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LOCALLY PLURIPOLAR SETS ARE PLURIPOLAR

DUC-VIET VU

ABSTRACT. We prove that every locally pluripolar set on a compact complex manifold is

pluripolar. This extends similar results in Kähler case.

Classification AMS 2010: 32W20, 32U40.
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1. INTRODUCTION

Pluripotential theory has been a crucial tool in complex geometry, complex dynamics

as well as other fields of Mathematics. We refer to [8, 12, 20, 23] for some expositions of

this theory and its applications. Among other things, locally pluripolar sets are important

objects in the pluripotential theory which play the role of negligible sets as a counterpart

to algebraic subvarieties in algebraic geometry, see the next section for definitions. To

illustrate this comparison, we recall that locally pluripolar sets are of Hausdorff codimen-

sion at least 2 (see [22, Th. 3.13]) and their intersections with totally real submanifolds

of the ambient manifold are of Lebesgue measure zero (see [27, Cor. 1.2]). We refer to

[19, 26, 10, 18] for more information.

Josefson’s theorem [17], which is a key result in the pluripotential theory on Ck, af-

firms that locally pluripolar sets on Ck are in fact (globally) pluripolar. Simplified proofs

of this fact were given by Bedford-Taylor [3] and Alexander-Taylor [2]. This result was

generalized to the pluripolar sets on projective manifolds, compact Kähler manifolds,

respectively, by Dinh-Sibony [11], Guedj-Zeriahi [14], see also Berman-Boucksom-Witt

Nyström [4] for the case of manifolds equipped a big line bundle. Our main result below

extends this property to pluripolar sets on every compact complex manifolds.

Theorem 1.1. Every locally pluripolar set on a compact complex manifold is pluripolar.

By the above theorem, there exist abundantly non-continuous quasi-p.s.h. functions

on X. This is a fact which probably cannot be seen directly because unlike projective

manifolds, a general compact complex manifold might have very few hypersurfaces. The

key ingredients of the proof of Theorem 1.1 are the comparison (2.9) between capac-

ities generalizing similar comparison results in [2, 14] and recent developments of the

pluripotential theory for non-Kähler manifolds by Kołodziej, Dinew and Nguyen [9, 21].
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2. PROOF OF THEOREM 1.1

First of all, we need to recall some basic notations from the pluripotential theory. Let

X be a compact complex manifold of dimension k. A function from X to [−∞,∞) is said

to be quasi-p.s.h. if it can be written locally as the sum of a plurisubharmonic (p.s.h.)

function and a smooth one. Put dc := i/(2π)(∂ − ∂). For a continuous real (1, 1)-form η,

a quasi-p.s.h. function ϕ is said to be η-p.s.h. if ddcϕ + η ≥ 0. We have the following

characterization of quasi-p.s.h. functions in terms of submean-type inequalities.

Lemma 2.1. Let U be an open subset of Ck and η a continuous real (1, 1)-form on U.
A function ϕ : U → [−∞,∞) is η-p.s.h. if and only if it is upper semi-continuous, not

identically −∞ and for every x ∈ U and every complex line Lv := {x+ tv : t ∈ C}, for some

v ∈ Ck, passing through x, we have

ϕ(x) ≤
1

2π

∫ 2π

0

ϕ(x+ ǫeiθv)dθ +

∫ ǫ

0

dt

t

∫

{|s|≤t}

ηv,(2.1)

for every constant ǫ > 0 small enough, where ηv(t) is the restriction of η to Lv which is

identified with C via t 7−→ x+ tv.

Proof. Consider an η-p.s.h. function ϕ. We need to verify (2.1). For every positive con-

stant r, let χr be a smooth multi-radial nonnegative function compactly supported on the

polydisk of radius r in Ck with
∫

Ck χr(x) vol(x) = 1, where vol is the canonical volume

form on Ck. Since ϕ is locally integrable, we can define the convolution

ϕr(x) :=

∫

Ck

ϕ(x− y)χr(y) vol(y)

which is smooth. We have ϕr → ϕ pointwise as r → 0 because ϕ can be written as the

sum of a p.s.h. function and a smooth one. Denote by

ηr(x) :=

∫

Ck

η(x− y)χr(y) vol(y)

which converges uniformly to η as r → 0 because η is continuous. Hence, ddcϕ+ η ≥ 0 if

and only if ddcϕr + ηr ≥ 0 for every r small. Similarly, (2.1) holds if it holds for (ϕr, ηr)
in place of (ϕ, η) for every small r. It follows that it suffices to prove (2.1) for smooth ϕ
and smooth η.

