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Abstract

We introduce the notion of pseudo-Néron model and give new examples

of varieties admitting pseudo-Néron models other than Abelian varieties.

As an application of pseudo-Néron models, given a scheme admitting a

finite morphism to an Abelian scheme over a positive-dimensional base,

we prove that for a very general genus-0, degree-d curve in the base with

d sufficiently large, every section of the scheme over the curve is contained

in a unique section over the entire base.
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2 Pseudo-Néron Model 6
2.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Application of rational curves . . . . . . . . . . . . . . . . . . . . 8
2.3 Base change properties . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Theorem of Restriction of Sections 14
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1 Introduction

1.1 Main results

By a Dedekind scheme, we always mean an irreducible, Noetherian and normal
scheme of dimension one. Let S be a Dedekind scheme with function field K.
Let XK be a smooth and separated K-scheme of finite type. We say that X is
an S-model of XK if X is an S-scheme with generic fiber isomorphic to XK . A
Néron model of XK is an S-model satisfying a universal property of extending
morphisms. This extends the smooth variety XK to a family of smooth varieties
over S. The precise definition is the following.

Definition 1.1. ([1], Def.1.2/1, p.12) Let XK be a smooth and separated K-
scheme of finite type. A Néron model of XK is an S-model X which is smooth,
separated, and of finite type, and which satisfies the following universal property,
called the Néron mapping property:

For each smooth S-scheme Y and each K-morphism uK : YK → XK there
is a unique S-morphism u : Y → X extending uK .

From the uniqueness of the morphism extension, it is easy to see that a
Néron model is unique as soon as it exists. If XK is an Abelian variety over K,
then the existence of Néron model is proved in the welcomed survey book [1].
However, the Néron model of an Abelian variety is not necessary an Abelian
scheme over the Dedekind scheme S (cf. [1], Theorem 1.4/3, p.19).

Theorem 1.2. ([1], Theorem 1.4/3, p.19) Let XK be an abelian variety over
K. Then XK admits a Néron model X over S.

The Néron model is a very important tool in both arithmetic geometry
and algebraic geometry. In the article [4], Tom Graber and Jason Michael
Starr introduced the technique of using Néron models to prove the theorem of
restriction of sections for families of Abelian varieties (Theorem 1.4). To state
their theorems, we cite the following definition from [4].

Definition 1.3. ([4], p.312) Let k be an algebraically closed field. Fix a gener-
ically finite, generically unramified morphism u0 : S → P

n
k . We define

• an u0-line is a curve in S of the form S ×P
n
k
L for a line L ⊂ P

n
k ;

• an u0-conic is a curve in S of the form S×Pn
k
C for a plane conic C ⊂ P

n
k ;

• an u0-line-pair is a curve in S of the form S ×Pn
k
L, where L = L1 ∪ L2

for a pair of incident lines in P
n
k ;

• an u0-smooth-curve is an irreducible smooth curve in S of the form S×P
n
k

C0 for a smooth curve C0 ⊂ P
n
k ;
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• an u0-curve-pair of degree d+2 is a curve in S of the form S×P
n
k
C, where

C = C0 ∪ C1 for a pair of incident curves in P
n
k where C0 is a genus zero,

smooth curve of degree d, and C1 is a conic;

• an u0-planar surface is a surface in S of the form S ×Pn
k
Σ for a 2-plane

Σ ⊂ P
n
k .

Note that, by Bertini’s theorem, for sufficiently general line, conic, and plane,
the corresponding u0-line, u0-conic, and u0-planar surface will be smooth. By
abuse of notations, we will just say line, conic, line-pair, curve-pair, planar
surface, and smooth curve in S instead of u0-line, u0-conic, u0-line-pair, u0-
curve-pair, u0-planar surface, and u0-smooth-curve.

Let k be an uncountable algebraically closed field. We say a subset of a
scheme is general, resp. very general, if the subset contains an open dense
subset, resp. the intersection of a countable collection of open dense subsets.
We say that a property of points in a scheme holds at a general point, resp. at a
very general point, if the set where the property holds is a general subset, resp.
a very general subset.

Now, we state the main theorem in [4] as following.

Theorem 1.4. ([4], Theorem 1.3, p.312) Let k be an uncountable algebraically
closed field. Let S be an integral, normal, quasi-projective k-scheme of dimen-
sion b ≥ 2. Let A be an Abelian scheme over S. For a very general line-pair C
in S, the restriction map of sections

Sections(A/S) → Sections(AC/C)

is a bijection. The theorem also holds with C a very general planar surface in
S. If char k = 0, this also holds with C a very general conic in S.

The main application of Néron models in the proof of Theorem 1.4 is Lemma
4.13 in [4], p.323. However, going over the proof, it is easy to see that only the
existence of extensions of morphisms is needed, but not the uniqueness, and this
is also the case for many other applications of Néron models. This leads us to
weaken the definition of Néron mapping property, and consider a weak version
of Néron model.

Definition 1.5. Let X be a separated, flat scheme of finite type over S. We
say X has the weak extension property if for every smooth scheme Z over S and
every K-morphism uK : ZK → XK , there exists an S-morphism u : Z → X
extending uK .

Definition 1.6. Let XK be a smooth, finite type and separated K-variety.
Suppose that X is a separated, flat and finite type scheme over S with generic
fiber XK . We say that X is a pseudo-Néron model of its generic fiber if X
satisfies the weak extension property.

We note that, in our definition for pseudo-Néron models, we do not require
that X is normal or regular since after an étale base change T → S, XT is
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not necessarily normal or regular. And, we stress that, unlike Néron models, a
pseudo-Néron model is always not unique.

By [1] Proposition 1.2/8, we know that every Abelian scheme over S satis-
fies the weak extension property. Moreover, from Theorem 1.2, every Abelian
variety has a Néron model, and hence a pseudo-Néron model. So it is natural
to ask the following question.

Question 1.7. Is there any other class of varieties, besides Abelian schemes and
Abelian varieties, satisfying the weak extension property or admitting pseudo-
Néron models?

In the first part of this article, we give a positive answer to this question.
It turns out that the existence of pseudo-Néron models is closely related to the
non-existence of rational curves on the variety (Corollary 2.8). Our new example
of pseudo-Néron models is the following, which will be restated and proved as
Corollary 2.16.

Theorem 1.8. (New Examples) Let k be an uncountable algebraically closed
field. Let S be a Dedekind scheme of finite type over k with field of functions
K (e.g. S is a smooth curve over k). Let d be an integer prime to char k.
Let XK be a smooth K-variety admitting a finite morphism to a very general
smooth hypersurface of degree d ≥ 2n− 1 defined over k in P

n
K . Then XK has

a pseudo-Néron model over S.
In particular, every smooth subvariety of a very general hypersurface of de-

gree d ≥ 2n− 1 defined over k in P
n
K has a pseudo-Néron model.

In this second part of this article, we will use pseudo-Néron models to restate
the Lemma 4.13 in [4] in a more general set up. As a consequence, we prove
that there exists a broader class of varieties for which Theorem 1.4 holds for
higher order curve-pairs and smooth curves.

Theorem 1.9. Let k an uncountable algebraically closed field of characteristic
zero. Let S be an integral, normal, quasi-projective k-scheme of dimension
b ≥ 2. Let X be a smooth S-scheme admitting a finite morphism f : X → A to
an Abelian scheme A over S. Let e be the fiber dimension of Iso(A) where Iso(A)
is the isotrivial factor of A (see Definition-Lemma 3.21 and Remark 3.22). Let
d be a positive even integer.

Then, for d > 2e, every section of XC over a very general genus-0 and
degree-(d+2) curve-pair or a very general genus-0, degree-(d+2) smooth curve
C is the restriction of a unique global section of X over S.

1.2 Review of theorems of sections

Now, we give a brief review of theorems of sections in literatures and compare
our main theorem with these results.

A complex variety V is said to be rationally connected if two general points
of V can be joined by a rational curve ([2], Definition 3.2, p.199). In [5], it is
proved that a one-parameter family of rationally connected complex varieties
has a section.
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Theorem 1.10. ([5], Theorem 1.1, p.57) Let f : X → B be a proper morphism
of complex varieties with B a smooth curve. If the general fiber of f is rationally
connected, then f has a section.

Definition 1.11. ([6], Def.1.2, p.672) Let π : X → B be an arbitrary morphism
of complex varieties. By a pseudosection of π we will mean a subvariety Z ⊂ X
such that the restriction π|Z : Z → B is dominant with rationally connected
general fiber.

In [6], the authors prove the coverse of Theorem 1.10 as following.

Theorem 1.12. ([6], Theorem 1.3, p.672, [4], Theorem 1.1, p.311) Let π :
X → B be a proper morphism of complex varieties. If π admits a section when
restricted to a very general sufficiently positive curve in B, then there exists a
pseudosection of π.

However, the theorem asserts only the existence of a pseudosection of π; it
does not claim any direct connection between the sections of XC → C over very
general curves C and the pseudosection. So the following question is asked in
[6] and [4].

Question 1.13. ([4], Conjecture 1.2, p.311, [6], Question 7.1, p.689) If π :
X → B is a morphism of complex varieties, then for a very general, suffi-
ciently positive curve C ⊂ B, does every section of the restricted family XC =
π−1(C) → C take values in a pseudosection?

On the other hand, in Theorem 1.12, the genus and degree of the very general
curve depend on the relative dimension of π (see the statement of theorem in
[6], Theorem 1.3, p.672). The genus and degree can grow enormously fast with
respect to the relative dimension of π : X → B. So it is natural to ask the
following questions.

Question 1.14. ([6], Section 7.3, p.689) Can we eliminate the dependence of
the family of curves on the relative dimension of π in Theorem 1.12?

The answer of this question is “no”. The detailed proof can be found in [7].
A sketch of the argument could also be found in [6], Section 7.3. Then, a further
question is the following.

Question 1.15. If the dependence in Theorem 1.12 can not be eliminated, how
fast do the genus and degree of the family of curves grow?

One extreme special case of Question 1.13 and Question 1.14 is that X is an
Abelian scheme over B. In this case, since the fibers contain no rational curves,
every pseudosection is a rational section, and every rational section is everywhere
defined. Then, Theorem 1.4 gives positive answers to both Question 1.13 and
Question 1.14 when X is an Abelian scheme over B.

When X is a smooth scheme admitting a finite morphism to an Abelian
scheme A over B, Theorem 1.9 gives a positive answer to Question 1.13 and
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Question 1.15. The genus of curves is zero as in Theorem 1.4. And, the degree
of the curves grows at a linear rate with respect to the relative dimension of the
isotrivial factor of the Abelian scheme.
Acknowledgement: The author is very grateful to his advisor Prof. Jason
Michael Starr for introducing this problem, his consistent support during the
proof and his writing for the Appendix A.

2 Pseudo-Néron Model

2.1 Basic properties

In this section, we will assume that S is a Nagata Dedekind scheme and K is
its function field. Recall that every scheme of finite type over a field is Nagata.

Lemma 2.1. Suppose that S = SpecR is an affine Nagata Dedekind scheme.
Let YK be a smooth variety and Y be a normal pseudo-Néron model over S. Let
XK be a smooth K-variety with a finite K-morphism f : XK → YK . Then there
exists a flat normal S-scheme X admiting a finite morphism g : X → Y which
extends f .

Proof. First consider the affine case. Let SpecAK be an affine open subset of YK

and SpecBK = f−1(SpecAK). Suppose that SpecA is an open affine in Y with
generic fiber SpecAK , where K = Frac(R) and AK = A⊗R K. We claim that
there exists a finite A-algebra C such that BK = C ⊗R K. Frac(BK) is a finite
field extension of Frac(AK) since BK is finite over AK . Let B′ be the integral
closure of A in Frac(BK). We have the ring A is Nagata ([9], Prop.8.2.29(b),
p.340, and Def.8.2.30, p.341), and hence B′ is finite over A ([9], Def.8.2.27,
p.340). Now, take C = BK ∩B′. Then since A is Noetherian we have C is finite
over A, and by construction C is the integral closure of A in BK . It is easy to
check that BK = C ⊗R K.

Now, take an affine open covering of YK , and hence an affine open covering
of XK . By the construction in the affine case, C is uniquely determined by
BK , AK and A. Thus, we can glue the SpecC as above to form the normal
scheme X with a canonical finite morphism g : X → Y , which is of finite type,
separated and flat over S.

Lemma 2.2. Let Y be a separated, flat S-scheme of finite type satisfying the
weak extension property. Suppose that X is an integral S-scheme with a finite
S-morphism f : X → Y . Then X satisfies the weak extension property.

Remark 2.3. The Dedekind scheme S does not have to be Nagata in this lemma.

Proof. Step 1 : Assume that S = SpecR is an affine Dedekind scheme. Let Z
be an irreducible smooth S-scheme with generic fiber ZK and a K-morphism
uK : ZK → XK . We note that if SpecA is an affine open in X then A⊗R K is
also an integral domain, so the generic fiber XK is also an integral scheme with
the same function field K(XK) = K(X) as X .
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First we assume thatX and Y are affine. Since Y satisfies the weak extension
property, fK ◦ uK extends to an S-morphism g : Z → Y . Denote ζ by one of
the generic points of codimension one irreducible subsets of Z. Then, since
Z is normal, OZ,ζ is a discrete valuation ring. And we have the following
commutative diagram

SpecK(Z) //

��

X

f

��

SpecOZ,ζ
//

uζ

::✉
✉

✉
✉

✉

Y

where SpecK(Z) → X is induced by the map K(XK) → K(ZK). Moreover,
by the properness of the morphism f , there exists a unique morphism uζ :
SpecOZ,ζ → X making the diagram commute. Since Z is locally of finite type
over S, the morphism uζ can be extended to a neighborhood V of ζ in Z. We
denote this morphism by uV : V → X . Checking every open affine SpecC in V ,
since Z is an integral scheme, we have that the generic fiber of the morphism
from SpecC to X is the same as the restriction of uK because they are giving
the same morphism when viewed as restriction of K(X) → K(Z). Moreover,
suppose that there are two codimension one points ζ1 and ζ2, and they are giving
two extensions V1 → X and V2 → X respectively. Since f is separated, it is
easy to see that these two morphisms agree on every open affine in the overlap
V1 ∩ V2 since they have the same generic fiber and hence give the same map
in K(X) → K(Z). Therefore, the morphism uK can be extended to a rational
map defined over every condimension one point on Z. Hence, by [1] Lemma
4.4/2, since X is affine, this rational map is actually defined everywhere.

Now, when X and Y are not affine, consider an open affine covering of Y ,
which induces an affine covering of X , and extend uK for every such open affine
of X . By the same reason as above, since any two extensions give the same
morphism on generic fibers, these extensions on affines of X can be glued, and
hence X satisfies the weak extension property.

