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LÊ NUMBERS AND NEWTON DIAGRAM

CHRISTOPHE EYRAL, GRZEGORZ OLEKSIK, ADAM RÓŻYCKI

Abstract. We give an algorithm to compute the Lê numbers of (the
germ of) a Newton non-degenerate complex analytic function f : (Cn, 0) →
(C, 0) in terms of certain invariants attached to the Newton diagram of
the function f + z

α1
1 + · · ·+ z

αd

d , where d is the dimension of the critical
locus of f and α1, . . . , αd are sufficiently large integers. This is a version
for non-isolated singularities of a famous theorem of A. G. Kouchnirenko.
As a corollary, we obtain that Newton non-degenerate functions with the
same Newton diagram have the same Lê numbers.

1. Introduction

The most important numerical invariant attached to a complex analytic
function f : (Cn, 0) → (C, 0) with an isolated singularity at 0 is its Milnor
number at 0 (denoted by µf (0)). By a theorem of A. G. Kouchnirenko [7],
we know that if f is (Newton) non-degenerate and such that its Newton
diagram meets each coordinate axis (so-called “convenient” function), then
f has an isolated singularity at 0 and µf (0) coincides with the Newton
number ν(f) of f — a numerical invariant attached to the Newton diagram
of f . Actually, if f is a non-degenerate function with an isolated singularity
at 0, then µf (0) = ν(f) even if f is not convenient (see [1]). This provides
an elegant and easy way to compute the Milnor number of such functions.

For a function with a non-isolated singularity at 0, the Milnor number
is no longer relevant. However, we can attach to such a function a series
of polar invariants which plays a similar role to that of the Milnor number
for an isolated singularity. These polar invariants are called Lê numbers.
They were introduced by D. B. Massey in the 1990s (see [10–12]). Then
we may wonder whether like for the Milnor number, the Lê numbers of a
non-degenerate function f with a non-isolated singularity at 0 can also be
described with the help of invariants attached to a Newton diagram. In this
paper, we positively answer this question. More precisely, we show that the
Lê numbers of a non-degenerate function f can be expressed in terms of
certain invariants (which we shall call modified Newton numbers) attached
to the Newton diagram of the function f + zα1

1 + . . . + zαd

d , where d is the
dimension at 0 of the critical locus of f and α1, . . . , αd are sufficiently large
integers (see Theorem 4.1).

As an important corollary, we obtain that non-degenerate functions with
the same Newton diagram have the same Lê numbers (see Corollary 5.1).
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In particular, any 1-parameter deformation family of non-degenerate func-
tions with constant Newton diagram has constant Lê numbers. We recall
that families with constant Lê numbers satisfy remarkable properties. For
example, in [11], Massey proved that under appropriate conditions the dif-
feomorphism type of the Milnor fibrations associated to the members of such
a family is constant. In [5], J. Fernández de Bobadilla showed that in the
special case of families of 1-dimensional singularities, the constancy of Lê
numbers implies the topological triviality of the family at least if n ≥ 5.

The paper is organized as follows. In Section 2, we recall the definition
of the Lê numbers. In Section 3, following Kouchnirenko’s definition of the
Newton number, we introduce our modified Newton numbers. Our main
result — the formulas for the Lê numbers of a non-degenerate function f in
terms of the modified Newton numbers of the function f + zα1

1 + · · · + zαd

d

— is given in Section 4. Corollaries of these formulas are given in Section 5.
In Section 6, we discuss a complete example. Finally, in Sections 7 and 8,
we give the proofs of our main result and main corollary respectively.

2. Lê numbers

Lê numbers are intersection numbers of certain analytic cycles — so-called
Lê cycles — with certain affine subspaces. The Lê cycles are defined using
the notion of gap sheaf. In this section, we briefly recall these definitions
which are essential for the paper. We also recall the notion of “polar ratio”
which is involved in so-called Iomdine-Lê-Massey formula. This formula
plays a crucial role in the proof of our main theorem.

We follow the presentation given by Massey in [10–12].

2.1. Gap sheaves. Let (X,OX) be a complex analytic space, W ⊆ X be
an analytic subset of X, and I be a coherent sheaf of ideals in OX . As
usual, we denote by V (I ) the analytic space defined by the vanishing of
I . At each point x ∈ V (I ), we want to consider scheme-theoretically
those components of V (I ) which are not contained in W . For this purpose,
we look at a minimal primary decomposition of the stalk Ix of I in the
local ring OX,x, and we consider the ideal Ix¬W in OX,x consisting of
the intersection of those (possibly embedded) primary components Q of Ix

such that V (Q) * W . This definition does not depend on the choice of the
minimal primary decomposition of Ix. Now, if we perform the operation
described above at the point x simultaneously at all points of V (I ), then
we obtain a coherent sheaf of ideals called a gap sheaf and denoted by
I¬W . Hereafter, we shall denote by V (I )¬W the scheme (i.e., the complex
analytic space) V (I ¬W ) defined by the vanishing of the gap sheaf I¬W .

2.2. Lê cycles and Lê numbers. Consider an analytic function f : (U, 0) →
(C, 0), where U is an open neighbourhood of 0 in Cn, and fix a system of
linear coordinates z = (z1, . . . , zn) for Cn. Let Σf be the critical locus of f .
For 0 ≤ k ≤ n − 1, the kth (relative) polar variety of f with respect to the
coordinates z is the scheme

Γk
f,z := V

(
∂f

∂zk+1
, . . . ,

∂f

∂zn

)
¬Σf.



LÊ NUMBERS AND NEWTON DIAGRAM 3

The analytic cycle

[Λk
f,z] :=

[
Γk+1
f,z ∩ V

(
∂f

∂zk+1

)]
−

[
Γk
f,z

]

is called the kth Lê cycle of f with respect to the coordinates z. (We always
use brackets [·] to denote analytic cycles.) The kth Lê number λk

f,z(0) of f
at 0 ∈ Cn with respect to the coordinates z is defined to be the intersection
number

(2.1) λk
f,z(0) :=

(
[Λk

f,z] · [V (z1, . . . , zk)]
)
0

provided that this intersection is 0-dimensional or empty at 0; otherwise, we
say that λk

f,z(0) is undefined.
1 For k = 0, the relation (2.1) means

λ0
f,z(0) =

(
[Λ0

f,z] · U
)
0
=

[
Γ1
f,z ∩ V

(
∂f

∂z1

)]

0

.

