LOCALLY PLURIPOLAR SETS ARE PLURIPOLAR

DUC-VIET VU

ABSTRACT. We prove that every locally pluripolar set on a compact complex manifold is pluripolar. This extends similar results in Kähler case.

Classification AMS 2010: 32W20, 32U40.

Keywords: Pluripolar set, capacity, Monge-Ampère equation, Hermitian metric.

1. INTRODUCTION

Pluripotential theory has been a crucial tool in complex geometry, complex dynamics as well as other fields of Mathematics. We refer to [8, 12, 20, 23] for some expositions of this theory and its applications. Among other things, locally pluripolar sets are important objects in the pluripotential theory which play the role of negligible sets as a counterpart to algebraic subvarieties in algebraic geometry, see the next section for definitions. To illustrate this comparison, we recall that locally pluripolar sets are of Hausdorff codimension at least 2 (see [22, Th. 3.13]) and their intersections with totally real submanifolds of the ambient manifold are of Lebesgue measure zero (see [27, Cor. 1.2]). We refer to [19, 26, 10, 18] for more information.

Josefson's theorem [17], which is a key result in the pluripotential theory on \mathbb{C}^k , affirms that locally pluripolar sets on \mathbb{C}^k are in fact (globally) pluripolar. Simplified proofs of this fact were given by Bedford-Taylor [3] and Alexander-Taylor [2]. This result was generalized to the pluripolar sets on projective manifolds, compact Kähler manifolds, respectively, by Dinh-Sibony [11], Guedj-Zeriahi [14], see also Berman-Boucksom-Witt Nyström [4] for the case of manifolds equipped a big line bundle. Our main result below extends this property to pluripolar sets on *every* compact complex manifolds.

Theorem 1.1. *Every locally pluripolar set on a compact complex manifold is pluripolar.*

By the above theorem, there exist abundantly non-continuous quasi-p.s.h. functions on X. This is a fact which probably cannot be seen directly because unlike projective manifolds, a general compact complex manifold might have very few hypersurfaces. The key ingredients of the proof of Theorem 1.1 are the comparison (2.9) between capacities generalizing similar comparison results in [2, 14] and recent developments of the pluripotential theory for non-Kähler manifolds by Kołodziej, Dinew and Nguyen [9, 21].

Acknowledgments. The author would like to thank Ngoc Cuong Nguyen for fruitful comments. This research is supported by a postdoctoral fellowship of the Alexander von Humboldt Foundation.

Date: December 4, 2018.

2. Proof of Theorem 1.1

First of all, we need to recall some basic notations from the pluripotential theory. Let X be a compact complex manifold of dimension k. A function from X to $[-\infty, \infty)$ is said to be *quasi-p.s.h.* if it can be written locally as the sum of a plurisubharmonic (p.s.h.) function and a smooth one. Put $d^c := i/(2\pi)(\overline{\partial} - \partial)$. For a continuous real (1, 1)-form η , a quasi-p.s.h. function φ is said to be η -p.s.h. if $dd^c \varphi + \eta \ge 0$. We have the following characterization of quasi-p.s.h. functions in terms of submean-type inequalities.

Lemma 2.1. Let U be an open subset of \mathbb{C}^k and η a continuous real (1, 1)-form on U. A function $\varphi : U \to [-\infty, \infty)$ is η -p.s.h. if and only if it is upper semi-continuous, not identically $-\infty$ and for every $x \in U$ and every complex line $L_v := \{x + tv : t \in \mathbb{C}\}$, for some $v \in \mathbb{C}^k$, passing through x, we have

(2.1)
$$\varphi(x) \le \frac{1}{2\pi} \int_0^{2\pi} \varphi(x + \epsilon e^{i\theta} v) d\theta + \int_0^{\epsilon} \frac{dt}{t} \int_{\{|s| \le t\}} \eta_v$$

for every constant $\epsilon > 0$ small enough, where $\eta_v(t)$ is the restriction of η to L_v which is identified with \mathbb{C} via $t \mapsto x + tv$.

Proof. Consider an η -p.s.h. function φ . We need to verify (2.1). For every positive constant r, let χ_r be a smooth multi-radial nonnegative function compactly supported on the polydisk of radius r in \mathbb{C}^k with $\int_{\mathbb{C}^k} \chi_r(x) \operatorname{vol}(x) = 1$, where vol is the canonical volume form on \mathbb{C}^k . Since φ is locally integrable, we can define the convolution

$$\varphi^r(x) := \int_{\mathbb{C}^k} \varphi(x-y)\chi_r(y)\operatorname{vol}(y)$$

which is smooth. We have $\varphi^r \to \varphi$ pointwise as $r \to 0$ because φ can be written as the sum of a p.s.h. function and a smooth one. Denote by

$$\eta^r(x) := \int_{\mathbb{C}^k} \eta(x-y)\chi_r(y)\operatorname{vol}(y)$$

which converges uniformly to η as $r \to 0$ because η is continuous. Hence, $dd^c \varphi + \eta \ge 0$ if and only if $dd^c \varphi^r + \eta^r \ge 0$ for every r small. Similarly, (2.1) holds if it holds for (φ^r, η^r) in place of (φ, η) for every small r. It follows that it suffices to prove (2.1) for smooth φ and smooth η .

