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ASYMPTOTICS OF A LOCALLY DEPENDENT STATISTIC ON FINITE

REFLECTION GROUPS

FRANK RÖTTGER

Abstract. This paper discusses the asymptotic behaviour of the number of descents in a random
signed permutation and its inverse, which was posed as an open problem by Chatterjee and Diaconis
in [6]. For that purpose, we generalize their result for the asymptotic normality of the number of
descents in a random permutation and its inverse to other finite reflection groups. This is achieved
by applying their proof scheme to signed permutations, i.e. elements of Coxeter groups of type Bn,
which are also known as the hyperoctahedral groups. Furthermore, a similar central limit theorem
for elements of Coxeter groups of type Dn is derived via Slutsky’s Theorem and a bound on the
Wasserstein distance of certain normalized statistics with local dependency structures and bounded
local components is proven for both types of Coxeter groups. In addition, we show a two-dimensional
central limit theorem via the Cramér-Wold device.

1. Introduction

A recent result of Chatterjee and Diaconis in [6] was a new proof of the asymptotic normality
of the number of descents in a random permutation and its inverse, normalized by its expected
value and its variance. This was shown via the method of interaction graphs and a bound on the
Wasserstein distance to the standard normal distribution firstly introduced in [5]. The method of

interaction graphs and the bound on the Wasserstein distance are shortly summarized in Section 2.
The asymptotic normality of the number of descents in a random permutation and its inverse was
already shown by Vatutin via generating functions in [10] in 1996, but was not generalized to other
statistics depending on both a random permutation and its inverse. Chatterjee and Diaconis showed
such a generalization through a bound of the Wasserstein distance to the standard normal distribution
for a wider class of normalized statistics that depend on a random permutation and its inverse. In
the last section of [6], they issued the asymptotic normality of the number of descents in an element
of a finite reflection group and its inverse, for example for random signed permutations, as an open
problem and indicated, that their approach should also suffice in this case. This paper confirms their
intution by applying their proof scheme on signed permutations, that is elements of the Coxeter group
of type Bn. For that purpose we construct random signed permutations and their inverses from the
same random variables. With this construction, we are able to apply the method of interaction graphs,
exactly like Chatterjee and Diaconis. Together with the bound on the Wasserstein distance between
the normalized statistic and a standard normal distribution mentioned before (see Theorem 3), we
can show the asymptotic normality by plugging in the formulas for the variance of the sum of the
statistics into the bounds. Kahle and Stump listed the expected values and variances of the sum of
the statistics for all finite irreducible Coxeter groups in [8, Corollary 5.2].
Using this result for signed permutations, we can extend the result to elements of the Coxeter group
of type Dn, which are signed permutations with an even number of negative signs. This is done via
an application of Slutsky’s Theorem (see Theorem 5).
To generalize these results to certain sums of statistics of both a random signed permutation and its
inverse, which have a bounded local degree and local components which are bounded by 1, we again
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2 F. RÖTTGER

follow Chatterjee and Diaconis and modify the interaction graphs in the right way so that we can
apply Theorem 3. From this, we show that this also works for elements of Coxeter groups of type Dn
(see Section 5). The last section discusses the asymtotic behaviour of the two-dimensional statistic
formed by the number of descents in an element of a Coxeter group of both type Bn and Dn and its
inverse via the Cramér-Wold device.

Acknowledgements. I want to thank Philipp Godland, Hauke Seidel and in particular Norbert
Gaffke for helpful comments and discussions. Furthermore, I want to thank my PhD-advisors Thomas
Kahle and Rainer Schwabe for their support and guidance.
As a fellow of the research training group on Mathematical Complexity Reduction at the Otto-von-
Guericke-UniversityMagdeburg, I am funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - 314838170, GRK 2297 MathCoRe.