For any dim0Σf < k ≤ n − 1, the Lê number λk
f,z(0) is always defined

and equal to zero. For this reason, we usually only consider the Lê numbers

λ0
f,z(0), . . . , λ

dim0 Σf
f,z (0).

Note that if 0 is an isolated singularity of f , then λ0
f,z(0) (which is the only

possible non-zero Lê number) is equal to the Milnor number µf (0) of f at 0.

2.3. Polar ratios. As already mentioned above, a key ingredient in the
proof of our main result is the Iomdine-Lê-Massey formula (see [12, Theorem
4.5]). Roughly, this formula says that if the Lê numbers of f at 0 with
respect to z exist and if d := dim0 Σf ≥ 1, then for any integer α1 large
enough, dim0 Σ(f + zα1

1 ) = d − 1 and the Lê numbers of f + zα1
1 at 0 with

respect to the rotated coordinates z(1) := (z2, . . . , zn, z1) exist and they can
be described in terms of the Lê numbers λk

f,z(0) of the original function f .

Moreover, the formula says that any α1 > ρf,z(0) is suitable, where ρf,z(0)
is the maximum “polar ratio” of f at 0 with respect to z. In this section,
we recall the definition of polar ratios (see [12, Definition 4.1]).

The notation is as in Section 2.2. Suppose that dim0 Γ
1
f,z = 1. Let η

be an irreducible component of Γ1
f,z (with its reduced structure) such that

dim0(η ∩ V (z1)) = 0. The polar ratio of η at 0 is the number defined by

(
[η] · [V (f)]

)
0(

[η] · [V (z1)]
)
0

=

([
η
]
·
[
V
(

∂f
∂z1

)])
0(

[η] · [V (z1)]
)
0

+ 1.

If dim0(η ∩V (z1)) 6= 0, then we say that the polar ratio of η at 0 is equal to
1. A polar ratio for f at 0 with respect to z is any one of the polar ratios
at 0 of any component of Γ1

f,z.

For example, if f is a homogeneous polynomial and if dim0 Γ
1
f,z = 1, then

each component of Γ1
f,z is a line, and hence the polar ratios for f at 0 with

respect to z are all equal to 1 or to the degree deg(f) of the polynomial f
(see [12, Remark 4.2]).

1As usual, [V (z1, . . . , zk)] denotes the analytic cycle associated to the analytic space de-

fined by z1 = · · · = zk = 0. The notation
(

[Λk
f,z ] · [V (z1, . . . , zk)]

)

0
stands for the intersec-

tion number at 0 of the analytic cycles [Λk
f,z ] and [V (z1, . . . , zk)].
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In [13, Section 3.2], M. Morgado and M. Saia gave an upper bound for
the maximal polar ratio for a semi-weighted homogeneous arrangement.

3. Newton diagram and modified Newton numbers

Let z := (z1, . . . , zn) be a system of coordinates for Cn, let U be an open
neighbourhood of the origin in Cn, and let

f : (U, 0) → (C, 0), z 7→ f(z) =
∑

α

cαz
α,

be an analytic function, where α := (α1, . . . , αn) ∈ Zn
+, cα ∈ C, and zα is a

notation for the monomial zα1
1 · · · zαn

n .

3.1. Newton diagram. Here, the reference is Kouchnirenko [7]. The New-
ton polyhedron Γ+(f) of f (at the origin and with respect to the coordinates
z = (z1, . . . , zn)) is the convex hull in Rn

+ of the set
⋃

cα 6=0

(α+ Rn
+).

For any v ∈ Rn
+ \ {0}, put

ℓ(v,Γ+(f)) := min{〈v, α〉 ; α ∈ Γ+(f)},

∆(v,Γ+(f)) := {α ∈ Γ+(f) ; 〈v, α〉 = ℓ(v,Γ+(f))},

where 〈· , ·〉 denotes the standard inner product in Rn. A subset ∆ ⊆ Γ+(f) is
called a face of Γ+(f) if there exists v ∈ Rn

+\{0} such that ∆ = ∆(v,Γ+(f)).
The dimension of a face ∆ of Γ+(f) is the minimum of the dimensions of
the affine subspaces of Rn containing ∆. The Newton diagram (also called
Newton boundary) of f is the union of the compact faces of Γ+(f). It is
denoted by Γ(f). We say that f is convenient if the intersection of Γ(f)
with each coordinate axis of Rn

+ is non-empty (i.e., for any 1 ≤ i ≤ n, the
monomial zαi

i , αi ≥ 1, appears in the expression
∑

α cαz
α with a non-zero

coefficient).
For any face ∆ ⊆ Γ(f), define the face function f∆ by

f∆(z) :=
∑

α∈∆

cαz
α.

We say that f is Newton non-degenerate (in short, non-degenerate) on the
face ∆ if the equations

∂f∆
∂z1

(z) = · · · =
∂f∆
∂zn

(z) = 0

have no common solution on (C \ {0})n. We say that f is (Newton) non-
degenerate if it is non-degenerate on every face ∆ of Γ(f).

3.2. A bound for non-degeneracy of certain functions. Another im-
portant ingredient in the proof of our main theorem is Lemma 3.7 of [1].
This lemma asserts that if f is a non-degenerate function with a singularity
at 0, then there exists a constant m(f) such that for any αi > m(f), the
function f + zαi

i is non-degenerate too. Such a (non unique) number m(f)
is defined as follows. For each face ∆ ⊆ Γ(f) with maximal dimension (i.e.,
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∆ is not contained in any other face), choose a vector v∆ ∈ Rn
+ \ {0} such

that ∆ = {α ∈ Γ+(f) ; 〈v∆, α〉 = ℓ(v∆,Γ+(f))}, and define

W :=
⋃

∆⊆Γ(f)
max dim

{α ∈ Rn
+ ; 〈v∆, α〉 ≤ ℓ(v∆,Γ+(f))},

where the union is taken over all maximal dimensional faces ∆ ⊆ Γ(f).
Clearly, W is a compact set and it intersects each coordinate axis of Rn

+ in
a closed interval, say [0, wi] for some wi. Then define

m(f) := max
1≤i≤n

wi.

