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Abstract

We study asymptotic properties of the following Markov system of N ≥ 3 points in [0, 1].

At each time step, the point farthest from the current centre of mass, multiplied by a

constant p > 0, is removed and replaced by an independent ζ-distributed point; the problem,

inspired by variants of the Bak–Sneppen model of evolution and called a p-contest, was

posed in [4]. We obtain various criteria for the convergences of the system, both for p < 1

and p > 1.

In particular, when p < 1 and ζ ∼ U [0, 1], we show that the limiting configuration

converges to zero. When p > 1, we show that the configuration must converge to either

zero or one, and we present an example where both outcomes are possible. Finally, when

p > 1, N = 3 and ζ satisfies certain mild conditions (e.g. ζ ∼ U [0, 1]), we prove that the

configuration converges to one a.s.

Our paper substantially extends the results of [3, 5] where it was assumed that p = 1.

Unlike the previous models, one can no longer use the Lyapunov function based just on the

radius of gyration; when 0 < p < 1 one has to find a more finely tuned function which turns

out to be a supermartingale; the proof of this fact constitutes an unwieldy, albeit necessary,

part of the paper.
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1 Introduction

This paper extends the results of [3] and [5] on the so-called Keynesian beauty contest, or, as it was

called in [5], Jante’s law process. Following [3], we recall that in the Keynesian beauty contest,

we have N players guessing a number, and the person who guesses closest to the mean of all the

N guesses wins; see [6, Ch. 12, §V]. The formal version, suggested by Moulin [7, p. 72], assumes

that this game is played by choosing numbers on the interval [0, 1], the “p-beauty contest”, in

which the target is the mean value, multiplied by a constant p > 0. For the applications of the

p-contest in the game theory, we refer the reader to e.g. [1]; see also [2] and [3] and references

therein for further applications and other relevant papers.

The version of the p-contest with p ≡ 1 was studied in [3, 5]. In [3] it was shown that in

the model where at each unit of time the point farthest from the center of mass is replaced by

a point chosen uniformly on [0, 1], then eventually all (but one) points converge almost surely

to some random limit the support of which is the whole interval [0, 1]; many of the results were

extended for the version of the model on R
d, d ≥ 2. The results of [3] were further generalized

in [5], by removing the assumption that a new point is chosen uniformly on [0, 1], as well as by

removing more than one point at once, these points being chosen in such a way that the moment

of inertia of the resulting configuration is minimized. However, the case p 6= 1 was not addressed

in either of these two papers.

Let us now formally define the model; the notation will be similar to those in [3, 5]. Let

X = {x1, x2, . . . , xN} ∈ R
N be an unordered N -tuple of points in R, and (x(1), x(2), . . . , x(N)) be

these points put in non-decreasing order, that is, x(1) ≤ x(2) ≤ · · · ≤ x(N). As in [3, 5] let us

define the barycentre of the configuration as

µN(x1, . . . , xN) := N−1
N
∑

i=1

xi.

Fix some p > 0 and also define the p−centre of mass as pµN(x1, . . . , xN ).

The point, farthest from the p−centre of mass, is called the extreme point of X , and it can

be either x(1) or x(N) (with possibility of a tie), and the core of X , denoted by X ′, is constructed

from X by removing the extreme point; in case of a tie between the left-most and the right-most

point, we choose either of them with equal probability (same as in [3, 5]). Throughout the rest of

the paper, x(1)(t), . . . , x(N−1)(t) shall denote the points of the core
1 X ′(t) put into non-decreasing

order.

Our process runs as follows. Let X (t) = {X1(t), . . . , XN(t)} be an unordered N -tuple of

1rather than of X (t)
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points in R at time t = 0, 1, 2, . . . . Given X (t), let X ′(t) be the core of X (t) and replace

X (t) \ X ′(t) by a ζ-distributed random variable so that

X (t+ 1) = X ′(t) ∪ {ζt+1},

where ζt, t = 1, 2, . . . , are i.i.d. random variables with a common distribution ζ .

Finally, to finish the specification of our process, we allow the initial configuration X (0) to

be arbitrary or random, with the only requirement being that all the points of X (0) must lie in

the support of ζ .

Throughout the paper we will use the notation A =⇒
a.s.

B for two events A and B, whenever

P(A ∩ Bc) = 0, that is, when A ⊆ B up to a set of measure 0. We will also write, with

some abuse of notations, that limt→∞X ′(t) = a ∈ R or equivalently X ′(t) → a as t → ∞ if

X ′(t) → (a, a, . . . , a) ∈ R
N−1, i.e. limt→∞ x(i)(t) = a for all i = 1, 2, . . . , N − 1. Similarly, for an

interval (a, b) we will write X ′(t) ∈ (a, b) whenever all x(1)(t), . . . , x(N−1)(t) ∈ (a, b). Finally, we

will assume that inf ∅ = +∞, and use the notation y+ = max(y, 0) for y ∈ R.

Also we require that ζ has a full support on [0, 1], that is, P(ζ ∈ (a, b)) > 0 for all a, b such

that 0 ≤ a < b ≤ 1.

2 The case p < 1

Throughout this Section we assume that 0 < p < 1 and that supp ζ = [0, 1]. Because of

the scaling invariance, our results may be trivially extended to the case when supp ζ = [0, A],

A ∈ (0,∞); some of them are even true when A = ∞; however, to simplify the presentation from

now on we will deal only with the case A = 1.

First, we present some general statements; more precise results will follow in case where

ζ ∼ U [0, 1].

Proposition 1. We have

(a) lim inft→∞ x(N−1)(t) = 0;

(b) P (∃ limt→∞X ′(t) ∈ (0, 1]) = 0;

(c) if p < 1
2
+ 1

2(N−1)
then P (limt→∞X ′(t) = 0) = 1;

(d) if p < 1
2
+ 1

N−2
then {x(1)(t) → 0} =⇒

a.s.

{limt→∞X ′(t) = 0}.
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Proof. (a) Since ζ has full support on [0, 1] it follows that (see [5], Proposition 1) there exists a

function f : R+ → R
+ such that

P(ζ ∈ (a, b)) ≥ f(b− a) > 0 for all 0 ≤ a < b ≤ 1. (2.1)

Also, to simplify notations, we write µ = µN(X (t)) throughout the proof.

Fix a small positive ε such that p+2ε < 1. Suppose that for some t we have x(N−1)(t) ≤ b ≤ 1.

We will show that x(N−1)(t + N) ≤ b(1 − ε) with a strictly positive probability which only

depends on p, b, ǫ and N . Assume that we have ζt+1, . . . , ζt+N−1 ∈ (pb, (p+ ε)b) ⊂ (pb, b); this

happens with probability no less than [f(pεb)]N−1. We claim that by the time t + N we have

x(N−1)(t+N −1) < (p+ ε)b. Indeed, pµ ≤ pb always lies to the left of the newly sampled points,

therefore either there are no more points to the right of (p+ ε)b at some time s ∈ [t, t +N − 1]

(which implies that there will be no points there at time t + N due to the sampling range

of the new points), or one of the older points, i.e. present at time t, gets removed (it can be

the one to the left of pb). Since we eventually have to replace all the N − 1 old points, then

x(N−1)(t+N) ≤ b(1 − ε).

Fix a δ > 0 and find M so large that (1 − ε)M < δ. Let the event C(s) = {x(N−1)(s) < δ}.
By iterating the above argument, we get that P(C(t + NM)|Ft) ≥ ∏M

i=1 [f(pε(1− ε)i−1)]
N−1

,

since at time t we can set b = 1. Therefore,
∑

m P(C(NM(m + 1))|FNMm) = ∞ and by Lévy’s

extension of the Borel-Cantelli lemma (see e.g. [8]) infinitely many C(s) occur. Since δ > 0 is

arbitrary, we get lim inft→∞ x(N−1)(t) = 0.

(b) Let r = 1+p−1

2
> 1. Suppose that the core converges to some point x ∈ (0, 1]; then there exist

a rational q ∈ (0, 1] and a T > 0 such that X ′(t) ∈ (q, rq) for all t ≥ T , formally

{∃ limX ′(t) ∈ (0, 1]} ⊆
⋃

q∈Q∩(0,1]

⋃

T>0

⋂

t≥T

Aq,t (2.2)

where Aq,t = {X ′(t) ∈ (q, rq)}. We will show that

P(Aq,t+1|Ft, Aq,t) < 1− νq for all t

for some νq > 0. This will imply, in turn, that

P

(

⋂

t≥T

Aq,t

)

= 0

and hence the RHS (and thus the LHS as well) of (2.2) has the probability 0.
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Suppose Aq,t has occurred and the newly sampled point ζ ∈ (pq, q). Then

pµN(X ′(τk) ∪ {ζ}) < prq =
pq + q

2
<

ζ + x(N−1)

2

Consequently, x(N−1) lies further from the p−center of mass, and hence it should be removed.

The new configuration will, however, contain the point ζ /∈ (q, rq) and hence Aq,t+1 does not

occur. Thus

P (Aq,t+1|Ft, Aq,t) ≤ 1− P (ζ ∈ (q, rq)) ≤ 1− f(pq − q) =: 1− νq

as required.

(c) First, we will show that it is the right-most point of the configuration which should be always

removed; note that it suffices to check this only when x(N) > 0. Indeed, by the assumption on p

we have

µ ≤ (N − 1)x(1) + (N − 1)x(N)

N
=

2p(N − 1)

N
· x(1) + x(N)

2p
<

x(1) + x(N)

2p

implying that

x(N) − pµ > pµ− x(1) ⇐⇒ x(N) − pµ > |pµ− x(1)|

Therefore, x(N) is the farthest point from the p−centre of mass. This implies that x(N−1)(t) is

non-increasing and therefore result now easily follows from part (a) since x(N−1)(t) is an upper

bound for all the core points.

(d) Apply Corollary 3 with k = 1; it is possible because of Remark 3.

We are ready to present the main result of this Section.

Theorem 1. Suppose that ζ ∼ U [0, 1]. Then X ′(t) → 0 a.s.

Proof. Proposition 1 (c) implies that we now only need to consider the case p ≥ N
2(N−1)

, which

we will assume from now on.