Hence we can assume φ, η are smooth and follow standard arguments in [16]. Let $v \in \mathbb{C}^k$ and $x \in U$. Put $\varphi_v(t) := \varphi(x + tv)$. We get $\mathrm{dd}^c \varphi_v + \eta_v \ge 0$. The Lelong-Jensen formula for $\varphi_v(t)$ gives

$$M_{\epsilon,v} - M_{\epsilon',v} = \int_{\epsilon'}^{\epsilon} \frac{dt}{t} \int_{\{|s| \le t\}} \mathrm{d}\mathrm{d}^c \varphi_v,$$

where $\epsilon > \epsilon'$ are positive constants and

$$M_{s,v} := \frac{1}{2\pi} \int_0^{2\pi} \varphi_v(\epsilon e^{i\theta}) d\theta$$

for every constant s > 0. It follows that

$$M_{\epsilon',v} \le M_{\epsilon,v} + \int_{\epsilon'}^{\epsilon} \frac{dt}{t} \int_{\{|s| \le t\}} \eta_v$$

Letting $\epsilon' \to 0$ in the last inequality gives (2.1) because φ_v is continuous at 0.

3

Assume now (2.1). This combined with the hypothesis that $\varphi \neq -\infty$ implies $\varphi \in L^1_{loc}$. Moreover, as in the case of p.s.h. functions, since φ is upper semi-continuous, (2.1) also tells us that φ is strongly semi-continuous in the sense that for every Borel subset A of U whose complement in U is of zero Lebesgue measure, we have

(2.2)
$$\limsup_{y \in A \to x} \varphi(y) = \varphi(x).$$

Consider first the case where $\varphi \in \mathscr{C}^2$. Direct computations show

$$\epsilon^{-2}(M_{\epsilon,v}-\varphi_v(0)) \to \pi \mathrm{dd}^c \varphi_v(0)/2$$

as $\epsilon \to 0$. Applying this to (2.1) gives $dd^c \varphi_v(0) + \eta_v(0) \ge 0$. In other words, we get $dd^c \varphi + \eta \ge 0$.

In general, let φ^r, η^r be as above. Since $\varphi \in L^1_{loc}, \varphi^r \to \varphi$ in L^1_{loc} . We see easily that (2.1) also holds for (φ^r, η^r) in place of (φ, η) . By the above arguments, $dd^c \varphi^r + \eta^r \ge 0$. Letting $r \to 0$ gives $dd^c \varphi + \eta \ge 0$.

It remains to check that φ is the sum of a p.s.h. function and a smooth one. To this end, we only need to work locally. Thus, we can assume there is a smooth function ψ on U with $dd^c \psi \ge \eta$. We deduce $dd^c \varphi_1 \ge 0$ for $\varphi_1 := \varphi + \psi$ which is also strongly semi-upper continuous in the above sense. Let φ_1^r be the regularisation of φ_1 defined in the same way as φ^r . Notice that $\varphi_1^r \to \varphi_1$ in L_{loc}^1 and φ_1^r is p.s.h. and decreasing to some p.s.h. function φ_1' . Hence, $\varphi_1 = \varphi_1'$ almost everywhere. Using this and (2.2) yield that $\varphi_1 = \varphi_1'$ everywhere. In other words, φ is quasi-p.s.h.. This ends the proof.

The following extension result generalizes the similar property for p.s.h. functions.

Lemma 2.2. Let U be an open subset in a complex manifold Y. Let η be a continuous real (1, 1)-form on Y. Let ψ_1 be an η -p.s.h. function on U and ψ_2 an η -p.s.h function on Y such that $\limsup_{y\to x} \psi_1(y) \leq \psi_2(x)$ for every $x \in \partial U$. Define $\psi := \max\{\psi_1, \psi_2\}$ on U and $\psi := \psi_2$ on $Y \setminus U$. Then ψ is an η -p.s.h. function.

Proof. This is a direct consequence of Lemma 2.1.