Of course, m(f) depends on the choice of the vectors v∆. It is possible to
define a “smallest” number m0(f) that also guarantees the non-degeneracy
of the functions f + zαi

i with αi > m0(f) (see [6, Section 2]). However, for
our purpose, we shall not need it.

3.3. Newton number. Again, the reference for this section is [7]. Through-
out the paper, for any subsets I ⊆ {1, . . . , n} and X ⊆ Rn

+, we shall use the
following notation:

XI := {(x1, . . . , xn) ∈ X ; xi = 0 if i 6∈ I}.

In particular, for any i ∈ {1, . . . , n}, the set X{i} is nothing but the inter-
section of X with the ith coordinate axis of Rn

+.
Let Γ−(f) denote the cone over Γ(f) with the origin as vertex. If f is

convenient, then the Newton number ν(f) of f is defined by

(3.1) ν(f) :=
∑

I⊆{1,...,n}

(−1)n−|I||I|! Vol|I|(Γ−(f)
I),

where |I| is the cardinality of I and Vol|I|(Γ−(f)
I) is the |I|-dimensional

Euclidean volume of Γ−(f)
I . For I = ∅, the subset Γ−(f)

∅ reduces to {0},
and we set Vol0(Γ−(f)

∅) = 1.
The Newton number can also be defined even if f is not convenient. More

precisely, if I is the non-empty subset of {1, . . . , n} such that Γ(f) meets
the ith coordinate axis of Rn

+ if and only if i /∈ I, then the Newton number
ν(f) of f is defined as

ν(f) := sup
m∈Z+

ν

(
f +

∑

i∈I

zmi

)
,

where of course the Newton number of the (convenient) function f+
∑

i∈I z
m
i

is given by (3.1).

3.4. Modified Newton numbers. Following Kouchnirenko’s definition of
the Newton number, we now introduce our modified Newton numbers.

Let I be a non-empty subset of {1, . . . , n} such that Γ(f)I 6= ∅. By [3,
Theorem 1], choose a simplicial decomposition of Γ(f)I in which the vertices
of a simplex are 0-dimensional faces of Γ(f)I (such a decomposition is not
unique). The cones spanned by the origin 0 ∈ Rn and such simplexes give a
simplicial decomposition

ΞI := {SI,r}1≤r≤rI
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of Γ−(f)
I . Note that

(3.2) Vol|I|(Γ−(f)
I) =

∑

SI,r∈ΞI ,dimSI,r=|I|

Vol|I|(SI,r).

Clearly, each simplex SI,r ⊆ (Rn
+)

I may be identified to a simplex (still de-

noted by SI,r) of R|I|, and with such an identification, the volume Vol|I|(SI,r)
of a simplex SI,r with maximal dimension (i.e., with dimension |I|) is given
by

(3.3) Vol|I|(SI,r) = ±
1

|I|!
det

(
0 SI,r;1 · · · SI,r;|I|

1 1 · · · 1

)
,

where 0, SI,r;1, . . . , SI,r;|I| are the column vectors representing the coordi-

nates of the vertices of the simplex SI,r ⊆ R|I|. Note that each such col-
umn vector has |I| components, so that the matrix in (3.3) has dimension
(|I|+ 1)× (|I|+ 1).

Let J be another subset of {1, . . . , n}. We suppose that for any i ∈ J the
Newton boundary Γ(f) meets the ith coordinate axis of Rn

+. Then to each
i0 ∈ {1, . . . , n}, we associate a subset ΞI,J,i0 of ΞI (depending on I, J and i0)
as follows. If i0 ∈ I ∩ J , then we define ΞI,J,i0 as the set of all simplexes

SI,r ∈ ΞI (as simplexes in (Rn
+)

I) with maximal dimension |I| such that for
any i ∈ J the following property holds true:

S
{i}
I,r = SI,r ∩ Γ−(f)

{i} is an edge of SI,r ⇔ i = i0.

(As usual, by an “edge” of a simplex we mean a 1-dimensional face.) If
i0 /∈ J (in particular if J = ∅) or if i0 /∈ I, then we set ΞI,J,i0 := ∅.

By definition, if SI,r is a simplex of ΞI,J,i0 , then it has maximal dimension
and possesses a vertex with coordinates of the form (0, . . . , 0, αi0 , 0, . . . , 0) ∈
Rn (for some αi0 located at the i0th place). To each such a simplex SI,r ∈

ΞI,J,i0, we associate a (unique) “reduced” simplex S̃I,r defined by the same
vertices as those of SI,r with the exception of the vertex (0, . . . , 0, αi0 , 0, . . . , 0)

which we replace by (0, . . . , 0, 1, 0, . . . , 0). We denote by Ξ̃I,J,i0 the set of
such reduced simplexes.

By convention, for the next definition and all the statements hereafter,
we agree that if I is a non-empty subset of {1, . . . , n} such that Γ(f)I is
empty, then the corresponding “simplicial decomposition” ΞI is the empty
set.

Definition 3.1. For each J , i0, and each collection Ξ := {ΞI}I⊆{1,...,n}, I 6=∅

as above, we define a modified Newton number ν̃Ξ,J,i0(f) for the function f
by

ν̃Ξ,J,i0(f) :=
∑

I⊆{1,...,n}, I∋i0

(
∑

S̃I,r∈Ξ̃I,J,i0

(−1)n−|I||I|! Vol|I|(S̃I,r)

)
.

(If ΞI = ∅ or if i0 /∈ J , then ΞI,J,i0 = Ξ̃I,J,i0 = ∅, and the corresponding
term in the above sum is zero by convention.)
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Similarly, we introduce the subset ΞI,J,0 of ΞI consisting of those sim-
plexes SI,r ∈ ΞI with maximal dimension and such that for any i ∈ J the

intersection S
{i}
I,r = SI,r ∩ Γ−(f)

{i} is not an edge of SI,r.