Step 2 : S is a Dedekind scheme, not necessarily affine. Take an affine
covering {U1, · · · , Un} of S. Let Xi, Yi, Zi and (uK)i be the base changes of
X , Y , Z and uK from S to Ui respectively. From step 1, we know that every
(uK)i can be extended to the whole Zi. Now, cover each Ui∩Uj by open affines
and check over each these affines. Again, since these extensions give the same
morphism on generic fibers of their overlap, the extensions can be glued and
give an extension of uK to the whole Z. So X satisfies the weak extension
property.

Remark 2.4. Let C denote the category of normal S-schemes with finite mor-
phisms. Then the above lemma asserts that normal S-schemes with the weak
extension property form a fully faithful subcategory of C.

Theorem 2.5. Let S be a Nagata Dedekind scheme with generic point SpecK.
Let XK be a smooth scheme admitting a finite K-morphism to a smooth, sepa-
rated variety YK of finite type which has a normal pseudo-Néron model Y over
S. Then XK has a normal pseudo-Néron model X over S.
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Proof. Let {U1, · · · , Un} be a finite open affine covering of S and Y i be the
inverse images of each Ui such that they form an open covering of Y . Then
Y i
K and X i

K = f−1(Y i
K) form an open covering of YK and XK respectively. For

each i, Y i is flat, separated and of finite type over the affine Nagata Dedekind
scheme Ui. Take X i to be the Ui-model of X i

K as constructed in Lemma 2.1
and gi : X

i → Y i to be the corresponding Ui-morphism extending f |Y i
K
.

Cover each Y i by affine opens. Suppose that SpecAi and SpecAj are two
such affine opens in Y i and Y j respectively with i 6= j. Since SpecAi and
SpecAj are affine schemes over affine bases, Ui and Uj , also their generic fibers

are affine. Let the inverse image of SpecAi
K (resp. SpecAj

K) in X i
K (resp. Xj

K)

be SpecBi
K (resp. SpecBj

K). Then, as in the construction in Lemma 2.1, we
can construct an affine open SpecCi (resp. SpecCj) as the integral closure of
Ai in Bi

K (resp. Aj in Bj
K). Now, by Nike’s trick ([21], Prop.5.3.1, p.157), cover

SpecAi∩SpecAj by principal open affines. Then they have affine generic fibers
since SpecAi and SpecAj have affine bases. Because the process of taking
integral closure is unique up to a unique isomorphism and compatible with
localization, the affine opens SpecCi and SpecCj with morphisms gi and gj
can be glued. By the uniqueness of taking integral closure, we can make the
same gluing for other pairs of affine opens in the fixed affine covering of Y i and
Y j . Thus, we obtain a gluing of X i and Xj . Similarly, X1, · · · , Xn glue to be
an S-scheme X admitting a finite S-morphism to the normal scheme Y .

Take the S-model X of XK as above. By applying Lemma 2.2 to the scheme
X , we have this normal S-scheme satisfies the weak extension property.

This theorem gives us a strategy. Suppose that S is a Nagata Dedekind
scheme. Then every time we have a class of varieties admitting normal pseudo-
Néron models, by considering smooth varieties with finite morphisms to the
varieties in this class, we will get a new class of varieties admitting normal
pseudo-Néron models. As a first result, we know that all varieties admitting
finite morphisms to Abelian varieties have normal pseudo-Néron models. In
particular, every smooth subvariety of an Abelian variety has a normal pseudo-
Néron model.

2.2 Application of rational curves

In [8], Qing Liu and Jilong Tong proved theorems about Néron models of smooth
proper curves of positive genus, see [8], Theorem 1.1, p.7019, for details. In our
situation, their result ([8], Prop.4.13, p.7031) in the higher dimensional case can
be used to construct new examples of varieties admitting pseudo-Néron models.
We start with the basic notion of rational curves as following.

Definition 2.6. ([8], p.7031) Let V be a variety over an algebraically closed
field k. We say that V contains a rational curve if there is a locally closed
subscheme of V which is isomorphic to an open dense subscheme of P1

k.

If V is proper over k, then every morphism from an open dense of P1
k can

be extended to the whole P
1
k ([9], Cor. 4.1.17, p.119). Moreover, by Lüroth’s
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theorem, our definition is the same as the existence of a nonconstant morphism
from P

1
k to V ([2], Definition 2.6, p.105).

Proposition 2.7. ([8], Prop.4.13, p.7031) Let S be a Dedekind scheme with
field of functions K. Let XK be a smooth proper variety over K. Suppose XK

has a proper regular S-model X such that no geometric fiber Xs, s ∈ S, contains
a rational curve. Then the smooth locus Xsm of X is the Néron model of XK .

Note that the regularity of X in the above theorem is only used to apply [8]
Cor.3.12. Thus, in the case of pseudo-Néron models, the same proof gives the
following corollary.

Corollary 2.8. Let S be a Dedekind scheme with field of functions K. Let XK

be a smooth proper variety over K. Suppose XK has a proper and flat S-model
X such that no geometric fiber Xs, s ∈ S, contains a rational curve. Then X
satisfies the weak extension property, i.e., X is a pseudo-Néron model of XK .

The following lemma is well-known.

Lemma 2.9. Let k be an algebraically closed field. Let f : X → Y be an étale
surjective k-morphism of proper k-varieties. If X does not contain any rational
curve, then Y does not contain any rational curve.

Proof. Suppose there exists a rational curve on Y , i.e. a nonconstant k-morphism
P
1
k → Y . Since f is surjective, base change gives a nonconstant morphism

X ×Y P
1
k → X , and étale surjective morphism f : X ×Y P

1
k → P

1
k. Since étale

morphisms preserve the dimensions of local rings ([9], Prop.4.3.23), X ×Y P
1
k

is a smooth proper curve over k, and f is quasi-finite. Let C be one of the
connected components of X ×Y P

1
k, which is a smooth, connected, projective

curve ([3], Prop.II.6.7). Then f : C → P
1
k is a finite étale morphism of smooth

projective curves ([3], Prop.II.6.8). Therefore, the restriction of f on C is an iso-
morphism ([9], Cor.7.4.20), which gives a rational curve on X . This contradicts
the hypothesis that X does not contain rational curve.

Lemma 2.9 gives an immediate application of Corollary 2.8 as following.

Corollary 2.10. Let X be a proper pseudo-Néron S-model of XK such that
no geomertric fiber contains rational curves, as in Corollary 2.8. Suppose that
Y is a proper S-scheme with smooth generic fiber YK and there exists an étale
surjective morphism f : X → Y . Then Y is a pseudo-Néron model of YK .

There are many varieties which do not contain any rational curve. One of
the typical examples is very general hypersurfaces of large degree. We cite the
following result.

Theorem 2.11. ([10], Theorem 1.2) Let k be an algebraically closed field. For
d ≥ 2n−1, a very general hypersurface X ⊂ P

n
k of degree d contains no rational

curves, and moreover, the locus of hypersurfaces that contain rational curves
will have codimension at least d− 2n+ 2.
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Lemma 2.12. Let R be a Nagata DVR with fraction field K and residue field k.
Suppose that X is a proper scheme over R with nonempty fibers. If Xk contains
no rational curves, then XK also contains no rational curves.

Proof. Suppose that there is a nonconstant K-morphism fK : P1
K

→ XK . By
limit arguments, there exists a discrete valuation ring T with fraction field L,
finite over K, and residue field l such that R ⊂ T ⊂ K, T dominates R, and fK
is the base change of a nonconstant L-morphism fL : P1

L → XL. Consider the
generic point of the special fiber P

1
l which is of codimension one in P

1
T . Using

the valuative criterion of properness, fL extends uniquely to a T -morphism
fT : V → XT where V is an open dense of P1

T containing the generic point of
P
1
l ([9], Prop.4.1.16, p.119), and hence an open dense of P1

l .
Let Γ be the normalization of the schematic closure for the graph of fT .

Then the projection P
1
T×TXT → P

1
T induces a birational morphism π : Γ → P

1
T .

Since R is Nagata, T is finite over R, so T is also Nagata ([9], Def.8.2.27 and
Prop.8.2.29, p.340). Thus, all the schemes are Nagata and the normalization
morphism is finite. And, hence, π is a proper birational morphism. Let E be
the exceptional locus of π. By Abhyankar’s lemma ([11], Theorem 4.26, p.112),
E is ruled over its image. Let E′ be its image. Then E is birationally equivalent
over E′ to W ×E′ P

1
E′ . Note that, since fT is defined over V , E′ is finitely many

closed points in the closed fiber P
1
l and E is of codimension one. Then W is

dimension zero over E′, hence finitely many closed points. Thus, W ×E′ P
1
E′ is

a finite disjoint copy of P1
kj

with each kj a finite extension of l. Base change to

the algebraic closure l of l, then each P
1
kj

splits to finitely many disjoint copies

of P1
l
. Now, take one of these copies, say, C. If C is mapped to a single point of

Xl, then the image of C in (P1
T ×T XT )×T l is a single point, contradicting that

Γl → (P1
T ×T XT )×T l is a finite morphism. Therefore, C is a rational curve in

Xl = Xk. And this contradiction shows that XK does not contain any rational
curve.

Definition 2.13. Let R be a DVR with fraction field K and E = R× ∪ {0}.
Let H be a hypersurface in P

n
K . We say that (H, f) is a unitary hypersurface if

the defining equation f of H has coefficients in E.

Theorem 2.14. Let R be a Nagata DVR with fraction field K. Suppose that
the residue field k is uncountable and algebraically closed, and d is an integer
prime to char k. Then, there exists unitary hypersurfaces of degree d ≥ 2n− 1
in P

n
K admitting a Néron model.

Proof. Suppose that XK = V+(f)K ⊂ P
n
K is a unitary hypersurface defined by

an irreducible homogeneous polynomial f of degree d in n + 1 variables. Since
all the nonzero coefficients of f are in the group of units E of K, there is no
term in f vanishing in the residue field of R, so the specialization Xk = V+(f)k
is a hypersurface of degree d in P

n
k . Conversely, every hypersurface of degree d

in P
n
k arises as a specialization of some unitary hypersurface of degree d in P

n
K .

Set N =
(
n+d
d

)
− 1. Let E be the space of unitary hypersurfaces in P

n
K . The

argument above gives a surjective map of parameter spaces F : E → P
N
k by

10



sending (XK , f) to its specialization Xk. Let U be an intersection of countably
many open dense subsets of PN

k such that every member in U is smooth without
rational curves. Take XK ∈ F−1(U) a K-point. By Lemma 2.12, there is no
rational curve on XK . Let X = V+(f) ⊂ P

n
R be the R-model of XK .

Since f is irreducible, X is an integral hypersurface. Thus, X is flat over
SpecR and every nonempty fiber is irreducible of dimension n−1([9], Cor.4.3.10,
p.137). Let Fittn−1(Ω

1
X/R) be the (n − 1)-th Fitting ideal of Ω1

X/R, which is a

coherent ideal sheaf of OX . Then, Fittn−1(Ω
1
Xk/k

) is equal to (Fittn−1(Ω
1
X/R)) ·

OXk
([22], Cor.20.5, p.498). Since Xk is smooth, Ω1

Xk/k
is locally free of rank

n − 1. Thus, Fittn−1(Ω
1
Xk/k

) is equal to OXk
([22], Prop.20.6, p.498). And

hence, Fittn−1(Ω
1
X/R) is equal to OX . Then, Ω1

X/R can be locally generated by

n− 1 elements ([22], Prop.20.6, p.498). So Ω1
XK/K can be locally generated by

n − 1 elements, and hence locally free of rank n − 1 ([9], Lemma 6.2.1, p.220,
and [1], Prop.2.2/15, p.43). Thus XK is smooth. At this stage, every fiber of X
is smooth and X is flat over R, then X is a smooth R-scheme ([1], Prop.2.4/8,
p.53). Therefore, by Lemma 2.12 and Proposition 2.7, X is the Néron model of
XK .

This theorem gives a direct corollary in the geometric setting as following.

Corollary 2.15. Let k be an uncountable algebraically closed field. Let S be a
Dedekind scheme of finite type over k with field of functions K (for example,
S is a smooth curve over k). Let d be an integer prime to char k. Then, a
very general smooth hypersurface of degree d ≥ 2n− 1 defined over k in P

n
K has

a Néron model. In particular, the Néron model of such a hypersurface is the
constant family over S.

Note that we say a K-scheme X is defined over k if there exists a k-scheme
Y such that X is isomorphic to Y ×Speck SpecK (see [2], Definition 1.15, p.19).

Proof. S is a Nagata Dedekind scheme ([9], Prop.8.2.29, p.340). First assume
that S = SpecR affine. Let f be a homogeneous polynomial of degree d ≥
2n− 1 defined over k in P

n
k such that there is no rational curve on the smooth

hypersurface V+(f). Define XK = V+(f)K in P
n
K . Denote V+(f)R ⊂ P

n
R by

X , an R-model of XK . Then, exactly the same argument as in Theorem 2.14
shows that X is the Néron model of XK .

Now, take a finite affine covering {SpecRi}i∈I of S. Then there exists a
Néron model X i of XK over SpecRi for every i ∈ I. By the uniqueness of
Néron model and that Néron model is local on the base ([1], Prop.1.2/3, p.13),
{X i}i∈I glues to be a Néron model of XK over S.

Combining Theorem 2.1 and Corollary 2.15, we get the following corollary.

Corollary 2.16. Keep the notations of Corollary 2.15. Let XK be a smooth
K-variety admitting a finite morphism to a very general smooth hypersurface
of degree d ≥ 2n − 1 defined over k in P

n
K. Then XK has a normal pseudo-

Néron model over S. In particular, every smooth subvariety of a very general

11



hypersurface of degree d ≥ 2n− 1 in P
n
K , where the hypersurface is defined over

k, has a normal pseudo-Néron model.

From this Corollary, we see that there are many smooth varieties admitting
normal pseudo-Néron model over a smooth curve defined over an uncountable
algebraically closed field. In the situation of our corollary, we cannot control
the regularity of other fibers except XK . It is a normal model of XK , but in
general not a Néron model in the sense of Definition 1.1. Moreover, the variety
XK is not necessarily defined over k, unlike the constant case in Corollary 2.15.

2.3 Base change properties

The next lemma shows that pseudo-Néron models commute with étale extension
of the base scheme, which is the analogue of [1] Prop.1.2/2 (c) for Néron models.

Lemma 2.17. Let S be a Dedekind scheme with function field K and XK be
a smooth K-variety with pseudo-Néron model X over S. Suppose that S′ is
another Dedekind scheme with S′ → S étale and the function field of S′ is K ′.
Let XS′ = X ×S S′ and XK′ = XK ×K K ′ be its generic fiber. Then XS′ is a
pseudo-Néron model of XK′ .