A subset A of X is *locally pluripolar* if every point x in A there is an open neighborhood U_x of x in X and a p.s.h. function φ on U_x for which $A \cap U_x \subset \{\varphi = -\infty\}$. A subset A of X is *pluripolar* if $A \subset \{\varphi = -\infty\}$ for some quasi-p.s.h. function φ in X.

For every Borel set A' in an open subset U of \mathbb{C}^k , Bedford-Taylor [3] introduced the following notion of *capacity* of A' in U:

$$\operatorname{cap}_{\mathrm{BT}}(\mathrm{A}',\mathrm{U}) := \sup \left\{ \int_{\mathrm{A}} (\mathrm{d} \mathrm{d}^{\mathrm{c}} \varphi)^{\mathrm{k}} : \varphi \; \text{ p.s.h. on } U \;, 0 \leq \varphi \leq 1 \text{ on } \mathrm{U} \right\}$$

Fix, from now on, a Hermitian metric ω on X. For every Borel set $A \subset X$, define

$$\operatorname{cap}_{\mathrm{BTK}}(\mathrm{A}) := \sup \big\{ \int_{\mathrm{A}} (\mathrm{d} \mathrm{d}^{\mathrm{c}} \varphi + \omega)^{\mathrm{k}} : \varphi \ \omega \text{-p.s.h.}, 0 \le \varphi \le 1 \text{ on } \mathrm{X} \big\}.$$

The last capacity was introduced by Kołodziej [20] as an analogue to the local capacity cap_{BT} and is used to study complex Monge-Ampère equations on Hermitian manifolds, see for example [20, 9, 21, 24]. By Lemma 2.4 below, $cap_{BTK}(A)$ is always finite. It is also clear that if we use another Hermitian metric to define cap_{BTK} , then the resulted capacity is equivalent to that associated to ω .

We will need the following modified version of the classical Bedford-Taylor comparison principle due to Kołodziej and Nguyen, see [9] for a related result.

Proposition 2.3. [21, Th. 0.2] Let φ, ψ be bounded ω -p.s.h functions on X. Let $0 < \epsilon < 1$ and $m_{\epsilon} := \inf_{X}(\varphi - (1 - \epsilon)\psi)$. Then there exists a big constant B > 0 depending only on ω, k such that for every constant $0 < s < \epsilon^{3}/(16B)$ we have

$$\int_{\{\varphi < (1-\epsilon)\psi + m_{\epsilon} + s\}} \left((1-\epsilon) \mathrm{d}\mathrm{d}^{c}\psi + \omega \right)^{k} \le (1 + C\epsilon^{-k}s) \int_{\{\varphi < (1-\epsilon)\psi + m_{\epsilon} + s\}} (\mathrm{d}\mathrm{d}^{c}\varphi + \omega)^{k} + \varepsilon^{-k}s) d\mathrm{d}^{c}\psi + \varepsilon^{-k}s d\mathrm{d}^{c}\psi + \omega^{k}s d\mathrm{d}^{c}\psi + \omega^{k}s$$

where C is a constant depending only on k, B.

A consequence of the last result is the following.

Lemma 2.4. ([9, 21]) Let M be a positive number. Then there exists a constant $c_M > 0$ such that for every ω -p.s.h. function φ bounded by M, we have

(2.3)
$$0 < \int_X (\mathrm{d} \mathrm{d}^c \varphi + \omega)^k \le c_M$$

However, we don't know whether

$$\inf_{\{\varphi: \, |\varphi| \le M\}} \int_X (\mathrm{d} \mathrm{d}^c \varphi + \omega)^k > 0?$$

Proof. The second desired inequality is proved in [9] by using integration by parts. The first one is observed in [21]. To see it, it is enough to notice that by choosing $\epsilon := 1/2$ and s > 0 small enough in Proposition 2.3, for every ω -p.s.h. ψ with $0 \le \psi \le s$ and φ as in the hypothesis, we have

$$\int_{\{\varphi < \inf_X \varphi + s\}} \left(\mathrm{d} \mathrm{d}^c \psi + \omega \right)^k \lesssim \int_{\{\varphi < (1-\epsilon)\psi + m_\epsilon + 2s\}} \left((1-\epsilon) \mathrm{d} \mathrm{d}^c \psi + \omega \right)^k \lesssim_s \int_X (\mathrm{d} \mathrm{d}^c \varphi + \omega)^k$$

because

$$\{\varphi < \inf_X \varphi + s\} \subset \{\varphi < (1 - \epsilon)\psi + m_\epsilon + 2s\}.$$

It follows that

(2.4)
$$\int_{X} (\mathrm{d} \mathrm{d}^{c} \varphi + \omega)^{k} \gtrsim_{s} \operatorname{cap}_{\mathrm{BTK}} \left(\{ \varphi < \inf_{\mathrm{X}} \varphi + \mathrm{s} \} \right)$$

which is strictly positive because it is the capacity of a non-empty open set. The proof is finished. $\hfill \Box$