2. Interaction Graphs

We give a short overview over the method of interaction graphs as it is presented in [6]. Let (X ,A)
be a measurable space and f : Xn → R a measurable map. Consider a map G(x), which connects every
x ∈ Xn with a simple graph on [n] := {1, 2, . . . , n}. This graphical rule is symmetric, if for a permuta-
tion π the graph G(xπ(1), . . . , xπ(n)) has the edge set {(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}.
For m ≥ n, let G′(x) for x ∈ Xm be a symmetric graphical rule on Xm. G′(x) is an extension of
G(x), if G(x) = G(x1, . . . , xn) is a subgraph of G′(x) = G′(x1, . . . , xm) for all x ∈ Xm. To define an
interaction rule, let for x, x′ ∈ Xn

xi := (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Furthermore, let xij be the vector x with replacements in the i-th and j-th position. Then, i and j

are non-interacting, if

f(x)− f(xj) = f(xi)− f(xij).

A graphical rule G is an interaction rule for a function f , if for any x, x′ ∈ Xn and any i, j, the edge
(i, j) not being an edge of either G(x), G(xi), G(xj) or G(xij) implies that i and j are non-interacting.

The Wasserstein distance is a distance function on the space of probability measures [1, Chapter 7].

Definition 1 (Wasserstein distance, also known as Kantorovich–Rubinstein metric). Let (M,d) be
a metric space where every probability measure is a Radon measure and let Pp(M) be the collection
of probability measures on M with finite p-th moments. The Lp-Wasserstein distance between X ∼
µ ∈ Pp(M) and Y ∼ ν ∈ Pp(M) is defined as

δp(µ, ν) = (inf E [d(X,Y )p])
1
p ,

where the infimum is taken over all joint distributions of (X,Y )T on M ×M with marginals µ and ν.

Definition 2. Let Y = (Y1, . . . , Yn) be a vector of real-valued random variables distributed according
to a continuous distribution. The rank statistic is defined as R(Yi) =

∑n

j=1 1{Yi ≥Yj}, where 1{·}

denotes the indicator function. The value of R(Yi) gives the position of Yi when Y is sorted in
ascending order.

We later apply the following theorem from [5], which can also be found in [6], on signed permuta-
tions. The Theorem gives a bound on the Wasserstein distance between a normalized statistic that
admits a graphical interaction rule and the standard normal distribution.

Theorem 3 (Chatterjee). Let f : Xn → R be a measurable map that admits a symmetric interaction

rule G(x). Let X1, X2, . . . be independent and identically distributed X -valued random variables and
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let X := (X1, . . . , Xn). Let W := f(X) and σ2 := V(W ). Let X ′ = (X ′
1, . . . , X

′
n) be an independent

copy of X. For each j, define

∆jf(X) = W − f(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn)

and let M := maxj |∆jf(X)|. Let G′(x) be an extension of G(x) on Xn+4 and define

δ := 1 + degree of the vertex 1 in G′(X1, . . . , Xn+4).

Then, the Wasserstein distance δW between
W−E(W )

σ
and N(0, 1) satisfies

δW ≤ C
√
n

σ2
E(M8)

1
4E(δ4)

1
4 +

1

2σ3

n
∑

j=1

E|∆jf(X)|3

for some constant C independent of n.

Chatterjee and Diaconis used the theorem above to show a central limit theorem for statistics of the
form F1(π) +F2(π

−1), where both F1 and F2 have bounded local degree and their local components’
absolute values are bounded by 1. Hereby π denoted a permutation, hence an element of a Coxeter
group of type An. We apply the same proof scheme to statistics on signed permutation by modifying
their model.