Proof. Let Z be smooth of finite type over S′. Take aK ′-morphism ZK′ → XK′ .
Then, Z is smooth over S and ZK′ , as the K-generic fiber, is smooth over K.
By the weak extension property of X , there exists an S-morphism from Z → X
extending ZK′ → XK . Hence the universal property of fiber products gives
Z → X ′ as an extension of ZK′ → XK′ .

The following lemma is an analogue of [1] Prop.1.2/4. However, since a
pseudo-Néron model is not unique, we can not have the converse direction as in
[1] Prop.1.2/4.

Lemma 2.18. Let S be a Dedekind scheme with function field K, X finite type
over S and it is a pseudo-Néron model of its generic fiber. Then, for each closed
point s ∈ S, the OS,s-scheme Xs = X ×S OS,s is a pseudo-Néron model of its
generic fiber.

Proof. Let Ys be an smooth OS,s-scheme with a K-morphism uK : Ys,K →
Xs,K . By limit arguments ([1], Lemma 1.2/5), there exists a connected open
neighborhood S′ of s, and a smooth S′-scheme Y ′ such that Y ′×S′ SpecOS,s =
Ys. Lemma 2.17 gives that XS′ = X ×S S′ is a pseudo-Néron model of XK

over S′. Then, by the weak extension property of XS′ , uK extends to an S′-
morphism u′ : Y ′ → XS′ . Therefore, the base change u = u′ ×S′ SpecOS,s is a
required extension of uK .

Definition 2.19. Let S be a Dedekind scheme and let X be an S-scheme sat-
isfying the weak extension property. We say that X satisfies the weak extension
property universally if for any S′ a Dedekind scheme and for any S′ → S of
finite type, the base change X ×S S′ also satisfies the weak extension property.

12



Definition 2.20. Let S be a Dedekind scheme with fraction field K. Let XK

be a smooth, separated K-scheme of finite type, and let X be a pseudo-Néron
model of XK . We say that X is a universal pseudo-Néron model of XK if X
satisfies the weak extension property universally.

Lemma 2.21. Keep the notations and hypothesis as in Corollary 2.8. Then,
X is a universal pseudo-Néron model of XK .

Proof. Let g : S′ → S be a morphism of Dedekind schemes of finite type and
X ′ = X ×S S′. Take s ∈ S and t ∈ S′ closed points such that s = g(t). Then
the residue field κ(t) is finite over κ(s), thus X ′

t
= Xs, and hence X ′

t
does not

contain rational curves. And by Lemma 2.12, there is no rational curve on the
geometric generic fiber of X ′. Then X ′ satisfies the weak extension property by
Corollary 2.8.

Lemma 2.22. Let S be a Dedekind scheme with function field K. Let XK be a
smooth and separated variety of finite type over K. If XK has a proper S-model
satisfying the weak extension property universally, then XK contains no rational
curve.

Proof. Suppose that X is a proper S-model of XK , i.e., X is flat, separated and
finite type over S satisfying the weak extension property and has generic fiber
XK . By Lemma 2.18, we can replace S by OS,s for any closed point of S, and
assume that S = SpecR for some discrete valuation ring R. If XK contains a
rational curve, then there exists a nonconstant K-morphism fK : P1

K
→ XK .

By a limit argument as in Lemma 2.12, there exists a DVR in K dominating
R with fraction field L and residue field l such that fK is a base change of a
nonconstant morphism fL : P1

L → XL. Since X is a universal pseudo-Néron
model, XT also satisfies the weak extension property.

Let C be the normalization of the schematic closure of fL. Then, C is a
proper normal curve over the field L sinceXL is Nagata, and hence i : C → XL is
a finite morphism. Moreover, fL has a unique factorization via C, i.e., fL = i◦gL
where gL : P1

L → C is a morphism of nonsingular proper curves. Then gL is
finite ([9], Lemma 7.3.10 and Cor.4.4.7). Therefore, fL is a finite morphism.

Since XT satisfies the weak extension property, fL extends to a T -morphism
fT : P1

T → XT . Let fl be the closed fiber of fT . Then, the morphism fl is
nonconstant. The same argument as for fL shows that fl is finite. Therefore, fT
is finite ([9], Cor.4.4.7). Then, from Lemma 2.2, P1

T satisfies the weak extension
property. Now, consider an L-isomorphism σL : P1

L → P
1
L. However, not all

these isomorphisms can be extended to be a T -morphism P
1
T → P

1
T ([1], Example

5, p.75), contradicting that P1
T satisfies the weak extension property. Thus, XK

contains no rational curve.

Remark 2.23. Let XK be a smooth, separated K-scheme of finite type, and let
X be a proper S-model of XK . The above lemma and theorem give us the
following picture:

(i) no rational curve in any geometric fiber,
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(ii) universal pseudo-Néron model,

(iii) no rational curve in the generic geometric fiber.

Then, (i)⇒(ii)⇒(iii).

3 Theorem of Restriction of Sections

3.1 Higher dimensional pseudo-Néron model

We will need the notion of higher dimensional pseudo-Néron model which gen-
eralizes definition 4.10 in [4].

Definition 3.1. ([4] Definition 4.10) Let S be an integral, regular, separated,
Noetherian scheme of dimension b ≥ 1. A flat, finite type, separated morphism
X → S has the weak extension property if for every triple (Z → S,U, sU ) of

(i) a smooth morphism Z → S,

(ii) a dense, open subset U ⊂ S,

(iii) and an S-morphism sU : Z ×S U → XU ,

there exists a pair (V, sV ) of

(i) an open subset V ⊂ S containing U and all codimension 1 points of S,

(ii) and an S-morphism sV : Z×S V → X whose restriction to Z×SU is equal
to sV .

Definition 3.2. Let S be an integral, regular, separated, Noetherian scheme
of dimension b ≥ 1. Let K be the fraction field of S, and XK be a smooth,
separated K-scheme of finite type. A flat, finite type, separated S-scheme X is
called a pseudo-Néron model of XK if XK is isomorphic to its generic fiber and
X satisfies the weak extension property as in Definition 3.1.

By a limit argument, it is easy to see that Definition 3.1 (resp. Definition 3.2)
implies Definition 1.5 (resp. Definition 1.6) when S is a Dedekind scheme,
and they agree when S = SpecR, where R is a DVR. Now, we prove the
corresponding results for Lemma 2.1, Lemma 2.2 and Theorem 2.5.

Lemma 3.3. Suppose that S is an integral, regular, separated, Noetherian Na-
gata scheme of dimension b ≥ 1 with fraction field K. Let YK be a smooth K-
variety and Y be its normal pseudo-Néron model over S. Let XK be a smooth
K-variety with a finite K-morphism f : XK → YK . Then there exists a flat
normal S-scheme X admiting a finite morphism g : X → Y which extends f .

Proof. Since S is Noetherian, we can cover S by finitely many affine opens. As
we assume that S is Nagata, the same proof of Lemma 2.1 and Theorem 2.5
gives the extension as claimed.
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Lemma 3.4. Keep the same hypothesis of S as in Lemma 3.3. Let Y be a
separated, flat S-scheme of finite type satisfying the weak extension property.
Suppose that X is an integral S-scheme with a finite S-morphism f : X → Y .
Then X satisfies the weak extension property.

Proof. Let U be a dense open of S, and let Z be a smooth S-scheme with a
U -morphism tU : ZU → XU . Composing this morphism with fU gives a U -
morphism sU : ZU → YU . Since Y satisfies the weak extension property, there
exists an open dense V in S containing all the codimension one points, and an
extension s : ZV → YV of sU . Up to replacing S by V , we can assume that V
is the whole S. Cover S and Y by open affines as in Lemma 2.2, then the same
proof as in Lemma 2.2 completes the proof.

Therefore, combining the above two lemmata and the proof of Theorem 2.5,
we get the following theorem.

Theorem 3.5. Keep the same hypothesis of S as in Lemma 3.3. Let XK be a
smooth scheme admitting finite K-morphism to a smooth, separated variety YK

of finite type which has a normal pseudo-Néron model Y over S. Then XK has
a normal pseudo-Néron model X over S.

The theorem also holds if XK and YK are replaced by some XU and YU

defined over a dense open U of S.

Moreover, Corollary 4.12 in [4] and Theorem 3.5 give us the following corol-
lary.

Corollary 3.6. Let W be an integral, regular, separated, Nagata Noetherian
scheme of dimension b ≥ 1. Let S be a dense open subset of W , and let X be a
scheme admitting a finite morphism to an Abelian scheme over S. There exists
an open subset S̃ of W containing S and all codimension one points, and there
exists a normal pseudo-Néron model X̃ over S̃ whose restriction over S equals
X.

Remark 3.7. Even though we have these parallel results as in the case when
S is a Nagata Dedekind scheme, Definition 3.1 and Definition 1.5 do not agree
in general when S is a Dedekind scheme because we lack the uniqueness of the
morphism extensions.

3.2 Bertini’s theorems for higher order curves

Recall that a scheme X is called algebraically simply connected if for every
connected scheme Y , and every surjective finite étale morphism f : Y → X , the
morphism f is an isomorphism ([19], p.97). In this section, by a scheme over a
field k, we mean a scheme that is of finite type over k.

Theorem 3.8. ([18], Prop.3.1) Let X be a smooth, algebraically simply con-
nected variety over a field k. Let N be a normal, connected and quasi-projective
k-scheme. Let h : N → X be a projective k-morphism. If the closed subscheme
Nh of N where h is not smooth has codimension at least 2, then the geometric
generic fiber of h is connected.
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Proposition 3.9. Let k be a field. Let X be a smooth, irreducible k-scheme
that is algebraically simply connected. Let Y be an irreducible quasi-projective k-
scheme. Let M be a normal, irreducible, quasi-projective k-scheme. Let (h, g) :
M → X ×k Y be a k-morphism such that h is projective and surjective and
such that g is dominant with irreducible geometric generic fiber. Let Z be an
irreducible k-scheme. Let f : Z → Y be a finite, surjective k-morphism. Denote
by ν : N → Z ×Y M the normalization of the fiber product Z ×Y M . Denote
by h′ : N → X the composition of h and projection from N to M . If the closed
subscheme of N where h′ is not smooth has codimension at least 2, then the
geometric generic fiber of h′ is connected.

N
ν //

$$❍
❍❍

❍❍
❍❍

❍❍
❍

h′

//

Z ×Y M //

��

Z

f

��

M
(h,g)

//

h
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼ X ×k Y //

pr1

��

Y

X

Proof. Since the geometric generic fiber of g is connected, and since Z is irre-
ducible, also the normalization N is irreducible. Since Z×Y M is a k-scheme, it
is Nagata, and hence the normalization ν is a finite morphism. Moreover, since
M is quasi-projective, it admits an ample invertible sheaf. Thus, the finite mor-
phism N → M is projective. Therefore, h′ is projective. Thus, the statement
reduces to Theorem 3.8.

Definition 3.10. Let Y be a regular locally Noetherian scheme. Let f : Z → Y
be a finite surjective morphism that is generically étale. The closed subscheme
R inside Z where f is not étale is called the ramification locus of f . Let B
denote the image of R in Y . The closed subscheme B of Y is called the branch
locus of f .

Note that, by Zariski’s purity theorem ([9], Exercise 8.2.15(c), p.347), the
branch locus B of f is either empty or pure of codimension one if f generically
separable. In particular, let k be a field of characteristic zero, and let Y be
a smooth k-scheme. Then, if f : Z → Y is a finite surjective morphism of k-
schemes that is generically étale, the branch locus B of f is either empty or pure
of codimension one. The following lemma about ramification in codimension one
is well-known.

Lemma 3.11. Let k be a field of characteristic zero. Let Z be a normal k-
scheme. Let Y be a smooth k-scheme. Let f : Z → Y be a finite surjective
morphism that is generically étale. Denote by R the ramification locus of f . Let
D be an irreducible component of R, and let E be the image of D in Y . Denote
by ηD (resp. ηE) the generic point of D (resp. E).

Then, there exists a uniformizer s (resp. t) for ÔY,ηE (resp. ÔZ,ηD ) such

that ÔY,ηE → ÔZ,ηD maps s to te for some positive integer e.
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Definition 3.12. Keep the notations in Lemma 3.11. The positive integer e
obtained in Lemma 3.11 is called the ramification index of f at ηD.

Theorem 3.13. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme. Let f : Z → P

n
k be a finite surjective morphism that is

generically étale. Then, for a general smooth curve C ⊂ P
n
k , the inverse image

f−1(C) is a smooth curve.

Proof. Since Z is normal, the singular locus Zsing has codimension at least two
([9], Prop.4.2.24, p.131). Also the closed subset f(Zsing) in P

n
k has codimension

at least two since f is finite. By Kleiman-Bertini’s Theorem ([3], Theorem
III.10.8, p.273), for a general smooth curve C in the complement of f(Zsing),
the inverse image f−1(C) is smooth.

Theorem 3.14. Let k be an algebraically closed field of characteristic zero. Let
f : Z → P

n
k be a finite surjective morphism from a normal irreducible variety.

Then, for a general genus-0, degree-d curve C in P
n
k , the inverse image f−1(C)

is connected.

Proof. Keep the notations in Proposition 3.9. Let Y be projective space P
n
k .

Note that f is generically étale by the generic smoothness theorem ([21], Theo-
rem 25.3.1, p.681). Let X be the non-stacky locus inside the stack of genus-0,
degree-d stable maps to P

n
k . In other words, X is the maximal open subscheme

of this stack. The open subscheme X is algebraically simply connected. Let M
be the universal family of curves over X , and let g be the universal morphism.
Then, the generic geometric fiber of g is connected.

To complete the proof, we need to prove that the singular locus of h′ inside
N has codimension at least 2. The codimension one subset of X parameterizes
degree-d, genus-0 curves in P

n
k that are not transversal to the branch locus.

Thus, away from codimension one points in X , the fibers are everywhere smooth
(Theorem 3.13). Moreover, for a genus-0, degree-d curve that is not transversal
to the branch locus, the singularities of the fiber of h′ occur only over the
intersection points of the curve with the branch locus, and this is codimension
one in the fiber. Thus, the total codimension of singular locus of h′ in N is at
least two. By Proposition 3.9, for a general genus-0, degree-d curve C in P

n
k ,

the inverse image f−1(C) is connected.

Corollary 3.15. Let k be an algebraically closed field of characteristic zero. Let
f : Z → P

n
k be a finite surjective morphism from a normal irreducible variety.

Then, for a general genus-0, degree-d curve C in P
n
k , the inverse image f−1(C)

is smooth and irreducible.

Proof. By Theorem 3.13 and Theorem 3.14, for a general genus-0, degree-d curve
C, f−1(C) is both smooth and connected. Thus, the inverse image f−1(C) is
irreducible.

Corollary 3.16. Let k be an algebraically closed field of characteristic zero. Let
f : Z → P

n
k be a finite surjective morphism from a normal irreducible variety.
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Then, for a general genus-0, degree-d curve C in P
n
k , the restriction map of

sections
Sections(Z/Pn

k ) → Sections(ZC/C)

is bijective.

