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K-WEIGHT BOUNDS FOR +-HYPERELLIPTIC SEMIGROUPS

ETHAN COTTERILL AND RENATO VIDAL MARTINS

ABSTRACT. In this note, we show that ~y-hyperelliptic numerical semigroups
of genus g > + satisfy a refinement of a well-known characteristic weight
inequality due to Torres. The refinement arises from substituting the usual
notion of weight by an alternative version, the K-weight, which we previously
introduced in the course of our study of unibranch curve singularities.

1. K-WEIGHTS OF NUMERICAL SEMIGROUPS

Let S C N denote a numerical semigroup of genus g. Recall that this means that
the complement Gs = N\ S is of cardinality g; say

GS :{élv"'vég}

where £; < ¢; whenever 1 < i < j < g. Following [3], we define the K-weight of S
to be the quantity

g—1

Wi = (ti—i)+g—1.

i=1
The definition of the K-weight was motivated by the study of unibranch complex
curve singularities. It is also closely related to a more familiar notion of weight,
which we will call the S-weight, namely:

g

Ws =3 (L — ).

i=1

The S-weight emerges naturally in the study of Weierstrass semigroups of (points
of) smooth complex curves. It is not hard to show that Wx = Wg whenever S is
the value semigroup of a Gorenstein singularity. In purely combinatorial terms, the
K- and S-weights agree if and only if S is a symmetric semigroup.

2. K-WEIGHTS OF y-HYPERELLIPTIC SEMIGROUPS

Now let 4 > 0 be an integer. Recall from [6] that S is y-hyperelliptic if it satisfies
the following conditions:

(1) S has v even elements in [2,4~]; and
(2) The (v + 1)st positive element of S is 4 + 2.

In [3], we conjectured that when g > v, any vy-hyperelliptic numerical semigroup S
satisfies

-2 -2
(1) <g27)+2vswxs<g27)+2v?
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The inequalities () are not far-removed from the inequalities

-2 -2

(2) (g V) < Wy < (g V) +2y°
2 2

proved by Torres in [5] [6]. As the disparity between upper and lower bounds in

(@D is in general smaller than that of ([2)), we regard the K-weight inequalities as a

refinement of the S-weight inequalities.

In this note, we will prove the K-weight inequalities (dl) are satisfied by any
~v-hyperelliptic semigroup of sufficiently large genus. In doing so, we adapt the
geometric interpretation of the S-weight given in [2]. Namely, each numerical semi-
group may be represented as a Dyck path 7 = 7(S) on a g x g square grid I with
axes labeled by 0,1,...,g. Each path starts at (0,0), ends at (g, g), and has unit
steps upward or to the right. The ith step of 7 is up if ¢ ¢ S, and is to the right
otherwise. The weight Wy of S is then equal to the total number of boxes in the
Young tableau Ty traced by the upper and left-hand borders of the grid and the
Dyck path 7. The contribution of each gap ¢ of S to Wg is then computed by the
number of boxes inside the grid and to the left of the corresponding path edge.

Theorem 2.1. Fiz a choice of non-negative integer v, and let S denote a -
hyperelliptic semigroup of genus g > 2v + 1. The K-weight of S then satisfies
the inequalities ().

Proof. Suppose S is a ~-hyperelliptic semigroup of genus g. For the calculation
of the K-weight of S, the largest gap ¢, i N\ S is irrelevant, so we focus on the
subdiagram of I' given by omitting the uppermost row of boxes in the grid, and on
the corresponding subtableau Ty, which we will denote by Tk.

It is well-known (and follows easily from the semigroup structure in any case)
that every even number greater than or equal to 4y belongs to S. So the weight
contributed by elements m > 4v of S will be minimized when there are no such odd
elements m strictly less than ¢,. Geometrically, this means that Tk stabilizes to a
staircase, i.e a path in which up- and rightward steps alternate. It follows easily
Tk will be of minimal weight precisely when it is a staircase for which the v even
numbers P; € [2,47],1 <14 < that belong to S are maximal, namely when

P=2y+2j,1< <7

Since the first column of Tk has precisely (¢ —1) — (2y+2—1) = g — 27 — 2 boxes,
we deduce that its total weight is

W(Ti) = (9‘ - 1)

and it follows that
-2
Wi =W(Tk) +g—1= (g ) 7) + 2.

It is clear, moreover, that there are y-hyperelliptic semigroups of genus g whose
K-weights realize the minimum value of Wx.