Hence we can assume ϕ, η are smooth and follow standard arguments in [16]. Let

v ∈ C
k and x ∈ U. Put ϕv(t) := ϕ(x + tv). We get dd

cϕv + ηv ≥ 0. The Lelong-Jensen

formula for ϕv(t) gives

Mǫ,v −Mǫ′,v =

∫ ǫ

ǫ′

dt

t

∫

{|s|≤t}

dd
cϕv,

where ǫ > ǫ′ are positive constants and

Ms,v :=
1

2π

∫ 2π

0

ϕv(ǫe
iθ)dθ

for every constant s > 0. It follows that

Mǫ′,v ≤Mǫ,v +

∫ ǫ

ǫ′

dt

t

∫

{|s|≤t}

ηv.

Letting ǫ′ → 0 in the last inequality gives (2.1) because ϕv is continuous at 0.
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Assume now (2.1). This combined with the hypothesis that ϕ 6= −∞ implies ϕ ∈ L1
loc.

Moreover, as in the case of p.s.h. functions, since ϕ is upper semi-continuous, (2.1) also

tells us that ϕ is strongly semi-continuous in the sense that for every Borel subset A of U
whose complement in U is of zero Lebesgue measure, we have

lim sup
y∈A→x

ϕ(y) = ϕ(x).(2.2)

Consider first the case where ϕ ∈ C 2. Direct computations show

ǫ−2
(

Mǫ,v − ϕv(0)
)

→ πdd
cϕv(0)/2

as ǫ → 0. Applying this to (2.1) gives ddcϕv(0) + ηv(0) ≥ 0. In other words, we get

ddcϕ+ η ≥ 0.
In general, let ϕr, ηr be as above. Since ϕ ∈ L1

loc, ϕ
r → ϕ in L1

loc. We see easily that

(2.1) also holds for (ϕr, ηr) in place of (ϕ, η). By the above arguments, ddcϕr + ηr ≥ 0.
Letting r → 0 gives ddcϕ+ η ≥ 0.

It remains to check that ϕ is the sum of a p.s.h. function and a smooth one. To this

end, we only need to work locally. Thus, we can assume there is a smooth function ψ on

U with ddcψ ≥ η. We deduce ddcϕ1 ≥ 0 for ϕ1 := ϕ+ψ which is also strongly semi-upper

continuous in the above sense. Let ϕr1 be the regularisation of ϕ1 defined in the same

way as ϕr. Notice that ϕr1 → ϕ1 in L1
loc and ϕr1 is p.s.h. and decreasing to some p.s.h.

function ϕ′
1. Hence, ϕ1 = ϕ′

1 almost everywhere. Using this and (2.2) yield that ϕ1 = ϕ′
1

everywhere. In other words, ϕ is quasi-p.s.h.. This ends the proof. �

The following extension result generalizes the similar property for p.s.h. functions.

Lemma 2.2. Let U be an open subset in a complex manifold Y . Let η be a continuous

real (1, 1)-form on Y. Let ψ1 be an η-p.s.h. function on U and ψ2 an η-p.s.h function on Y
such that lim supy→x ψ1(y) ≤ ψ2(x) for every x ∈ ∂U . Define ψ := max{ψ1, ψ2} on U and

ψ := ψ2 on Y \U. Then ψ is an η-p.s.h. function.

Proof. This is a direct consequence of Lemma 2.1. �

A subset A of X is locally pluripolar if every point x in A there is an open neighborhood

Ux of x in X and a p.s.h. function ϕ on Ux for which A ∩ Ux ⊂ {ϕ = −∞}. A subset A of

X is pluripolar if A ⊂ {ϕ = −∞} for some quasi-p.s.h. function ϕ in X.
For every Borel set A′ in an open subset U of Ck, Bedford-Taylor [3] introduced the

following notion of capacity of A′ in U :

capBT(A
′,U) := sup

{

∫

A

(ddcϕ)k : ϕ p.s.h. on U , 0 ≤ ϕ ≤ 1 on U
}

.