Proof. Keep the notations in Lemma 3.11, and let Y be the projective space
P
n
k . By choosing the curve C generally, we can assume that C intersects with

every irreducible component of R transversally. Suppose that R1, · · · , Rr (resp.

B1, · · · , Br) are irreducible components of R (resp. B). Let R̃ (resp. B̃) be the
union of pairwise intersections of the irreducible components of R (resp. B),
i.e.,

R̃ =
⋃

1≤i<j≤r

Ri ∩Rj ,

B̃ =
⋃

1≤i<j≤r

Bi ∩Bj .

Since k is algebraically closed, the sigular locus Z̃ of Z has codimension at least
two ([9], Prop.4.2.24, p.131). Let Ỹ be the image of Z̃. Then, by choosing

C generally, we can assume further that C does not intersect with B̃ ∪ Ỹ and
that f−1(C) does not intersect with R̃ ∪ Z̃. Thus, we may assume that both R
and B are irreducible and that Z is smooth. Let ηB (resp. ηR) be the generic
point of B (resp. R). Let e be the ramification index of f at ηR. By choosing
the genus-0, degree-d curve C generally, we assume that f−1(C) is smooth and
irreducible (Corollary 3.15).

Case 1 : e > 1. Suppose that there exists a section σ of ZC over C. Then,
σ is a closed immersion of smooth irreducible curves. Thus, σ must be an
isomorphism ([3], Prop.II.6.8, p.137). The maximal ideal of the regular local
ring Of−1(C),q is generated by t, and the maximal ideal of OC,p is generated by
s such that s = te. Thus, the degree of the effective divisor f∗(p) on f−1(C) is
at least e ([3], Definition on p.137). However, since degf = 1, this contradicts
that

degf∗(p) = degf · degp

([3], Prop.II.6.9, p.138). Thus, there is no such section σ, let alone a section of
Z over Pn

k . Then the restriction map of sections is bijective since both sets of
sections are empty.

Case 2 : e = 1. Then f is everywhere étale. Since P
n
k is algebraically simply

connected, the finite étale cover f is an isomorphism. Thus, the restriction map
of sections is bijective.

Theorem 3.17. Let k be an algebraically closed field of characteristic zero. Let
Z be a normal k-scheme that is not necessarily connected. Let f : Z → S be
a finite surjective morphism to a smooth, connected, quasi-projective k-scheme
S where S admits a finite, generically étale morphism to an open dense subset
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of Pn
k , u0 : S → P

n
k . Then, for a general genus-0, degree-d curve C in P

n
k , the

restriction map of sections

Sections(Z/S) → Sections(ZC/C)

is bijective.

Proof. Let U be the image of S in P
n
k . Then, it suffices to show that the

restriction map of sections

Sections(Z/U) → Sections(ZC/C)

is bijective, where Z is finite, surjective and generically étale over U .
First, we assume that Z is connected. Then, by the same proof of Corol-

lary 3.15, for a general genus-0, degree-d curve C, the inverse image f−1(C) is
an irreducible and smooth curve. If there exists a codimension one point of Z
that has ramification index strictly greater than one, then there is no section
for f and for the restriction of f on f−1(C). Thus, we can assume that f is fi-
nite, surjective and everywhere étale. If deg(f) is strictly greater than one, then
there is no section for f ([23], Prop.5.3.1, p.165). Since f is flat, deg(f |f−1(C))
is equal to deg(f) ([9], Exercise 5.1.25(a), p.176). Thus, there is no section for
deg(f |f−1(C)) since f−1(C) is irreducible. If deg(f) is one, then the restriction
map of sections is trivially bijective.

Now, suppose that Z is not connected. Let Z1, · · · , Zr be the irreducible
components of Z. Then, the restriction of f on Zi is finite and generically étale,
and hence also surjective. Since Z is a disjoint union of Z1, · · · , Zr, then we
have

Sections(Z/U) =

r⊔

i=1

Sections(Zi/U),

and

Sections(ZC/C) =

r⊔

i=1

Sections((Zi)C/C).

Therefore, by the case when Z is irreducible, the restriction map of sections is
bijective.

3.3 Notations and Set up

In the rest of this paper, we will assume that S is a smooth, quasi-projective
k-variety of dimension≥ 2, where k is an uncountable algebraically closed field
of characteristic zero. And we fix a generically finite dominant morphism u0 :
S → P

n
k so that we can talk about lines and line-pairs, or curves and curve-pairs

in S (see Definition 1.3). Note that, without changing any of the results, we will
assume further that u0 is a finite, étale morphism over a dense, Zariski open
subset of Pn

k . There is a table in Appendix C to help readers keep track of the
notations in the rest of this article.
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3.3.1 Bad sets in parameter spaces

Let k be an algebraically closed field of characteristic zero. Suppose that S is a
smooth variety over k with a finite étale morphism onto a dense, Zariski open
subset of Pn

k , say, u0 : S → P
n
k . We claim that there exists a smooth projective

compactification W of S extending u0. Since S is quasi-projective, let W be the
reduced projective completion of S. Up to replacing W by its normalization,
we can assume W is normal. Then, W is singular only at a codimension two
closed subset([9], Prop.4.2.24). Moreover, since the characteristic of k is zero,
by Hironaka’s resolution of singularities, there exists smooth W ′ and W ′ → W ,
which is birational, projective and an isomorphism on the smooth locus of W .
So, replacing W by W ′, we can assume further that W is smooth and projective
over k, and S is a dense open subset in W . We include the following diagram
to clarify the situation.

S
� �

open
dense //

finite
étale

��

W

��

Image(S) �
�

open
dense

// P
n
k

Now, the image of W contains an open dense subset of Pn
k since S is finite

and étale over a dense open subset of Pn
k . Moreover, since W is projective over

Spec k, W → P
n
k is projective, and hence the image of W is the whole P

n
k . So

the space of conics in W and the space of curve-pairs in W are the same as the
space of conics and curve-pairs in P

n
k .

Notation 3.18. The smooth projective varietyW constructed as above is called
a projective compactification of S.

Recall that an Abelian scheme over S is defined as a proper and smooth S-
group scheme with connected fibers. Theorem 1.4 gives the result for restriction
of sections over line-pairs for a family of Abelian varieties. We hope to generalize
Theorem 1.4 to schemes X admitting a finite morphism to some Abelian scheme
A over S. Unfortunately, in this situation, the trick of taking boundaries fails to
apply on X (cf. [4], Lemma 4.3, Lemma 4.4 and Lemma 4.5). So the isotrivial
factor of A gives moduli of sections (see Remark 3.53), and hence we have to
consider curves of higher degree instead of line-pairs. The process of proof will
involve the application of pseudo-Néron models.

We first fix some notations to clarify the situation. Let A be an Abelian
scheme over S, and f : X → A be a finite S-morphism. There exists an open
dense subset V ⊂ S and a finite étale Galois cover p : V ′ → V such that the
pullback of A to V ′ is isogenous to a product of a strongly nonisotrivial family
of Abelian varieties and a trivial family (see the proof of Theorem 4.7 in [4]).
Without changing any results, we can assume that V = S. And denote V ′ by
S′.
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Notation 3.19. Let A0 be an Abelian variety over k such that (A0, v0) is a
Chow S′/k-trace of S′ ×S A where v0 : S′ ×k A0 → S′ ×S A is a morphism
of Abelian schemes over S′ ([4], Theorem 3.2 (i), p.315). Then, there exists
a strongly nonisotrivial Abelian scheme Q over S′ with vQ : Q → S′ ×S A a
morphism of Abelian schemes, and v0 × vQ : (S′ ×k A0)×S′ Q → S′ ×S A is an
isogeny of Abelian schemes over S′ ([4], Cor.3.7, p.317). Recall that an isogeny
of Abelian schemes is a surjective S-group morphism with finite fibers, and such
an isogeny must be finite. We denote this isogeny by ρiso.

Since A0 ×S S′ is projective over S′, the Weil restriction RS′/S(A0 ×k S′)
exists ([1], Theorem 7.6/4, p.194). Moreover, since S is a normal scheme, it is
geometrically unibranch. Thus, A is projective over S ([14], Théorème XI 1.4).
Therefore, the Weil restriction RS′/S(A×S S′) also exists.

Lemma 3.20. The functorial morphism

RS′/S(v0) : RS′/S(A0 ×k S
′) → RS′/S(A×S S′)

is a closed immersion.

Proof. Let {Si} be a finite set of étale neighborhoods of S such that
∐

i Si → S
is faithfully flat and the base change of S′ → S by Si is an open immersion
([1], Prop.2.3/8, p.49). Denote

∐
i Si by T . Since T → S is faithfully flat and

locally of finite presentation, it suffices to prove that RS′/S(v0)× IdT is a closed
immersion ([12], Prop.1.15, p.9). However, since Weil restrictions commute with
base change, we are reduced to the case where S′ is the disjoint union

∐
i Si.

Therefore, we have the isomorphisms

RS′/S(A0 ×k S
′) =

∏

i

RSi/S(A0 ×k S
′ ×S Si) =

∏

i

A0 ×k S
′ ×S Si,

and

RS′/S(A×S S′) =
∏

i

RSi/S(A×S S′ ×S Si) =
∏

i

A×S S′ ×S Si

(see the proof of Prop.7.6/5 in [1], p.196). Since k is a field of characteristic zero,
the morphism v0 is a closed immersion ([24], p.20 and p.21). Thus, RS′/S(v0)
is a closed immersion.

Definition-Lemma 3.21. Let A → RS′/S(A×SS
′) be the functorial morphism

of S-schemes, which is a closed immersion since A is separated over S ([1], p.197).
The isotrivial factor of the Abelian scheme A over S is the fiber product of A
andRS′/S(A0×kS

′) overRS′/S(A×SS
′). In other words, the following diagram

is Cartesian
Iso(A) //

��

RS′/S(A0 ×k S
′)

RS′/S(v0)

��

A // RS′/S(A×S S′).

Then, Iso(A) is a closed Abelian subscheme of A over S.
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Proof. For any S-scheme W , the Weil restriction RS′/S(A×S S′) represents the
functor

W 7→ HomS′(W ×S S′, A×S S′).

Thus, RS′/S(A ×S S′) is a group scheme over S because A ×S S′ is a group
scheme. Moreover, since A → RS′/S(A ×S S′) is induced by the identity on
A ×S S′, the functorial morphism A → RS′/S(A ×S S′) is a homomorphism
of group schemes. Similarly, RS′/S(A0 ×k S′) is a group scheme over S and
RS′/S(A0 ×k S′) → RS′/S(A ×S S′) is a homomorphism of group schemes.
Therefore, Iso(A) is a group scheme over S.

Let T be the disjoint union of schemes as in Lemma 3.20. Then, Iso(A)×S T
is

∏
iA0 ×k S′ ×S Si. Thus, Iso(A) is smooth over S by the standard descent

results ([12], Prop.1.15, p.9). Moreover, since Iso(A) is a closed subscheme of
the projective S-scheme A, Iso(A) is projective over S.

Let bi be a point in Si and b be the image of bi in S. Then, κ(bi) is a
finite separable extension of κ(b). Since surjectivity is stable under base change
and S′ ×S Si → Si is an open immersion, the morphism S′ ×S Si → Si is an
isomorphism. Let b′′ be a point in S′×S Si whose image in Si is bi. Then, κ(b

′′)
is the same as κ(bi). Denote the image of b′′ in S′ by b′.

S′

finite
étale

��

S′ ×S Si
oo

open
immersion
��

S Si
étale

oo

Then, RS′/S(A ×S S′)×S Si equals RS′×SSi/Si
(A ×S S′ ×S Si) which is A×S

S′ ×S Si since S′ ×S Si → Si is an isomorphism. Therefore, the geometric fiber
RS′/S(A×S S′)b is equal to

(A×S S′ ×S Si)×Si Specκ(bi)

which is the same as

A×S (S′ ×S S′)×S′ Specκ(b′′).

Let G be the Galois group of S′ → S ([1], Example B, p.139). Then, S′ ×S S′

is isomorphic to the disjoint union of S′, G× S′. So the geometric fiber is

A×S (G× S′)×S′ Specκ(b′′),

i.e., a disjoint union of |G| copies of the geometric fiber Ab. The same argument
gives that the geometric fiber RS′/S(A0 ×k S

′)b is a disjoint union of |G| copies

of the Abelian variety A0 ×k Specκ(b).
Because A → RS′/S(A×S S′) is a closed immersion, this morphism includes

the geometric fiber Ab as one copy of the disjoint union of |G| copies of Ab.
Therefore, the geometric fiber of Iso(A) over b is the Abelian variety A0 ×k

Specκ(b), which is irreducible. As a consequence, Iso(A) is a smooth, projective
group scheme over S with connected geometric fibers. So Iso(A) is an Abelian
S-scheme.
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Remark 3.22. Let b be a closed point of S. Then the geometric fiber of Iso(A)
at b is just A0 ×k Specκ(b), where A0 is the Chow S′/k-trace. Since Iso(A)
is smooth and projective over S, all the fibers of Iso(A) over S have the same
dimension ([3], Cor.III.9.10, p.263). Thus, the fiber dimension of Iso(A) is just
dimA0.

Definition-Lemma 3.23. There exists a morphism of S-schemes π : A →
Iso(A) such that the composition

Iso(A)−−−−−→A
π

−−−−−→ Iso(A)

is an isogeny on the generic fiber of Iso(A). The morphism π is called the
isotrivial quotient of the Abelian scheme A.

Proof. Over the function field K of S, Iso(A)K is an Abelian subvariety of AK .
By Poincaré’s complete reducibility theorem ([25], Theorem 8.9.3, p.267), there
is an Abelian subvariety B of AK such that the restriction of multiplication
gives an isogeny

m : Iso(A)K ×K B → AK .

Since K is a perfect field, there is a dual isogeny

m̂ : AK → Iso(A)K ×K B

such that m̂ ◦ m : Iso(A)K ×K B → Iso(A)K ×K B is the multiplication by
deg(m). Let pr1 be the first projection from Iso(A)K ×K B to Iso(A)K . Let ι :
Iso(A)K → AK be the closed immersion. Then, (pr1 ◦m̂)◦ι is the multiplication
by deg(m) on Iso(A)K , which is an isogeny.

Since the Abelian scheme Iso(A) is a Néron model of Iso(A)K ([1], Prop.1.2/8,
p.15), the morphism pr1 ◦m̂ : AK → Iso(A)K extends to an open dense subset
of S containing all codimension one points of S (Corollary 3.6). Therefore, we
have a rational map π : A 99K Iso(A). Since S is regular, the rational map π is
defined everywhere ([1], Cor.8.4/6, p.234).