3. Signed Permutations

Chatterjee and Diaconis modeled elements of the symmetric group Sn = An−1 and their inverses
by ranking functions on series of uniformly distributed random variables on the unit square. We
slightly modify this model by additionally introducing a random sign. The Coxeter group of type
Bn is the symmetry group of the n-hypercube. It is isomorphic to the signed permutation group of
rank n, which is the subgroup of all permutations on {±1, . . . ,±n} with the antisymmetric constraint
−π̃(i) = π̃(−i). In a one-line notation we write π̃ = (π̃(1), . . . , π̃(n)) where π̃(i) ∈ {±1, . . . ,±n} and
{|π̃(1)|, . . . , |π̃(n)|} = [n]. Following [3, Proposition 8.1.2], it holds that the descents in some signed
permutation π̃ ∈ Bn in the one-line notation are

Des(π̃) = {0 ≤ i < n : π̃(i) > π̃(i + 1)},
where π̃(0) = 0. We write for π̃ ∈ Bn

des(π̃) = |Des(π̃)| = 1{0>π̃(1)} +

n−1
∑

i=1

1{π̃(i)>π̃(i+1)}.(3.1)

In the following theorem, we study the asymptotic behaviour of the statistic

t(π̃) = des(π̃) + des(π̃−1).

If π̃ is picked uniformly from Bn, the statistic t(π̃) gives rise to a random variable TBn . We show a
central limit theorem for the sequence (TBn)n, normalized by its expected value and its variance, so

TBn − E(TBn)
√

V(TBn)

D→ N(0, 1),(3.2)

by adapting the proof of Theorem 1.1 in [6] for the modified model.

Theorem 4. Given a sequence of Coxeter groups of type Bn of growing rank. Then, TBn satisfies the

central limit theorem, if n tends to infinity.
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Proof. Let X := [0, 1]2 × {−1, 1} and X1, X2, . . . be independent and identically distributed of the
form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif

(

[0, 1]2
)

and Bi ∼Ber(12 ) on {−1, 1} and independent of (Ui, Vi).
Let X := (X1, . . . , Xn) and let the x-rank of Xi be the rank statistic (cf. Definition 2) of Ui among
(U1, . . . , Un) and the y-rank of Xi the rank statistic of Vi among (V1, . . . , Vn), so that X(1), . . . , X(n)

denote the Xi ordered with respect to their x-ranks and X(1), . . . , X(n) with respect to their y-ranks.
This means that π(i) = y-rank of X(i) is a random permutation and σ(i) = x-rank of X(i) is its
inverse. Now, to see that

π̃(i) := B(|i|)sign(i)π(|i|), σ̃(i) := B(|i|)sign(i)σ(|i|)
define random signed permutations, just check that π̃(−i) = −π̃(i) and σ̃(−i) = −σ̃(i) and that π̃(i)
and σ̃(i) are injective. Furthermore it follows that σ̃ = π̃−1, as B(σ(|i|)) = B(|i|) and

π̃(σ̃(i)) = B(|σ̃(i)|)sign(σ̃(i))π(|σ̃(i)|) = B(σ(|i|))sign(B
(|i|)sign(i))π(σ(|i|)) = i.

Therefore the number of descents in the signed permutation and its inverse is given by:

TBn := f(X) =

n−1
∑

i=0

1{π̃(i)>π̃(i+1)} +

n−1
∑

i=0

1{σ̃(i)>σ̃(i+1)}(3.3)

= 1{0>B(1)π(1)} +

n−1
∑

i=1

1{B(i)π(i)>B(i+1)π(i+1)} + 1{0>B(1)σ(1)} +

n−1
∑

i=1

1{B(i)σ(i)>B(i+1)σ(i+1)}

For x ∈ Xn, define a simple graph G(x) on [n] as follows: For any 1 ≤ i 6= j ≤ n, let {i, j}
be an edge if and only if the x-rank of xi and the x-rank of xj or the y-rank of xi and the y-
rank of xj differ by at most 1. To check that this graphical rule is symmetric, see that the edge
set of a relabeled Graph G(xπ(1), . . . , xπ(n)), where π is an arbitrary permutation, has the edge
set {(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}. This is true, since the x-ranks or the y-ranks
of xπ(i) are equal to the respective ranks of xi. Hence this graph is invariant under relabeling of

the indices and it is therefore a symmetric graphical rule. Given x, x′ ∈ Xn, xi is the vector
(x1, . . . xi−1, x