Remark 2.2. Strictly speaking, the preceding geometric argument requires g >
2y + 2. Howewver, it is easy to check that when g = 2v+ 1, the minimal K-weight is
realized by a ~y-hyperelliptic semigroup with an empty K-tableau Tk. The K-weight
of the corresponding semigroup is then Wx = g — 1 = 2v, as desired. The same
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FIGURE 1. Tableau Tk associated with the weight-maximizing -
hyperelliptic semigroup Sg = (4,4y + 2,29 — 4y + 1) when v = 3
and g = 20. The (irrelevant) uppermost line is left empty, while
the disparity in weights between the maximizing and minimizing
semigroups is in red.

argument shows that when g = 2, the minimal K-weight is g—1 = 2v—1. So our
lower bound on g is sharp.

We will now argue that the maximum possible y-hyperelliptic K-weight is achieved

precisely when
S=S0:=(4,4v+2,2g —4v+ 1)

just as is the case for S-weights [6]. See Figure 1 for the K-tableau associated with
So when v = 3 and g = 20.

Since K-weight and S-weight agree for symmetric semigroups, we may (and shall)
assume that S is nonsymmetric. We will exploit the dual relationship between ram-
ification and weight already used in [6] to prove that Sg is of maximal S-weight

among v-hyperelliptic semigroups of genus ¢g. (Indeed, our argument is a modifica-
tion of that used in [6].)

Namely, let R = R(S) denote the total ramification of S, given by

) re=m-i=>m- (UF)

i=1 i=1
where m; < --- < my are the g smallest nonzero elements of S. Using the structure

theory for v-hyperelliptic semigroups presented in [5] [6], we may rewrite the total
ramification [B]) of a y-hyperelliptic semigroup S in the following form:

i=1
where n; < --- < n, are the smallest nonzero even elements and u; > --- > u, are
the odd nonzero elements of S less than 2g, respectively.
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Maximizing Wy is then equivalent to minimizing R(S). Similarly, maximizing
Wk is equivalent to minimizing

v g—2v-1

(4) Rk := Z(m +u;) + Z (4y +2i) — (g) — 2k

i=1 i=1
where k = k(S) is the number of odd elements of S greater than or equal to the

conductor. Geometrically speaking, ) computes the area of the complement of
Tk in its minimal (g — 1) x (¢ — 1) bounding box inside of T.
On the other hand, when S = Sy the sum Y], n; is minimized, while k(So) = 0.
So in light of (), it suffices to check that
k(S)

D (ui(8) — ui(So)) — 2k(S)

i=1
is nonnegative for every nonsymmetric y-hyperelliptic semigroup S, for which it
suffices in turn to show that

(5) u; (S) — ui(So) > 2
for all 1 < i < k. The inequality (@) follows immediately, however, from the fact
that Sy is symmetric, while S is not. (I

Finally, just as in [], it is natural to ask for refinements of Theorem 211 We
have the following K-weight analogue of [4, Props. 2.10, 2.12(1)].

Proposition 2.3. Let v > 1 be an integer, and let S denote a ~y-hyperelliptic
semigroup of genus g > 3. Assume that the multiplicity, i.e., the smallest nonzero
element of S is 4. The K-weight of S then satisfies

—2
WK€{<9 , ”Y)+72+7+k2_3k+2:k—l,---,7+1}§

and Wk = (g;27) +92+y+k%=3k+2 if and only if S = (4,47 +2,29 — 2y — 2k +
3,29 — 2v+2k+1). In particular, every y-hyperelliptic semigroup with multiplicity
m =4 of nonmazimal weight satisfies

-2 -2
(g 5 7)—i—wQ—i—WSWKS (g 9 7>+2(72—7)+2.

Proof. Our result is a consequence of [4, Prop. 2.10], which establishes that

-2
WSG{(Q 9 Fy)+72—”y—|—k2—k:k—1,...,7+1};

and Wg = (g;27) +4% —y + k% — kif and only if S = (4,4 + 2,29 — 2y — 2k +
3,29 — 27y + 2k + 1). Indeed, letting Sg denote the latter semigroup, we have

So = 2(2, 29+ 1)U{29g—2y—2k+3,2g—2v—2k+T7,...,29—2v+2k—1,29—2y+2k+1,... };

in particular, the largest gap of Sg is £, = 29 —2v+2k—3. We conclude immediately
using the general fact that Wx = Wg 429 — 1 — /. O

It would be interesting to extend the reach of Proposition to higher multi-
plicities, and e.g., to establish an analogue of [4 Prop. 2.12(2)], which establishes
an upper bound on the S-weight when m > 6. We leave this for future work.
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