Let us introduce a modification of this process on [0,+∞) which we will call the borderless

p-contest; it is essentially the same process as the one in Section 3.4 of [3]. In order to do this,

we need the following statement.

Lemma 1. Suppose that x1, . . . , xN−1 > 0. Then there exists an R = R(x(N−1)) ≥ 0 such that x

is the farthest point from pµ = p
N
(x1 + · · ·+ xN−1 + x) whenever x > R.
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Proof of Lemma 1. Set R = 6x(N−1). Then x > x(1) is farther from the centre of mass than x(1)

if and only if

x− pµ > |pµ− x(1)| ⇐⇒ x− pµ > pµ− x(1) ⇐⇒ x

(

1− 2p

N

)

> 2p
x1 + · · ·+ xN−1

N
− x(1)

This is true, due to the fact that x > R and

x

(

1− 2p

N

)

>
x

3
> 2x(N−1) > 2px(N−1) > 2p

x1 + · · ·+ xN−1

N

since p < 1 and N ≥ 3.

The borderless process is constructed as follows. Our core configuration starts as before in

[0, 1], and we use the same rejection/acceptance criteria for new points. However, we will now

allow points to be generated to the right of 1 as well. Let Rt = R(x(N−1)(t)) where R is taken

from Lemma 1. Then a new point is sampled uniformly and independently of the past on the

interval [0, Rt]; formally, it is given by RtUt where Ut are i.i.d. uniform [0, 1] random variables

independent of everything. Observe that if we consider the embedded process only at the times

when the core configuration changes, then the exact form of the function R(·) is irrelevant, due
to the fact that the uniform distribution conditioned on a subinterval is also uniform on that

subinterval.

Next, for y = {y1, . . . , yN−1} define the function

h(y) = F (y) + kµ(y)2, (2.3)

where

F (y) =

N−1
∑

i=1

(yi − µ(y))2, µ(y) =
1

N − 1

N−1
∑

i=1

yi, k =
(N − 1)2(1− p)

N − 2
.

We continue with the following

Lemma 2. For the borderless p-contest the sequence of random variables h (X ′(t)) ≥ 0, t =

1, 2, . . . , is a supermartingale.

Remark 1. Note that the function F (·) defined above is a Lyapunov function for the process

in [3]; this is no longer the case as long as p 6= 1; that is why we have to use a carefully chosen

“correction” factor which involves the barycentre of the configuration.

Proof of Lemma 2. Assume that x(N−1)(t) > 0 (otherwise the process has already stopped, and

the result is trivial). The inequality, which we want to obtain is

E[h(X ′(t+ 1))− h(X ′(t))|Ft]|x(t)=y ≤ 0
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for all y = (y1, . . . , yN−1) with yi ∈ [0, 1]. Note that the function h(y) is homogeneous of degree 2

in y, therefore w.l.o.g. we can assume that max y ≡ 1.

For simplicity let M = N − 1 ≥ 2, and let

z = 6Ut (the newly sampled point), a = min y < 1 (the leftmost point)

Note also that

p ≥ N

2(N − 1)
=

M + 1

2M
=

1

2
+

1

2M
. (2.4)

Define
Fold = F (y), Fnew = F ((y ∪ {z})′)
µ′
old = µ(y), µ′

new = µ ((y ∪ {z})′) ,
hold = Fold + k (µ′

old)
2 , hnew = Fnew + k (µ′

new)
2

Thus we need to establish

E[hnew − hold|Ft] ≤ 0. (2.5)

First of all, observe that if ỹ = (y \ {yi}) ∪ {z}, that is, ỹ is obtained from y by replacing yi

with y0, then

F (ỹ)− F (y) =
z − yi
M

[(M − 1)z + (M + 1)yi − 2Mµ(y)]

µ(ỹ)2 − µ(y)2 =
z − yi
M2

[z − yi + 2Mµ(y)]

In particular, if we replace point a by the new point z, then

∆a(z) := hnew − hold =
z − a

M

[

(M − 1)z + (M + 1)a− 2Mµ(y) +
k

M
(z − a + 2Mµ(y))

]

and if we replace point 1, then

∆1(z) := hnew − hold =
z − 1

M

[

(M − 1)z + (M + 1)− 2Mµ(y) +
k

M
(z − 1 + 2Mµ(y))

]

Note that both ∆a and ∆1 depend only on four variables (a, z, µ,M) but not the whole configu-

ration. Let us also define

m(z) = p · y1 + · · ·+ yM + z

M + 1
= p · Mµ + z

M + 1
,

the p−centre of mass of the old core and the newly sampled point.

There are three different cases that can occur: either (a) the point a is removed, (b) 1, the

rightmost point of the previous core, is removed, or (c) the newly sampled point z is removed.

In the third case the core remains unchanged, and the change in the value of the function h is

trivially zero. The point a can only be removed if z > a; the point 1 can only be removed if

z < 1; the point z can be possibly removed only if z ∈ (0, a) or z ∈ (1,∞). Let us compute the

critical values for z, for which there is a tie between the farthest points.
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Which point to remove?

(i) Suppose z < a . Then there is a tie between z and 1 if and only if m(z) = z+1
2
, that is if

z = tz1 :=
M(2pµ − 1)− 1

M + 1− 2p
∈



















(−∞, 0) if p < p1 :=
M+1
2Mµ

(0, a) if p1 < p < p2 :=
(M+1)(a+1)
2Mµ+2a

(a,+∞) if p > p2.

Thus, we have:

• when p < p1, point 1 is removed;

• when p1 < p < p2, if z < tz1 then z is removed; if z > tz1 point 1 is removed;

• when p > p2, point z is removed.

(ii) Suppose a < z < 1 . There is a tie between a and 1 if and only if m(z) = a+1
2
, that is if

z = ta1 :=
(M + 1)(a+ 1)− 2Mµp

2p
∈



















(1,+∞) if p < p3 :=
(M+1)(a+1)

2Mµ+2
,

(a, 1) if p3 < p < p2,

(−∞, a) if p > p2.

Thus, we have:

• when p < p3, point 1 is removed;

• when p3 < p < p2, if z < ta1 then 1 is removed; if z > ta1 then point a is removed;

• when p > p2, point a is removed.

(iii) Suppose z > 1 . There is a tie between z and a if and only if m(z) = z+a
2
, that is if

z = tza :=
2Mµp− (M + 1)a

M + 1− 2p
∈







(−∞, 1) if p < p3,

(1,+∞) if p > p3.

Thus, we have:

• when p < p3, point z is removed;

• when p > p3, if z < tza then a is removed; if z > tza then point z is removed.
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We always have p1 < p2, p3 < p2 since

p2 − p1 =
a(M + 1)(Mµ− 1)

2Mµ(Mµ + a)
=

a(M + 1)(a+ (M − 2)f)

2Mµ(Mµ + a)
> 0,

p2 − p3 =
(1− a)2(M + 1)

2(Mµ + 1)(Mµ+ a)
> 0,

while

p1 < p3 ⇐⇒ Maµ > 1 ⇐⇒ f >
1− a− a2(M − 1)

a(M − 2)(1− a)
(when M > 2)

The final observation is that tza < 6, so there is indeed no need to sample the new point

outside of the range (0, 6); this holds since M ≥ 2 and

6− tza =
−2p(Mµ + 6) +Ma + 6M + a + 6

M + 1− 2p
>

−2Mµ +Ma + 6M + a− 6

M + 1− 2p

>
−2Mµ + 6M − 6

M + 1− 2p
=

2M(1 − µ) + 4M − 6

M + 1− 2p
>

2

M + 1− 2p
> 0.

The five cases for the removal:

• p < min{p1, p3}:

– when z < 1, point 1 is removed

– when z > 1, point z is removed

• p > p2:

– when z < a or z > tza ∈ (1,∞) point z is removed

– when a < z < tza, point a is removed

• max{p1, p3} < p < p2

– when z < tz1 ∈ (0, a) or t > tza ∈ (1,+∞), point z is removed

– when tz1 < z < ta1 ∈ (a, 1), point 1 is removed

– when ta1 < z < tza, point a is removed

• p1 < p < p3 (< p2):

– when z < tz1 ∈ (0, a) or z > 1, point z is removed

– when tz1 < z < 1, point 1 is removed

• p3 < p < p1 (< p2):

9



– when z < ta1 ∈ (a, 1), point 1 is removed

– when ta1 < z < tza ∈ (1,+∞), point a is removed

– when z > tza, point z is removed

Let

X1 = p− p1 =
M(2µp− 1)− 1

2Mµ
,

X2 = p− p2 =
2ap− a− 1 + (2µp− a− 1)M

2(Mµ+ a)
,

X3 = p− p3 =
2p− a− 1 + (2µp− a− 1)M

2(Mµ + 1)
.

Define

Ĩ1 = E(h(X ′(t+ 1))− h(X ′(t))|Ft)|x(t)=y · 1X1<0 · 1X3<0,

Ĩ2 = E(h(X ′(t+ 1))− h(X ′(t))|Ft)|x(t)=y · 1X2>0,

Ĩ3 = E(h(X ′(t+ 1))− h(X ′(t))|Ft)|x(t)=y · 1X2<0 · 1X1>0 · 1X3>0,

Ĩ4 = E(h(X ′(t+ 1))− h(X ′(t))|Ft)|x(t)=y · 1X1>0 · 1X3<0,

Ĩ5 = E(h(X ′(t+ 1))− h(X ′(t))|Ft)|x(t)=y · 1X1<0 · 1X3>0.

Since max y = 1, because of the comment on the restriction of the uniform distribution on a

subinterval, we have Ĩj = cjIj, j = 1, 2, 3, 4, 5, where cj’s are some positive constants and

I1 = A1 · 1X1<0 · 1X3<0, A1 =

∫ 1

0

∆1dz,

I2 = A2 · 1X2>0, A2 =

∫ tza

a

∆adz,

I3 = A3 · 1X2<0 · 1X1>0 · 1X3>0, A3 =

∫ ta1

tz1

∆1dz +

∫ tza

ta1

∆adz,

I4 = A4 · 1X1>0 · 1X3<0, A4 =

∫ 1

tz1

∆1dz,

I5 = A5 · 1X1<0 · 1X3>0, A5 =

∫ ta1

0

∆1dz +

∫ tza

ta1

∆adz.