′
i, xi+1, . . . , xn), so the vector x in which the i-th entry is replaced by the i-th entry

of x′. Furthermore, xij is the vector with replacements in the i-th and the j-th entry. Now, suppose
that (i, j) is not an edge in G(x), G(xi), G(xj) or G(xij). Then, the equation

f(x)− f(xj) = f(xi)− f(xij)

holds, as j is not a neighbour of i in either of the four graphs. To better visualize this, check that

f(x) = f(xi) + f(xj)− f(xij).(3.4)

Any indicator function in f(x), that is not dependent of either xi or xj , appears in f(xi), f(xj)
and f(xij), as it is left unchanged by the replacements in xi, xj or xij . Those indicator functions,
that depend on xi but not on xj , are unchanged in f(xj). As i and j are no neighbours in all
four graphs, these indicator functions, that depend on xi but not on xj , appear in both f(xi) and
f(xij). Therefore, the indicator functions that either depend on xi or on xj turn up exactly once on
both sides of the equation. Hence Equation (3.4) holds, since there cannot be an indicator functions
that depend on both xi and xj , as i and j are no neighbours in all four graphs. This means, that
G(x) is a symmetric interaction rule for f . Now, we construct an extension G′(x) of G(x) on Xn+4.
For any 1 ≤ i 6= j ≤ n + 4, let {i, j} be an edge in G′(x) if and only if the x-rank of xi and
the x-rank of xj or the y-rank of xi and the y-rank of xj , differ by at most 5. As this graph is
invariant under relabeling of the indices, it is a symmetric graphical rule. Obviously, every edge in
G(x) is also an edge in G′(x), as the distance between two connected nodes in G(x) can be 5 at most
through the insertion of four additional nodes. Therefore G′(x) is an extension of G(x). As TBn and
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f(X1, . . . , Xj−1, X
′
j, Xj+1, . . . , Xn) can differ in at most 4 summands, |∆jf(X)| ≤ 4. Furthermore,

the degree of any node in G′(x) is bounded by 20, as either the difference in the x-ranks or in the
y-ranks has to be smaller or equal to 5. This means, that |δ| ≤ 21. Then, by Theorem 3,

δTBn
≤ C

√
n

σ2
+

Cn

σ3

for some constant C. As [8] shows, σ2 = V(TBn) = n+3
6 . Therefore, TBn follows the central limit

theorem.
�

4. Coxeter Group of Type Dn

This section reproduces the previous section’s result for sequences of Coxeter groups of type Dn.
The Coxeter group of type Dn is the symmetry group of the n-demicube. It is isomorphic to the
subgroup of the signed permutation group of rank n that consist of all signed permutation with an
even number of negative signs. This means, that

Dn = {π ∈ Bn :

n
∏

i=1

π(i) > 0}.

For some π ∈ Dn, it holds that

Des(π) = {0 ≤ i < n : π(i) > π(i + 1)},

where π(0) = −π(2) [3, Proposition 8.2.2]. We write for π ∈ Dn

des(π) = |Des(π)| = 1{−π(2)>π(1)} +
n−1
∑

i=1

1{π(i)>π(i+1)}.(4.1)

We can reuse the model from the proof of Theorem 4 to generate TDn , with a slight modification:
One sign-generating random variable is set to be the product of all the others. Therefore, the number
of negative signs is always even. Of course it is not possible to directly apply the method of interaction
graphs, as the local dependency structure is destroyed by one random variable being dependent of all
the others. This problem is solved via an application of Slutsky’s Theorem.

Theorem 5. Let Wn be a sequence of growing rank of Coxeter groups of type Dn. Then, TDn satisfies

the central limit theorem, if n tends to infinity.

