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K-WEIGHT BOUNDS FOR γ-HYPERELLIPTIC SEMIGROUPS

ETHAN COTTERILL AND RENATO VIDAL MARTINS

Abstract. In this note, we show that γ-hyperelliptic numerical semigroups
of genus g ≫ γ satisfy a refinement of a well-known characteristic weight
inequality due to Torres. The refinement arises from substituting the usual
notion of weight by an alternative version, the K-weight, which we previously
introduced in the course of our study of unibranch curve singularities.

1. K-weights of numerical semigroups

Let S ⊂ N denote a numerical semigroup of genus g. Recall that this means that
the complement GS = N \ S is of cardinality g; say

GS = {ℓ1, . . . , ℓg}

where ℓi < ℓj whenever 1 ≤ i < j ≤ g. Following [3], we define the K-weight of S
to be the quantity

WK :=

g−1
∑

i=1

(ℓi − i) + g − 1.

The definition of the K-weight was motivated by the study of unibranch complex
curve singularities. It is also closely related to a more familiar notion of weight,
which we will call the S-weight, namely:

WS :=

g
∑

i=1

(ℓi − i).

The S-weight emerges naturally in the study of Weierstrass semigroups of (points
of) smooth complex curves. It is not hard to show that WK = WS whenever S is
the value semigroup of a Gorenstein singularity. In purely combinatorial terms, the
K- and S-weights agree if and only if S is a symmetric semigroup.

2. K-weights of γ-hyperelliptic semigroups

Now let γ ≥ 0 be an integer. Recall from [6] that S is γ-hyperelliptic if it satisfies
the following conditions:

(1) S has γ even elements in [2, 4γ]; and
(2) The (γ + 1)st positive element of S is 4γ + 2.

In [3], we conjectured that when g ≫ γ, any γ-hyperelliptic numerical semigroup S
satisfies

(1)

(

g − 2γ

2

)

+ 2γ ≤ WK ≤

(

g − 2γ

2

)

+ 2γ2.
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The inequalities (1) are not far-removed from the inequalities

(2)

(

g − 2γ

2

)

≤ WS ≤

(

g − 2γ

2

)

+ 2γ2

proved by Torres in [5, 6]. As the disparity between upper and lower bounds in
(1) is in general smaller than that of (2), we regard the K-weight inequalities as a
refinement of the S-weight inequalities.

In this note, we will prove the K-weight inequalities (1) are satisfied by any
γ-hyperelliptic semigroup of sufficiently large genus. In doing so, we adapt the
geometric interpretation of the S-weight given in [2]. Namely, each numerical semi-
group may be represented as a Dyck path τ = τ(S) on a g × g square grid Γ with
axes labeled by 0, 1, . . . , g. Each path starts at (0, 0), ends at (g, g), and has unit
steps upward or to the right. The ith step of τ is up if i /∈ S, and is to the right
otherwise. The weight WS of S is then equal to the total number of boxes in the
Young tableau TS traced by the upper and left-hand borders of the grid and the
Dyck path τ . The contribution of each gap ℓ of S to WS is then computed by the
number of boxes inside the grid and to the left of the corresponding path edge.

Theorem 2.1. Fix a choice of non-negative integer γ, and let S denote a γ-
hyperelliptic semigroup of genus g ≥ 2γ + 1. The K-weight of S then satisfies

the inequalities (1).

Proof. Suppose S is a γ-hyperelliptic semigroup of genus g. For the calculation
of the K-weight of S, the largest gap ℓg i N \ S is irrelevant, so we focus on the
subdiagram of Γ given by omitting the uppermost row of boxes in the grid, and on
the corresponding subtableau TS, which we will denote by TK.

It is well-known (and follows easily from the semigroup structure in any case)
that every even number greater than or equal to 4γ belongs to S. So the weight
contributed by elements m ≥ 4γ of S will be minimized when there are no such odd

elements m strictly less than ℓg. Geometrically, this means that TK stabilizes to a
staircase, i.e a path in which up- and rightward steps alternate. It follows easily
TK will be of minimal weight precisely when it is a staircase for which the γ even
numbers Pi ∈ [2, 4γ], 1 ≤ i ≤ γ that belong to S are maximal, namely when

Pi = 2γ + 2j, 1 ≤ j ≤ γ.

Since the first column of TK has precisely (g− 1)− (2γ+2− 1) = g− 2γ− 2 boxes,
we deduce that its total weight is

W (TK) =

(

g − 2γ − 1

2

)

and it follows that

WK = W (TK) + g − 1 =

(

g − 2γ

2

)

+ 2γ.

It is clear, moreover, that there are γ-hyperelliptic semigroups of genus g whose
K-weights realize the minimum value of WK.