Denote ρ : Iso(A) → S as the structure morphism of Iso(A). If b is a point
in S, we will denote the fiber of Iso(A) over b by Iso(A)b. Now we define the
bad set for sections and curve-pairs. Fix a point b ∈ S, and let p ∈ Iso(A) and
σ be a section of A over S mapping b to p. Denote m = (m, q, l) be a curve-pair
in S where m is a smooth curve, l is a conic such that they intersect at q ∈ S.

Notation 3.24. Let Sectionspb(A/S) be the set of sections of A over S such
that every section in the set maps b ∈ S to p ∈ Iso(A) via π : A → Iso(A).

Consider the following three properties,

(i) Sectionspb(A/S) → Sectionspb ((A×S m)/m) is bijective;

(ii) Sectionspb((X ×A,σ S)/S) → Sectionspb ((X ×A,σ S ×S l)/l) is bijective,
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where the maps of the sets of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A mapping b to p.

Then, intuitively, the bad set will be

{(p, σ), (m, q, l)|either (i) is false or (ii) is false}.

We give the rigorous construction of the bad set as following. From now to the
end of this subsection, we fix a point b ∈ S.

Notation 3.25. Let S → Iso(A) be an irreducible component of the relative
Grothendieck-Π-scheme parameterizing a point p of Iso(A) and a section σ of
A over S that maps b to p in the isotrivial quotient Iso(A). Let Pn

S
, resp. SS,

resp. AS, resp. XS, be the base change S×k P
n
k , resp. S×k S, resp. S×k A,

resp. S ×k X . Denote by pr1 and pr2 the projections from SS to S and S
respectively.

Notation 3.26. Let Md+2(P
n
k , τ) be the stack parameterizing pointed curve-

pairs of degree d + 2 in P
n
k . These are 4-tuples for such a pair (s, [m], t, [l])

consisting of a point s of Pn
k , a smooth curve m of degree d that contains s, a

point t on m, and a conic l that contains t.

The marked point s defines an evaluation morphism

ρev : Md+2(P
n
k , τ) → P

n
k , (s, [m], t, [l]) 7→ s.

Notation 3.27. Denote by Md+2(P
n
S
/S, τ) the stack over S that sends an

S-scheme T to the set of closed subschemes CT , flat over T , of Pn
T ×T P

n
T such

that every geometric fiber of γT is a pointed curve-pair, ([m∪t l], s), of a degree
d+ 2 curve where γT : CT 7→ T is the structure morphism of CT , and s ∈ m.

For every CT , let CT → P
n
T be the composition of the closed immersion

CT → P
n
T ×T P

n
T and the projection of Pn

T ×T P
n
T to its second factor. Then, this

defines the evaluation map

ρSev : Md+2(P
n
S
/S, τ) → P

n
S
.

Moreover, take uS
0 : SS → P

n
S

as the morphism pr1 ×(u0 ◦ pr2). The base
change of the section mapping Spec k to b ∈ S gives a section λ of SS → S,
and hence µ(b) = uS

0 ◦ λ is a section of Pn
S

over S.

S

IdS

��

λ
##

SS pr2
//

pr1
oo

uS

0

��

S

u0

��

S P
n
S pr2

//
pr1

oo P
n
k

Notation 3.28. Denote by Md+2(P
n
S
/S, τ)µ(b) the fiber product of ρSev and

the section µ(b) : S → P
n
S

over Pn
S
.
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Then, Md+2(P
n
S
/S, τ)µ(b) parameterizes the set of pairs of sections and

curve-pairs ((b, [m], t, [l]), (σ, p)) where σ is a section of A over S mapping b to
p and the marked point on the curve [m] is the fixed point b.

Notation 3.29. Denote by M0,d(P
n
S
/S, 1) the stack over S sending every

S-scheme T to the set of closed subschemes BT of Pn
T ×T P

n
T such that every

geometric fiber of BT → T is a genus-0, degree-d curve with a marked closed
point in P

n
k , ([m], s).

There is a forgetful morphism that sends a pointed curve-pair to the curve
[m] and the marked point s,

Md+2(P
n
S/S, τ) → M0,d(P

n
S/S, 1), (s, [m], t, [l]) 7→ (s, [m]).

Compose this morphism with the projection fromMd+2(P
n
S
/S, τ)µ(b) toMd+2(P

n
S
/S, τ).

We get an S-morphism

ϕ : Md+2(P
n
S/S, τ)µ(b) → M0,d(P

n
S/S, 1).

We summarize the objects in the following diagram.

Md+2(P
n
S
/S, τ)µ(b) //

��

ϕ

((

S

µ(b)

��

Md+2(P
n
S
/S, τ)

ρS

ev

//

��

P
n
S

M0,d(P
n
S
/S, 1)

Notation 3.30. Denote by Md+2(P
n
k , τ, b) the stack parameterizing pointed

curve-pairs in P
n
k such that the marked point on m is b.

Notation 3.31. Denote byM0,d(P
n
k , b) the stack parameterizing genus-0, degree-

d curves with a marked point b in P
n
k .

Let α be a k-point of S. Then, the fiber of the morphism ϕ over α corre-
sponds to a k-morphism

ϕα : Md+2(P
n
k , τ, b) → M0,d(P

n
k , b)

which is the forgetful morphism. So we have the following diagram.

Vβ
� �

open
dense //

""❊
❊❊

❊❊
❊❊

❊❊
Uβ

//

��

Md+2(P
n
k , τ, b)

//

ϕα

��

Md+2(P
n
S
/S, τ)µ(b)

ϕ

��

Spec β // M0,d(P
n
k , b)

//

��

M0,d(P
n
S
/S, 1)

��

Specα // S
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For every k-point β of M0,d(P
n
k , b), the fiber of ϕα is a Zariski open dense

subset Uβ of the variety parameterizing conic curves in P
n
k that intersect the

genus-0, degree-d curve m corresponding to β.

Lemma 3.32. For every section σ that maps b to p and corresponds to α, the
restriction of sections

Sections((X ×A,σ S)/S) → Sections((X ×A,σ S ×S l)/l)

is bijective for a general conic curve l.

Proof. Take C as a conic curve in Theorem 3.17.

Therefore, there is a maximal open dense subset Vβ of Uβ such that the
restrictions of sections on conic curves are bijective. Let Vα be the union of Vβ in
Md+2(P

n
k , τ, b). This is an open dense subset of Md+2(P

n
k , τ, b). Take the union

U of Vα in Md+2(P
n
S
/S, τ)µ(b), which is also open dense in Md+2(P

n
S
/S, τ)µ(b).

We summarize the notations as following.

Vβ� _

open
dense

��

// Vα� _

open
dense

��

// U� _
open
dense

��

Uβ
//

��

Md+2(P
n
k , τ, b)

//

ϕα

��

Md+2(P
n
S
/S, τ)µ(b)

ϕ

��

Spec β // M0,d(P
n
k , b)

// M0,d(P
n
S
/S, 1)

Notation 3.33. Suppose that W is the open dense subset of Md+2(P
n
S
/S, τ)

parameterizing the degree d+2 curve-pairsm such that the restriction of sections

Sections(A/S) → Sections((A×S m)/m)

is bijective. We will prove the existence of such open dense W in Corollary 3.46.

Let W ′ = U∩(W×µ(b)S). Then, we define the bad set D as the complement
of W ′ in Md+2(P

n
S
/S, τ)µ(b). And, by our construction, D parameterizes the

pointed pairs {(σ, p), (b, [m], q, [l])} such that either (i) is false or (ii) is false.
We will denote the bad set D by Db since it depends on the choice of b by
construction.

W ′
� _

open
dense

��

� �
open
dense // U� _

open
dense
��

W ×µ(b) S
� �

open
dense

//

��

Md+2(P
n
S
/S, τ)µ(b) //

��

S

µ(b)

��

W � �

open
dense

// Md+2(P
n
S
/S, τ)

ρS

ev

// P
n
S
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Note that there are two natural projections fromDb toS andMd+2(P
n
k , τ, b),

i.e.
φ1 : Db → S, by {(σ, p), (b, [m], q, [l])} 7→ (σ, p),

φ2 : Db → Md+2(P
n
k , τ, b), by {(σ, p), (b, [m], q, [l])} 7→ (b, [m], q, [l]).

By projecting once more from S to Iso(A), we get a morphism

φ3 : Db → Iso(A), by {(σ, p), (b, [m], q, [l])} 7→ p.

Denote the fiber of φ3 over p by Dp
b .

Definition 3.34. The set Db constructed above is called the bad set of sec-
tions and curve-pairs marked by b. For {(σ, p), (b, [m], q, [l])} in Dp

b , p is called
a bad point for the curve-pair (b, [m], q, [l]), and σ is called a bad section for
(b, [m], q, [l]).

Definition 3.35. Fix b ∈ S and p ∈ Iso(A)b closed points. A curve-pair
m = (b, [m], q, [l]) with b marked on [m] is called good for a section σ in
Sectionspb (A/S) if the following three properties hold

(i) Sectionspb(A/S) → Sectionspb ((A×S m)/m) is bijective,

(ii) Sectionspb((X ×A,σ S)/S) → Sectionspb ((X ×A,σ S ×S l)/l) is bijective,

where the maps of the set of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A.

Definition 3.36. Fix b ∈ S and p ∈ Iso(A)b closed points. An irreducible
smooth curve C with a marked point b ∈ S is called good for a section σ in
Sectionspb (A/S) if the following two properties hold

(i) Sectionspb(A/S) → Sectionspb ((A×S C)/C) is bijective,

(ii) Sectionspb((X ×A,σ S)/S) → Sectionspb ((X ×A,σ S ×S m)/m) is bijective,

where the maps of the set of sections are restrictions and the fiber product
X ×A,σ S comes from the section σ from S to A.

Remark 3.37. Dp
b could also be defined for curve-pairs with the marked point b

on the conic. Definition 3.34 and Definition 3.35 are defined in the same way.

3.3.2 The space of curve-pairs

Notation 3.38. LetH = Md+2(P
n
k , ε, b) be the scheme representing the functor

that sends every algebraic k-scheme T to the set of closed subschemes AT of Pn
T

such that every geometric fiber of AT over T is a genus zero, degree d+2 curve
with a marked point b, which can be reducible but at worst a curve-pair. And,
if the curve is a curve-pair, the marked point b is on the irreducible component
that is not a conic.
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Let X be a scheme over S such that it admits a pseudo-Néron model X̃
over an open dense S̃ in S of codimension at least two, e.g., X admits a finite
morphism to an Abelian scheme A over S.

Notation 3.39. Delete from Md+2(P
n
k , τ, b) the closed subset representing

curve-pairs in which the degree d smooth curve C0 and the conic C1 are tangent
to each other or intersect at more than two points. The let X be the subspace
of Md+2(P

n
k , τ, b) after this deletion.

Notation 3.40. Denote the open locus of genus-0, degree-(d + 2) curves or

curve-pairs contained in S̃ by H0 and X0 respectively. Let the space of degree-
(d+ 2) curves or curve-pairs in S be H1 and X1 respectively.

Notation 3.41. Let CH be the universal family of degree-(d + 2) curve over
H, i.e., every geometric fiber of CH over H is a degree-(d+ 2) curve in W . We

denote the open subset of universal family of degree-(d+ 2) curves in S̃ (resp.
S) by CH0 (resp. CH1).

Notation 3.42. Let H be the scheme which is universal for the problem of
lifting curves in H1 from S to X , and mapping the point b to p.

Equivalently, we have the following diagram, where Φ is the composition of
the structure morphism of H over H1 and the open immersion H1 → H0 and
all squares are Cartesian.

H ×H0 CH0 ×S̃ X̃ //

��

X̃ ×S̃ CH0
//

��

X̃

��

H ×H0 CH0

��

// CH0
//

��

S̃

H
Φ // H0

We note that H is locally of finite type over H0, and hence over k, but may
have infinitely many irreducible components. Every irreducible component is
quasi-projective over H0. Note that for every closed point x ∈ H0 the fiber of
Φ, Hx, is either empty or a discrete, 0-dimensional variety consisting of at most
countably many points (Lemma 3.50). In particular, Hx is a reduced scheme
over k.

Notation 3.43. There is a universal section of H×H0 CH0 ×S̃ X̃ → H×H0 CH0 .
We compose it with the top line of the digram, and denote the morphism by

̺ : H ×H0 CH0 → X̃,

which factors through the inclusion X → X̃ .
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3.4 Restrictions of Sections for Abelian Schemes

3.4.1 Main pseudo-Néron model theorem

Lemma 3.44. Let X → S be a morphism locally of finite type of regular Noethe-
rian schemes. Let Z be a codimension one regular closed subscheme of X, and
suppose that Z → S is smooth. Then, there exists an open subset U of X that
contains Z such that U → S is smooth.

Proof. See Appendix B.

The following theorem is the key application of pseudo-Néron models in the
problem of restriction of sections. The proof is exactly the same as Lemma 4.13
of [4]. We prove the relative version of this theorem, i.e., for fixed b ∈ S and
p ∈ Iso(A)b.

Theorem 3.45. Suppose that:

• X is smooth projective over S,

• X has a pseudo-Néron model X̃ over W , and

• every geometric fiber Xs does not contain any rational curve.

Then, any irreducible component H0 of H which dominates H also dominates
X . That is, the intersection of the image Φ(H0) with X contains a dense open
subset of X .

Proof. As in [4], we consider the diagram:

CX //

��

CH //

��

W

X // H

where CX is the universal family of curve-pairs with nodes of curve-pairs deleted
so that CX → X is smooth. Also, the morphisms CH → W and the composition
CX → W are smooth.

Since H0 is quasi-projective over H0, we can choose a compactification H
of H0 such that H is normal and Φ extends to Φ : H → H. Let us first take
an irreducible projective completion of H0, say H̃0, give it a reduced closed
subscheme structure and then take its normalization. As a consequence, H̃0

is an integral scheme and the normalization morphism ν : H → H̃0 is finite.
As topological spaces H0 is a Zariski open dense in H̃0. And H is birational
and surjective onto H̃0. Denote the inverse image of H0 in H by H0, which is a
normal, integral, open dense subscheme of H . We include the following diagram
to clarify the situation, where H0 is a locally closed subscheme of PN

H for some
integer N .
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H
ν // H̃0

� � closed // H ′
0
� � closed // P

N
H

��

H0
//

?�

open

OO

H0

?�

open

OO

Φ // H0
� � open // H

Suppose that H0 is an open subscheme of H ′
0, a closed subscheme of PN

H,

with reduce structure H̃0. Then the composition of the top line and the right-
most will be the morphism Φ. We note that the induced morphism H0 → H0

can be obtained by first giving a reduced structure to H0 and then taking its
normalization.

By construction, H is proper over H. Now, the image of H in H is closed.

So the image is the whole H since H0 dominates H. Thus, Φ
−1

(X ) is nonempty.