Proof. Let X := [0, 1]2 × {−1, 1} and X1, X2, . . . , Xn−1 be independent and identically distributed
of the form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif

(

[0, 1]2
)

and Bi ∼Ber(12 ) on {−1, 1}. Furthermore, set

Xn = (Un, Vn,
∏n−1

i=1 Bi) with (Un, Vn) ∼Unif
(

[0, 1]2
)

and Bn =
∏n−1

i=1 Bi. The product of inde-

pendent Ber(12 )-distributed random variables on {−1, 1} is again Ber(12 )-distributed on {−1, 1}. Let
X := (X1, . . . , Xn) and let the x-rank and the y-rank of X be defined as in the proof of Theorem 4.
X(1), . . . , X(n) denote the Xi ordered in respect to their x-ranks and X(1), . . . , X(n) in respect to their
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y-ranks. Then, as in (4.1), if π̃ ∈ Dn and π̃−1 = σ̃, with π̃(0) = −π̃(2) we obtain

TDn =

n−1
∑

i=0

1{π̃(i)>π̃(i+1)} +

n−1
∑

i=0

1{σ̃(i)>σ̃(i+1)}

= 1{−B(2)V(2)>B(1)V(1)} +

n−1
∑

i=1

1{B(i)V(i)>B(i+1)V(i+1)}

+ 1{−B(2)U(2)>B(1)U(1)} +

n−1
∑

i=1

1{B(i)U(i)>B(i+1)U(i+1)}.

Now, remove all the indicator functions from TDn where B(i), B
(i), B(i+1) or B

(i+1) equal Bn and add
indicator functions, so that the resulting random variable is distributed as TBn−1 . Then, as E(TDn) = n

and E(TBn−1) = n− 1 (see for example in [8]),

TDn − E(TDn)
√

V(TDn)
=

TBn−1 + Yn − n
√

V(TDn)
,

where Yn = TDn − TBn−1 is a random variable with |Yn| ≤ c for some positive constant c and all n, so

TDn − E(TDn)
√

V(TDn)
=

√

V(TBn−1)
√

V(TDn)

TBn−1 − (n− 1)
√

V(TBn−1)
+

Yn − 1
√

V(TDn)
.(4.2)

We know from Theorem 4 that
TBn−1

−(n−1)√
V(TBn−1

)
converges in distribution to a standard normal distribution.

Yn is bounded, as it is a finite sum of indicator functions. Therefore, lim
n→∞

Yn−1√
V(TDn )

= 0 almost surely

and lim
n→∞

√
V(TBn−1

)√
V(TDn )

= 1 (compare [8, Corollary 5.2]). Therefore, TDn satisfies the central limit

theorem (see Slutsky’s theorem, for example in [9, Theorem 2.3.3]).
�

5. Generalization to a Class of Statistics with Local Degree k

As in [6], it is possible to generalize the proof of Theorem 4 to a wider class of statistics of local
degree k. These statistics are of the form

F1(π) + F2(π
−1),

where the local components’ absolute value is bounded by 1. If π is a signed permutation, a bound
for the Wasserstein distance between the normalized statistic and the standard normal distribution
follows. Therefore the central limit theorem for these statistics holds, if the variance of the statistics
is of order n

1
2+ε for an ε > 0. The Theorem is implied from a generalization of the proof of Theorem

4 by constructing the symmetric interaction rule in the right way.

Theorem 6. Let Wn be a sequence of growing rank of Coxeter groups of type B and let F1, F2 be

statistics of local degree k, with the absolute value of their local components bounded by 1. The statistic

F1(π) +F2(π
−1) gives rise to a random variable F . The Wasserstein distance between F , normalized

by its mean and variance, and the standard normal distribution satisfies

δF ≤ C(k)

(√
n

s2
+

n

s3

)

for s2 := V(F1(π) + F2(π
−1)) and some constant C(k).