Remark 2.2. Strictly speaking, the preceding geometric argument requires g ≥
2γ+2. However, it is easy to check that when g = 2γ+1, the minimal K-weight is

realized by a γ-hyperelliptic semigroup with an empty K-tableau TK. The K-weight

of the corresponding semigroup is then WK = g − 1 = 2γ, as desired. The same
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Figure 1. Tableau TK associated with the weight-maximizing γ-
hyperelliptic semigroup S0 = 〈4, 4γ + 2, 2g − 4γ + 1〉 when γ = 3
and g = 20. The (irrelevant) uppermost line is left empty, while
the disparity in weights between the maximizing and minimizing
semigroups is in red.

argument shows that when g = 2γ, the minimal K-weight is g− 1 = 2γ− 1. So our

lower bound on g is sharp.

We will now argue that the maximum possible γ-hyperelliptic K-weight is achieved
precisely when

S = S0 := 〈4, 4γ + 2, 2g − 4γ + 1〉

just as is the case for S-weights [6]. See Figure 1 for the K-tableau associated with
S0 when γ = 3 and g = 20.

Since K-weight and S-weight agree for symmetric semigroups, we may (and shall)
assume that S is nonsymmetric. We will exploit the dual relationship between ram-
ification and weight already used in [6] to prove that S0 is of maximal S-weight
among γ-hyperelliptic semigroups of genus g. (Indeed, our argument is a modifica-
tion of that used in [6].)

Namely, let R = R(S) denote the total ramification of S, given by

(3) R :=

g
∑

i=1

(mi − i) =

g
∑

i=1

mi −

(

g + 1

2

)

where m1 < · · · < mg are the g smallest nonzero elements of S. Using the structure
theory for γ-hyperelliptic semigroups presented in [5, 6], we may rewrite the total
ramification (3) of a γ-hyperelliptic semigroup S in the following form:

R =

γ
∑

i=1

(ni + ui) +

g−2γ
∑

i=1

(4γ + 2i)−

(

g + 1

2

)

where n1 < · · · < nγ are the smallest nonzero even elements and u1 > · · · > uγ are
the odd nonzero elements of S less than 2g, respectively.
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Maximizing WS is then equivalent to minimizing R(S). Similarly, maximizing
WK is equivalent to minimizing

(4) RK :=

γ
∑

i=1

(ni + ui) +

g−2γ−1
∑

i=1

(4γ + 2i)−

(

g

2

)

− 2k

where k = k(S) is the number of odd elements of S greater than or equal to the
conductor. Geometrically speaking, (4) computes the area of the complement of
TK in its minimal (g − 1)× (g − 1) bounding box inside of Γ.

On the other hand, when S = S0 the sum
∑γ

i=1 ni is minimized, while k(S0) = 0.
So in light of (4), it suffices to check that

k(S)
∑

i=1

(ui(S)− ui(S0))− 2k(S)

is nonnegative for every nonsymmetric γ-hyperelliptic semigroup S, for which it
suffices in turn to show that

(5) ui(S)− ui(S0) ≥ 2

for all 1 ≤ i ≤ k. The inequality (5) follows immediately, however, from the fact
that S0 is symmetric, while S is not. �

Finally, just as in [4], it is natural to ask for refinements of Theorem 2.1. We
have the following K-weight analogue of [4, Props. 2.10, 2.12(1)].

Proposition 2.3. Let γ ≥ 1 be an integer, and let S denote a γ-hyperelliptic
semigroup of genus g ≥ 3γ. Assume that the multiplicity, i.e., the smallest nonzero

element of S is 4. The K-weight of S then satisfies

WK ∈

{(

g − 2γ

2

)

+ γ2 + γ + k2 − 3k + 2 : k = 1, . . . , γ + 1

}

;

and WK =
(

g−2γ
2

)

+γ2+γ+k2− 3k+2 if and only if S = 〈4, 4γ+2, 2g− 2γ− 2k+
3, 2g− 2γ+2k+1〉. In particular, every γ-hyperelliptic semigroup with multiplicity

m = 4 of nonmaximal weight satisfies
(

g − 2γ

2

)

+ γ2 + γ ≤ WK ≤

(

g − 2γ

2

)

+ 2(γ2 − γ) + 2.

Proof. Our result is a consequence of [4, Prop. 2.10], which establishes that

WS ∈

{(

g − 2γ

2

)

+ γ2 − γ + k2 − k : k = 1, . . . , γ + 1

}

;

and WS =
(

g−2γ
2

)

+ γ2 − γ + k2 − k if and only if S = 〈4, 4γ + 2, 2g − 2γ − 2k +
3, 2g − 2γ + 2k + 1〉. Indeed, letting S0 denote the latter semigroup, we have

S0 = 2〈2, 2γ+1〉⊔{2g−2γ−2k+3, 2g−2γ−2k+7, . . . , 2g−2γ+2k−1, 2g−2γ+2k+1, . . .};

in particular, the largest gap of S0 is ℓg = 2g−2γ+2k−3. We conclude immediately
using the general fact that WK = WS + 2g − 1− ℓg. �

It would be interesting to extend the reach of Proposition 2.3 to higher multi-
plicities, and e.g., to establish an analogue of [4, Prop. 2.12(2)], which establishes
an upper bound on the S-weight when m ≥ 6. We leave this for future work.
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