Definition 3.2. For each J and each Ξ := {ΞI}I⊆{1,...,n}, I 6=∅ as above, we
define a special modified Newton number νΞ,J,0(f) for the function f by

νΞ,J,0(f) :=
∑

I⊆{1,...,n}, I 6=∅

(
∑

SI,r∈ΞI,J,0

(−1)n−|I||I|! Vol|I|(SI,r)

)
.

Let us emphasize the fact that the simplexes involved in the definition of
the modified Newton number ν̃Ξ,J,i0(f) are reduced simplexes, while those
used to define the special modified Newton number νΞ,J,0(f) are not reduced.

4. Formulas for the Lê numbers of a non-degenerate function

Let z := (z1, . . . , zn) be a system of linear coordinates for Cn, let U be an
open neighbourhood of the origin in Cn, and let f : (U, 0) → (C, 0) be a non-
degenerate analytic function. We denote by Σf the critical locus of f , and
we suppose that d := dim0 Σf ≥ 1. We also assume that the Lê numbers

λ0
f,z(0), . . . , λ

d
f,z(0)

of f at 0 with respect to the coordinates z = (z1, . . . , zn) are defined. For
example, if the coordinates are “prepolar” for f (see [12, Definition 1.26]),
then the corresponding Lê numbers do exist. In particular, this is the case
if f has an “aligned” singularity at 0 (e.g., a line singularity) and the coor-
dinates are “aligning” for f at 0 (see [12, Definition 7.1]).

For any 1 ≤ q ≤ d, we consider the function

(4.1) fq(z) := f(z) + zα1
1 + · · ·+ z

αq
q ,

where α1, . . . , αq are integers such that, for any 1 ≤ p ≤ q,

αp > max{2, ρfp−1,z(p−1)(0),m(fp−1)}.

Here, ρfp−1,z(p−1)(0) is the maximum polar ratio for fp−1 at 0 with respect

to the rotated coordinates

z(p−1) := (zp, . . . , zn, z1, . . . , zp−1),

andm(fp−1) is a bound which guarantees the non-degeneracy of the function

fp (see Sections 2.3 and 3.2). (By f0 and z(0) we mean f and z respectively.)
For example, if f is a homogeneous polynomial such that d := dim0 Σf = 1,
then we can take fd(z) = f1(z) := f(z) + zα1

1 , where α1 > max{2,deg(f)}.
Hereafter, we are mainly interested in the modified Newton numbers of

the function fd. For each non-empty subset I ⊆ {1, . . . , n}, we choose a
simplicial decomposition

ΞI := {SI,r}1≤r≤rI

of Γ−(fd)
I as in Section 3.4 (again, if Γ(fd)

I = ∅, then ΞI = ∅), and we
write Ξ := {ΞI}I⊆{1,...,n}, I 6=∅. Since throughout this section we shall only
consider modified Newton numbers of the form

νΞ,{1,...,d},0(fd) and ν̃Ξ,{1,...,d},k(fd)
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(1 ≤ k ≤ d) where d is the dimension at 0 of the critical locus Σf , we may
simplify the notation as follows:

νΞ,0(fd) := νΞ,{1,...,d},0(fd) and ν̃Ξ,k(fd) := ν̃Ξ,{1,...,d},k(fd).

Here is our main result.

Theorem 4.1. Suppose that f is non-degenerate, d := dim0Σf ≥ 1 and the
Lê numbers λk

f,z(0) of f at 0 with respect to the coordinates z = (z1, . . . , zn)
are defined for any 0 ≤ k ≤ d. Then the following two assertions hold true.

(1) The modified Newton numbers νΞ,0(fd) and ν̃Ξ,k(fd) of the function
fd do not depend on the choice of Ξ := {ΞI}I⊆{1,...,n}, I 6=∅. Therefore,
we may further simplify the notation as follows:

ν0(fd) := νΞ,0(fd) and ν̃k(fd) := ν̃Ξ,k(fd).

(2) The Lê numbers λ0
f,z(0), . . . , λ

d
f,z(0) are given by the following formulas:

· λ0
f,z(0) = (−1)n + ν0(fd) + ν̃1(fd);

· λk
f,z(0) = (−1)k−1(ν̃k(fd)−ν̃k+1(fd)) for 1 ≤ k ≤ d−1 (if d ≥ 2);

· λd
f,z(0) = (−1)d−1ν̃d(fd).

Theorem 4.1 is a version for non-isolated singularities of the Kouchnirenko
theorem mentioned in the introduction. It will be proved in Section 7. The
formulas given in item (2) reduce the calculation of the Lê numbers of a
non-degenerate function to a simple computation of volumes of simplexes.
Certainly, these formulas are well suited for computer algebra programs.

5. Corollaries

Let z = (z1, . . . , zn) be linear coordinates for Cn. The first important
corollary of Theorem 4.1 is the invariance of the Lê numbers within the class
of non-degenerate functions with fixed Newton diagram. More precisely we
have the following statement.

Corollary 5.1. Let f, g : (U, 0) → (C, 0) be two non-degenerate analytic
functions, where U is an open neighbourhood of the origin of Cn. Suppose
that the dimensions at 0 of the critical loci Σf and Σg of f and g, respec-
tively, are greater than or equal to 1. If furthermore Γ(f) = Γ(g) and the
Lê numbers of f and g at 0 with respect to the coordinates z = (z1, . . . , zn)
exist, then dim0 Σf = dim0 Σg, and for any 0 ≤ k ≤ n− 1, we have

λk
f,z(0) = λk

g,z(0).

Corollary 5.1 will be proved in Section 8. In particular, it implies that any
1-parameter deformation family of non-degenerate functions with constant
Newton diagram has constant Lê numbers, provided that these numbers
exist. Here is a more precise statement.

Corollary 5.2. Let {ft} be a 1-parameter deformation family of analytic
functions ft defined in an open neighbourhood of 0 ∈ Cn and depending
analytically on the parameter t ∈ C. If for any sufficiently small t (say
|t| ≤ ε for some ε > 0), the function ft is non-degenerate, Γ(ft) = Γ(f0)
and all the Lê numbers λk

ft,z
(0) are defined, then dim0 Σft = dim0 Σf0 and

λk
ft,z

(0) = λk
f0,z

(0) for all small t.
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By combining Corollary 5.2 with [12, Theorem 9.4] and [5, Theorem 42],
we obtain a new proof of the following result, which is a special case of a
much more general theorem of J. Damon [2].