Thus to establish (2.5), it suffices to show that Ij ≤ 0 for each j = 1, 2, 3, 4, 5. This is done by

very extensive and tedious calculations, which can be found in the Appendix.

We now return to our original p-contest process X (t). For L ≥ 2 define

τL = inf{t > 0 : x(N−1)(t) < 1/L};
ηL = inf{t > τL : x(N−1)(t) ≥ 1/2},
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note that τL is a.s. finite for every L by Proposition 1. Let W (s) = {w1(s), . . . , wN(s)} be

a borderless p-contest with W (0) = X (τL); let W ′(s) be its core. By Lemma 2 the quantity

ξt = h(W ′(t ∧ ηL)) is a supermartingale, that converges to some ξ∞. Since ξt is bounded,

Eξ0 ≥ Eξ∞ = E[ξ∞ · 1ηL<∞] + E[ξ∞ · 1ηL=∞] ≥ E[ξ∞ · 1ηL<∞] ≥ k

(2(N − 1))2
P(ηL < ∞)

since on {ηL < ∞} we have ξ∞ = W ′(ηL) and the largest coordinate of W ′(ηL) is larger than 1/2,

implying that µ(W ′(ηL)) ≥ 1
2(N−1)

and thus h(W ′(ηL)) = F (W ′(ηL)) + kµ(W ′(ηL))
2 ≥ k

(2(N−1))2
.

We also have

ξ0 = h(X ′(τL)) = F (X ′(τL)) + kµ(X ′(τL))
2 ≤ N − 1

L2
+

k

L2
=⇒ Eξ0 ≤

N + k − 1

L2

since X ′(τL) ⊂ [0, 1/L] and so µ(X ′(τL)) ∈ [0, 1/L].

Combining the above inequalities, we conclude that P(ηL < ∞) → 0 as L → ∞. However,

on ηL = ∞ the core of the regular p-contest process can be trivially coupled with the core of the

borderless process W ′(s) which converges to zero, so X ′(t) → 0 as well. Since P(ηL = ∞) can be

made arbitrarily close to 1 by choosing a large L, we conclude that X ′(t) → 0 a.s.

3 The case p > 1

Throughout this section we suppose that ζ has a full support on [0, 1], and, unless explicitly

stated otherwise, that p > 1.

Theorem 2. (a) P ({X ′(t) → 0} ∪ {X ′(t) → 1}) = 1;

(b) if x(1)(0) ≥ 1/p then P(X ′(t) → 1) = 1;

(c) if x(k)(0) > 0, where k satisfies

{2p(N − k) > N − 2p} ⇐⇒
{

k < N − N

2p
+ 1

}

, (3.6)

then P (X ′(t) → 1) > 0.

Remark 2. In general, both convergences can have a positive probability. Let N = 3, p ∈ (1, 3/2),

and

ζ =



















U, with probability 1/3;

0, with probability 1/3;

1, with probability 1/3,
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where U ∈ U [0, 1] (so ζ has full support). Suppose we sample the points of X (0) from ζ. If they

all start off in 0, then pµ ≤ p/3 < 1/2, so they cannot escape from 0. On the other hand, there

is a positive probability they all start in (1/p, 1], and then Theorem 2(b) says that they converge

to 1.

The key idea behind the proof of Theorem 2 is that one can actually find the “ruling” order

statistic of the core; namely, there exists some non-random k = k(N, p) ∈ {1, 2, . . . , N − 1} such

that x(k)(t) → 0 implies X ′(t)
a.s.−→ 0, while x(k)(t) 6→ 0 implies that X ′(t)

a.s.−→ 1.

We start with the following two results, which tells us that there is an absorbing area [1
p
, 1]

for the process, such that, once the core enters this area, it will never leave it, and moreover the

core will keep moving to the right.

Claim 1. Suppose that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xN ≤ 1 and x2 ≥ p−1. Then {x1, · · · , xN}′ =
{x2, · · · , xN}

Proof. Let µ = x1+···xN

N
. If pµ ≥ xN then the claim follows immediately; assume instead that

pµ < xN . We need to check if pµ− x1 > xN − pµ, that is, if

2p(x2 + · · ·+ xN−1) > (N − 2p)(x1 + xN) (3.7)

However, since xi ≥ x2 for i = 3, . . . , N − 1 we have

2p(x2 + · · ·+ xN−1) ≥ 2px2(N − 2) ≥ 2(N − 2)

while (N − 2p)(x1 + xN) ≤ 2(N − 2p) < 2(N − 2). Hence (3.7) follows.

Lemma 3. If x(1)(t0) ≥ 1/p for some t0, then X ′(t) → 1 a.s.

Proof. If x(1)(t0) ≥ 1/p, then any point that lands in [0, 1/p) is extreme, so x(2)(t) ≥ 1/p for

all t ≥ t0. Choose any positive ε < 1 − 1
p
, and let At = {ζt+1, . . . , ζt+N−1 ∈ (1− ε, 1]}. Then

if At happens for s > t0, any point in [0, 1− ε] is removed in preference to any of the new points

coming in, so x(2)(s +N − 1) > 1− ε. As a result, by Claim 1 we get that X ′(t) ∈ [0, 1− ε] for

all t ≥ s.

On the other hand, P(At) ≥ [f(ε)]N−1 > 0 (see (2.1)) for any t, and the events At, At+N , At+2N , . . .

are independent. Hence, eventually with probability 1, one of the At’s must happen for some

t > t0, so a.s. X ′(t) ∈ [0, 1− ε] for all large t. Since ε can be chosen arbitrary small, we get the

result.

The next two results show that if the is some ε > 0 such that infinitely often the core does

not have any points in [0, ε), then it must, in fact, converge to 1.
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Lemma 4. If x(1)(t0) ≥ ε for some t0 and ε > 0, then P(x(1)(t0 + ℓ) ≥ p−1|Ft) ≥ δ for some

ℓ = ℓ(ε) and δ = δ(ε) > 0.

Proof. Suppose that for some t we have x(1)(t) ≥ ε. We claim that it is possible to move x(1) to

the right of 1+p
2
ε in at most N − 1 steps with positive probability, depending only on p and ε.

Indeed, if x(1)(t) >
1+p
2
ε then we are already done. Otherwise, if the new point ζt+1 is sampled in

(

1+p
2
ε, pε

]

⊂ [0, 1] it cannot be rejected. If at this stage x(1)(t + 1) > 1+p
2
ε, then we are done. If

not, we proceed again by sampling ζt+2 ∈
(

1+p
2
ε, pε

]

, etc. After at most N − 1 steps of sampling

new points in
(

1+p
2
ε, pε

]

, the leftmost point x(1) will have moved to the right of 1+p
2
ε.

Thus, in no more than N − 1 steps, with probability no less than
[

f
(

p−1
2
ε
)]N−1

> 0, x(1) is

to the right of 1+p
2
ε. By iterating this argument at most m times, where m ∈ N is chosen such

that
[

1+p
2

]m
ε > 1/p, we achieve that x(1) is to the right of 1/p (for definiteness, one can chose

ℓ = (N − 1)m and δ =
[

f
(

p−1
2
ε
)](N−1)m

.)

Lemma 5. Let ε ∈ (0, 1), and define B(ε) := {x(1)(t) ≥ ε i.o.} Then B(ε) =⇒
a.s.

{X ′(t) → 1}.

Corollary 1. We have
{

lim inf t→∞ x(1)(t) > 0
}

=⇒
a.s.

{X ′(t) → 1}.

Proof of Lemma 5. Assume that ε < 1
p
(otherwise the result immediately follows from Lemma 3).

Also suppose that P (B(ε)) > 0, since otherwise the result is trivial. Let ℓ and δ be the quantities

from Lemma 4.

Define

τ0 = inf{t > 0 : x(1)(t) > ε},
τk = inf{t > τk−1 + ℓ : x(1)(t) > ε}, k ≥ 1,

with the convention that if τk = ∞ then τm = ∞ for all m > k. Notice that B(ε) =
⋂∞

k=0{τk <

∞}. On B(ε) we can also define Dτk = {x(1)(τk + ℓ) ≥ 1/p}. Since τk − τk−1 > ℓ whenever both

are finite, we have from Lemma 4 we have P(Dτk+1
|Fτk) ≥ δ. Therefore,

B(ε) =⇒
a.s.

{

∑

k≥0

P(Dτk+1
|Fτk) = ∞

}

hence by Lévy’s extension of the Borel-Cantelli lemma it follows that a.s. on B(ε)) infinitely

many (and hence at least one) of Dτk occur, that is, x(1)(τk + ℓ) ≥ 1/p. Now the result follows

from Lemma 3.

Assume for now that p < N
2
; in this case N − N

2p
+1 < N (see (3.6)). The case p ≥ N

2
will be

dealt with separately.

The following statement shows that if all the points to the right of x(k) lie very near each

other, while the left-most one lies near zero, then it is to be removed.
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Claim 2. Let a ∈ (0, 1] and suppose that k ∈ {2, . . . , N − 1} satisfies (3.6). Then there exist

small δ,∆ > 0, depending on N, k, p, a such that if

0 ≤ x1 ≤ δ;

x1 ≤ xi ≤ xN for i = 2, . . . , N − 1;

xk, xk+1, . . . , xN ∈ [a(1−∆), a)

then {x1, . . . , xN}′ = {x2, . . . , xN}.

Proof. The condition to remove the leftmost point is pµ− x1+xN

2
> 0 where µ = (x1+· · ·+xN )/N .

However,

2N

(

pµ− x1 + xN

2

)

= 2p(x2 + · · ·+ xN−1)− (N − 2p)x1 − (N − 2p)xN

≥ 2p(xk + · · ·+ xN−1)− (N − 2p)δ − (N − 2p)a

≥ 2p(N − k)a(1−∆)− (N − 2p)δ − (N − 2p)a

= a [2p(N − k)(1−∆)− (N − 2p)]− (N − 2p)δ

The RHS is linear in δ and ∆, and when δ = ∆ = 0 it is strictly positive by the assumption on k;

hence it can also be made positive, by allowing δ > 0 and ∆ > 0 to be sufficiently small.