Fix, from now on, a Hermitian metric ω on X. For every Borel set A ⊂ X, define

capBTK(A) := sup
{

∫

A

(dd
cϕ+ ω)k : ϕ ω-p.s.h., 0 ≤ ϕ ≤ 1 on X

}

.

The last capacity was introduced by Kołodziej [20] as an analogue to the local capacity

capBT and is used to study complex Monge-Ampère equations on Hermitian manifolds,

see for example [20, 9, 21, 24]. By Lemma 2.4 below, capBTK(A) is always finite. It is

also clear that if we use another Hermitian metric to define capBTK, then the resulted

capacity is equivalent to that associated to ω.
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We will need the following modified version of the classical Bedford-Taylor comparison

principle due to Kołodziej and Nguyen, see [9] for a related result.

Proposition 2.3. [21, Th. 0.2] Let ϕ, ψ be bounded ω-p.s.h functions on X. Let 0 < ǫ < 1
and mǫ := infX(ϕ − (1 − ǫ)ψ). Then there exists a big constant B > 0 depending only on

ω, k such that for every constant 0 < s < ǫ3/(16B) we have
∫

{ϕ<(1−ǫ)ψ+mǫ+s}

(

(1− ǫ)dd
cψ + ω

)k
≤ (1 + Cǫ−ks)

∫

{ϕ<(1−ǫ)ψ+mǫ+s}

(dd
cϕ+ ω)k,

where C is a constant depending only on k, B.

A consequence of the last result is the following.

Lemma 2.4. ([9, 21]) Let M be a positive number. Then there exists a constant cM > 0
such that for every ω-p.s.h. function ϕ bounded by M, we have

0 <

∫

X

(ddcϕ+ ω)k ≤ cM .(2.3)

However, we don’t know whether

inf
{ϕ: |ϕ|≤M}

∫

X

(dd
cϕ+ ω)k > 0?

Proof. The second desired inequality is proved in [9] by using integration by parts. The

first one is observed in [21]. To see it, it is enough to notice that by choosing ǫ := 1/2
and s > 0 small enough in Proposition 2.3, for every ω-p.s.h. ψ with 0 ≤ ψ ≤ s and ϕ as

in the hypothesis, we have
∫

{ϕ<infX ϕ+s}

(

ddcψ + ω
)k

.

∫

{ϕ<(1−ǫ)ψ+mǫ+2s}

(

(1− ǫ)ddcψ + ω
)k

.s

∫

X

(ddcϕ+ ω)k

because

{ϕ < inf
X
ϕ+ s} ⊂ {ϕ < (1− ǫ)ψ +mǫ + 2s}.

It follows that
∫

X

(ddcϕ+ ω)k &s capBTK

(

{ϕ < inf
X
ϕ+ s}

)

(2.4)

which is strictly positive because it is the capacity of a non-empty open set. The proof is

finished. �

Let (Uj)1≤j≤N and (U ′
j)1≤j≤N be finite open coverings of X such that U j is smooth and

contained in some local chart of X biholomorphic to a polydiscs for every 1 ≤ j ≤ N,
Uj = {ψj < 0} for some p.s.h. function ψj defined on an open neighborhood of U j with

∂Uj = {ψj = 0} and U ′
j ⋐ Uj for 1 ≤ j ≤ N. In practice, it suffices to take Uj , U

′
j to be

balls and ψj are the differences of radius functions and constants.

Lemma 2.5. ([20, 9]) There exists strictly positive constants c1, c2 such that for every A ⊂
X we have

c1

N
∑

j=1

capBT

(

A ∩ U′
j,Uj

)

≤ capBTK(A) ≤ c2

N
∑

j=1

capBT

(

A ∩U′
j,Uj

)

.
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Proof. Put A′
j := A ∩ U ′

j which is a relatively compact subset of Uj . We have ∪jA
′
j = A.

The second desired inequality is obvious from the definitions of capacities. We prove

now the first desired inequality.

Fix an index 1 ≤ j ≤ N. By our choice of Uj , for every p.s.h. function 0 ≤ u ≤ 1 on Uj ,
we can find another p.s.h. function −1 ≤ ũ ≤ 0 on Uj satisfying ũ = u− 1 on some open

neighborhood of U
′

j and ũ = 0 on ∂Uj . Such a ũ can be chosen to be max{u− 1, Aψj} for

some constant A big enough. Clearly,
∫

A′

j

(ddcu)k =

∫

A′

j

(ddcũ)k.