Corollary 5.3 (Damon). Let {ft} be a family as in Corollary 5.2, that
is, such that for any sufficiently small t, the function ft is non-degenerate,
Γ(ft) = Γ(f0) and all the Lê numbers λk

ft,z
(0) are defined. Under these

assumptions, the following two assertions hold true.

(1) If for all small t, the coordinates z = (z1, . . . , zn) are prepolar for ft
and dim0 Σft ≤ n − 4, then the diffeomorphism type of the Milnor
fibration of ft at 0 is independent of t for all small t.

(2) If n ≥ 5 and dim0 Σft = 1 for all small t, then the family {ft} is
topologically trivial.

Indeed, by Corollary 5.2, the family {ft} has constant Lê numbers with
respect to the coordinates z = (z1, . . . , zn). Item (1) then follows from [12,
Theorem 9.4] while item (2) is a consequence of [5, Theorem 42].

In fact, in [2], Damon obtains the topological triviality without the re-
strictions n ≥ 5 or dim0 Σft = 1. A third proof (based on so-called “uniform
stable radius”) of item (2) for line singularities is also given in [4].

Finally, combined with [12, Theorem 3.3], Theorem 4.1 has the following
corollary about the Euler characteristic of the Milnor fibre associated to a
non-degenerate function.

Corollary 5.4. Again, assume that f is non-degenerate, d := dim0Σf ≥ 1
and the Lê numbers λk

f,z(0) of f at 0 with respect to the coordinates z =

(z1, . . . , zn) are defined for any 0 ≤ k ≤ d. If furthermore the coordinates
z = (z1, . . . , zn) are prepolar for f , then the reduced Euler characteristic
χ̃(Ff,0) of the Milnor fibre Ff,0 of f at 0 is given by

χ̃(Ff,0) = (−1)n−1(ν0(fd) + (−1)n),

where fd is defined by (4.1).

Indeed, by [12, Theorem 3.3], we have

χ̃(Ff,0) =

d∑

k=0

(−1)n−1−kλk
f,z(0).

Thus, to get the formula in Corollary 5.4, it suffices to replace λk
f,z(0) by its

expression in terms of the modified Newton numbers given in Theorem 4.1.

6. Example

Consider the homogeneous polynomial function

f(z1, z2, z3) := z21z
2
2 + z42 + z43 .

The Newton diagram Γ(f) of f is nothing but the triangle in R3
+ (with

coordinates (x1, x2, x3)) defined by the vertices A = (2, 2, 0), B = (0, 4, 0)
and C = (0, 0, 4) (see Figure 1). We easily check that f is non-degenerate.
The critical locus Σf of f is given by the z1-axis, and the restriction of f
to the hyperplane V (z1) defined by z1 = 0 has an isolated singularity at 0.
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Figure 1. Newton diagrams of f and f1

In other words, f has a line singularity at 0 in the sense of [9, §4]. Then,
by [12, Remark 1.29], the partition of V (f) := f−1(0) given by

S := {V (f) \ Σf,Σf \ {0}, {0}}

is a “good stratification” for f in a neighbourhood of 0, and the hyperplane
V (z1) is a “prepolar slice” for f at 0 with respect to S (see [12, Definitions
1.24 and 1.26]). In other words, the coordinates z = (z1, z2, z3) are prepolar
for f . In particular, combined with [12, Proposition 1.23], this implies that
the Lê numbers λ0

f,z(0) and λ1
f,z(0) are defined. We can compute these

numbers either using the definition or by applying Theorem 4.1.

6.1. Calculation using the definition. We need to compute the polar
varieties Γ2

f,z and Γ1
f,z and the Lê cycles [Λ1

f,z] and [Λ0
f,z]. By definition,

Γ2
f,z = V

(
∂f

∂z3

)
¬V (z2, z3) = V (z33)¬V (z2, z3) = V (z33),

while

Γ1
f,z = V

(
∂f

∂z2
,
∂f

∂z3

)
¬V (z2, z3)

= V (z2(2z
2
1 + 4z22), z

3
3)¬V (z2, z3) = V (2z21 + 4z22 , z

3
3).

It follows that the Lê cycles are given by

[Λ1
f,z] =

[
Γ2
f,z ∩ V

(
∂f

∂z2

)]
−

[
Γ1
f,z

]

= [V (z33) ∩ V (z2(2z
2
1 + 4z22))]− [V (2z21 + 4z22 , z

3
3)]

= [V (z2, z
3
3)]

and

[Λ0
f,z] =

[
Γ1
f,z ∩ V

(
∂f

∂z1

)]

= [V (2z21 + 4z22 , z
3
3) ∩ V (z1z

2
2)]

= [V (z1, z
2
2 , z

3
3)] + [V (z21 , z

2
2 , z

3
3)].

Finally the Lê numbers are given by

λ1
f,z = ([Λ1

f,z] · [V (z1)])0 = [V (z1, z2, z
3
3)]0 = 3;
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λ0
f,z = ([Λ0

f,z] · C
3)0 = 6 + 12 = 18.

6.2. Calculation using Theorem 4.1. Consider a polynomial function

f1(z1, z2, z3) := f(z1, z2, z3) + zα1
1

such that α1 > max{2, ρf,z(0),m(f)}. Since f is a homogeneous polynomial
of degree 4, the maximum polar ratio ρf,z(0) for f at 0 with respect to the
coordinates z is 4 (see Section 2.3), and clearly, we can take m(f) = 4.
So, let us take for instance α1 = 5. Clearly, Γ−(f1) is the union of two
tetrahedra {O,A,C,E} and {O,A,B,C}. For each subset I ⊆ {1, 2, 3},
take the “natural” simplicial decomposition ΞI of Γ−(f1)

I generated by the
vertices of the set {O,A,B,C,E} ∩ (Rn

+)
I as suggested in Figure 1 (at this

level, we ignore the point D mentioned in the figure). For example, Ξ{1,2}

is defined by the simplexes {O,A,E} and {O,A,B}. By Theorem 4.1,

λ0
f,z(0) = (−1)3 + ν0(f1) + ν̃1(f1) and λ1

f,z(0) = (−1)0ν̃1(f1).