Corollary 2. Suppose that X (t) = {x1, . . . , xN} satisfies the conditions of Claim 2 for some a

and k. Let δ be the quantity from this claim. Then

P(x(1)(t + j) > δ for some 1 ≤ j ≤ k|Ft) ≥ c = ca∆ > 0.

Proof. The probability to sample a new point ζ ∈ (a(1 − ∆), a] is bounded below by f(a∆)

where f is the same function as in (2.1). On the other hand, if the new point is sampled in

(a(1−∆), a] then X (t+1) continues to satisfy the conditions of Claim 2 as long as the leftmost

point is in [0, δ]. By repeating this argument at most k times and using the induction, we get

the result with c = [f(a∆)]k > 0.

Lemma 6. Let k ∈ N satisfy (3.6). Then

{

x(k)(t) 6→ 0
}

=⇒
a.s.

{X ′(t) → 1} .

Proof. Note that by Lemma 5, it suffices to show that
{

x(k)(t) 6→ 0
}

=⇒
a.s.

{

x(1)(t) 6→ 0
}

.

If x(k)(t) 6→ 0, there exists an a > 0 such that x(k)(t) ≥ a for infinitely many t’s. Let s be

such a time. Now suppose that ζs+i ∈ I := (a(1 − ∆), a] for i = 0, 1, . . . , N − 1 where ∆ is
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defined in Claim 2; the probability of this event is strictly positive and depends only on a and δ

(see (2.1)). As long as there are points of X (s + i) on both sides of the interval I, none of the

points inside I can be removed; hence, for some u ∈ {s, s+1, . . . , s+N − 1} we have that either

minX (u) > a(1 −∆) or maxX (u) ≤ a. In the first case, x(1)(u) > a(1−∆).

In the latter case, both x(N)(u) ∈ I and x(k)(u) ∈ I, since every time we replaced a point,

the number of points to the left of I did not increase (and there were initially at most k − 1 of

them). As a result

a(1−∆) ≤ x(k)(u) ≤ x(k+1)(u) ≤ · · · ≤ x(N)(u) ≤ a.

Together with Corollary 2, this yields

{x(k)(t) ≥ a i.o.} =⇒
a.s.

{x(1)(t) ≥ min{a(1−∆), δ} i.o.} =⇒
a.s.

{x(1)(t) 6→ 0}

which proves Lemma 6.

Claim 3. Let Ai :=
{

x(i)(t) → 0
}

and suppose that for some 1 ≤ k ≤ N − 2 we have

{2p(N − k − 1) < N} ⇐⇒
{

k > N − N

2p
− 1

}

. (3.8)

Then Ak ⊆ {∃ limt→∞ x(k+1)(t)}.

Proof. Fix any a > 0. Let δ > 0 be so small that

2pNδ < [N − 2p(N − k − 1)]a. (3.9)

In the event Ak there exists a finite τ = τδ(ω) such that

{

sup
t≥τ

x(k)(t) ≤ δ

}

⇐⇒ {card (X ′(t) ∩ [0, δ]) ≥ k for all t ≥ τ.}

From now on assume that t ≥ τ . We will show below that x(k+1)(t+ 1) ≤ max{x(k+1)(t), a}.
To begin, let us prove that x(k+1)(t + 1) ≤ x(k+1)(t) as long as x(k+1)(t) > δ. Indeed, if the

new point ζ is sampled to the left of x(k+1)(t), then regardless of which point is to be removed,

x(k+1)(t+1) ≤ x(k+1)(t). If the new point ζ is sampled to the right, then the farthest point from

the p−centre of mass must be the rightmost one (and hence x(k+1)(t+1) = x(k+1)(t)) since there

are exactly k points in [0, δ] and none of these can be removed by the definition of τ .
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On the other hand, if x(k+1)(t) ≤ δ then either x(k+2)(t) ≤ a or x(k+2)(t) > a. In the first

case, x(k+1)(t+ 1) ≤ x(k+2)(t) ≤ a even if x(1) is removed. In the other case, when x(k+2)(t) > a,

we have x(N−1) > a as well, and

pµ(X (t+ 1)) ≤ p
(k + 1)δ + (N − k − 1)x(N)

N
<

2pNδ − [N − 2p(N − k − 1)]x(N) +NxN

2N

≤ NxN − {[N − 2p(N − k − 1)]a− 2pNδ})
2N

<
x(N)

2

by (3.9), so x(N) = x(N)(t) must be removed and thus x(k+1)(t+ 1) ≤ x(k+1)(t).

Consequently, we obtained

Ak ⊆
⋂

t≥τ

{

x(k+1)(t+ 1) ≤ max{x(k+1)(t), a}
}

⊆
(

⋃

t≥0

{

x(k+1)(s) ≤ a for all s ≥ t
}

)

∪
(

⋃

t≥0

{

x(k+1)(s) ≤ x(k+1)(s+ 1) for all s ≥ t
}

)

⊆
{

lim sup
t→∞

x(k+1)(t) ≤ a

}

∪
{

∃ lim
t→∞

x(k+1)(t)
}

since a > 0 is arbitrary, we get

Ak ⊆
{

lim sup
t→∞

x(k+1)(t) ≤ 0

}

∪
{

∃ lim
t→∞

x(k+1)(t)
}

=
{

∃ lim
t→∞

x(k+1)(t) ≥ 0
}

Lemma 7. Suppose that (3.8) holds for some 1 ≤ k ≤ N − 2. Then Ak =⇒
a.s.

Ak+1.

Proof. Let Ã≥a
k+1 :=

{

limt→∞ x(k+1)(t) ≥ a
}

(the existence of this limit on Ak follows from

Claim 3). It suffices to show that P

(

Ak ∩ Ã≥a
k+1

)

= 0 for all a > 0; then from the continu-

ity of probability we get that P
(

Ak ∩ {limt→∞ x(k+1)(t) > 0}
)

= 0 and hence Ak =⇒
a.s.

Ak+1.

Fix an a > 0. Let

Ct =

{

x(k)(t) <
a

3
and x(k+1)(t) >

2a

3

}

, C̄T =
⋂

t≥T

Ct,

then

Ak ∩ Ã≥a
k+1 ⊆

⋃

T≥0

C̄T =

{

∃T > 0 : x(k)(t) <
a

3
and x(k+1)(t) >

2a

3
for all t ≥ T

}

.

If the probability of the LHS is positive, then, using the continuity of probability and the fact

that C̄T is an increasing sequence of events, we obtain that limT→∞ P(C̄T ) > 0. Consequently,

there exists a non-random T0 such that P(C̄T0) > 0.

16



This is, however, impossible, as at each time point t, with probability at least f(a/3)

(see (2.1)) the new point ζt is sampled in B :=
(

a
3
, 2a

3

)

and then either x(k)(t + 1) ∈ B or

x(k+1)(t+ 1) ∈ B. Formally, this means that

P(Ct+1|Ct,Ft) ≤ 1− f(a/3) for all t ≥ 0.

By induction, for all k ≥ 1,

P(C̄T0 |FT0) ≤ P

(

T0+k
⋂

T=T0

Ct|FT0

)

≤ [1− f(a/3)]k .

Since k is arbitrary, and f(a/3) > 0, by taking the expectation, we conclude that P(C̄T0) = 0

yielding a contradiction.

Hence the probability of the event Ak ∩ Ã≥a
k+1 is zero.

Corollary 3. Suppose that (3.8) holds for some 1 ≤ k ≤ N − 2. Then

{

x(k)(t) → 0
}

=⇒
a.s.

{X ′(t) → 0} .

Proof. Observe that if k satisfies (3.8) then k+1 satisfies (3.8) as well. Thus by iterating Lemma 7

we obtain that Ak =⇒
a.s.

Ak+1 =⇒
a.s.

Ak+2 =⇒
a.s.

. . . =⇒
a.s.

AN−1, i.e. x(N−1)(t) → 0, which is equivalent

to the statement of Corollary.

Remark 3. Note that the condition (3.8) does not assume p > 1; hence the conclusion of

Corollary 3 holds for the case 0 < p ≤ 1 as well.

For the case p ≥ N
2
we have

Lemma 8. If p ≥ N
2
then X ′(t) → 1 a.s.

Proof. The case p > N
2
is easy: with a positive probability the newly sampled point ζ > 0 and

then

p
x(1) + · · ·+ x(N−1) + ζ

N
>

x(1) + · · ·+ x(N−1) + ζ

2
≥ x(1) + ζ

2

hence it is the left-most point which is always removed, implying lim inft→∞ x(1)(t) > 0. Hence

by Corollary 1, X ′(t) → 1 a.s.

For the case p = N
2
we notice that at each moment of time we either have a tie (between the

left-most and right-most point) or remove the left-most point. However, we can only have a tie

if x(1)(t) = ... = x(N−1)(t) = 0; in this case, eventually the right-most point will be kept and the

left-most removed. After this moment of time, there will be more ties, and the left-most point

will always be removed, leading to the same conclusion as in the case p > N/2.
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Proof of Theorem 2. Part (b) follows from Lemma 3.

To prove part (c), note that unless x(1)(0) > 0 already, by repeating the arguments from

the beginning of the proof of Lemma 6, with a positive probability we can “drag” the whole

configuration in at most N − 1 steps to the right of zero, that is, there is 0 ≤ t0 ≤ N − 1 such

that P(minX ′(t0) > 0) > 0. Now we can apply Lemma 4 and then Lemma 3.

Let us now prove part (a). First, assume p < N
2
. It is always possible to find an integer k

which satisfies both (3.6) and (3.8), so let k be such that

N − N

2p
− 1 < k < N − N

2p
+ 1

(if N/(2p) ∈ N this k will be unique). Now the statement of the theorem follows from Corollary 3

and Lemma 6.

Finally, in case p ≥ N
2
the theorem follows from Lemma 8.