Let $(U_j)_{1 \le j \le N}$ and $(U'_j)_{1 \le j \le N}$ be finite open coverings of X such that \overline{U}_j is smooth and contained in some local chart of X biholomorphic to a polydiscs for every $1 \le j \le N$, $U_j = \{\psi_j < 0\}$ for some p.s.h. function ψ_j defined on an open neighborhood of \overline{U}_j with $\partial U_j = \{\psi_j = 0\}$ and $U'_j \in U_j$ for $1 \le j \le N$. In practice, it suffices to take U_j, U'_j to be balls and ψ_j are the differences of radius functions and constants.

Lemma 2.5. ([20, 9]) There exists strictly positive constants c_1, c_2 such that for every $A \subset X$ we have

$$c_1 \sum_{j=1}^{N} \operatorname{cap}_{\mathrm{BT}} (A \cap U'_j, U_j) \le \operatorname{cap}_{\mathrm{BTK}}(A) \le c_2 \sum_{j=1}^{N} \operatorname{cap}_{\mathrm{BT}} (A \cap U'_j, U_j).$$

Proof. Put $A'_j := A \cap U'_j$ which is a relatively compact subset of U_j . We have $\cup_j A'_j = A$. The second desired inequality is obvious from the definitions of capacities. We prove now the first desired inequality.

Fix an index $1 \le j \le N$. By our choice of U_j , for every p.s.h. function $0 \le u \le 1$ on U_j , we can find another p.s.h. function $-1 \le \tilde{u} \le 0$ on U_j satisfying $\tilde{u} = u - 1$ on some open neighborhood of \overline{U}'_j and $\tilde{u} = 0$ on ∂U_j . Such a \tilde{u} can be chosen to be $\max\{u - 1, A\psi_j\}$ for some constant A big enough. Clearly,

$$\int_{A'_j} (\mathrm{d} \mathrm{d}^c u)^k = \int_{A'_j} (\mathrm{d} \mathrm{d}^c \tilde{u})^k$$

Since $-1 \leq \tilde{u} \leq 0$ and $\tilde{u} = 0$ on ∂U_j , there is a quasi-p.s.h. function \tilde{u}_1 on X such that $dd^c \tilde{u}_1 + C\omega \geq 0$ for some constant C independent of \tilde{u} and $\tilde{u}_1 = \tilde{u}$ on some open neighborhood of \overline{U}'_j . We deduce that

$$\int_{A'_j} (\mathrm{d} \mathrm{d}^c u)^k = \int_{A'_j} (\mathrm{d} \mathrm{d}^c \tilde{u}_1)^k \le \int_{A'_j} (\mathrm{d} \mathrm{d}^c \tilde{u}_1 + C\omega)^k \le C^k \mathrm{cap}_{\mathrm{BTK}}(\mathrm{A}'_j).$$

Consequently, $\operatorname{cap}_{\mathrm{BT}}(A'_{j}, U_{j}) \leq C^{k}\operatorname{cap}_{\mathrm{BTK}}(A'_{j})$. Summing over $1 \leq j \leq N$ in the last inequality gives the first desired inequality. This finishes the proof.

Since we already know that if A is locally pluripolar in U, then $\operatorname{cap}_{BT}(A, U) = 0$ (see [19, Th. 4.6.4] or [3]), we get $\operatorname{cap}_{BTK}(A) = 0$ if A is locally pluripolar in X. Let (u_j) be a family of p.s.h. functions on an open subset U of \mathbb{C}^k locally bounded from above. Define $u := \sup_j u_j$ and $u^* := \sup_j^* u_j$ the upper semi-continuous regularisation of u. The set $\{u < u^*\}$ is called *a negligible set* in U. By Bedford-Taylor [3], the negligible sets are locally pluripolar. The following notion of capacity, which is related to those of Alexander [1] and Sibony-Wong [25], is due to Dinh-Sibony [11]: for $A \subset X$,

$$\operatorname{cap}_{ADS}(A) := \inf \{ \exp(\sup_{A} \varphi) : \varphi \ \omega \text{-p.s.h. on } X, \sup_{X} \varphi = 0 \},$$

see [15] for some of its applications.

Lemma 2.6. $cap_{ADS}(A) = 0$ if and only if A is pluripolar on X.