The data to compute the modified Newton numbers ν0(f1) and ν̃1(f1) are
given in Table 1. In this table, O = (0, 0, 0), D = (1, 0, 0), and A, B, C are
as above. Each pair in the third and fourth columns of the table consists of
a simplex together with its volume. For example, in the first row of the third

column, the pair ({O,D}; 1) consists of the simplex {O,D} ∈ Ξ̃{1},{1},1 and
its volume Vol1({O,D}) = 1. The calculation shows that ν0(f1) = 16 and
ν̃1(f1) = 3, and therefore the Lê numbers are given by

λ0
f,z(0) = 18 and λ1

f,z(0) = 3.

6.3. Euler characteristic. Since the coordinates z = (z1, z2, z3) are prepo-
lar for f , Corollary 5.4 says that to calculate the reduced Euler characteristic
χ̃(Ff,0) of the Milnor fibre Ff,0 of f at 0, it suffices to compute the special
modified Newton number ν0(f1). Precisely, χ̃(Ff,0) is given by

χ̃(Ff,0) = (−1)2(ν0(f1) + (−1)3) = 15.

I (−1)3−|I||I|! (S ∈ Ξ̃I,{1},1; Vol|I|(S)) (S ∈ ΞI,{1},0; Vol|I|(S))

{1} 1 ({O,D}; 1) (∅; 0)

{2} 1 (∅; 0) ({O,B}; 4)

{3} 1 (∅; 0) ({O,C}; 4)

{1, 2} −2 ({O,A,D}; 1) ({O,A,B}; 4)

{1, 3} −2 ({O,C,D}; 2) (∅; 0)

{2, 3} −2 (∅; 0) ({O,B,C}; 8)

{1, 2, 3} 6 ({O,A,C,D}; 4
3) ({O,A,B,C}; 163 )

Table 1. Data to compute ν0(f1) and ν̃1(f1)
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7. Proof of Theorem 4.1

Applying the Iomdine-Lê-Massey formula (see [12, Theorem 4.5]) succes-
sively to f, f1, . . . , fd−1 shows that for any 0 ≤ q ≤ d− 1:

(1) Σfq+1 = Σf ∩ V (z1, . . . , zq+1) in a neighbourhood of the origin;

(2) dim0 Σfq+1 = d− (q + 1);

(3) the Lê numbers λk
fq+1,z(q+1)(0) of fq+1 at 0 with respect to the rotated

coordinates

z(q+1) = (zq+2, . . . , zn, z1, . . . , zq+1)

exist for all 0 ≤ k ≤ d− (q + 1) and are given by
{
λ0
fq+1,z(q+1)(0) = λ0

fq,z(q)
(0) + (αq+1 − 1)λ1

fq ,z(q)
(0);

λk
fq+1,z(q+1)(0) = (αq+1 − 1)λk+1

fq ,z(q)
(0) for 1 ≤ k ≤ d− (q + 1);

where λk
fq,z(q)

(0) is the kth Lê number of fq at 0 with respect to the rotated

coordinates

z(q) = (zq+1, . . . , zn, z1, . . . , zq),

and where αq+1 is an integer satisfying

αq+1 > max{2, ρfq ,z(q)(0),m(fq)}.

In particular (see [12, Corollary 4.6]) fd has an isolated singularity at 0
and its Milnor number µfd(0) (which, in this case, coincides with its 0th Lê
number λ0

fd,z
(d)(0)) is given by

(7.1) µfd(0) = λ0
f,z(0) +

d∑

k=1




k∏

q=1

(αq − 1)


 λk

f,z(0).

Let {i1, . . . , ip} be the subset of {1, . . . , n} \ {1, . . . , d} consisting of all
indices i for which Γ(fd) does not meet the ith coordinate axis of Rn

+. Then,
by [1, Lemmas 3.6–3.8 and Corollary 3.11] and [7, Théorème I], for any
0 ≪ α1 ≪ · · · ≪ αd ≪ αi1 ≪ · · · ≪ αip sufficiently large, the function

f ′
d(z) := f(z) + zα1

1 + · · · + zαd

d︸ ︷︷ ︸
fd(z)

+z
αi1
i1

+ · · ·+ z
αip

ip

is non-degenerate, convenient, and the following equalities hold true:

(7.2) µfd(0) = µf ′
d
(0) = ν(f ′

d) = ν(fd).

The expression (7.1) for the Milnor number µfd(0) can be viewed as a
polynomial in the variables α1, . . . , αd. Its linear part is given by

(7.3)

d∑

k=0

(−1)kλk
f,z(0) +

d∑

i=1

(
αi

d∑

k=i

(−1)k−1λk
f,z(0)

)
.

Now we need the following lemma.

Lemma 7.1. The function f has no term of the form c1z
a1
1 , . . . , cdz

ad
d , where

ci ∈ C \ {0}, ai ∈ Z>0.
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We postpone the proof of this lemma to the end of this section, and we
first complete the proof of Theorem 4.1.

Since f has no term of the form c1z
a1
1 , . . . , cdz

ad
d , the Newton number ν(f ′

d)
can be viewed as a polynomial in the variables α1, . . . , αd and αi1 , . . . , αip .
Its linear part with respect to α1, . . . , αd has the form

(7.4) P0(αi1 , . . . , αip) + α1 P1(αi1 , . . . , αip) + · · ·+ αd Pd(αi1 , . . . , αip),

where Pi(αi1 , . . . , αip) are polynomials in αi1 , . . . , αip . Taking the difference
µfd(0)− ν(f ′

d) gives a polynomial

Q(α1, . . . , αd, αi1 , . . . , αip) := µfd(0)− ν(f ′
d)

in the variables α1, . . . , αd, αi1 , . . . , αip . Then it follows from (7.2) that for
any 0 ≪ α1 ≪ · · · ≪ αd ≪ αi1 ≪ · · · ≪ αip sufficiently large (equiva-
lently, for any (α1, . . . , αd, αi1 , . . . , αip) in the set Z(d + p) which appears
in Lemma A.1 of the appendix, with the appropriate coefficients c1 and
cℓ(α1, . . . , αℓ−1) for 2 ≤ ℓ ≤ d+ p), we have

Q(α1, . . . , αd, αi1 , . . . , αip) = 0.

