and M is small enough such that 2 − α1 > 0. Then there exists β > 0
depending on M and M − L such that

∥

∥

∥

v

u

∥

∥

∥

C0,β(B1/2∩ΩL)
≤ C

(

‖v‖L∞(ΩL) + ‖f‖L∞(ΩL)

)

u(ren/2)
. (3.9)

Proof. The argument for how the boundary Harnack principle implies Hölder reg-
ularity is now standard (see [1]). We outline how to adapt to the case when w
solves

∆w = −1 in ΩL,

w = 0 on ∂ΩL ∩B1,

w = |v| on ΩL ∩ ∂B1.

From (3.3) it follows that
∥

∥

∥

w

u

∥

∥

∥

ΩL,1/2

≤ C
w(en/2)

u(en/2)
. (3.10)

It is now a standard argument (see [1]) that (3.10) implies that there exists β
depending on M and M − L such that

∥

∥

∥

w

u

∥

∥

∥

C0,β(ΩL,1/2)
≤ C

w(en/2)

u(en/2)
.

Since |v| ≤ w we obtain a Hölder growth bound for v/w at ∂ΩL,1/2. The interior
Hölder estimates for both v and u combined with the fact that |v|/u is bounded
give interior Hölder estimates for v/u. The interior Hölder estimates combined with
the boundary Hölder estimates for v/u are combined in a standard way to conclude
(3.9). �

4. Second-Order Elliptic Operators

The techniques employed in Section 3 can be applied to other elliptic operators,
and in this section we extend the results of Section 3 to second order linear ellip-
tic operators in divergence form on Lipschitz domains. Specifically, we consider
operators of the form

Lu = (aijui)j + biui + cu

We assume the following ellipticity conditions

Λ−1|ξ|2 ≤ 〈aij(x)ξ, ξ〉 ≤ Λ|ξ|2,
for some Λ > 0 and for all nonzero ξ ∈ Rn. Furthermore, aij(x) is a real n × n
matrix. For the lower order terms we assume |c(x)|,∑ |bi(x)| ≤ Λ − 1 and that
c(x) ≤ 0.

We will continue with the notation of Section 3; however, we now write u ∈
SL(ΩL,R) if

Lu(x) = 0 in ΩL,R ∩BR,

u(x) = 0 on Ωc
L,R ∩BR,

and that u ∈ SL(ΩL,R, d
γ) if

|Lu(x)| ≤ (dist(x, ∂ΩL,R ∩BR))
γ in ΩL,R,

u(x) = 0 on Ωc
L,R ∩BR.

To apply the Hölder continuity estimates for elliptic operators we will require that

γ > −2/n;
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see Theorem 8.27 in [7]. Since the boundary is Lipschitz, this will ensure the
correct integrability assumptions for the right hand side. We will assume these
bounds throughout the section whenever referencing SL(ΩL,R, d

γ).
From the forthcoming Lemma 4.1, it will follow that if u ≥ 0 and u ∈ SL(CL,∞),

then u is unique up to multiplicative constant and we again denote u by uL; however,
uL will not necessarily be homogeneous. We recall that CL is defined although not
convex when L < 0. To emphasize when −L < 0, we again write C−L and u−L

when u ∈ SL(C−L). We will follow the same outline as in Section 3.
In Section 3 we utilized the standard boundary Harnack principle. Since the

standard boundary Harnack principle is unavailable when considering the zero-
order term c(x), we prove the next two Lemmas under the situation bi, c ≡ 0.

Lemma 4.1. Let u, v ∈ SL(ΩL,∞) with u ≥ 0. Assume also that bi, c ≡ 0. If there
exists C > 0 such that

sup
BR

|v| ≤ C sup
BR

u for R ≥ 1,

then there exists c ∈ R such that v ≡ cu.