Proof. If $A \subset \{\varphi = -\infty\}$ for some quasi-p.s.h. φ , it is clear that $cap_{ADS}(A) = 0$. Consider now

Recall that there exists a constant c such that for every ω -p.s.h. function φ with the normalization condition $\sup_X \varphi = 0$, we have

$$\|\varphi\|_{L^1(X)} \le c.$$

We refer to [16, 11, 9] for a proof. Using (2.5), there exists a sequence of ω -p.s.h. functions (φ_n) with $\sup_X \varphi_n = 0$ such that $\sup_A \varphi_n \leq -n^3$. Put

$$\varphi := \sum_{n=1}^{\infty} \frac{\varphi_n}{n^2}$$

which is a well-defined quasi-p.s.h. function because of (2.6). On the other hand,

$$\sup_{A} \varphi \le \sum_{n=1}^{\infty} \frac{-n^3}{n^2} = -\infty.$$

It means that $A \subset \{\varphi = -\infty\}$. This finishes the proof.

Let $(\varphi_j)_{j \in J}$ be a family of ω -p.s.h. functions uniformly bounded from above. Define

$$\varphi_J := \sup_{j \in J} \varphi_j.$$

Observe that φ_J^* is an ω -p.s.h. function. This can be seen by using Lemma 2.1 or noticing that for every ω -p.s.h. functions $\varphi_j, \varphi_{j'}$ we have $\max\{\varphi_j, \varphi_{j'}\} = \lim_{n \to \infty} n^{-1} \log(e^{n\varphi_j} + e^{n\varphi_{j'}})$ whose dd^c is $\geq -\omega$ for every *n*. As in the local setting, $\{\varphi_J^* > \varphi_J\}$ is a locally pluripolar set. We will present below an important case of $(\varphi_j)_{j \in J}$ and its associated extremal function φ_J^* .

Let *A* be a *non-pluripolar* subset of *X*. As in the local setting or in the Kähler case, we introduce the following extremal ω -p.s.h. function:

$$T_A := \sup \big\{ \varphi \ \omega \text{-p.s.h.} : \varphi \leq 0 \text{ on } A \big\}.$$

It is clear that $T_A \ge 0$. Let T_A^* be the upper semi-continuous regularisation of T_A . We can check that

(2.7)
$$\operatorname{cap}_{ADS}(A) = \exp(-\sup_{\mathbf{x}} \mathbf{T}_A).$$

Thus T_A is bounded from above because A is non-pluripolar. We deduce that T_A^* is a bounded ω -p.s.h. function and $Q_A := \{T_A^* > T_A\}$ is a locally pluripolar set. This combined with the fact that $T_A = 0$ on A implies that $T_A^* = 0$ on $A \setminus Q_A$. The following generalized a well-known property of T_A^* in the Kähler case.

Proposition 2.7. Let A be a nonpluripolar compact subset of X. We have

$$(\mathbf{d}\mathbf{d}^c T^*_A + \omega)^k = 0$$

on $X \setminus A$.

Proof. We follow the usual strategy. The key points are the existence of solutions of the Dirichlet problems proved in [21, 13, 7, 6] and Lemma 2.2 above.

By Choquet's lemma, there exists an increasing sequence of ω -p.s.h. function φ_n for which $T_A^* = (\lim_{n\to\infty} \varphi_n)^*$. For every ω -p.s.h function φ and every positive constant ϵ , using a regularisation of φ (see [5]), Hartog's lemma and the compactness of A, we deduce that there exists a smooth ω -p.s.h. function φ' such that $\varphi \leq \varphi'$ and $\varphi' \leq \sup_K \varphi + \epsilon$ on K. We construct a sequence (φ''_n) of smooth ω -p.s.h. functions from (φ_n) inductively as follows. Let φ'_1 be a smooth ω -p.s.h. function such that $\varphi_1 \leq \varphi'_1$ and $\varphi'_1 \leq 1$ on A. For $n \geq 2$, let φ'_n be a smooth ω -p.s.h. function such that

$$\max\{\varphi_n, \varphi_{n-1}' - (n-1)^{-2}\} \le \varphi_n'$$

and $\varphi'_n \leq 1/n^2$ on A. Put

$$\varphi_n'' := \varphi_n' - \sum_{j=n}^{\infty} j^{-2}.$$

By our construction, (φ''_n) is increasing and $\varphi''_n \leq 0$ on A and $\varphi''_n \geq \varphi_n - (n-1)^{-1}$ for $n \geq 2$. We infer that

$$T_A^* = (\lim_{n \to \infty} \varphi_n'')^*.$$

Let \mathbb{B} be an open ball in $X \setminus A$. By [21, Th. 4.2], there exists ω -p.s.h. functions u_n on \mathbb{B} which is in $\mathscr{C}^0(\overline{\mathbb{B}})$ for which $(\mathrm{dd}^c u_n + \omega)^n = 0$ on \mathbb{B} and $u_n = \varphi''_n$ on $\partial \mathbb{B}$. Define $\tilde{\varphi}''_n := u_n$ on