Thus applying Lemma A.1 shows that Q identically vanishes. In particular,
comparing the coefficients of the linear parts (7.3) and (7.4) of µfd(0) and
ν(f ′

d), respectively, shows that the polynomials Pi := Pi(αi1 , . . . , αip) are
independent of αi1 , . . . , αip (i.e., Pi is constant) and are given by





P0 =
d∑

k=0

(−1)kλk
f,z(0);

Pi =

d∑

k=i

(−1)k−1λk
f,z(0) for 1 ≤ i ≤ d.

Theorem 4.1 is now an immediate consequence of the following lemma.

Lemma 7.2. For each non-empty subset I ⊆ {1, . . . , n}, choose a simplicial
decomposition

Ξ′
I := {S′

I,r}1≤r≤r′
I

of Γ−(f
′
d)

I as in Section 3.4 such that its restriction to Γ−(fd)
I coincides

with the simplicial decomposition ΞI . (We can always achieve this condition
by taking αi1 , . . . , αip sufficiently large.) Write Ξ′ := {Ξ′

I}I⊆{1,...,n}, I 6=∅ and
set J := {1, . . . , d, i1, . . . , ip}. Then the following equalities hold true:

{
Pi0 = ν̃Ξ′,J,i0(f

′
d) = ν̃i0(fd) for 1 ≤ i0 ≤ d;

P0 = νΞ′,J,0(f
′
d) + (−1)n = ν0(fd) + (−1)n.

To complete the proof of Theorem 4.1, it remains to prove Lemmas 7.1
and 7.2. We start with the proof of Lemma 7.2.

Proof of Lemma 7.2. By (3.1) and (3.2), the Newton number ν(f ′
d) is (up

to coefficients of the form (−1)n−|I| |I|!) a sum of volumes of the form
Vol|I|(S

′
I,r), where ∅ 6= I ⊆ {1, . . . , n} and S′

I,r is a simplex of Ξ′
I with

maximal dimension |I|, plus the number

(−1)n−|∅||∅|! Vol|∅|(Γ−(f
′
d)

∅) = (−1)n,



14 CHRISTOPHE EYRAL, GRZEGORZ OLEKSIK, ADAM RÓŻYCKI

which corresponds to I = ∅ in the definition of ν(f ′
d) (see Section 3.3). If

for any 1 ≤ i0 ≤ d the matrix used to compute the volume Vol|I|(S
′
I,r)

(see (3.3)) does not have any column of the form
(
β1 · · · βi0−1 αi0 βi0+1 · · · β|I| 1

)T
,

then Vol|I|(S
′
I,r) contributes to the term P0 which appears in (7.4). (Here,

the letter “T” stands for the transposed matrix.) On the other hand, if it
contains such a column for some i0 ∈ {1, . . . , d}, then necessarily the βi’s
are zero, and the column is of the form

Ci0 :=
(
0 · · · 0 αi0 0 · · · 0 1

)T

(because Γ(f ′
d) intersects the i0th coordinate axis of Rn

+ precisely at the
point (0, . . . , 0, αi0 , 0, . . . , 0) by Lemma 7.1). If the matrix has two columns
Ci0 and Ci′0

of the above form, with i0, i
′
0 ∈ {1, . . . , d} and i0 6= i′0, then

Vol|I|(S
′
I,r) is not involved in the linear part (7.4) of ν(f ′

d). Now, if it has

one column Ci0 for some i0 ∈ {1, . . . , d} and no any other column Ci′0
for

i′0 ∈ {1, . . . , d} \ {i0}, then Vol|I|(S
′
I,r) contributes to the term αi0Pi0 which

appears in (7.4). Note that in the latter case, the matrix cannot have any
column of the form Cij with ij ∈ {i1, . . . , ip} (as otherwise the constant
polynomial Pi0 would depend on αij ). Altogether, for any 1 ≤ i0 ≤ d,
the volume Vol|I|(S

′
I,r) contributes to the term αi0Pi0 if and only if the

corresponding matrix has a column of the form Ci0 and no column of the
form Ci′0

for any other i′0 ∈ {1, . . . , d, i1, . . . , ip} \ {i0} = J \ {i0}. In other

words, Vol|I|(S
′
I,r) contributes to the term αi0Pi0 if and only if S′

I,r ∈ Ξ′
I,J,i0

.
Thus,

αi0Pi0 =
∑

I⊆{1,...,n}, I∋i0

(
∑

S′
I,r

∈Ξ′
I,J,i0

(−1)n−|I||I|! Vol|I|(S
′
I,r)

)

=
∑

I⊆{1,...,n}, I∋i0

αi0

(
∑

S̃′
I,r

∈Ξ̃′
I,J,i0

(−1)n−|I||I|! Vol|I|(S̃
′
I,r)

)

= αi0 ν̃Ξ′,J,i0(f
′
d),

where S̃′
I,r denotes the reduced simplex associated to S′

I,r (see Section 3.4).

Since Γ(f ′
d) is obtained from Γ(fd) only by “adding” the vertices

vij := (0, . . . , 0, αij , 0, . . . , 0)

(with αij at the ijth place) for large αij (1 ≤ j ≤ p), if a simplex S′
I,r of

Ξ′
I with maximal dimension is not a simplex of ΞI (in particular this is the

case if ΞI = ∅), then necessarily it intersects the ijth coordinate axis of Rn
+

for some j (1 ≤ j ≤ p). It follows that

ΞI,{1,...,d},i0 = Ξ′
I,J,i0

,

and hence,

ν̃Ξ,i0(fd) := ν̃Ξ,{1,...,d},i0(fd) = ν̃Ξ′,J,i0(f
′
d) = Pi0 .
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Since the choice of Ξ is arbitrary and Pi0 is a constant independent of Ξ, it
follows that the modified Newton number ν̃Ξ,i0(fd) is also independent of Ξ.
The notation ν̃i0(fd) := ν̃Ξ,i0(fd) is therefore quite relevant.