Moreover, since Φ
−1

(X ) is pure of codimension one in H and the non-regular
locus of H is of codimension two ([9], Prop.4.2.24), H is regular at a general

point of Φ
−1

(X ). We note that the regular locus and the smooth locus of H
coincide because k is algebraically closed ([9], Cor.4.3.33).

We have that Φ : H → H is a surjective morphism of finite type k-schemes,
so by the generic smoothness theorem (char k = 0) there exists an open dense
subset of the regular locus of H on which the morphism Φ is smooth. Hence,

there exists an open dense subset of Φ
−1

(X ) = X ×HH on which the morphism
ΦX , the base change of Φ to X , is smooth. By checking the inverse image

of the smooth locus of X , the reduced (actually smooth) locus of Φ
−1

(X ) is
nonempty. Note that the smooth locus of X is nonempty by the Jacobian

criterion. Set HX = Φ
−1

(X )red as the reduced locus of Φ
−1

(X ). By the generic
smoothness theorem again, there exists a dense open V ⊂ HX ∩H

reg
such that

ΦX : HX → X is smooth on V .

V
� � // Φ

−1
(X )

ΦX //
� _

immersion

��

X� _

immersion

��

H
Φ // H

We summarize the objects in our argument in the following diagram (cf. [4],
p.324).

30



CV

��

//

  ❅
❅❅

❅❅
❅❅

❅
CH

//❴❴❴

��

{{✇✇
✇✇
✇✇
✇✇
✇

X̃

��

CX //

��

CH //

��

W

X � � // H

V
� � //

ΦX⑥⑥⑥

>>⑥⑥⑥

Φ
−1

(X )
� � //

ΦX●●●

cc●●●

H

Φ●●●●●

cc●●●●●

Denote the base change CH ×H H by CH . Then, CV → W is smooth, CV → CH
is an immersion and V is contained in the regular locus of H .

We claim that there exists an open subset U of CH containing CV such that
U → W is smooth. Let C be the locus with double lines and nodes deleted.
Then C → H is smooth. Note that CX is a hypersurface in C. Consider the
open subset Ω = C ×H H of H . Thus, Ω → H is smooth. As a consequence,
Ω is regular over the regular locus of H ([9], Theorem 4.3.36, p.142). From the
construction, CV ⊂ Ωreg is a locally closed subset. By Lemma 3.44, there exists
an open subset U of Ωreg containing CV such that U → W is smooth.

We also denote the restriction of ̺ on H0 ×H0 CH0 and its base change to
H0 ×H0 CH0 by ̺. Then, ̺ is a rational map from U to X over W , which is
well-defined on (H0 ×H0 CH0) ∩ U . This rational map is marked as the dashed

arrow from CH to X̃ in the diagram above.

Now, let W̃ ⊂ W be the image of U → W which is an open subset of W .
Then, W̃ contains an open dense subset of the image of CX inW since U contains
CV . Since X̃ is a pseudo-Néron model of X over S, U 99K X̃ is well-defined
outside a codimension two subset of W̃ by the weak extension property. Every
such codimension two subset in W̃ can be avoided by a general smooth curve or
curve-pair. This gives an open dense subset U ′ of U such that U ′ contains an
open dense subset of CX and ̺ is well-defined on U ′. As a consequence, every
curve-pair in an open of CX with nodes deleted can be lifted. Moreover, since
there is no rational curve on X , any morphism from a punctured curve-pair to X
can be extended to the node. Since H parameterizes the space of degree-(d+2)
curves that can be lifted, an open subset of V is contained in the image of H0,
i.e. H0 also dominates X .

3.4.2 Inductive pseudo-Néron deforming step

Now we prove the existence of the open dense subset W of Md+2(P
n
S
/S, τ).

That is, the open subet parameterizing the degree-(d + 2) curve-pairs m such
that the restriction of sections

Sections(A/S) → Sections((A×S m)/m)
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is bijective. In [4] (Theorem 1.4), it was proved that this open dense subset
exists if m is a line-pair. And since we work over a field of characteristic zero,
the same is true for a very general conic, i.e., genus-0 and degree-2 curves by
using the Pseudo-Néron model (Theorem 1.4). The following inductive step
gives the relative version of Theorem 1.4 for very general genus-0, degree-(d+2)
curves, and curve-pairs, and fixed b ∈ S, p ∈ Iso(A)b.

Corollary 3.46. Fix b ∈ S and p ∈ Iso(A)b closed points. Suppose that
for a very general genus-0, degree-(d + 2) curve-pair C ∪ m every section in
Sectionspb (XC∪m/C∪m) is the restriction of a unique section in Sectionspb(X/S).
Then, for a very general genus-0, degree-(d + 2) irreducible smooth curve con-
tianing b, every section over this curve mapping b to p is the restriction of a
unique section of X over S.

Proof. The proof comes from [4], Theorem 4.15. Let Y be the scheme param-
eterizing rational sections of X over S mapping b to p. Let H1 and H be as
Theorem 3.45. Base change X , S and the universal family of genus-0, degree-
(d+ 2) curves in S by Y, we have the following diagram,

AY

��

CH1 ×k Y //

��

ϕ
::

SY

H1 ×k Y

where the rational map ϕ is the composition of the morphism CH1 ×k Y → SY

and the universal rational section of AY over SY . Let (CH1 ×k Y)◦ be the
maximal domain of definition of ϕ. The image of (CH1 ×k Y)◦ is also an open
subset which will be denoted by (H1 ×k Y)◦. And, similarly, there is an open
dense S◦

Y in SY . Then, ϕ on (CH1 ×k Y)◦ gives the universal section of lifting
genus-0, degree-(d+2) curves in S◦

Y . Since H ×k Y is universal for the problem
lifting genus-0, degree-(d+ 2) curves in SY , there is a map from (H1 ×k Y)◦ to
H ×k Y. Thus, we get a rational map Φ : H1 ×k Y 99K H ×k Y. Let X ◦ be the
very general subset of X such that the statement about restriction of sections
holds on X ◦. Then, an open dense of X ◦ ×k Y is in the maximal domain of
definition of Φ, and hence the projection of the image of Φ to H is a union of
some irreducible components of H .

Suppose that the theorem is false for very general genus-0, degree-(d + 2)
curves. Then there is an irreducible component, H2, of H dominating H1 such
that the universal section over this irrreducible component is not the restriction
of a section over S. By Theorem 3.45, H2 also dominates X . Thus, there exists
an irreducible component H3 of H which is in the projection of the image of Φ
to H such that it intersects with H2. Then, over a very general point of X , the
fiber of H has intersecting irreducible components. However, this contradicts
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Cartier’s theorem ([16], Theorem 1, Lecture 25) for locally finite type group
schemes over a field of characteristic zero. Therefore, the theorem also holds for
a very general genus-0, degree-(d+ 2) curve in S.

Lemma 3.47. Suppose that every section of A over a very general genus-0,
degree-d, irreducible, smooth curve is contained in a unique section of A over
S. Then, for very general points b′ and b′′ in S and for a very general conic C
containing b′ and a very general genus-0, degree-d curve m containing b′′ with
d ≥ 2 such that C and m intersect at a very general point c, every section in
Sections(AC∪m/C ∪m) is the restriction of a unique section in Sections(A/S).

Proof. Denote by M ′ the space of conics in S and M ′′ the space of genus-0,
degree-d curves. Denote by C′, resp. C′′, the universal family of curves over
M ′, resp. M ′′ (Definition A.4 (i)). Let γ be a section in Sections(AC∪m/C ∪
m). Then, by Theorem 1.4, γ|C is contained in a unique global section σ ∈
Sections(A/S), and the same is true for γ|m by hypothesis. Let τ ∈ Sections(A/S)
be the unique global section extending γ|m. Denote by r the integer 2 dim(S)−
2. The transversal Grassmannian G′ is the Grassmannian parameterizing r-
dimensional linear subvarieties N ′ of M ′, and similarly define G′′ for M ′′ (Def-
inition A.4 (vii)).

For very general C and m, they are contained in some very general linear
subvariety N ′ of M ′ and linear subvariety N ′′ of M ′′ respectively. Denote by
u′
S and u′′

S the composed morphisms

C′ → S ×Speck M
′ → S,

and
C′′ → S ×Speck M ′′ → S

(Definition A.4 (iii)). The base change of σ, resp. τ , to C′, resp. C′′, gives a u′
S-

multisection σ1, resp. u′′
S-multisection τ1 of A → S (Definition A.3). Consider

the 2-pointed bi-gon (C′
t′ ∪c C

′′
t′′ , b

′, b′′) parameterized by a point t′ ∈ N ′, resp.
t′′ ∈ N ′′, whose curve C′

t′ contains c and b′, resp. whose curve C′′
t′′ contains c

and b′′ (see the statement of Lemma A.10). Denote the image of σ1, resp. τ1 in
C′ ×S Y , resp. C′′ ×S Y by Ω′, resp. Ω′′ (Definition A.3).

The following composition

Ω′ ×N ′ C′
N ′ → A×S (C′

N ′ ×N ′ C′
N ′)

IdA×u
[2]

N′,S

−−−−−−−−−−→ A×S (S ×Speck S)

defines a (S ×Speck S, pr1)-multisection of A → S (Lemma A.7). Let the image
of the restriction of this multisection on the fiber pr−1

1 (b′) in A be Ω′
M ′,N ′,b′ ,

and similarly define Ω′′
M ′′,N ′′,b′′ (see the notations in Lemma A.10). The base

change of σ via the composition

C′
N ′ ×N ′ C′

N ′

u
[2]

N′,S

−−−−−−−−→ S ×Speck S
pr1

−−−−−→ S
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gives a section of A×S (C′
N ′ ×N ′ C′

N ′) over C′
N ′ ×N ′ C′

N ′ , which is the same as
the base change of σ via

C′
N ′ ×N ′ C′

N ′

pr1
−−−−−→ C′

N ′

u′

S

−−−−−→ S.

Thus, the image of σ in A equals the image of Ω′ ×N ′ C′
N ′ in A. The restriction

of Ω′ ×N ′ C′
N ′ on the pr1-fiber pr−1

1 (b′) is the restriction of σ on the curves
C′

t′ containing b′ and parameterized by t′ ∈ N ′. Therefore, the image of γ|C
is contained in Ω′

M ′,N ′,b′ , and the same argument shows that the image of γ|m
is contained in Ω′′

M ′′,N ′′,b′′ . By the Bi-gon Lemma (Lemma A.10), for a very
general pair (N ′, N ′′, b′, c, b′′) in G′ ×Speck G′′ ×Speck S ×Speck S ×Speck S, γ
comes from a unique section of A over S.

Corollary 3.48. Let S be a smooth, quasi-projective k-scheme of dimension
b ≥ 2. Let A be an Abelian scheme over S. For a very general curve-pair C ∪m
in S such that the degree of m is even, the restriction map of sections

Sections(A/S) → Sections(AC∪m/C ∪m)

is a bijection. This also holds for C a very general genus-0, irreducible, smooth
curve of even degree in S.

Proof. Take X = A in Corollary 3.46. In Lemma 3.47, take m as a conic
curve. Then by Theorem 1.4 and Lemma 3.47 the result holds for very general
C ∪ m. Next, use Corollary 3.46 to deform C ∪ m to a very general genus-0,
irreducible smooth curve of degree 4. Attach a very general conic to this curve
at a very general point and apply Lemma 3.47 and Corollary 3.46 again. Then,
the corollary follows by induction.

3.5 Moduli of bad points caused by Iso(A)

Lemma 3.49. Let A and B be two Abelian varieties over a field k. Then, there
are at most countably many homomorphism of Abelian varieties from A to B.

Proof. See Appendix B.

Lemma 3.50. Let C be a smooth curve in S. Then, for fixed b ∈ C and p ∈ Ab

closed points, there are at most countably many sections of X (resp. A, resp.
Iso(A)) over C that map b to p. And there are at most countably many sections
of X (resp. A, resp. Iso(A)) over S that map b to p. In particular, for every
p′ ∈ Xb, there are at most countably many sections of X over C, resp. over S,
mapping b to p′.

Proof. It suffices to prove the statement for the Abelian scheme A since X → A
is finite and Iso(A) is a closed subscheme of A.

First suppose that A = A0 ×k S for some abelian variety A0 over k. Since
the inclusion C → S is fixed, giving a morphism from C to A0 ×k S is the
same as giving a morphism from C to A0. Up to a translation we can assume
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that the image of p is the identity in A0. Then, this is equivalent to specifying
a homomorphism (Jac(C), 0) to (A0, 0), where Jac(C) is the Jacobian of C.
By Lemma 3.49, there are at most countably many such homomorphisms, and
hence at most countably many sections from C to A that map b to p.

Now, suppose that A is not a trivial family of Abelian varieties. However,
by a finite, étale and Galois base change S′ → S, we have an isogeny of Abelian
S′-schemes,

ρiso : (A0 ×k S
′)×S′ Q → A×S S′

where A0×kS
′ is a trivial family of Abelian varieties over S′ and Q is a strongly

nonisotrivial Abelian scheme over S′.
Consider the product (A0×kS

′)×S′ Q. Let b′ ∈ S′ and p′ ∈ A0×kS
′. Every

section of (A0 ×k S
′)×S′ Q over C′ = C ×S S′ that maps b′ to p′ comes from a

section of A0 ×k S
′ over C′ mapping b′ to p′ and a section of Q over C′. There

are at most countably many sections of A0 ×k S
′ over C′ mapping b′ to p′. And

since Q is strongly nonisotrivial, there are at most countably many section of
Q over S′ ([4], Lemma 3.6, p.316). Thus, there are at most countably many
sections of (A0 ×k S

′)×S′ Q over C′ mapping b′ to p′.
By the standard descent result, HomS(C,A) → HomS′(C′, A ×S S′) is in-

jective ([1], Theorem 6.1/6 (a), p.135). And, if a morphism from C to A is an
immersion after the base change by S′, so is the original morphism ([13], IV2,
Prop.2.7.1). So the problem reduces to counting the sections of A×S S′ over C′

mapping a fixed point b′ ∈ S′ to a fixed point p′ ∈ A×S S′. Let

τiso : A×S S′ → (A0 ×k S
′)×S′ Q

be the dual isogeny of ρiso. Let p′′ be the image of p′ under τiso. Then, since

τiso is finite, for every section σ′′ in Sectionsp
′′

b′ ((A0 ×k S′) ×S′ Q/C′), there
are at most finitely many sections of A ×S S′ over C′ lifting σ′′ and mapping

b′ to p′. However, since Sectionsp
′′

b′ ((A0 ×k S′) ×S′ Q/C′) is at most count-

able, Sectionsp
′

b′ (A ×S S′/C′) is at most countable. Putting all these together,
Sectionspb (A/C) is at most countable.

Replacing the Jacobian of a smooth curve by the Albanese variety of S ([20],
Theorem 5.7.13, p.141), the result for Sectionspb (X/S), resp. Sectionspb(A/S),
resp. Sectionspb(Iso(A)/S) follows immediately.