4 Non-convergence to zero for p > 1 and N = 3

In this section we prove the following

Theorem 3. Suppose that N = 3, p > 1 and ζ, restricted to some neighbourhood of zero, is

a continuous random variable with a non-decreasing density (e.g. uniformly distributed). Then

X ′(t) → 1 as t → ∞ a.s.

Remark 4.

• In case p ≥ 3/2 we already know that X ′(t) → 1 for any initial configuration and any

distribution (see Lemma 8), so we have to prove the theorem only for p ∈ (1, 3/2).

• Simulations suggest that the statement of Theorem 3 holds, in fact, for a much more general

class of distributions ζ.

Let ε ∈ (0, 1/2) be such that ζ conditioned2 on {ζ ≤ 2ε} has a non-decreasing density;

according to the statement of the Theorem 3 such an ε must exist. Let us fix this ε from now

on.

The idea of the proof will be based on finding a non-negative function h : (0, 1]2 → R+ which

has the following three properties:

(i) h(·, ·) is non-increasing in each of its arguments;

2note that the full support assumption ensures that the probability of this event is positive
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(ii) h
(

x(1)(t), x(2)(t)
)

is a supermartingale as long as x(2)(t) ≤ ε;

(iii) h(·, ·) goes to infinity when the first coordinate goes to zero.

From the supermartingale convergence theorem it would then follow that

P

(

lim inf
t→∞

x(1)(t) > 0 or lim sup
t→∞

x(2)(t) ≥ ε

)

= 1.

Let us formally prepare for the proof of Theorem 3. As before, denote by x1, . . . , xN N

distinct points on [0, 1], and let x(1), . . . , x(N) be this unordered N -tuple sorted in the increasing

order. Let

{y1, . . . , yN−1} = {x1, . . . , xN}′p
be the unordered N -tuple {x1, . . . , xN} with the farthest point from p-centre of mass removed;

w.l.o.g. assume that yi are already in the increasing order.

Lemma 9. The operation {. . . }′p is monotone in p, that is, if p̂ ≥ p̃ and

{ŷ1, . . . , ŷN−1} = {x1, . . . , xN}′p̂,
{ỹ1, . . . , ỹN−1} = {x1, . . . , xN}′p̃

then ŷi ≥ ỹi, i = 1, . . . , N − 1.

Proof. Assume w.l.o.g. x1 ≤ ... ≤ xN , and let µ = µ ({x1, . . . , xN}). Notice that, regardless of

the value of p, the only points which can possibly be removed are x1 or xN (since they are the

two extreme points). Therefore, it suffices to show that {x1, . . . , xN}′p̃ = {x2, . . . , xN} implies

{x1, . . . , xN}′p̂ = {x2, . . . , xN}. Note also that |x1 − pµ| = pµ− x1 for all p ≥ 1.

If p̃µ− x1 > |p̃µ−xN | and p̃µ− xN > 0, that is, the p−centre of mass lies to the right of xN ,

then p̂µ > p̃µ > xN as well, and hence x1 is discarded.

On the other hand, if p̃µ − x1 > |p̃µ − xN | and p̃µ < xN then either p̂µ < xN , or p̂µ ≥ xN .

In the first case,

p̂µ− x1 > p̃µ− x1 > |p̃µ− xN | = xN − p̃µ > xN − p̂µ = |xN − p̂µ|

so x1 is discarded. In the second case, p−centre of mass lies to the right of xN and so x1 is also

discarded.

Lemma 10. Let h be a real-valued function on the sets of N real numbers. Suppose that h is

non-increasing in each of its arguments, namely

h (x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xN ) ≤ h (x1, x2, . . . , xi−1, xi, xi+1, . . . , xN )
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whenever x′
i ≥ xi. Let Et be some Ft-measurable event, and suppose that

E (h(X ′(t+ 1))|Ft) ≤ h(X ′(t)) on Et (4.10)

for p = 1. Then (4.10) holds for p > 1 as well.

Proof. Let

Gp(X ′(t), ζt+1) = {x(1)(t), x(2)(t), . . . , x(N−1)(t), ζt+1}′p
be the new core after the new point ζt+1 is sampled and the farthest point from the p−centre of

mass is removed; note that X ′(t + 1) = Gp(X ′(t), ζt+1). Then on Et

E(h(X ′(t+ 1))|Ft) = E(h(Gp(X ′(t), ζt+1))|Ft) ≤ E(h(G1(X ′(t), ζt+1))|Ft) ≤ h(X ′(t))

since the operation {. . . }′p is monotone in p by Lemma 9 and h is decreasing in each argument.

From now on assume N = 3 and p = 1. Denote x(1)(t) = a, x(2)(t) = b and consider the

events
Lb = {ζt+1 ∈ ((2a− b)+, a)} , Ra = {ζt+1 ∈ (b, 2b− a)} ,
Bb =

{

ζt+1 ∈
(

a, a+b
2

)}

, Ba =
{

ζt+1 ∈
(

a+b
2
, b
)}

(we assume that b is smaller than 1/2, yielding 2b− a < 1.) If x(2)(t) ≤ ε then X ′(t+1) 6= X ′(t)

implies that one of the events Lb, Bb, Ba or Ra occurs (i.e. all points sampled outside of

((2a− b)+, 2b− a) are rejected at time t + 1). Let us study the core X ′(t + 1) = {ζt+1, a, b}′

on these events: on Lb and Bb we have X ′(t + 1) = {x, a}, while on Ba and Ra we have

X ′(t+ 1) = {x, b}.
We have, assuming x(1)(t) = a and x(2)(t) = b,

E(h(X ′(t+ 1))− h(X ′(t))|Ft) = E(h ({ζ, a, b}′)− h(a, b)).

When 0 ≤ a ≤ b ≤ ε we have 2b− a ≤ 2ε. Define

g(x) = h ({x, a, b}′)− h(a, b) =















































h(x, a)− h(a, b), if x ∈ ((2a− b)+, a);

h(a, x)− h(a, b), if x ∈ (a, (a+ b)/2);

h(x, b)− h(a, b), if x ∈ ((a+ b)/2, b);

h(b, x)− h(a, b), if x ∈ (b, 2b− a)

0, otherwise,

which is positive in the first two cases, and negative in the next two. Let ϕ(x) be the density

of ζ conditioned on {ζ ∈ [0, 2ε]}. By the monotonicity of ϕ and the positivity (negativity resp.)
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of g on the first (second resp.) interval,

∆(a, b) := E
[

g(ζ)1ζ∈[0,2ε]
]

=

∫ a+b

2

(2a−b)+
g(x)ϕ(x)dx+

∫ 2b−a

a+b

2

g(x)ϕ(x)dx

≤ ϕ

(

a + b

2

)
∫ a+b

2

(2a−b)+
g(x)dx+ ϕ

(

a+ b

2

)
∫ 2b−a

a+b

2

g(x)dx = ϕ

(

a+ b

2

)

· Λ,

where

Λ =Λ(a, b) =

∫ a

(2a−b)+
(h(x, a)− h(a, b))dx+

∫ a+b

2

a

(h(a, x)− h(a, b))dx

+

∫ b

a+b

2

(h(x, b)− h(a, b))dx+

∫ 2b−a

b

(h(b, x)− h(a, b))dx.

So if we can establish that Λ ≤ 0 for a suitable function h, then indeed ∆(a, b) ≤ 0, and the

supermartingale property follows.

Remark 5. Notice that the method of proof, presented here, could possibly work for N > 3 as

well; that is, if one can find a function h(x1, . . . , xN−1), which is positive and decreasing in each

of its arguments, and h(X ′(t)) is a supermartingale provided maxX ′(t) < ε for some ε > 0.

Unfortunately, however, we were not able to find such a function.

Set

h(x, y) = −2 log
(

max
{

x,
y

2

})

≥ 0; (4.11)

it is easy to check h is indeed monotone in each of its arguments as long as x, y ∈ (0, 1]. Let us

now compute the integrals in the expression for Λ. We have

Λ =















































3(a− b) ln 2− 3a+ 2b, if a ≤ b
3
;

(a+ b) ln(a + b)− (a+ b) ln a+ (a− 5b) ln 2 + b, if b
3
< a ≤ b

2
;

(a+ b) ln(a + b) + (2a− 4b) ln b+ 3(b− a) ln a+ (b− 5a) ln 2 + b, if b
2
< a ≤ 2b

3
;

(a+ b) ln(a + b) + (2a− 4b) ln b+ (5b− 7a) ln a− (a+ b) ln 2

+3(b− a) + (4a− 2b) ln(2a− b), if 2b
3
< a ≤ b.

It turns out that h(X ′(t)) indeed has a non-positive drift, provided 0 < a ≤ b ≤ ε, as is

shown by the following

Lemma 11. Λ ≤ 0 for a, b ∈ (0, 1/2].
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Proof. Substitute a = bν in the expression for Λ. Then for ν ≤ 1/3 we easily obtain Λ =

−b [3ν(1− ln 2) + ln 8− 2] ≤ 0.

For 1/3 < ν ≤ 1/2 we have 2Λ = −bC1(ν) ≤ 0 where

C1(ν) = (1 + ν) ln
ν

1 + ν
+ (5− ν) ln 2− 1 > 0,

since ∂2C1(ν)
∂2ν

= − 1
ν2(1+ν)

< 0 and hence min1/3≤ν≤1/2 C1(ν) is achieved at one of the endpoints

ν = 1/3 or ν = 1/2; the values there are C1(1/3) = ln(4)−1 > 0 and C(1/2) = 1
2
ln
(

512
27

)

−1 > 0

respectively.

For 1/2 < ν ≤ 2/3 we have Λ = −bC2(ν) ≤ 0 where

C2(ν) = −(1 + ν) ln(1 + ν) + (3ν − 3) ln ν − 1 + (5ν − 1) ln 2 > 0,

since ∂2C2(ν)
∂2ν

= 2ν2+6ν+3
ν2(1+ν)

> 0 and ∂C2(ν)
∂ν

∣

∣

∣

ν=2/3
= ln

(

256
45

)

− 5
2
< 0 implies that ∂C2(ν)

∂ν
< 0 for all

ν ∈ [1/2, 2/3] and hence min1/2≤ν≤2/3 C2(ν) = C2(2/3) =
1
3
ln
(

104976
3125

)

− 1 > 0.