Since −1 ≤ ũ ≤ 0 and ũ = 0 on ∂Uj , there is a quasi-p.s.h. function ũ1 on X such

that dd
cũ1 + Cω ≥ 0 for some constant C independent of ũ and ũ1 = ũ on some open

neighborhood of U
′

j. We deduce that
∫

A′

j

(ddcu)k =

∫

A′

j

(ddcũ1)
k ≤

∫

A′

j

(ddcũ1 + Cω)k ≤ CkcapBTK(A
′
j).

Consequently, capBT(A
′
j,Uj) ≤ CkcapBTK(A

′
j). Summing over 1 ≤ j ≤ N in the last

inequality gives the first desired inequality. This finishes the proof. �

Since we already know that if A is locally pluripolar in U , then capBT(A,U) = 0 (see

[19, Th. 4.6.4] or [3]), we get capBTK(A) = 0 if A is locally pluripolar in X. Let (uj)
be a family of p.s.h. functions on an open subset U of Ck locally bounded from above.

Define u := supj uj and u∗ := sup∗
j uj the upper semi-continuous regularisation of u. The

set {u < u∗} is called a negligible set in U . By Bedford-Taylor [3], the negligible sets are

locally pluripolar. The following notion of capacity, which is related to those of Alexander

[1] and Sibony-Wong [25], is due to Dinh-Sibony [11]: for A ⊂ X,

capADS(A) := inf{exp(sup
A
ϕ) : ϕ ω-p.s.h. on X, sup

X
ϕ = 0},

see [15] for some of its applications.

Lemma 2.6. capADS(A) = 0 if and only if A is pluripolar on X.

Proof. If A ⊂ {ϕ = −∞} for some quasi-p.s.h. ϕ, it is clear that capADS(A) = 0. Consider

now

capADS(A) = 0.(2.5)

Recall that there exists a constant c such that for every ω-p.s.h. function ϕ with the

normalization condition supX ϕ = 0, we have

‖ϕ‖L1(X) ≤ c.(2.6)

We refer to [16, 11, 9] for a proof. Using (2.5), there exists a sequence of ω-p.s.h.

functions (ϕn) with supX ϕn = 0 such that supA ϕn ≤ −n3. Put

ϕ :=
∞
∑

n=1

ϕn
n2

which is a well-defined quasi-p.s.h. function because of (2.6). On the other hand,

sup
A
ϕ ≤

∞
∑

n=1

−n3

n2
= −∞.
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It means that A ⊂ {ϕ = −∞}. This finishes the proof. �

Let (ϕj)j∈J be a family of ω-p.s.h. functions uniformly bounded from above. Define

ϕJ := sup
j∈J

ϕj.

Observe that ϕ∗
J is an ω-p.s.h. function. This can be seen by using Lemma 2.1 or noticing

that for every ω-p.s.h. functions ϕj , ϕj′ we have max{ϕj, ϕj′} = limn→∞ n−1 log(enϕj +
enϕj′ ) whose dd

c
is ≥ −ω for every n. As in the local setting, {ϕ∗

J > ϕJ} is a locally

pluripolar set. We will present below an important case of (ϕj)j∈J and its associated

extremal function ϕ∗
J .

Let A be a non-pluripolar subset of X. As in the local setting or in the Kähler case, we

introduce the following extremal ω-p.s.h. function:

TA := sup
{

ϕ ω-p.s.h. : ϕ ≤ 0 on A
}

.

It is clear that TA ≥ 0. Let T ∗
A be the upper semi-continuous regularisation of TA. We can

check that

capADS(A) = exp(− sup
X

TA).(2.7)

Thus TA is bounded from above because A is non-pluripolar. We deduce that T ∗
A is

a bounded ω-p.s.h. function and QA := {T ∗
A > TA} is a locally pluripolar set. This

combined with the fact that TA = 0 on A implies that T ∗
A = 0 on A\QA. The following

generalized a well-known property of T ∗
A in the Kähler case.

Proposition 2.7. Let A be a nonpluripolar compact subset of X. We have

(ddcT ∗
A + ω)k = 0(2.8)

on X\A.

Proof. We follow the usual strategy. The key points are the existence of solutions of the

Dirichlet problems proved in [21, 13, 7, 6] and Lemma 2.2 above.