 $\overline{\mathbb{B}}$ and $\tilde{\varphi}''_n := \varphi''_n$ outside \mathbb{B} . By the domination principle [21, Cor. 3.4], we get $u_n \ge \varphi''_n$ on \mathbb{B} and $u_{n+1} \ge u_n$ because $\varphi''_{n+1} \ge \varphi''_n$. By Lemma 2.2, $\tilde{\varphi}''_n$ is an ω -p.s.h. function. We have obtained a sequence $(\tilde{\varphi}''_n)$ of continuous ω -p.s.h functions increasing almost everywhere to T^*_A . Hence,

$$(\mathrm{dd}^c \tilde{\varphi}_n'' + \omega)^k \to (\mathrm{dd}^c T_A^* + \omega)^k$$

as $n \to \infty$. We thus get $(\mathrm{dd}^c T_A^* + \omega)^k = 0$ on \mathbb{B} for every \mathbb{B} in $X \setminus A$. The desired equality follows. This finishes the proof.

Proposition 2.8. Let A be a nonpluripolar compact subset of X. Then there exist strictly positive constants $c_1, c_2, \lambda_1, \lambda_2$ independent of A such that

(2.9)
$$\exp\left(-\lambda_1 \operatorname{cap}_{\mathrm{BTK}}^{-1}(A)\right) \le \operatorname{cap}_{\mathrm{ADS}}(A) \le c_2 \exp\left(-\lambda_2 M_A^{1/k} \operatorname{cap}_{\mathrm{BTK}}^{-1/k}(A)\right)$$

where $M_A := \int_X (\mathrm{dd}^c T_A^* + \omega)^k > 0.$

Note that $M_A > 0$ because of Lemma 2.4.

Proof. Since A non-pluripolar, T_A^* is a bounded ω -p.s.h. function. By (2.7), the desired inequalities are equivalent to the following:

(2.10)
$$\lambda_1 \operatorname{cap}_{BTK}^{-1}(A) \ge \sup_X T_A \ge c'_2 + \lambda_2 M_A^{1/k} \operatorname{cap}_{BTK}^{-1/k}(A),$$

where $c'_{2} := -\log c_{2}$.

We prove now the first inequality of (2.10). We can assume $\sup_X T_A > 0$ because otherwise the desired inequality is trivial for any $\lambda_1 \ge 0$. Put $\varphi_A := T_A^* - \sup_X T_A^*$ which is an ω -p.s.h. function with $\sup_X \varphi_A = 0$. It follows that

$$\|\varphi_A\|_{L^p} \lesssim 1$$

for every $p \ge 1$.

Let φ be an ω -p.s.h. function such that $0 \leq \varphi \leq 1$. Since $(\sup_X T_A)^{-1}\varphi_A = -1$ on $A \setminus Q_A$, and $\operatorname{cap}_{BTK}(Q_A) = 0$, we obtain

(2.12)
$$\int_{A} (\mathrm{d}\mathrm{d}^{c}\varphi + \omega)^{k} \leq (\sup_{X} T_{A})^{-1} \int_{X} [-\varphi_{A}] (\mathrm{d}\mathrm{d}^{c}\varphi + \omega)^{k} \lesssim (\sup_{X} T_{A})^{-1} \|\varphi_{A}\|_{L^{1}}$$

for every φ with $0 \le \varphi \le 1$ by the Chern-Levine-Nirenberg inequality. Combining (2.12) with (2.11) gives the first inequality of (2.10). It remains to prove the second one.

Recall that $-1 \leq (\sup_X T_A)^{-1} \varphi_A \leq 0$ and $(\sup_X T_A)^{-1} \varphi_A$ is an $(\sup_X T_A)^{-1} \omega$ -p.s.h. function. Hence $(\sup_X T_A)^{-1} \varphi_A$ is ω -p.s.h. if $(\sup_X T_A)^{-1} \leq 1$. Consider the case where $(\sup_X T_A)^{-1} \leq 1$. By definition of cap_{BTK} , we get

(2.13)
$$\operatorname{cap}_{\mathrm{BTK}}(\mathrm{A}) \ge (\sup_{\mathrm{X}} \mathrm{T}_{\mathrm{A}})^{-k} \int_{\mathrm{A}} (\mathrm{d}\mathrm{d}^{\mathrm{c}}\varphi_{\mathrm{A}} + \omega)^{k} = (\sup_{\mathrm{X}} \mathrm{T}_{\mathrm{A}})^{-k} \int_{\mathrm{A}} (\mathrm{d}\mathrm{d}^{\mathrm{c}}\mathrm{T}_{\mathrm{A}}^{*} + \omega)^{k}$$