Finally, for 2/3 < ν ≤ 1 we have Λ = −bC3(ν) ≤ 0, where

C3(ν) = ν log
2ν7

(2ν − 1)4(ν + 1)
+ log

2(2ν − 1)2

ν5(ν + 1)
+ 3(ν − 1) > 0

since
d2C3(ν)

dν2
=

(2ν + 5)(2ν2 − 1)

(2ν − 1)ν2(ν + 1))

changes its sign from − to + at 1/
√
2 ∈ (2/3, 1) and therefore ∂C3(ν)

∂ν
achieves its maximum at

the endpoints of the interval; thus

max
2/3≤ν≤1

∂C3(ν)

∂ν
= max

ν=2/3,1

∂C3(ν)

∂ν
= max

{

−5

2
+ ln

(

256

45

)

, 0

}

= 0

Therefore, C3(ν) is decreasing and hence min2/3≤ν≤1 C3(ν) = C3(1) = 0.

Proof of Theorem 3. We will show that P(X ′(t) → 0) = 0, which will imply by Theorem 2(a)

that P(X ′(t) → 1) = 1; we shall do it by showing that

0 ≤ P(X ′(t) → 0) ≤ P

(

{

lim inf
t→∞

x(1)(t) = 0
}

⋂

{

lim sup
t→∞

x(2)(t) < ε

})

= 0. (4.12)

Indeed, fix some ε ∈ (0, 1/2) and let τ0 = 0. For ℓ = 1, 2, . . . , define the sequence of stopping

times

ηℓ = inf{t > τℓ−1 : x(2)(t) ≤ ε},
τℓ = inf{t > ηℓ : x(2)(t) > ε},
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so that τ0 < η1 < τ1 < η2 < τ2 < . . . with the conventions that if one of the stopping times is

infinite, so is the rest of them. Define also ℓ∗ = inf{ℓ ≥ 1 : τℓ = +∞}.
If ℓ∗ = ∞, that is, τℓ < ∞ for all ℓ, we immediately have lim supt→∞ x(2)(t) ≥ ε and we are

done; so assume that for some ℓ∗ ≥ 1 we have τℓ∗−1 < ∞ = τℓ∗ . If ηℓ∗ = ∞, then x(2)(t) > ε

for all t ≥ τℓ∗−1 and thus again lim supt→∞ x(2)(t) ≥ ε; hence ℓ∗ < ∞ and ηℓ∗ < ∞ on the event
{

lim supt→∞ x(2)(t) < ε
}

.

On the other hand, as long as ηℓ < ∞, we can define

ξ(ℓ)s = h (X ′(ηℓ + s)) , s ≥ 0 and ξ̃(ℓ)s = ξ
(ℓ)
min{s,τℓ−ηℓ}

.

where h is given by (4.11).

By Lemmas 10 and 11 we have

E([h(X ′(t+ 1))− h(X ′(t))] 1x(2)(t)≤ε|Ft) ≤ 0,

hence ξ̃
(ℓ)
s , the process ξ(ℓ) stopped at the time when x(2) exceeds ε, is a non-negative su-

permartingale, hence it must converge to a finite value. In case τℓ = +∞ this means that

lim inft→∞ x(1)(t) > 0 since the function h(a, b) goes to infinity when a ↓ 0. Thus we have

established (4.12).

5 Appendix: The calculations for the proof of Lemma 2.

Observe that all expressions for Aj are fractions of the polynomials in (a, f, p,M); moreover,

their denominators

3M(M − 1) (for A1),

3M(M − 1)(M + 1− 2p)3 (for A2 and A4),

12M(M − 1)(M + 1− 2p)3p3 (for A3 and A5)

are always positive. Throughout the rest of the proof let n(w) denote the numerator of such a

fraction w.

Case 1: I1 ≤ 0

Observe that

n(A1) = −2M2 − 3Mµ+ 2M + 1 + [3Mµ− 1]Mp
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and the term in the square brackets is positive as Mµ ≥ 1, so the maximum of n(A1) is achieved

at the highest possible value of p. However, in this case we have p ≤ p1, hence

n(A1)1X1≤0 ≤ n(A1)|p=p1 = − s1
2µ

where

s1 = (M2−2)µ+(1−6µ)(1−µ)M +1 =



















3(2µ− 1)2, if M = 2;

4µ2 + 1/2 + 14(µ− 1/2)2, if M = 3;

(M − 3)[(M − 4)µ+ 6µ2 + 1] + s1|M=3, if M ≥ 4

Hence s1 ≥ 0 for M = 2, 3, . . . and thus I1 ≤ 0.

Case 2: I2 ≤ 0

Here

n(A2) = −4 [a(M − p+ 1)−Mµp]2 s2

where

s2 = M3µp− 4M2µp2 −M3a+ 2M2ap+ 5M2µp+ 2Map2 − 3M2µ− 6Ma ∗ p+ 4Mµp

+ 3Ma− 3Mµ − 2ap + 2a,

and we need to show that s2 ≥ 0.

Assume first M = 2. Then (using the fact that µ = (1 + a)/2)

X2 ≥ 0 ⇐⇒ p ≥ 3a+ 3

4a+ 2
≥ 1

which is impossible; so from now on M ≥ 3.

To establish I2 ≤ 0, it will suffice to demonstrate that

s3 := 2Ms2 − 2M3(Mµ + a)X2 ≥ 0

as I2 has a factor 1X2≥0, and s21X2≥0 ≥ s3
2M

1X2≥0. Substituting

p =

[

1

2
+

1

2M

]

+

[

1

2
− 1

2M

]

w

where w ∈ [0, 1) corresponding to the condition (2.4), we get

s3 = M
(

−2M2µw2 +M2µw + 4Mµw2 +M3 − 3M2µ−Mµw − 2µw2 +M2 −Mµ + 2µ
)

− a · (M − 1)
[

M
(

(M − 1)2 − (w − 2)2
)

+ (1− w)
(

M2 − w − 1
)]
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The expression in the square brakets is non-negative for M ≥ 3, so the minimum of s3 is achieved

when a = 1; i.e.

s3 ≥ s3|a=1 = −2M3µw2 +M3µw + 4M2µw2 − 3M3µ+M3w −M2µw +M2w2

− 2Mµw2 + 3M3 −M2µ− 5M2w − 2Mw2 + 2M2 + 2Mµ + 4Mw + w2 − 2M − 1 =: s4

But

∂s4
∂µ

= −M
(

(3− w)M2 + (1 + w)M − 2 + 2(M − 1)2w2
)

< 0

so

s4 ≥ s4|µ=1 = (1− w)(M − 1)(wM(2M − 3) +M + w + 1) ≥ 0.

Case 3: I3 ≤ 0

Here

n(A3) = −(M + 1)(1− a)s5

and it suffices to show that s5 ≥ 0. If M = 2, then µ = (a+ 1)/2 and p ≥ 3/4, so

s5 = 3(3− 2p)
[

(1− a)2(8p− 5) + (32(1− a)2 + 144a)(1− p)4

+12(1− p)2(4p+ a(4ap+ 10p− 3))
]

≥ 0.
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For M ≥ 3, let M = 3 + δ, δ = 0, 1, . . . . Then s5 =
∑5

i=0 ei+1δ
i where we will show that all

ei ≥ 0. Indeed, we have

e1 = −432aµp5 − 1296µ2p5 + 288a2p4 + 2736aµp4 − 144ap5 + 432p4µ2 − 432µp5 − 1632p3a2

− 2880aµp3 + 1200ap4 + 4320µ2p3 + 2736µp4 + 2624p2a2 − 1152aµp2 − 3744ap3 − 1728µ2p2

− 2880µp3 + 288p4 − 1536pa2 + 4928p2a− 1152p2µ− 1632p3 + 768a2 − 3072ap+ 2624p2

+ 1536a− 1536p+ 768

e2 = −288aµp5 − 1296µ2p5 + 168a2p4 + 2208aµp4 − 48ap5 − 360p4µ2 − 288µp5 − 1160p3a2

− 1392aµp3 + 600ap4 + 6984µ2p3 + 2208µp4 + 1760p2a2 − 3840aµp2 − 2264ap3 − 2016µ2p2

− 1392µp3 + 168p4 − 576pa2 + 2720p2a− 3840p2µ− 1160p3 + 768a2 − 1152ap+ 1760p2

+ 1536a− 576p+ 768

e3 = −48aµp5 − 432µ2p5 + 24a2p4 + 576aµp4 − 600p4µ2 − 48µp5 − 268p3a2 + 216aµp3 + 72ap4

+ 4404µ2p3 + 576µp4 + 324p2a2 − 3240aµp2 − 412ap3 − 876µ2p2 + 216µp3 + 24p4 + 336pa2

+ 180p2a− 3240p2µ− 268p3 + 288a2 + 672ap+ 324p2 + 576a+ 336p+ 288

e4 = −48µ2p5 + 48aµp4 − 216p4µ2 − 20p3a2 + 192aµp3 + 1356µ2p3 + 48µp4 − 4p2a2 − 1164aµp2

− 20ap3 − 168µ2p2 + 192µp3 + 228pa2 − 112p2a− 1164p2µ− 20p3 + 48a2 + 456ap− 4p2

+ 96a+ 228p+ 48

e5 = −24p4µ2 + 24aµp3 + 204µ2p3 − 4p2a2 − 192aµp2 − 12µ2p2 + 24µp3 + 45pa2 − 16p2a

− 192p2µ+ 3a2 + 90ap− 4p2 + 6a+ 45p+ 3

e6 = 360p(a+ 1− 2µp)2 ≥ 0.

The fact that e6 ≥ 0 is trivial; we will prove separately that e1, . . . , e5 ≥ 0 below. In what

follows, we substitute p = 1+ν
2
, where ν ∈ (0, 1).