ASYMPTOTICS OF A LOCALLY DEPENDENT STATISTIC ON FINITE REFLECTION GROUPS 7

Proof. If the statistics F1 and F2 are of local degree k and their local components’ absolute value is
bounded by 1, let {i, j} be an edge in G(x) if and only if the x-ranks or the y-ranks differ by at most
k− 1. For the extension G′(x), we say that {i, j} is an edge if and only if the ranks differ by at most
k + 3. Then, Theorem 3 applies, and the Wasserstein distance is bounded:

δF ≤ C(k)

(√
n

s2
+

n

s3

)

.

Here, C(k) is a large enough constant. �

To see that the bound in Theorem 6 also holds when π is an element of a Coxeter group of type
Dn, we use the same technique as in the proof of Theorem 5. Hence, we decompose the statistic into
a part that is the same statistic depending on a signed permutation on {±1, . . . ,±(n − 1)} and a
finitely bounded random variable.

Theorem 7. Let Wn be a sequence of growing rank of Coxeter groups of type D and let F1, F2 be

statistics of local degree k, with the absolute value of their local components bounded by 1. The

statistic F1(π) + F2(π
−1) gives rise to a random variable F . Then, if we assume that V(F ) → ∞,

the Wasserstein distance between F , normalized by its mean and variance, and the standard normal

distribution satisfies

δF ≤ C(k)

(
√
n− 1

s2
+

n− 1

s3

)

+ o(1)

for s2 := V(F1(π) + F2(π
−1)) and some constant C(k).

Proof. Let F = F1(π1)+F2(π
−1
1 ) = f(X) where π1 is a uniformly chosen element of the Coxeter group

of type Dn. Let X = (X1, . . . , Xn) be generated as in the proof of Theorem 5, so Xi = (Ui, Vi, Bi)

with (Ui, Vi) ∼Unif
(

[0, 1]2
)

. Bi is an independent random sign for 1 ≤ i ≤ n− 1 and Bn =
∏n−1

i=1 Bi.
Then, F ′ is the statistic where we remove all local components that depend on Bn. Subsequently we
add local components, so that the resulting statistic is F ′ = F1(π2) + F2(π

−1
2 ), where π2 is a random

signed permutation on {±1, . . . ± (n − 1)} generated by (X1, . . . , Xn−1). Then, as the local degree
is k, F − F ′ = O(1) and therefore E(F − F ′) = O(1) and V(F − F ′) = O(1), which implies that
V(F ′) = V(F ) +O(1). Now, see that Eq. (4.2) from the proof of Theorem 5 generalizes to

F − E(F )
√

V(F )
=

√

V(F ′)
√

V(F )

F ′ − E(F ′)
√

V(F ′)
+

F − F ′ − E(F − F ′)
√

V(F )
,

which immediately shows that the Wasserstein distance between F and F ′ tends to zero, because

lim
n→∞

V(F ′)
V(F ) = 1 and lim

n→∞

F−F ′−E(F−F ′)√
V(F )

= 0. Therefore it holds that δF ≤ δF ′ +o(1) and the theorem

follows. �

6. The Statistic (des(π), des(π−1))

This section derives a two-dimensional central limit theorem for the vector statistic defined as
(des(π), des(π−1)) for π being either an element of a Coxeter group of type Bn or Dn. This is achieved
with the Cramér–Wold device and a slight modification of the proofs of Theorems 4 and 5. The
Cramér–Wold device shows the equivalence of the convergence in distribution between a random
vector and every linear combination of its elements. It is also known as the Theorem of Cramér–Wold
(see for example in [2, Theorem 29.4]).
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Theorem 8 (Cramér–Wold). Let X̄n = (Xn1, . . . , Xnk) and X̄ = (X1, . . . , Xk) be random vectors of

dimension k. Then, X̄n
D→ X̄, if and only if

k
∑

i=1

tiXni
D→

k
∑

i=1

tiXi

for each t = (t1, . . . , tk) ∈ R
k and for n → ∞.