Proof. When bi, c ≡ 0, there is a standard Boundary Harnack principle for diver-
gence form equations [3]; therefore, the proof of Lemma 3.6 holds in this situation,
and so the proof of Lemma 3.7 also holds as well. �

Theorem 4.2. Assume L has no lower order terms; i.e, Lw = ∂j(a
ijui). Let

v, u ∈ SL(ΩL,∞) with u ≥ 0, and assume bi, c ≡ 0. If there exists C > 0 such that

|v(x)| ≤ C ln(|x| + 1)u(x) for |x| ≥ 1,

then v(x) = cu(x) for some c ∈ R.

Remark 4.3. The proof given below for Theorem 4.2 depends on the function g
being slowly varying at ∞. Thus, the same proof will actually show a stronger
result: If for every ǫ > 0 there exists Cǫ such that

|v(x)| ≤ Cǫ|x|ǫu(x) for |x| ≥ 1,

then v = cu for some c ∈ R.

Proof. Suppose by way of contradiction that v is not a constant multiple of u. Then
by Lemma 4.1 we have

lim sup
R→∞

(

sup
BR

|v(x)|
u(x)

)

= ∞.

If h(R) = supBR
|v|/u, let g be the concave envelope of h. By assumption g(R) ≤

C ln(R+ 1) for R ≥ 1. The function g satisfies,

lim
R→∞

g(CR)

g(R)
= 1 for any C > 0. (4.1)

There also exist infinitely many Rk such that h(Rk) = g(Rk). We define

uk(x) :=
u(Rkx)

supBRk
u

and vk(x) =
v(Rkx)

supBRk
|v| .

From (4.1) we have that for any fixed ρ > 1, that

lim
Rk→∞

supBρ
|v|

supBρ
u

≤ 1. (4.2)
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By uniform continuity estimates up to the boundary for divergence form equations,
by picking a subsequence we have that

lim
Rk→∞

uk(x) = w1,

and that uk converges uniformly to w1 on compact sets. From (4.2) we also have
that

lim
Rk→∞

vk(x) = w2,

with uniform convergence on compact sets and with |w2| ≤ Cw1. There also ex-

ists a limiting operator L0 and limiting Lipschitz domain Ω̃ such that w1, w2 ∈
SL0

(Ω̃L,∞). Then from Lemma 4.1 we conclude that w2 = cw1 for some c ∈ R.
Without loss of generality we assume c = 1.

Then for any ǫ > 0, there exists Nǫ ∈ N such that if k ≥ Nǫ, then

sup
B2

|vk − uk| < ǫ.

By the standard boundary Harnack principle

sup
B1

|vk − uk|
uk

≤ C
‖vk − uk‖L∞(B2)

uk(en/2)
≤ Cǫ.

We fix x1 ∈ ΩL,∞. We also have

lim
Rk→∞

|vk(R−1
k x1)|

|uk(R
−1
k x1)| ≤

v(x1)

u(x1)

1

g(Rk)
→ 0.

Then for large enough k we have |vk(R−1
k x1)| ≤ uk(R

−1
k x1)/2. Finally, we conclude

then that

u(x1)/2

u(x1)
≤ sup

B1

|vk − uk|
uk

≤ Cǫ.

The C in the above estimate only depends on the ellipticity constants of aij and the
Lipschitz constant for the domain. Consequently, we may choose ǫ small enough
so that 2Cǫ < 1, which implies u(x1) = 0 which is a contradiction since u > 0 in
ΩL,∞. �

For the remainder of the section we no longer assume that the lower order terms
are zero.

Lemma 4.4. Let L ≤ M and u ∈ SL(ΩL, d
γ) with u ≥ 0 and Lu ≤ 0. Assume

also 0 ∈ ∂ΩL. Let x ∈ ∂ΩL∩B1/2 and let y ∈ ΩL∩Br(x) with r ≤ 1/4. Then there
exists a constant C depending only on dimension n, M , and dist(y, ∂ΩL) such that

sup
Br(x)

u ≤ Cu(y) for all r ≤ 1/4,

sup
B1/4

u ≥ C−1u(y).