Lemma 3.51. (1). Fix a point b ∈ S, a point p in Iso(A)b, and a point
p′ ∈ (π ◦ f)−1(p). Let σ be a section in Sectionspb (A/S). Then, for a conic C
and a genus-0, degree-d curve m containing b with d ≥ 2 such that C and m

intersect at a very general point, every section in Sectionsp
′

b (XC∪m/C ∪m) that

maps to σ|C∪m is the restriction of a unique section in Sectionsp
′

b (X/S) that
maps to σ if C ∪m is good for σ.

(2). Conversely, if p is a bad point for C ∪m, then for C and m intersecting

at a very general point, there exists a section in Sectionsp
′

b (XC∪m/C ∪m) that
cannot be extended uniquely.
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(3). Let C be a genus-0, degree-d, irreducible smooth curve marked by b
with d ≥ 2. Suppose that C contains another very general point c. Then, every

section in Sectionsp
′

b (XC/C) that maps to σ|C is the restriction of a unique

section in Sectionsp
′

b (X/S) that maps to σ if C ∪m is good for σ.

Proof. First, suppose that C ∪m is good for the section σ. Let fσ : X×A,σ S be
the finite morphism arising from base change of f by σ. Denote gσ : XS → X
to be the base change of σ by f . For σ ∈ Sectionspb (A/S), there are at most
finitely many sections of fσ that map b to p. For any two different such sections,
the intersection in XS maps in S, via fσ, to a proper closed subset of S. As
we vary these sections of fσ, this gives finitely many proper closed subsets of
S. Moreover, there are at most countably many sections in Sectionspb(Xm/m).
For any two distinct such sections, the intersection in X maps in S, via the
structure morphism of X , to a proper closed subset of S. The complement of
these closed subsets is a very general open subset of S. Denote this very general
subset by S0(σ).

Take c ∈ S0 as the intersection point of C andm. Let γ ∈ Sectionsp
′

b (XC∪m/C∪
m) such that (f ◦ γ)|m is contained in the section σ in Sectionspb (A/S). Then
form the following diagram.

C ∪m

γ

��

$$

γ0

●●
●●

##●
●●

●

XS
fσ

//

gσ

��

S

σ

��

X
f

// A
π //

��

Iso(A)

ρ
||②②
②②
②②
②②
②

S

Since XS is the fiber product of X and S via f and σ, every section of fσ
over S (resp. over C ∪m) arises from a unique section of X over S (resp. over
C∪m). Thus, γ gives a section, γ0, of fσ over C∪m such that gσ ◦γ0 = γ. Since
C ∪m is good for σ, γ0|C is contained in a unique section of fσ over S, say, τ .
Then, gσ ◦ τ is a section of X over S such that f ◦ gσ ◦ τ = σ. By construction,
(gσ ◦ τ)|C equals gσ ◦ (γ0|C), which is γ|C . Let γ0 be the restriction of gσ ◦ τ on
m. Suppose that γ0 6= γ|m, then γ0(c) = gσ ◦ τ(c) = γ(c) is in the intersection
of the images of γ0 and γ|m. Since γ0 is a section of X over m mapping b to p,
also c is in the complement of S0, contradicting the choice of c. Therefore, γ0
equals γ|m, and γ extends to a unique section of X over S.

Next, suppose that p is a bad point for C ∪ m. For every two distinct
sections in Sectionspb (A/S), the intersection of their images in A maps to a
proper closed subset of S. Remove these countably many closed subsets from
∩σS0(σ), σ ∈ Sectionspb(A/S). Denote this very general subset by S◦. Take
c ∈ S◦ and a section τ ∈ Sectionspb(A/S) such that C ∪m is bad for (τ, p). Since
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p is a bad point, there exists p′ ∈ (π ◦ f)−1(p) and a section of γ of X over
C ∪m mapping b to p′ such that either γτ cannot be extended, the extension
is not unique, or f ◦ γ cannot be extended. If f ◦ γ cannot be extended, γ does
not have an extension. If γτ cannot be extended, then γ cannot be extended. If
the extension is not unique, these different extensions gives distinct extensions
of γ as in the proof of the first part. The statement (3) follows from the same
proof as (1).

Corollary 3.52. Fix a very general point b ∈ S and a point p in Iso(A)b.
Then, for a very general conic C and a very general genus-0, degree-d curve
m containing b with d even and d ≥ 2 such that C and m intersect at a very
general point, every section in Sectionspb(XC∪m/C ∪ m) is the restriction of a
unique section in Sectionspb (X/S).

Proof. Consider the very general subset S◦ as in Lemma 3.51. For a very general
b, and very general C ∪m, the restriction of sections

Sectionspb(A/S) → Sectionspb(AC∪m/C ∪m)

is bijective by Corollary 3.48.
Let c ∈ m ∩ S◦ be a closed point. For every σ in Sectionspb (A/S), there is a

very general family of conic curves N2(σ, c) such that every section of fσ over C
extends to a unique section of fσ by Bertini’s theorem (Theorem 3.17). Take a
very general conic C that is contained in N2(σ, c) for every σ ∈ Sectionspb(A/S).
Now, for every section γ ∈ Sectionspb (XC∪m/C ∪ m), f ◦ γ is contained in a
unique section σ ∈ Sectionspb (A/S). Therefore, by Lemma 3.51, γ is contained
in a unique section of Sectionspb(X/S).

Remark 3.53. For a fixed p ∈ Iso(A)b, Corollary 3.52 claims the existence of
good curve-pairs for sections in Sectionspb(A/S). However, such a good curve-
pair might be bad for other choices p0 ∈ Iso(A)b. And as we vary the point p0,
the bad sets Dp0

b might sweep out the moduli spaceMd(P
n
S
/S, τ)µ(b). To resolve

this problem, we have to increase the degree of curve-pairs (Theorem 1.9).

3.6 Main Theorem

Now, we can give the proof of Theorem 1.9.

Proof. Let C1 be a very general conic curve containing a very general point b1 ∈
S. Let M2,b1 be the image of φ3(Db1), i.e. the set of bad points p1 ∈ Iso(A)b1
for C1. By Corollary 3.52, M2,b1 is a proper subset of Iso(A)b1 . Take C2 a
very general conic intersecting with C1 at a very general point c2 and a very
general point b2 on C2. Denote by ∆′

2(C1 ∪ C2, b1) the union of the images of
C1 ∪ C2 under bad sections σ of A over S mapping b1 to some p ∈ M2,b1 . Let
∆2(C1 ∪ C2, b1) be the image of ∆′

2(C1 ∪ C2, b1) in Iso(A) under f ◦ π. Then,
∆2(C1∪C2, b1) is contained in ρ−1(C1∪C2) and ∆2(C1∪C2, b1)∩M2,b1 equals
M2,b1 . Define ∆2(C1 ∪ C2, b2) in the same way for points in M2,b2 .
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By choosing C2, c2 and b2 very generally, ∆2(C1 ∪ C2, b2) ∩ Iso(A)b1 will
intersect M2,b1 transversally. Moreover, since C1∪c2 C2 is very general, we may
assume that

Sections(A/S) → Sections(AC1∪c2C2/C1 ∪c2 C2)

are bijective by Corollary 3.48.
Let p be a point in M2,b1 , but not in ∆2(C1 ∪C2, b2). Let σ be a section in

Sectionspb1(A/S). If σ(b2) does not belong to M2,b2 , C1∪C2 is good for (σ, b1, p).
If σ(b2) is in M2,b2 , then σ(b1) is in ∆2(C1∪C2, b2), which contradicts the choice
of p. Thus, C1∪C2 is good for every section in Sectionspb1(A/S), and p is a good

point for this marked curve-pair. Now, take a point p′1 in (π ◦ f)−1(p) where p
is in the set ∆2(C1 ∪C2, b2)∩ Iso(A)b1 , but not in M2,b1 . Denote by γ a section
of X over C1 ∪ C2 mapping b1 to p′1. Let p′2 = γ(b2). Denote by p1, resp. p2,
the image of p′1, resp. p′2 in Iso(A). Let σ be a section of A over S extending
f ◦ γ. Since p1 is not in M2,b1 , C1 ∪C2 is good for (σ, b2, p2). By Lemma 3.51,
γ extends to a unique section of X over S mapping b2 to p′2 and b1 to p′1. Thus,
by the second part of Lemma 3.51, p is a good point for (b1, C1, c2, C2).

Denote by M4,b1 the set of bad points of (b1, C1, c2, C2). Then, by the above
argument, M4,b1 is contained in the intersection of ∆2(C1 ∪C2, b2) and M2,b1 .
Therefore, dimM4,b1 is strictly less than dimM2,b1 . Let C1,2 be a very general,
genus-0, degree-4, irreducible, smooth curve containing b1. By Corollary 3.46
and Lemma 3.51, the bad set of points is contained in M4,b1 . Denote the bad
points for (C1,2, b1) by M′

4,b1
. Attach a very general conic C3 to C1,2 at a very

general point c3. Then inductively, we get a decreasing sequence of dimensions

dimM2,b1 > dimM4,b1 ≥ dimM′
4,b1 > dimM6,b1 ≥ dimM′

6,b1 > · · · .

Then, for d > 2e an even number, the bad set for (b1,m, c, C) of degree-(d+ 2)
is empty, and hence every section of X over C ∪m is the restriction of a unique
section. And, by Corollary 3.46, this is also true for very general irreducible
smooth curve of degree-(d+ 2).

Appendix A The Bi-gon Lemma

Let k be an algebraically closed field. In the statement of the Bi-gon Lemma,
also k will be uncountable. Let B be an irreducible, quasi-projective k-scheme
of dimension ≥ 2.

Definition A.1. For every k-morphism of locally finite type k-schemes, f :
R → S, for every integer δ ≥ 0, the δ-locus of f , Ef,≥δ ⊆ R, is the union of all
irreducible components of fibers of f that have dimension ≥ δ. The δ-image of
f , Ff,≥δ ⊆ S, is the image under f of Ef,≥δ.

Lemma A.2. ([3], Exercise II.3.22, p.95) For every locally finite type morphism
f and every integer δ ≥ 0, the subset Ef,≥δ of R is closed. If also f is quasi-
compact, resp. proper, then the subset Ff,≥δ of S is constructible, resp. closed.
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Definition A.3. For every proper, surjective morphism ρ : Y → B, for every
pair (T,w) of an integral scheme T and a dominant, finite type morphism,

w : T → B,

a (T,w)-multisection of ρ is a pair (Ω, v) of an irreducible scheme Ω and a
proper morphism v = (vY , vT ),

v : Ω → Y ×B T, vY : Ω → Y, vT : Ω → T,

such that vT is surjective and generically finite. Since v is proper, also the
image (v(Ω), v(Ω) →֒ Y ×B T ) is a (T,w)-multisection of ρ. This is the image
multisection of (Ω, v).

For every pair ((Ω′, v′), (Ω′′, v′′)) of (T,w)-multisections, denote the fiber
product of v′ and v′′ by

(π′ : Pv′,v′′ → Ω′, π′′ : Pv′,v′′ → Ω′′), v′ ◦ π′ = v′′ ◦ π′′.

The special subset Sv′,v′′ of the pair is the closed image in T of Pv′,v′′ .

Definition A.4. (i). For an integral, quasi-projective k-schemeM , a family of
smooth, proper, connected curves over M is a smooth, proper morphism,

uM : C → M,

whose geometric fibers are connected curves.

(ii). For every open immersion

ι : C → C

whose image is dense in every fiber of u, the composite morphism uM = uM ◦ ι
is a family of smoothly compactifiable curves over M .

(iii). A family of curves to B is a pair (M,u) of an irreducible, quasi-
projective k-scheme M and a proper morphism u = (uY , uM ),

u : C → B ×Spec k M, uB : C → B, uM : C → M,

such that uM is a family of smoothly compactifiable curves over M .

(iv). The family of curves to B is connecting, resp. minimally connecting,
if the following induced k-morphism is dominant, resp. dominant and generically
finite,

u(2) : C ×M C → B ×Spec k B, pri ◦ u
(2) = uB ◦ pri, i = 1, 2.

By definition, both uM ◦pr1 and uM ◦pr2 are equal as morphisms from C×M C
to M ; denote this common morphism by ũM . Denote by ũ(2) the induced
morphism

(u(2), ũM ) : C ×M C → B ×Spec k B ×Spec k M.
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(v). A connecting family of curves to B is a Bertini family if for every integral

k-scheme B̃ and for every finite, surjective k-morphism φ : B̃ → B, the induced
morphism B̃ ×B C → M has integral geometric generic fiber. Denote by Mφ

the maximal open subscheme of M over which B̃ ×B C has integral geometric
fibers.

(vi). An integral closed subvariety N of M is transversal if the following
family of curves to B is minimally connecting,

(N, u× IdN : C×M → B ×Spec k M ×M N).

Such a subvariety is φ-Bertini if N intersects the open Mφ.

(vii). The transversal dimension is d := 2dim(B) − 2. For every integer e
with 0 ≤ e ≤ d, the transversal Grassmannian Ge is the open subscheme of
the Grassmannian parameterizing e-dimensional linear sections N of M .

Lemma A.5. For every connecting family of curves (M,u), for every integer
e with 0 < e ≤ d, a general point of Ge parameterizes a linear section N of M
that is geometrically integral.

Proof. This follows from a Bertini Connectedness Theorem, [15] Théorème 6.10.

Lemma A.6. For every connecting, Bertini family (M,u), for every integer
e with 0 ≤ e ≤ d, a general point of Ge parameterizes a linear section N of

M such that the induced morphism u
(2)
N is generically finite. For every finite,

surjective k-morphism φ : B̃ → B, every general N ∈ Gd is transversal and
φ-Bertini.

Proof. Generic finiteness of u
(2)
N is proved by induction on e. The base case is

when e = 0. Since the family is connecting, the morphism u is generically finite
to its image. Thus, the morphism ũ(2) is generically finite to its image. The
1-relative locus E of ũ(2) is a proper, closed subset of C ×M C. For the induced
morphism,

ũM |E : E → M,

the 2-relative locus E≥2 of this morphism is a closed subset of E. Since E is
a proper closed subset of C ×M C, and since the geometric generic fiber of ũM

is irreducible, the proper closed subset E≥2 is disjoint from this fiber. Thus,
the image F≥2 of E≥2 in M is a constructible subset that does not contain the
generic point, i.e., it is not Zariski dense. Denote by Mo the open subset of M
that is the complement of the closure of the image of F≥2. For every singleton
N of a closed point of Mo, the restrictions to N of ũ(2) and u(2) are equal; refer

to this common restriction by u
(2)
N . Since ũ(2) is generically finite on the fiber

over N by construction, also u
(2)
N is generically finite. This establishes the base

case.
For the induction step, assume that the result is proved for an integer e

satisfying 0 ≤ e < 2dim(B)− 2. Then for a general linear subvariety N of M of
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dimension e, the image of u
(2)
N has dimension e+2 < 2dim(B). Thus, the image

is not Zariski dense. Since u(2) is dominant, a general point of B ×Spec k B
is contained in the image of u(2) over a general point of M , say m. Let N ′

be the intersection of M with the span of N and m. Then N ′ is a linear
subvariety of M of dimension e + 1. By Lemma A.5, for N general and for m

general, the linear section N ′ is geometrically integral. Thus, the image of u
(2)
N ′

is a geometrically integral scheme that is strictly larger than the image of u
(2)
N .