Proof that e1 ≥ 0

We have

∂2e1
∂a2

= 4[9ν4 − 66ν3 + 76ν2 + 2ν + 235] > 0,

hence e1 achieves its minimum at

acr =
9ν5 − 105ν4 + 426ν3 − 46nu2 + 397ν − 1669 + 9µ(1 + ν)2(3ν3 − 29ν2 + 13ν + 109)

8[9ν4 − 66ν3 + 76ν2 + 2ν + 235]
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which solves ∂e1
∂a

= 0. Note that it is possible that acr 6∈ [0, 1]. However, in any case,

e1 ≥ e1|a=acr =
1

32
· 3(1 + ν)2c1
9ν4 − 66ν3 + 76ν2 + 2ν + 235

so it will suffice to show that

c1 = 16(1− ν)2c1a + 3(1− µ)c1b, where

c1a = −27ν6 + 144ν5 − 102ν4 + 1620ν3 − 9883ν2 + 12484ν + 1732

c1b = 81µν8 − 108µν7 + 135ν8 − 1260µν6 − 828ν7 − 12276µν5 + 276ν6 + 84774µν4

− 4404ν5 − 157140µν3 + 69170ν4 + 152628µν2 − 198372ν3 − 156108µν + 182084ν2

+ 27969µ− 60588ν + 73967

is positive. We have

c1a = 3ν3(540− 9ν3 + 48ν2 − 34ν) + ν(12484− 9883ν) + 1732 > 0.

Similarly,

c1b = 61440(1− µ) + (1− ν)[c1b1 + c1b2µ]

where

c1b1 = (−135ν7 + 693ν6 + 417ν5 + 4821ν4)− 64349ν3 + 134023ν2 − 48061ν + 12527

≥ −64349ν3 + 134023ν2 − 48061ν + 12527 ≥ 1000(−67ν3 + 134ν2 − 67ν + 12)

=
1000

27

[

56 + 67(4− 3ν)(1− 3ν)2
]

> 0

and

c1b2 = (−81ν7 + 27ν6 + 1287ν5 + 13563ν4)− 71211ν3 + 85929ν2 − 66699ν + 894

≥ −71211ν3 + 85929ν2 − 66699ν + 89409 > 80000(−ν3 + ν2 − ν + 1) ≥ 0.

So, c1b1, c1b2 > 0 =⇒ c1b > 0 and since c1a > 0 we have c1 ≥ 0 and thus e1 ≥ 0.

Proof that e2 ≥ 0

We have

∂2e2
∂a2

= 21ν4 − 206ν3 + 136ν2 + 398ν + 1571 > 0
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so, similarly to the previous case,

e2 ≥ e2|a=acr =
3(1 + ν2)[582912(1− µ)2 + (1− ν)c2]

8[21ν4 − 206ν3 + 136ν2 + 398ν + 1571]

where

acr =
3ν5 − 60ν4 + 296ν3 − 82ν2 − 155ν − 2786 + (18ν3 − 222ν2 − 150ν + 2010) (1 + ν)2 µ

2[21ν4 − 206ν3 + 136ν2 + 398ν + 1571]

solves ∂e2
∂a

= 0 and

c2 = 3ν7 − 123ν6 + 1330ν5 − 1918ν4 − 28897ν3 + 65177ν2 + 93100ν + 120544

+
(

36ν7 − 624ν6 + 348ν5 + 25616ν4 − 7332ν3 − 272368ν2 − 134556ν + 688784
)

+
(

108ν7 − 72ν6 − 4848ν5 − 35916ν4 + 247548ν3 − 252720ν2 + 144456ν − 647676
)

µ2

Now,

∂2c2
∂µ2

= ν4(216ν3 − 144ν2 − 9696ν − 71832) + ν3(495096ν − 505440) + (288912ν − 1295352) < 0

hence the minimum of c2 w.r.t. µ ∈ [0, 1] can be achieved either at µ = 0 or at µ = 1. At the

same time

c2|µ=0 = 3ν7 + 1330ν5 + 65177ν2 + 93100ν + (120544− 123ν6 − 1918ν4 − 28897ν3) > 0,

c2|µ=1 = (1− ν)(161652− 147ν6 + 672ν5 + 3842ν4 + 16060ν3 + (264652− 195259ν)ν) ≥ 0,

so c2 ≥ 0 and hence e2 ≥ 0.

Proof that e3 ≥ 0

We have

∂2e3
∂a2

= 3ν4 − 55ν3 − 21ν2 + 471ν + 1010 > 0

so, similarly to the previous case,

e3 ≥ e3|a=acr =
3(1 + ν)2 [(1− ν)2c3a + (1− µ)c3b]

8(3ν4 − 55ν3 − 21ν2 + 471ν + 1010)

where

acr =
−9ν4 + 67ν3 + 165ν2 − 579ν − 1820 + 3(1 + ν)2µ(ν3 − 21ν2 − 63ν + 499)

2(3ν4 − 55ν3 − 21ν2 + 471ν + 1010)
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solves ∂e3
∂a

= 0 and

c3a = −3ν6 + 12ν5 + 632ν4 + 1794ν3 − 37624ν2 + 65244ν + 64877 > 0

c3b = 2(1− ν)(−3ν7 + 12ν6 + 652ν5 + 2417ν4 − 42561ν3 + 73864ν2 + 41336ν + 91323)

+ (1− µ)(3ν6(220− ν2 + 4ν) + 2ν(1490ν4 − 22993ν3 + 39898ν2 + 890ν + 109262) + 8477) ≥ 0

Hence e3 ≥ 0.

Proof that e4 ≥ 0

We have

∂2e4
∂a2

= 209ν + 317− 5ν3 − 17ν2 > 0

so, similarly to the previous case,

e4 ≥ e4|a=acr =
3(1 + ν)2[(1− ν)2c4a + 4(1− µ)c4b]

8(209ν + 317− 5ν3 − 17ν2)

where

acr =
5ν3 + 71ν2 − 329ν − 587 + 6µ(1 + ν)2(88− 10ν − ν2)

2(209ν + 317− 5ν3 − 17ν2)

solves ∂e4
∂a

= 0 and

c4a = 8ν4 + 40ν3 − 1395ν2 + 4354ν + 4757 > 0

c4b = 4(1− ν)(4ν5 + 21ν4 − 712ν3 + 2011ν2 + 3102ν + 3050)

+ (1− µ)(2ν6 + 11ν5 − 360ν4 + 912ν3 + 1705ν2 + 3655ν + 543) ≥ 0.

Hence e4 ≥ 0.

Proof that e5 ≥ 0

We have

∂2e5
∂a2

= 49 + 41ν − 2ν2 > 0

so, similarly to the previous case,

e5 ≥ e5|a=acr =
3(1 + ν)2[(1− ν)2c5a + (1− µ)c5b]

2(49 + 41ν − 2ν2)

where

acr =
4ν2 − 37ν − 47 + 3µ(15− ν)(1 + ν)2

49 + 41ν − 2ν2
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solves ∂e5
∂a

= 0 and

c5a = 15− ν2 + 15ν > 0

c5b = 2(1− ν)(14ν2 + 28ν + 19− ν3) + (1− µ)(13ν3 + 40ν2 + 49ν + 11− ν4) ≥ 0.

Hence e5 ≥ 0.

As a result, s5 ≥ 0 and thus I3 ≤ 0.

Case 4: I4 ≤ 0

Here

n(A4) = −4(Mµp−M + p− 1)2s6,

s6 = 2p− 2 + (3µ+ 6p− 3− 4µp− 2p2)M + (4µp2 − 5µp+ 3µ− 2p)M2 + (1− µp)M3

Then, substituting M = 2 + δ,

∂s6
∂δ

= [5(1− µ) + 2(1− p)(p+ 2 + 10µ− 8µp)] + [8(1− µ) + 2(1− p)(2 + 7µ− 4µp)]δ ≥ 0

and as a result for δ ≥ 0 we have

s6 ≥ s6|δ=0 = 2(3− 2p)[p(1− µ) + µ(1− 3p)] ≥ 0.

Case 5: I5 ≤ 0

Here

n(A5) = −s7.

We need to show that s7 ≥ 0 when X1 ≤ 0 and X3 ≥ 0.

Since X1 ≤ 0, we have 2Mpµ ≤ M + 1. Together with X3 ≥ 0 this implies

0 ≤ n(X3) = 2Mpµ− (M + 1)− a(M + 1) + 2p ≤ −a(M + 1) + 2p

whence

a ≤ 2p

M + 1
.

Let us show that for this a we have s7 ≥ 0; substitute a = b · 2p
M+1

, where b ∈ [0, 1].

First, let M=2 , then µ = 1+a
2
, p ∈ [3/4, 1), and s7 =

3−2p
27

s8 where

s8 = 512b3p8 − 2688b3p7 + 5760b3p6 + 3456b2p7 − 6912b3p5 − 12672b2p6 + 5184b3p4

+ 16416b2p5 + 5184bp6 − 1944b3p3 − 11664b2p4 − 10368bp5 + 7776b2p3 + 1728p5 − 2916b2p2

+ 11664bp3 − 11664bp2 − 7776p3 + 4374bp+ 17496p2 − 17496p+ 6561
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Note that we can write s8 = e1 + e2(1− p) + e3(1− p)2, where

128e1 = (9− ν2 − 6ν)(81− ν3 − 9ν2 − 63ν)(ν3 + 15ν2 + 81− 9ν) > 0

128e2 = 3(9− ν2)(ν6 + 21ν5 + 168ν4 + 666ν3 + 81ν2 + 81ν + 486) > 0

64(e1 + e3) = [2ν8 + 33ν7 + 234ν6 + 783ν5] + [−648ν4 − 6561ν3 + 30618ν2 − 28431ν + 13122]

≥ −648ν4 − 6561ν3 + 30618ν2 − 28431ν + 13122

≥ −1000ν4 − 7000ν3 + 24000ν2 − 29000ν + 13000

= 1000(1− ν)(5 + 8(1− ν)2 + ν3) ≥ 0.

with p = 3+ν
4
, ν ∈ [0, 1]. Consequently, since (1− p)2 < 1 and e1 > 0,

s8 = e1 + e2(1− p) + e3(1− p)2 ≥ e2(1− p) + (e1 + e3)(1− p)2 ≥ 0

and thus s7 ≥ 0 as required.