Proof. Since u ≥ 0 and Lu ≤ 0 and u ∈ SL(ΩL,R, d
γ), this is an application of the

interior weak Harnack inequality as well as uniform Hölder continuity up to the
boundary, see [7].

�

We now state the analogue of Lemma 3.2.
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Lemma 4.5. Let ΩLk,Rk
be a sequence of domains with Lk ≤ M , Rk ≥ 1, and

0 ∈ ∂ΩLk
. Let uk ∈ SL(ΩLk,Rk

, dγ), and assume γ > −2/n. Further assume either

(1) uk ≥ 0 and sup
B1/2

uk ≤ 1, or

(2) sup
Br

|uk| ≤ Crβ for r ≤ 1 and some constants C, β > 0.

Then there exists a subsequence with a limiting domain ΩL0,R0
and a limiting func-

tion u0 ∈ S(ΩL0,R0
, dγ) such that

sup
Br

|uk − u0| → 0,

for all r < R0.

Proof. This is an application of uniform Hölder continuity up to the boundary,
see [7]. �

Lemma 4.6. Let u ∈ SL(ΩL) with u ≥ 0 and Lu ≤ 0. Let L < M . There
exist constants c1, c2, β, α depending only on n,M,Λ and M − L such that for any
x ∈ ∂ΩL ∩B1/2

(1) sup
Br(x)

u ≥ c1u(en/2)r
α,

(2) sup
Br(x)

u ≤ c2u(en/2)r
β ,

for any r ≤ 1/4.

Proof. Property (2) is just uniform Hölder continuity up to the boundary. Assume
by way of contradiction that (1) is not true. Then there exists a sequence satisfying

(1) uk ∈ SLk
(ΩLk

, dγ)

(2) uk ≥ 0

(3) Lkuk ≤ 0

(4) uk(en/4) ≤
uk(en/2)

k
from Lemma 4.4.

We rescale and let

wk =
uk(rkx)

supBrk
uk

.

From Lemma 4.5 we have that wk → w0 uniformly and there is a limiting Lipschitz
domain ΩL0

and limiting elliptic operator L0 such that u ∈ SL0
(ΩL0

). Now w0 ≥ 0,
and from the definition of wk we conclude that w0 is not identically zero. However,
w0(en/4) = 0 which contradicts the strong maximum principle. �

With the previous result, the proof of Theorem 4.7 proceeds exactly as in the
case of Theorem 3.10.

Theorem 4.7. Let 0 ∈ ∂ΩL with L < M , and fix x0 ∈ ΩL. Assume further that
B1 ∩ {xn > 1/4} ⊆ ΩL. Let γ > −2/n and let α be as in Lemma 4.6. Assume
u, v ≥ 0 and u, v ∈ S(ΩL, d

γ) with Lu,Lv ≤ 0 and u(x0) = v(x0) = 1, and also
assume that 2 − α + γ > 0 with α as given in Lemma 4.6. Then there exists a
uniform constant C > 0 (depending only on dimension n, Lipschitz constant M ,
M − L, and dist(x0, ∂ΩL)) such that

C−1v(x) ≤ u(x) ≤ Cv(x) (4.3)
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for all x ∈ B1/2.

Proof. The proof proceeds exactly as the proof of Theorem 3.10. We only highlight
how the lower order terms vanish in the blow-up regime. The rescaled functions

wr,k(x) :=
vk(rx) − vk(ryk)

uk(ryk)
uk(rx)

supB1∩C |vk(rx) − vk(ryk)
uk(ryk)

uk(rx)|
,

satisfy

Lrwr,k =
r2Lvk(rx)

supB1∩C |vk(rx) − vk(ryk)
uk(ryk)

uk(rx)|
, (4.4)

where for a function f we have

Lrf = (aij(rx)fi)j + rbi(rx)fi + r2c(rx)f.