By Proposition 2.7, we have

$$\int_A (\mathrm{d}\mathrm{d}^c T_A^* + \omega)^k = \int_X (\mathrm{d}\mathrm{d}^c T_A^* + \omega)^k.$$

Hence the second inequality of (2.10) follows if $(\sup_X T_A)^{-1} \leq 1$. When $(\sup_X T_A)^{-1} \geq 1$, then $T_A^* - 1 \leq 0$ on X and ≤ -1 on $A \setminus Q_A$. We imply that

$$\operatorname{cap}_{\mathrm{BTK}}(A) = \operatorname{cap}_{\mathrm{BTK}}(A \backslash Q_A) \ge \int_A (dd^c T_A^* + \omega)^k > 0$$

which combined with the fact that $\sup_X T_A \ge 0$ yields the second inequality of (2.10) in this case. The proof is finished.

End of the proof of Theorem 1.1. First observe that a countable union of pluripolar sets is again a pluripolar set. Indeed, let $(V_n)_{n\in\mathbb{N}}$ be a countable family of pluripolar sets on X. Hence we have $V_n \subset \{\varphi_n = -\infty\}$ for some ω -p.s.h function φ_n with $\sup_X \varphi_n = 0$. Define

$$\varphi := \sum_{n=1}^{\infty} \varphi_n / n^2$$

which is of bounded L^1 -norm because $\|\varphi_n\|_{L^1}$ is uniformly bounded in n. Hence φ is a quasi-p.s.h. function and $V_n \subset \{\varphi = -\infty\}$ for every n.

Let V be a locally pluripolar set. We need to prove V is pluripolar. If V is compact, the desired claim is a direct application of (2.9). For the general case, we need some more arguments.

By Lindelöf's property, we can cover V by at most countably many sets of form $\{\varphi_j = -\infty\}$ for some p.s.h functions φ_j on some open subset U_j of X. Hence in order to prove the desired assertion, we only need to consider $V = \{\varphi = -\infty\}$ for some p.s.h. function φ in an open subset U of X which is biholomorphic to a ball in \mathbb{C}^k .

Let U_1 be a relatively compact open subset of U. Suppose that $V \cap U_1$ is not pluripolar. Hence $T^*_{V \cap U_1}$ is a bounded ω -p.s.h function. Consider a decreasing sequence of smooth p.s.h. functions $(\varphi_n)_{n \in \mathbb{N}}$ defining on an open neighborhood of \overline{U}_1 converging pointwise to φ . For every positive integer N, put

$$V_{n,N} := \{\varphi_n \le -N\} \cap \overline{U}_1$$

which is a compact subset increasing in n. Hence $(T^*_{V_{n,N}})_{n \in \mathbb{N}}$ is a decreasing sequence of ω -p.s.h. functions which converges pointwise to an ω -p.s.h. function T_N .

Since $\{\varphi_n < -N\}$ is open, $T^*_{V_{n,N}} = T_{V_{n,N}} = 0$ on $\{\varphi_n < -N\} \cap U_1$. Thus $T_N = 0$ on $\{\varphi < -N\} \cap U_1$ which contains $V \cap U_1$. We infer that

$$0 \le T_N \le T_{V \cap U_2}^*$$

for every N. This combined with the fact that $(T_N)_{N \in \mathbb{N}}$ is increasing gives

(2.14)
$$0 \le T_{\infty} := (\lim_{N \to \infty} T_N)^* \le T^*_{V \cap U_1}$$

and T_{∞} is an ω -p.s.h. function. Applying (2.9) to $A := V_{n,N}$ we get

(2.15)
$$\sup_{X} T^*_{V_{n,N}} \ge c'_2 + \lambda'_2 M^{1/k}_{n,N} \operatorname{cap}_{\mathrm{BTK}}(\mathrm{V}_{\mathrm{n,N}})^{-1/k}$$

where $M_{n,N} := \int_X (\mathrm{dd}^c T^*_{V_{n,N}} + \omega)^k$. By the convergence of Monge-Ampère operators, we have

(2.16)
$$\lim_{n \to \infty} M_{n,N} = \int_X (\mathrm{d} \mathrm{d}^c T_N + \omega)^k =: M_N, \quad \lim_{N \to \infty} M_N = \int_X (\mathrm{d} \mathrm{d}^c T_\infty + \omega)^k =: M_\infty$$

Note that $M_{\infty} > 0$ by Lemma 2.4. On the other hand, we have

$$\mathrm{cap}_{\mathrm{BTK}}(V_{n,N}) \lesssim N^{-}$$

by the Chern-Levine-Nirenberg inequality. This together with (2.16) and (2.15) implies (2.17) $\sup_{X} T_{N} \ge c'_{2} + \lambda'_{2} M_{N}^{1/k} N^{1/k}.$ Letting $N \to \infty$ in the last inequality and using (2.16), (2.14), we get

$$\sup_{X} T^*_{V \cap U_1} \ge \sup_{X} T_{\infty} = \infty.$$

This is a contradiction. Hence $V \cap U_1$ is pluripolar for every relatively compact open subset U_1 of U. It follows that V is pluripolar. This finishes the proof.