Thus, the dimension of the image of u
(2)
N ′ is strictly larger than the dimension

of the image of u
(2)
N . Since u

(2)
N is generically finite, and since N ′ has dimension

precisely 1 larger than the dimension of N , also u
(2)
N ′ has dimension precisely

1 larger than the dimension of u
(2)
N . Thus, also u

(2)
N ′ is generically finite to its

image.

In particular, for e equal to d, since u
(2)
N is generically finite and the domain

and target both have the same dimension, the image of u
(2)
N contains a nonempty

Zariski open subset of B×Spec kB. By hypothesis, B×Spec kB is integral. Thus,
the image contains a dense Zariski open subset ofB×Spec kB. Therefore (N, uN )
is a minimally connecting family, i.e., N is transversal.

Finally, by hypothesis, the open subscheme Mφ contains the generic point of
M , and hence this open subscheme is dense. Therefore, a general N intersects
Mφ.

Lemma A.7. For every minimally connecting family of curves to B,

(N, (uN,B, uN ) : CN → B ×Spec k N),

for every (CN , uN,B)-multisection (Ω, v) of ρ, the scheme Ω×NCN is irreducible,
and the following composition ṽB is a multisection of ρ relative to B ×Spec k

B
pr1−−→ B,

Ω×N CN

vN×IdCN−−−−−−→ Y ×B CN ×N CN

IdY ×u
[2]
N,B

−−−−−−−→ Y ×B B ×Spec k B.

Proof. Since the morphism
uN : CN → N

is flat with integral geometric fibers, the following base change morphism is flat
with integral geometric fibers,

prΩ : Ω×N CN → Ω.

Since Ω is irreducible, and since prΩ is flat with integral geometric generic fiber,
also Ω×N CN is irreducible.

Since vC is surjective and generically finite, and since uN is flat, also the
following morphism is surjective and generically finite,

vC × IdCN : Ω×N CN → CN ×N CN .
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Since (N, uN ) is minimally connecting, the following morphism is dominant and
generically finite,

u
[2]
N : CN ×N CN → B ×Spec k B.

Thus, the composition is dominant and generically finite. This composition
equals the composition of ṽB with the morphism

ρ× IdB : Y ×Spec k B → B ×Spec k B.

Thus, the morphism ṽB is a multisection of ρ.

For every pair of connecting families of curves to B,

(M ′, u′ : C′ → B ×Spec k M ′), (M ′′, u′′ : C′′ → B ×Spec k M
′′),

denote by G, resp. by G′, the open subscheme of the Grassmannian param-
eterizing d-dimensional linear sections N ′ of M ′, resp. N ′′ of M ′′, that are
transversal; by Lemma A.6, there is a dense open subscheme parameterizing
linear sections that are transversal.

Lemma A.8. For every pair of connecting families of curves to B as above
that are Bertini families, for every pair

(Ω′, v′), (Ω′′, v′′)

of a (C′, u′
B)-multisection of ρ and a (C′′, u′′

B)-multisection of ρ, for a general
pair (N ′, N ′′) ∈ G′ ×Spec k G

′′, the families (N ′, u′ × IdN ′) and (N ′′, u′′ × IdN ′′)
are minimal connecting families of curves to B. Also, for a general pair (b′, b′′) ∈
B ×Spec k B, the family (N ′, u′

N ′), resp. (N ′′, u′′
N ′′), is a Bertini family for the

image in Y of the multisection ṽ′B,b′ , resp. ṽ′′B,b′′ of ρ, obtained by restricting to
the fiber of pr2 : B ×Spec k B → B over b′, resp. over b′′.

Proof. By Lemma A.7, each of (Ω′
N ′ ×N ′ C′

N ′ , ṽ′B) and (Ω′′
N ′′ ×N ′′ C′′

N ′′ , ṽ′′B) is
a pr1-multisection of ρ. Thus, for general (b′, b′′) ∈ B ×Spec k B, the restriction
of the pr1-multisection Ω′

N ′ ×N ′ C′
N ′ , resp. Ω′′

N ′′ ×N ′′ C′′
N ′′ , to the pr2-fiber over

b′, resp. over b′′, maps dominantly and generically finitely to B, i.e., each of the
finitely many irreducible components of the the restriction is a u′-multisection
of ρ, resp. a u′′-multisection of ρ. Denote the image in Y of this finite union of
multisection by ṽ′B,b′ , resp. by ṽ′′B,b′′ . By Lemma A.6, for N ′′ general applied
to the finitely many irreducible components of ṽ′B,b′ , the family (N ′′, u′′

N ′′) is
transversal and Bertini relative to ṽ′B,b′ . Similarly, for N ′ general, the family
(N ′, u′

N ′) is transversal and Bertini relative to ṽ′′B,b′′ .

Lemma A.9. Assume that k is algebraically closed and uncountable. With
the same hypotheses as above, for a countable family of (M ′, u′)-multisections,
(Ω′

i′ , v
′
i′)i′∈I′ , with pairwise distinct images in Y ×B C′, resp. for a countable

family of (M ′′, u′′)-multisections, (Ω′′
i′′ , v

′′
i′′ )i′′∈I′′ , with pairwise distinct images

in Y ×B C′′, if (N ′, N ′′) ∈ G′ ×Spec k G′′ and (b′, b′′) ∈ B ×Spec k B are very
general, then for every (i′, i′′) ∈ I ′ × I ′′, the conclusion holds for (Ω′

i′ , v
′
i′) and

(Ω′′
i′′ , v

′′
i′′ ).
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Proof. For each (i′, i′′), by Lemma A.8, there exists a dense open Wi′,i′′ of
G′×Spec kG

′′×Spec kB×Spec kB parameterizing (N ′, N ′′, b′, b′′) such that Lemma
A.8 holds. Thus, for every (N ′, N ′′, b′, b′′) in the countable intersection ∩(i′,i′′)Wi′,i′′ ,
the conclusion of the lemma holds for every (Ω′

i′ , v
′
i′ ) and (Ω′′

i′′ , v
′′
i′′).

Lemma A.10. (The Bi-gon Lemma) With hypotheses as in the previous lemma,
for a very general (N ′, N ′′, b′, b, b′′) in G′×Spec kG

′′×Spec kB×Spec kB×Spec kB,
for a very general 2-pointed bi-gon (C = C′

t′ ∪b C
′′
t′′ , b

′, b′′) parameterized by a
point t′ ∈ N ′, resp. t′′ ∈ N ′′, whose curve C′

t′ contains b and b′, resp. whose
curve C′′

t′′ contains b and b′′, the only sections σ of ρ over C whose restriction to
C′

t′ is in some Ω′
M ′,N ′,b′,i′ and whose restriction to C′′

t′′ is in some Ω′′
M ′′,N ′′,b′′,i′′

are those that come from global sections Ω′
M ′,N ′,b′,i′ = Ω = Ω′′

M ′′,N ′′,b′′,i′′ over
B.

Proof. Let W denote the countable intersection of Wi′,i′′ inside G′ ×Spec k

G′′×Spec kB×Spec kB as in the proof of the previous lemma. Let (N ′, N ′′, b′, b′′)
be an element of W . Consider the countable collection of image multisections
(Ω′

M ′,N ′,b′,i′)i′ and (Ω′′
M ′′,N ′′,b′′,i′′) of ρ as closed subschemes of Y . For every

pair (i′1, i
′
2) of distinct elements of I ′, the special subset Si′1,i

′

2
associated to

Ω′
M ′,N ′,b′,i′1

and Ω′
M ′,N ′,b′,i′2

) is a proper closed subset of B, and similarly for

the special subset Si′′1 ,i
′′

2
associated to every pair (i′′1 , i

′′
2) of distinct elements of

I ′′. Finally, for every i′ ∈ I ′ and every i′′ ∈ I ′′, the special subset Si′,i′′ associ-
ated to Ω′

M ′,N ′,b′,i′ and Ω′′
M ′′,N ′′,b′′,i′′) is a proper closed subset except in those

cases where Ω′
M ′,N ′,b′,i′ equals Ω

′′
M ′′,N ′′,b′′,i′′ .

Choose b to be a very general point of B that is contained in none of these
special subsets that is a proper closed subsets of B. The matching condition at b
for a section σ implies that σ(C) is contained in Ω′

M ′,N ′,b′,i′ = Ω′′
M ′′,N ′′,b′′,i′′ for

unique Ω′
M ′,N ′,b′,i′ and Ω′′

M ′′,N ′′,b′′,i′′ in their respective countable multisections.
By the previous lemma, for every i′ ∈ I ′, if the restriction of ΩM ′,N ′,b′,i′

over C′′
t′′ has a section, then the multisection ΩM ′,N ′,b′,i′ is a global section.

Similarly, for every i′′ ∈ I ′′, if the restriction of ΩM ′′,N ′′,b′′,i′′ over C′
t′ has a

section, then the multisection ΩM ′′,N ′′,b′′,i′′ is a global section. Thus, for every
section σ as in the previous paragraph, Ω′

M ′,N ′,b′,i′ = Ω′′
M ′′,N ′′,b′′,i′′ is a global

section.

Appendix B Proofs of Two Lemmas

For completeness, we prove two lemmas that are already in the literature in this
appendix.

Proof of Lemma 3.44.

Proof. This is a local problem, so we can assume that S = SpecR and X is a
closed subscheme of W = A

n
R defined by g1, · · · , gr. Let Z is defined by g in OX .

Let z ∈ Z and dw1,· · · , dwn be a basis of (Ω1
W/S)z . Then, up to a re-indexing,

gt+1, · · · , gn−t−2, g generate the ideal sheaf defining Z and dw1,· · · , dwt, dgt+1,
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· · · , dgn−t−2, dg generate (Ω1
W/S)z ([1], Prop.2.2/7, p.39). Let Y be the closed

subscheme of An
R defined by gt+1, · · · , gn−t−2. Then, we have X ⊂ Y , a closed

subscheme. Since both dw1,· · · , dwn and dw1,· · · , dwt, dgt+1, · · · , dgn−t−2, dg
are basis of (Ω1

W/S)z, there exists some wt+1 such that dw1,· · · , dwt, dwt+1,

dgt+1, · · · , dgn−t−2 form a basis of (Ω1
W/S)z. By the Jacobian criterion, Y

is smooth at z over S. Thus, locally at z, Y is regular ([9], Theorem 4.3.36,
p.142). Therefore, X and Y are regular schemes of the same dimension locally
at z with X ⊂ Y . We get X = Y locally at z, and hence X is smooth at z over
S. Consider every point z ∈ Z, there will be an open subset U ⊂ X such that
U → S is smooth.

Proof of Lemma 3.49.

Proof. Since Abelian varieties are projective, there exists a very ample sheaf L
on A×kB. Then, for every homomorphism u : (A, 0) → (B, 0), the graph Gu in
A×kB has a Hilbert polynomial P (t) with respect to L. Let HomP

k (A,B) be the
scheme parameterizing homomorphisms from A to B with Hilbert polynomial
P (t). Then, HomP

k (A,B) is quasi-projective over k. Now, take a homomorphism
u from A to B. The Zariski tangent space of HomP

k (A,B) at [u] is isomorphism
to the k-vector space of global sections of

E = HomOA(u
∗Ω1

B/k, I0)

where I0 is the ideal sheaf defining the origin 0 in A. Since B is an Abelian
variety, Ω1

B/k is isomorphic to the trivial locally free sheaf Ω0 ⊗k OB where Ω0

is dual space T ∗
B,0 of the Zariski tangent space TB,0 of B at the origin ([17], (iii),

p.39). Thus, E is equal to

Homk(Ω0, k)⊗k I0.

Since A is projective and by the exact sequence of the ideal sheaf I0 and struc-
ture sheaf of the originOA/I0 ([9], Cor.3.3.21), there is no nonzero global section
for I0, and hence the finite direct sum E of I0 does not have nonzero global sec-
tion. Therefore, H0(A, E) = 0 and [u] is an isolated point of the quasi-projective
k-variety HomP

k (A,B). So there are at most countably many such homomor-
phisms.
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Appendix C Table of Notations

W Notation 3.18
A0 Notation 3.19
Q strongly nonisotrivial factor in Notation 3.19

ρiso isogeny in Notation 3.19
Iso(A) Definition-Lemma 3.21

π : A → Iso(A) Definition-Lemma 3.23
Sectionspb(·/·) Notation 3.24

S Notation 3.25
Md+2(P

n
k , τ) Notation 3.26
ρev evaluation map of Md+2(P

n
k , τ)

Md+2(P
n
S
/S, τ) Notation 3.27

ρSev evaluation map of Md+2(P
n
S
/S, τ)

Md+2(P
n
S
/S, τ)µ(b) Notation 3.28

M0,d(P
n
S
/S, 1) Notation 3.29

Md+2(P
n
k , τ, b) Notation 3.30

M0,d(P
n
k , b) Notation 3.31
W Notation 3.33, an open dense subset of Md+2(P

n
S
/S, τ)

Db, D
p
b Definition 3.34

H = Md+2(P
n
k , ε, b) Notation 3.38

X Notation 3.39
H0, H1, X0, X1 Notation 3.40
CH, CH0 , CH1 Notation 3.41

H Notation 3.42
̺ Notation 3.43

H0 Theorem 3.45
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els, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
Springer-Verlag, Berlin, 1990.

[2] János Kollár, Rational curves on algebraic varieties, volume 32 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete . 3. Folge. A Series of Modern
Surveys in Mathematics. Springer-Verlag, Berlin, 1996.

[3] Robin Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977.
Graduate Texts in Mathematics, No. 52.

[4] Tom Graber and Jason Starr, Restriction of Sections for Families of Abelian
Varieties, A Celebration of Algebraic Geometry: A Conference in Honor of
Joe Harris’ 60th Birthday, Clay Mathematics Proceedings, volume 18.

45



[5] Tom Graber, Joe Harris and Jason Starr, Families of Rationally Connected
Varieties, Journal of the American Mathematical Society, Volume 16, Num-
ber 1, Pages 57-67, 2003.

[6] Tom Graber, Joe Harris, Barry Mazur and Jason Starr, Rational Connec-
tivity and Sections of Families over Curves, Ann. Scient. Éc. Norm. Sup.,
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