We use the short-hand notation (Dn, D
′
n) for the random variable that rises from (des(π), des(π−1)).

With Theorem 8, we can show the convergence of (Dn, D
′
n) by studying linear combinations of the

form t1Dn+ t2D
′
n. It is sufficient to only check linear combinations with t ∈ S1, since the investigated

statistic is normalized by the square root of the variance V(t1Dn + t2D
′
n). This leads to the following

theorem:

Theorem 9. Let Wn be a sequence of Coxeter groups of growing rank of either type Bn or Dn. Then,

the statistic (Dn, D
′
n) satisfies a two-dimensional central limit theorem of the form

Σ
− 1

2
n

(

Dn − E(Dn)
D′

n − E(D′
n)

)

D→ N2(0, I)

for n → ∞, where I denotes the two-dimensional identity matrix and Σn is the covariance matrix of

(Dn, D
′
n).

Proof. Via the Theorem of Cramér–Wold, we can study the convergence of (Dn, D
′
n) by studying

t1Dn + t2D
′
n for tT = (t1, t2) ∈ S1. We derive a convergence

tT
1

√

V(Dn)

(

Dn − E(Dn)
D′

n − E(D′
n)

)

D→ N(0, 1)(6.1)

to show the Theorem via an application of Slutsky’s Theorem. (6.1) is equivalent to

1
√

V(Dn)
(t1Dn + t2D

′
n − (t1 + t2)E(Dn))

D→ N(0, 1),(6.2)

as E(Dn) = E(D′
n). Now, since t ∈ S1, the proofs of the Theorems 4 and 5 apply, which means that

t1Dn + t2D
′
n − (t1 + t2)E(Dn)

√

V(t1Dn + t2D′
n)

D→ N(0, 1).

This convergence is also a consequence of Theorem 6 or Theorem 7, as the local components of t1Dn+
t2D

′
n are still bound by 1 and the local dependency structure is not changed by multiplying the sum of

indicator functions that model Dn and D′
n with constants. Furthermore, the variance V(t1Dn+t2D

′
n)

is of order n and therefore, the Wasserstein distance to the standard normal distribution is bound by
a vanishing function in n. Now, by Slutsky’s Theorem, (6.2) and therefore (6.1) is satisfied as

V(t1Dn + t2D
′
n)

V(Dn)

a.s→ 1.

This results from the fact that V(Dn) = V(D′
n)) and Cov(Dn, D

′
n) = O(1) (see [8]) and that t21+t22 = 1.

Because of the convergence in (6.1), the theorem follows via another application of Slutsky’s Theorem,
as

1

V(Dn)
Σn =

1

V(Dn)

(

V(Dn) Cov(Dn, D
′
n)

Cov(Dn, D
′
n) V(D′

n)

)

a.s.→ I,

since Cov(Dn, D
′
n) = O(1) and V(Dn) = V(D′

n). �
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Remark 10. Theorem 9 can be generalized to certain statistics (F1(π), F2(π
−1)), if F1 and F2 meet

the constraints of Theorem 6 or Theorem 7, V(F1(π)) = V(F2(π
−1)) holds and V(F1(π)) is big enough

so that the constraint to the Wasserstein distance in Theorem 6 or Theorem 7 converges to zero for
n going to infinity.

7. Further Investigation

This paper showed the central limit behaviour for D(π) +D(π−1), where π is an element of either
a Coxeter group of type Bn or of type Dn. A natural direction for further investigation are arbitrary
series of product groups of Coxeter groups of type An, Bn and Dn and under which constraints the
asymptotic normality of D(π) +D(π−1) is preserved (see Problem 6.10 in [8]). By November 2019,
using the results of this paper, this was done by Brück and Röttger [4] and Féray [7].
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