By Choquet’s lemma, there exists an increasing sequence of ω-p.s.h. function ϕn for

which T ∗
A = (limn→∞ ϕn)

∗. For every ω-p.s.h function ϕ and every positive constant ǫ,
using a regularisation of ϕ (see [5]), Hartog’s lemma and the compactness of A, we

deduce that there exists a smooth ω-p.s.h. function ϕ′ such that ϕ ≤ ϕ′ and ϕ′ ≤ supK ϕ+
ǫ on K. We construct a sequence (ϕ′′

n) of smooth ω-p.s.h. functions from (ϕn) inductively

as follows. Let ϕ′
1 be a smooth ω-p.s.h. function such that ϕ1 ≤ ϕ′

1 and ϕ′
1 ≤ 1 on A. For

n ≥ 2, let ϕ′
n be a smooth ω-p.s.h. function such that

max{ϕn, ϕ
′
n−1 − (n− 1)−2} ≤ ϕ′

n

and ϕ′
n ≤ 1/n2 on A. Put

ϕ′′
n := ϕ′

n −
∞
∑

j=n

j−2.

By our construction, (ϕ′′
n) is increasing and ϕ′′

n ≤ 0 on A and ϕ′′
n ≥ ϕn − (n − 1)−1 for

n ≥ 2. We infer that

T ∗
A = ( lim

n→∞
ϕ′′
n)

∗.

Let B be an open ball in X\A. By [21, Th. 4.2], there exists ω-p.s.h. functions un on B

which is in C 0(B) for which (ddcun+ω)
n = 0 on B and un = ϕ′′

n on ∂B. Define ϕ̃′′
n := un on
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B and ϕ̃′′
n := ϕ′′

n outside B. By the domination principle [21, Cor. 3.4], we get un ≥ ϕ′′
n on

B and un+1 ≥ un because ϕ′′
n+1 ≥ ϕ′′

n. By Lemma 2.2, ϕ̃′′
n is an ω-p.s.h. function. We have

obtained a sequence (ϕ̃′′
n) of continuous ω-p.s.h functions increasing almost everywhere

to T ∗
A. Hence,

(ddcϕ̃′′
n + ω)k → (ddcT ∗

A + ω)k

as n → ∞. We thus get (ddcT ∗
A + ω)k = 0 on B for every B in X\A. The desired equality

follows. This finishes the proof. �

Proposition 2.8. Let A be a nonpluripolar compact subset of X. Then there exist strictly

positive constants c1, c2, λ1, λ2 independent of A such that

exp
(

− λ1cap
−1
BTK(A)

)

≤ capADS(A) ≤ c2 exp
(

− λ2M
1/k
A cap

−1/k
BTK(A)

)

.(2.9)

where MA :=
∫

X
(ddcT ∗

A + ω)k > 0.

Note that MA > 0 because of Lemma 2.4.

Proof. Since A non-pluripolar, T ∗
A is a bounded ω-p.s.h. function. By (2.7), the desired

inequalities are equivalent to the following:

λ1cap
−1
BTK(A) ≥ sup

X
TA ≥ c′2 + λ2M

1/k
A cap

−1/k
BTK(A),(2.10)

where c′2 := − log c2.
We prove now the first inequality of (2.10). We can assume supX TA > 0 because

otherwise the desired inequality is trivial for any λ1 ≥ 0. Put ϕA := T ∗
A − supX T

∗
A which

is an ω-p.s.h. function with supX ϕA = 0. It follows that

‖ϕA‖Lp . 1(2.11)

for every p ≥ 1.
Let ϕ be an ω-p.s.h. function such that 0 ≤ ϕ ≤ 1. Since (supX TA)

−1ϕA = −1 on

A\QA, and capBTK(QA) = 0, we obtain
∫

A

(dd
cϕ+ ω)k ≤ (sup

X
TA)

−1

∫

X

[−ϕA](dd
cϕ+ ω)k . (sup

X
TA)

−1‖ϕA‖L1(2.12)

for every ϕ with 0 ≤ ϕ ≤ 1 by the Chern-Levine-Nirenberg inequality. Combining (2.12)

with (2.11) gives the first inequality of (2.10). It remains to prove the second one.