For M ≥ 3 , set M = 3 + δ, δ ≥ 0. Then

s7 =

9
∑

i=0

ei+1δ
i

where

e1 = 196608 + (98304b− 393216)p+ (−49152b2 − 442368µ2 − 196608b− 737280µ+ 589824)p2

+ (−24576b3 + 221184bµ2 + 98304b2 + 1990656µ2 + 294912b+ 663552µ− 540672)p3

+ (49152b3 + 73728b2µ− 552960bµ2 − 331776µ3 − 147456b2 − 2322432µ2 − 270336b

+ 110592µ+ 233472)p4

+ (−83968b3 + 184320b2µ− 55296bµ2 + 774144µ3 + 135168b2 + 1050624µ2 + 116736b

− 239616µ− 36864)p5

+ (52224b3 − 175104b2µ+ 165888bµ2 − 331776µ3 − 58368b2 − 165888µ2 − 18432b+ 55296µ)p6

+ (−9216b3 + 27648b2µ+ 9216b2)p7
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e2 = 393216 + (172032b− 540672)p+ (−73728b2 − 958464µ2 − 221184b− 2088960µ+ 835584)p2

+ (−30720b3 + 423936bµ2 + 86016b2 + 4589568µ2 + 344064b+ 1898496µ− 823296)p3

+ (30720b3 + 282624b2µ− 1308672bµ2 − 663552µ3 − 135168b2 − 5031936µ2 − 344064b

− 18432µ+ 344064)p4

+ (−77312b3 + 181248b2µ+ 4608bµ2 + 1658880µ3 + 138240b2 + 2068992µ2 + 142848b

− 360960µ− 49152)p5

+ (50176b3 − 228864b2µ+ 290304bµ2 − 691200µ3 − 56832b2 − 290304µ2 − 19968b+ 78336µ)p6

+ (−7680b3 + 32256b2µ+ 7680b2)p7

e3 = 344064 + (129024b− 208896)p+ (−46080b2 − 906240µ2 − 49152b− 2558976µ+ 430080)p2

+ (−15360b3 + 347136bµ2 + 3072b2 + 4718592µ2 + 129024b+ 2217984µ− 522240)p3

+ (−6144b3 + 334848b2µ− 1337856bµ2 − 566784µ3 − 30720b2 − 4778496µ2 − 175104b

− 198144µ+ 210432)p4

+ (−24448b3 + 42240b2µ+ 100992bµ2 + 1543680µ3 + 52992b2 + 1744512µ2 + 69504b

− 223872µ− 26112)p5

+ (17856b3 − 118464b2µ+ 210816bµ2 − 615168µ3 − 20544b2 − 210816µ2 − 8064b+ 44160µ)p6

+ (−2112b3 + 14016b2µ+ 2112b2)p7

e4 = 172032 + (53760b+ 64512)p+ (−15360b2 − 488448µ2 + 44544b− 1790976µ+ 64512)p2

+ (−3840b3 + 157440bµ2 − 23040b2 + 2843904µ2 + 1416960µ− 176640)p3

+ (−9984b3 + 193536b2µ− 772608bµ2 − 268032µ3 + 7680b2 − 2598912µ2 − 44544b

− 170496µ+ 68352)p4

+ (93024bµ2 − 13632b2µ+ 32µ(25448µ2 + 25515µ− 2283)− 32b(77b2 − 282b− 525)− 6912)p5

+ (2784b3 − 30336b2µ+ 81312bµ2 − 303168µ3 − 3264b2 − 81312µ2 − 1440b+ 12384µ)p6

+ (−192b3 + 2688b2µ+ 192b2)p7

e5 = 53760 + (13440b+ 91392)p+ (−2880b2 − 164160µ2 + 34560b− 792768µ− 26880)p2

+ (−480b3 + 42720bµ2 − 11520b2 + 1109088µ2 − 13440b+ 548640µ− 33600)p3

+ (62496b2µ− 275952bµ2 − 885744µ2 − 67536µ− 75792µ3 − 96b(34b2 − 50b+ 59) + 12432)p4

+ (160b3 − 8544b2µ+ 38928bµ2 + 266192µ3 + 576b2 + 229104µ2 + 2016b− 13200µ− 912)p5

+ (160b3 − 3840b2µ+ 17568bµ2 − 89344µ3 − 192b2 − 17568µ2 − 96b+ 1728µ)p6 + 192b2µp7
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e6 = 10752 + (2016b+ 38976)p+ (−288b2 − 35232µ2 + 10848b− 230880µ− 14784)p2

+ (−24b3 + 6936bµ2 − 2544b2 + 290664µ2 − 4032b+ 132888µ− 3408)p3

+ (11568b2µ− 456b3 − 62472bµ2 − 12816µ3 + 816b2 − 193752µ2 − 288b− 14328µ+ 1200)p4

+ (32b3 − 1536b2µ+ 8688bµ2 + 55168µ3 + 38544µ2 + 96b− 1248µ− 48)p5

+ (−192b2µ+ 2016bµ2 − 15744µ3 − 2016µ2 + 96µ)p6

e7 = 1344 + (168b+ 9072)p+ (−12b2 − 4716µ2 + 1824b− 44340µ− 3024)p2

+ (624bµ2 − 276b2 + 51252µ2 − 504b+ 19764µ− 144)p3

+ (−24b3 + 1152b2µ− 8760bµ2 − 1200µ3 + 48b2 − 26568µ2 − 1584µ+ 48)p4

+ (−96b2µ+ 1008bµ2 + 7072µ3 + 3600µ2 − 48µ)p5 + (96bµ2 − 1536µ3 − 96µ2)p6

e8 = 96 + (6b+ 1236)p+ (−360µ2 + 162b− 5424µ− 300)p2

+ (24bµ2 − 12b2 + 5868µ2 − 24b+ 1656µ)p3 + (48b2µ− 696bµ2 − 48µ3 − 2088µ2 − 72µ)p4

+ (48bµ2 + 512µ3 + 144µ2)p5 − 64µ3p6

and the expressions for e9 and e10 are given a little bit further.

First, we will show that ei ≥ 0, i = 1, . . . , 8.

Proof that e1, . . . , e8 > 0

It turns out that it is easiest is to use a computer-assisted proof in this case; to this end we

developed the method which we call a Box method; it may have been described by other authors,

but since we do not have the reference to the right source, we give its description below.

First of all, we substitute

p =
1 + x1

2
, b = x2, µ = x3; xi ∈ [0, 1], i = 1, 2, 3.

Let m = minai≤xi≤bi,i=1,2,3 f(x1, x2, x3) where

f(x1, x2, x3) = f+(x1, x2, x3)− f−(x1, x2, x3)

and f+ and f− are polynomials with non-negative coefficients. We want to show that m > 0.

Let

Gf ;M = min
i1,i2,i3=0,...,M−1

[

f+

(

i1
M

,
i2
M

,
i3
M

)

− f−

(

i1 + 1

M
,
i2 + 1

M
,
i3 + 1

M

)]

.
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Since

m ≥ Gf ;M → m

as M → ∞, we conclude that m > 0 if and only if Gf,M ≥ 0 for some M ≥ 1. Checking

that Gf,M ≥ 0 can be quite tedious and time-consuming for large M , however, this could be

easily accomplished with the help of a computer; please note, that the results are still completely

rigorous, unlike e.g. simulations.

The results of application of this method to e1, . . . , e8 are presented in the following table:

Ge1,2000 > 825, Ge2,500 > 25, Ge3,400 > 1860, Ge4,300 > 2397,

Ge5,200 > 672, Ge6,200 > 148, Ge7,200 > 5, Ge8,400 > 3.

Consequently, ej > 0 for all j = 1, . . . , 8.

Proof that e9 ≥ 0 and e10 ≥ 0

The Box method of the previous section would not work for e9 and e10, since these functions do

touch zero in the required area, and hence the minimum is, in fact, 0. Therefore, we have to

handle these two cases analytically.

We have

e9 = 4p2µ(4µ2p3 − 18µp2 + 99µp− 3 + 15p− 96)− 12p2 + 93p+ 3 + [6p2(1− 2µp)(2µp+ 1)]b,

hence, the minimum is achieved either at b = 0 or b = 1.

For µ < 1/(2p) we have e9 ≥ e9a, where

e9a = e9|b=0 = 2s3p2 − 18p2s2 + 30sp2 + 99s2p− 12p2 − 192ps− 3s2 + 93p+ 3

= 2p2 + (1− s)[6(1− p) + (1− s)(99p+ 2p2s− 14p2 − 3)] ≥ 0

where s = 2pµ ∈ [0, 1].

In case µ ≥ 1/(2p) we have e9 ≥ e9b, where

e9b = e9|b=1 = 16p5s3 − 24p4s3 − 72p4s2 + 12p3s3 + 468p3s2 − 2s3p2 − 24p3s− 426p2s2

+ 24sp2 + 111s2p+ 2p2 − 18ps− 3s2 + 6s

where µ = 1
2p

+ s
(

1− 1
2p

)

, s ∈ [0, 1]. Now,

∂2

∂s2
e9b = 6(2p− 1)2(14 + (2p− 1)(2p2s− 3p+ 15)) ≥ 0
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so the minimum of e9b w.r.t. s is achieved where ∂
∂s
e9b = 0, i.e.

scr =
6p2 − 33p+ 1 +R

2p2(2p− 1)
, where R =

√

44p4 − 400p3 + 1105p2 − 66p+ 1

and equals

3996p5 − 284p6 − 19956p4 + 37329p3 − 3291p2 + 99p− 1 + (400p3 − 44p4 − 1105p2 + 66p− 1)R

2p4

≥ 22120.5− 1576
√
197 = 0.285896>̇0

for p ≥ 1/2.

Finally, trivially, we have e10 = 3p(2µp− 1)2 ≥ 0. Consequently, s7 ≥ 0 and I5 ≤ 0.

Combining this with the previously established inequalities Ij ≤ 0, j = 1, 2, 3, 4, we complete

the proof Lemma 2.
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