Thus, in the blow-up regime the lower order terms disappear. As in the proof of
Theorems 2.1 and 3.10 we may bound the denominator in (4.4) from below by
rαk [ln(1/rk)]

2 for the constructed sequence of rk → 0. Using that the numerator is

bounded from above by r2−γ
k , we have that in the blow-up regime the right hand

side and lower order terms vanish. We then apply Lemma 4.1 and Theorem 4.2 as
in the proof of Theorem 3.10. �

Appendix A.

Lemma A.1. Let {ak} be a sequence with ak ≥ 0, and with infinitely many terms
nonzero. Further assume that

∑∞
k=1 ak = +∞. Then there exists a subsequence akl

such that for any j ∈ N,

lim sup
kl→∞

∑j
i=1 akl−i

akl

≤ j. (A.1)

Proof. If lim sup ak = ∞, one may simply choose a subsequence akl
such that

akl−i ≤ akl
for any 0 < i < kl and the result immediately follows. If 0 <

lim sup ak < ∞, one may choose a subsequence akl
such that lim akl

= lim sup ak,
and the result also follows.

We now consider the most difficult case when lim sup ak = 0. Define f1(k) = ak
for k ∈ N, and interpolate linearly between integers for any value x ≥ 1. Note that
limx→∞ f1(x) = 0. Let k1 = max{j ∈ N | aj = max{ak}}. We inductively choose

kl+1 = max{j > kl | aj = max{ak}∞k=kl+1}.
We define f2(kl) = akl

and interpolate linearly in between values of the subsequence
{kl}. Then f2(x) is strictly decreasing, and f2(k) ≥ ak for k ≥ k1.

We now use an inductive procedure to construct f3(x) which will be strictly
decreasing and convex. We choose a further subsequence by letting kl1 = k1. If
kli has been chosen, then we define f3 by letting f3(klj ) = aklj

for 1 ≤ j ≤ i and

linearly interpolating for all other values kl1 ≤ x ≤ kli . We choose

kli+1
= min

{

kj | kj > kli and
f3(kli − 1)− f3(kli)

2
+

f2(kj)− f2(kli)

2(kj − kli)
≥ 0

}

.

Such a minimum will exist since f3(x) is strictly decreasing on kl1 ≤ x ≤ kli . Then
f1(x) ≤ f2(x) ≤ f3(x), and f3(x) is strictly decreasing, convex, and f3(kli) = akli

.

For convenience we relabel f3(x) = g(x) and relabel our subsequence kli to be kl.
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Since g > 0, decreasing, and convex we may take a smooth approximation gǫ(x)
such that gǫ ≥ 0, g′ǫ ≤ 0, and g′′ǫ ≥ 0 it follows that g′ǫ(x + 1)gǫ(x) ≤ g′ǫ(x)gǫ(x) ≤
g′ǫ(x)gǫ(x + 1) so that

d

dx

[

gǫ(x+ 1)

gǫ(x)

]

≤ 0.

Then g(x+ 1)/g(x) is a decreasing function, so that limx→∞ g(x+ 1)/g(x) exists.
Since g(k) ≥ ak and the series

∑

ak diverges, then the series
∑

g(k) diverges.
By the ratio test it follows that

lim
k→∞

g(k − 1)

g(k)
≤ 1. (A.2)

This proves

lim
k→∞

∑j
i=1 g(k − i)

g(k)
≤ j.

when j = 1. By induction we assume it holds true for j. Then

lim
k→∞

∑j+1
i=1 g(k − i)

g(k)
= lim

k→∞

g(k − j + 1)

g(k)
+

∑j
i=1 g(k − i)

g(k)

= lim
k→∞

j+1
∏

i=1

g(k − i)

g(k − (i− 1))
+

∑j
i=1 g(k − i)

g(k)
.

Then by (A.2) as well as the induction hypothesis we conclude that

lim
k→∞

∑j+1
i=1 g(k − i)

g(k)
≤ 1 + j.

Finally, we use that akl
= g(kl) and akl−i ≤ g(kl − i) to conclude (A.1). �
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