Since the volume Vol|I|(S
′
I,r) contributes to the term P0 if and only if the

simplex S′
I,r belongs to Ξ′

I,J,0 (we recall that P0 is constant, independent of

αi1 , . . . , αip), a similar argument shows that

ν0(fd) + (−1)n = νΞ′,J,0(f
′
d) + (−1)n = P0. �

Now we prove Lemma 7.1.

Proof of Lemma 7.1. We argue by contradiction. Suppose that f has a term
of the form ciz

ai
i for some i (1 ≤ i ≤ d). To simplify, without loss of

generality, we may assume i = 1 (the other cases are similar). By the
Iomdine-Lê-Massey formula again and by Lemmas 3.7 and 3.8 of [1], for any
0 ≪ b1 ≪ · · · ≪ bd sufficiently large (in particular so that a1 < b1), the
function

g(z) := f(z) + zb11 + · · ·+ zbdd
is non-degenerate and has an isolated singularity at 0. Then, by [1, Corol-
lary 2.9], its support (denoted by supp g) satisfies so-called Kouchnirenko
condition (see [8] or Section 2 of [1] for the definition; see also Section 3
of [14] and the references mentioned therein for equivalent formulations and
historical comments). Now, since a1 < b1, the Newton diagrams of g and of
the function

g′(z) := g(z) − zb11
coincide. It follows that g′ is also non-degenerate and such that its support
supp g′ satisfies the Kouchnirenko condition. Theorem 3.1 of [1] then implies
that g′ has an isolated singularity at 0. If d := dim0 Σf = 1, then this is
already a contradiction, because in this case g′ = f . If d > 1, then define

Zg′ :=

{
z ∈ Cn ;

∂g′

∂zi
(z) = 0 for all i ∈ {1, d + 1, . . . , n}

}
.

Define Zf similarly (replacing g′ by f). Clearly, Zg′ = Zf . Therefore,
we have d := dim0 Σf ≤ dim0 Zf = dim0 Zg′ , but since g′ has an isolated
singularity at 0, we must also have dim0 Zg′ = d−1, a new contradiction. �

8. Proof of Corollary 5.1

First, we show that dim0Σf = dim0 Σg. The argument is similar to
that given in the proof of Lemma 7.1. We argue by contradiction. Put
d := dim0 Σf and s := dim0Σg, and suppose for instance d < s. By
the Iomdine-Lê-Massey formula and by Lemmas 3.7 and 3.8 of [1], for any
integers 0 ≪ α1 ≪ · · · ≪ αd sufficiently large2, the functions

fd(z) := f(z) + zα1
1 + · · ·+ zαd

d and gd(z) := g(z) + zα1
1 + · · · + zαd

d

are non-degenerate, fd has an isolated singularity at 0, and dim0Σgd =
s − d > 0. Then, by [1, Corollary 2.9], the support of fd satisfies the
Kouchnirenko condition. Since f and g have the same Newton diagram,
it follows that Γ(fd) = Γ(gd) too. Thus the support of gd also satisfies the

2Precisely, αp > max{2, ρfp−1,z
(p−1)(0), ρgp−1,z

(p−1)(0),m(fp−1),m(gp−1)}.
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Kouchnirenko condition, and by [1, Theorem 3.1], the function gd must have
an isolated singularity at 0 — a contradiction.

Now, to show that the Lê numbers of f and g at 0 with respect to the
coordinates z = (z1, . . . , zn) are equal, we apply Theorem 4.1. By this
theorem, these Lê numbers are described in terms of the modified (and
special modified) Newton numbers of the functions fd and gd. Then the
result follows immediately from the equality Γ(fd) = Γ(gd).

Appendix A.

For completeness, in this appendix, we give a proof of a useful elementary
lemma which we have used in the proof of Theorem 4.1.

Let d be a positive integer. Consider the following system S of d integral
inequalities with d variables α1, . . . , αd:





α1 ≥ c1,

α2 ≥ c2(α1),

α3 ≥ c3(α1, α2),

· · ·

αd ≥ cd(α1, . . . , αd−1).

Here, c1 is a constant, and for 2 ≤ ℓ ≤ d, cℓ(α1, . . . , αℓ−1) is a number
depending on α1, . . . , αℓ−1. For each 1 ≤ r ≤ d, let S (r) be the system
consisting only of the first r inequalities of the system S . Finally, let Z(r) ⊆
Zr be the set of (integral) solutions of the system S (r).

Lemma A.1. For any 1 ≤ r ≤ d, if P (x1, . . . , xr) is a polynomial function
that vanishes on Z(r), then it is identically zero.

Proof. By induction on r. For r = 1, the lemma immediately follows from
the fundamental theorem of algebra. Now suppose the lemma holds true
for some integer r − 1 (with r ≥ 2), and let us show that it also holds true
for the integer r. So, let P (x1, . . . , xr) be a polynomial function such that
P (α1, . . . , αr) = 0 for any (α1, . . . , αr) ∈ Z(r). Note that (α1, . . . , αr) ∈
Z(r) implies (α1, . . . , αr−1) ∈ Z(r − 1). Expand P with respect to the
variable xr:

P (x1, . . . , xr) =
δ∑

k=0

Pk(x1, . . . , xr−1)x
k
r .

(Here, δ denotes the degree of P .) Then for all (α1, . . . , αr) ∈ Z(r),

δ∑

k=0

Pk(α1, . . . , αr−1)α
k
r = 0.

By the fundamental theorem of algebra, it follows that for each 0 ≤ k ≤ δ,

Pk(α1, . . . , αr−1) = 0

for every fixed (α1, . . . , αr−1) ∈ Z(r−1). Now, by the induction hypothesis,
this implies that the polynomial Pk identically vanishes. �
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[12] D. B. Massey, Lê cycles and hypersurface singularities, Lecture Notes Math. 1615,

Springer-Verlag, Berlin, 1995.
[13] M. Morgado and M. Saia, On the Milnor fibre and Lê numbers of semi-weighted
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