REFERENCES

- H. ALEXANDER, *Projective capacity*, in Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979), vol. 100 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., 1981, pp. 3–27.
- [2] H. J. ALEXANDER AND B. A. TAYLOR, Comparison of two capacities in \mathbb{C}^n , Math. Z., 186 (1984), pp. 407–417.
- [3] E. BEDFORD AND B. A. TAYLOR, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982).
- [4] R. BERMAN, S. BOUCKSOM, AND D. WITT NYSTRÖM, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., 207 (2011), pp. 1–27.
- [5] Z. BŁOCKI AND S. KOŁODZIEJ, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., 135 (2007), pp. 2089–2093 (electronic).
- [6] L. CAFFARELLI, J. J. KOHN, L. NIRENBERG, AND J. SPRUCK, The Dirichlet problem for nonlinear secondorder elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math., 38 (1985), pp. 209–252.
- [7] P. CHERRIER AND A. HANANI, Le problème de Dirichlet pour les équations de Monge-Ampère en métrique hermitienne, Bull. Sci. Math., 123 (1999), pp. 577–597.
- [8] J.-P. DEMAILLY, Complex analytic and differential geometry. http://www.fourier.ujf-grenoble.fr/~demailly.
- [9] S. DINEW AND S. KOŁODZIEJ, *Pluripotential estimates on compact Hermitian manifolds*, in Advances in geometric analysis, vol. 21 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 2012, pp. 69–86.
- [10] T.-C. DINH, V.-A. NGUYÊN, AND N. SIBONY, Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differential Geom., 84 (2010).
- [11] T.-C. DINH AND N. SIBONY, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., 81 (2006), pp. 221–258.
- [12] —, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, in Holomorphic dynamical systems, vol. 1998 of Lecture Notes in Math., Springer, Berlin, 2010, pp. 165–294.
- B. GUAN AND Q. LI, Complex Monge-Ampère equations and totally real submanifolds, Adv. Math., 225 (2010), pp. 1185–1223.
- [14] V. GUEDJ AND A. ZERIAHI, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15 (2005), pp. 607–639.
- [15] F. R. HARVEY AND H. B. LAWSON, JR., Projective hulls and the projective Gelfand transform, Asian J. Math., 10 (2006), pp. 607–646.
- [16] L. HÖRMANDER, Notions of convexity, vol. 127 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1994.
- [17] B. JOSEFSON, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \mathbb{C}^n , Ark. Mat., 16 (1978), pp. 109–115.
- [18] L. KAUFMANN, A Skoda-type integrability theorem for singular Monge-Ampère measures, Michigan Math. J., 66 (2017), pp. 581–594.
- [19] M. KLIMEK, *Pluripotential theory*, vol. 6 of London Mathematical Society Monographs. New Series, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications.
- [20] S. KOŁODZIEJ, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., 178 (2005).
- [21] S. KOŁODZIEJ AND N. C. NGUYEN, Weak solutions to the complex Monge-Ampère equation on Hermitian manifolds, in Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, vol. 644 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2015, pp. 141–158.

- [22] N. S. LANDKOF, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
- [23] N. LEVENBERG, Approximation in \mathbb{C}^N , Surv. Approx. Theory, 2 (2006), pp. 92–140.
- [24] N. C. NGUYEN, The complex Monge-Ampère type equation on compact Hermitian manifolds and applications, Adv. Math., 286 (2016), pp. 240–285.
- [25] N. SIBONY AND P. M. WONG, Some results on global analytic sets, in Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), vol. 822 of Lecture Notes in Math., Springer, Berlin, 1980, pp. 221–237.
- [26] H. SKODA, Sous-ensembles analytiques d'ordre fini ou infini dans C^n , Bull. Soc. Math. France, 100 (1972), pp. 353–408.
- [27] D.-V. VU, Complex Monge–Ampère equation for measures supported on real submanifolds, Math. Ann., 372 (2018), pp. 321–367.

UNIVERSITY OF COLOGNE, MATHEMATICAL INSTITUTE, GERMANY *E-mail address*: vuduc@math.uni-koeln.de