Recall that −1 ≤ (supX TA)
−1ϕA ≤ 0 and (supX TA)

−1ϕA is an (supX TA)
−1ω-p.s.h.

function. Hence (supX TA)
−1ϕA is ω-p.s.h. if (supX TA)

−1 ≤ 1. Consider the case where

(supX TA)
−1 ≤ 1. By definition of capBTK, we get

capBTK(A) ≥ (sup
X

TA)
−k

∫

A

(dd
cϕA + ω)k = (sup

X
TA)

−k

∫

A

(dd
cT∗

A + ω)k(2.13)

By Proposition 2.7, we have
∫

A

(dd
cT ∗
A + ω)k =

∫

X

(dd
cT ∗
A + ω)k.

Hence the second inequality of (2.10) follows if (supX TA)
−1 ≤ 1. When (supX TA)

−1 ≥ 1,
then T ∗

A − 1 ≤ 0 on X and ≤ −1 on A\QA. We imply that

capBTK(A) = capBTK(A\QA) ≥

∫

A

(ddcT∗
A + ω)k > 0
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which combined with the fact that supX TA ≥ 0 yields the second inequality of (2.10) in

this case. The proof is finished. �

End of the proof of Theorem 1.1. First observe that a countable union of pluripolar sets is

again a pluripolar set. Indeed, let (Vn)n∈N be a countable family of pluripolar sets on X.

Hence we have Vn ⊂ {ϕn = −∞} for some ω-p.s.h function ϕn with supX ϕn = 0. Define

ϕ :=
∞
∑

n=1

ϕn/n
2

which is of bounded L1-norm because ‖ϕn‖L1 is uniformly bounded in n. Hence ϕ is a

quasi-p.s.h. function and Vn ⊂ {ϕ = −∞} for every n.
Let V be a locally pluripolar set. We need to prove V is pluripolar. If V is compact, the

desired claim is a direct application of (2.9). For the general case, we need some more

arguments.

By Lindelöf’s property, we can cover V by at most countably many sets of form {ϕj =
−∞} for some p.s.h functions ϕj on some open subset Uj of X. Hence in order to prove

the desired assertion, we only need to consider V = {ϕ = −∞} for some p.s.h. function

ϕ in an open subset U of X which is biholomorphic to a ball in Ck.
Let U1 be a relatively compact open subset of U. Suppose that V ∩ U1 is not pluripolar.

Hence T ∗
V ∩U1

is a bounded ω-p.s.h function. Consider a decreasing sequence of smooth

p.s.h. functions (ϕn)n∈N defining on an open neighborhood of U 1 converging pointwise

to ϕ. For every positive integer N, put

Vn,N := {ϕn ≤ −N} ∩ U1

which is a compact subset increasing in n. Hence (T ∗
Vn,N

)n∈N is a decreasing sequence of

ω-p.s.h. functions which converges pointwise to an ω-p.s.h. function TN .
Since {ϕn < −N} is open, T ∗

Vn,N
= TVn,N

= 0 on {ϕn < −N} ∩ U1. Thus TN = 0 on

{ϕ < −N} ∩ U1 which contains V ∩ U1. We infer that

0 ≤ TN ≤ T ∗
V ∩U1

for every N. This combined with the fact that (TN )N∈N is increasing gives

0 ≤ T∞ := ( lim
N→∞

TN)
∗ ≤ T ∗

V ∩U1
(2.14)

and T∞ is an ω-p.s.h. function. Applying (2.9) to A := Vn,N we get

sup
X
T ∗
Vn,N

≥ c′2 + λ′2M
1/k
n,NcapBTK(Vn,N)

−1/k(2.15)

where Mn,N :=
∫

X
(dd

cT ∗
Vn,N

+ ω)k. By the convergence of Monge-Ampère operators, we

have

lim
n→∞

Mn,N =

∫

X

(ddcTN + ω)k =:MN , lim
N→∞

MN =

∫

X

(ddcT∞ + ω)k =:M∞(2.16)

Note that M∞ > 0 by Lemma 2.4. On the other hand, we have

capBTK(Vn,N) . N−1

by the Chern-Levine-Nirenberg inequality. This together with (2.16) and (2.15) implies

sup
X
TN ≥ c′2 + λ′2M

1/k
N N1/k.(2.17)
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Letting N → ∞ in the last inequality and using (2.16), (2.14), we get

sup
X
T ∗
V ∩U1

≥ sup
X
T∞ = ∞.

This is a contradiction. Hence V ∩ U1 is pluripolar for every relatively compact open

subset U1 of U . It follows that V is pluripolar. This finishes the proof. �
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