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ON RIEMANN SURFACES OF GENUS g

WITH 4g − 4 AUTOMORPHISMS

SEBASTIÁN REYES-CAROCCA

Abstract. In this article we study compact Riemann surfaces with a non-
large group of automorphisms of maximal order; namely, compact Riemann
surfaces of genus g with a group of automorphisms of order 4g − 4. Under the
assumption that g − 1 is prime, we provide a complete classification of them
and determine isogeny decompositions of the corresponding Jacobian varieties.

1. Introduction and statement of the results

The classification of finite groups of automorphisms of compact Riemann surfaces
is a classical and interesting problem which has attracted a considerable interest,
going back to contributions of Wiman, Klein, Schwartz and Hurwitz, among others.

It is classically known that the full automorphism group of a compact Riemann
surface of genus g > 2 is finite, and that its order is bounded by 84g − 84. This
bound is sharp for infinitely many values of g, and a Riemann surface with this
maximal number of automorphisms is characterized as a branched regular cover of
the projective line with three branch values, marked with 2, 3 and 7.

A result due to Wiman asserts that the largest cyclic group of automorphisms
of a Riemann surface of genus g > 2 has order at most 4g+2. Moreover, the curve

y2 = x2g+1 − 1 (1.1)

shows that this upper bound is sharp for each genus; see [46] and [18].
Besides, Accola and Maclachlan independently proved that for fixed g > 2 the

maximum among the orders of the full automorphism group of Riemann surfaces
of genus g is at least 8g + 8. Moreover, the curve

y2 = x2g+2 − 1 (1.2)

shows that this lower bound is sharp for each genus; see [1] and [31].

An interesting problem is to understand the extent to which the order of the
full automorphism group determines the Riemann surface. In this regard, Kulkarni
proved that for g sufficiently large the curve (1.1) is the unique Riemann surface
with an automorphism of order 4g+ 2, and for g 6≡ −1 mod 4 sufficiently large the
curve (1.2) is the unique Riemann surface with 8g + 8 automorphisms; see [25].
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Let a, b ∈ Z. Following [26], the sequence ag+b for g = 2, 3, . . . is called admissible

if for infinitely many values of g there is a compact Riemann surface of genus g with
a group of automorphisms of order ag + b.

In addition to the mentioned admissible sequences 84g − 84, 4g + 2 and 8g + 8,
very recently the cases 4g + 4 and 4g have been studied; see [8], [15] and also [37].

Let a > 7. The admissible sequence ag − a has been considered by Belolipetsky
and Jones in [3]. Concretely, they succeeded in proving that under the assumption
that g−1 is a sufficiently large prime number, a compact Riemann surface of genus
g with a group of automorphisms of order ag − a lies in one of six infinite well-
described sequences of examples. The cases a = 5 and a = 6 have been recently
classified by Izquierdo and the author in [22].

All the aforementioned cases are examples of compact Riemann surfaces possess-
ing a so-called large group of automorphisms: namely, a group of automorphisms of
order greater than 4g−4, where g is the genus. In this case, it is known that the Rie-
mann surface is either quasiplatonic (it does not admit non-trivial deformations in
the moduli space with its automorphisms) or belongs to a complex one-dimensional
family in such a way that the signature of the action is

(0; 2, 2, 2, n) for n > 3 or (0; 2, 2, 3, n) for 3 6 n 6 5.

Riemann surfaces with large groups of automorphisms have been considered from
different points of view; see, for example, [13], [27], [30], [33], [44], [45] and [46].

In this article we consider compact Riemann surfaces admitting a non-large group
of automorphisms of maximal order; concretely, we study and classify those compact
Riemann surfaces of genus g with a group of automorphisms of order 4g− 4, under
the assumption that g − 1 is a prime number.

Theorem 1. Let g > 8 such that g − 1 is prime, and let S be a compact Riemann

surface of genus g with a group of automorphisms of order 4g − 4.
If g ≡ 0 mod 4 then S belongs to F̄2

g , where F̄2
g is the complex two-dimensional

equisymmetric family of compact Riemann surfaces of genus g with a group of

automorphisms G2 isomorphic to the dihedral group

〈r, s : r2(g−1) = s2 = (sr)2 = 1〉,

such that the signature of the action of G2 is (0; 2, 2, 2, 2, 2).
If g ≡ 2 mod 4 then S belongs to either F̄2

g or F̄1
g , where F̄1

g is the complex one-

dimensional equisymmetric family of compact Riemann surfaces of genus g with a

group of automorphisms G1 isomorphic to

〈a, b : ag−1 = b4 = 1, bab−1 = ar〉,

where r is a 4-th primitive root of the unity in the field of g− 1 elements, such that

the signature of the action of G1 is (0; 2, 2, 4, 4).

By virtue of Dirichlet’s prime number theorem, the congruences of Theorem 1
are satisfied for infinitely many values. The genera g = 3, 4 and 6 are exceptional in
the sense that, in addition to the families before introduced, appear finitely many
quasiplatonic Riemann surfaces (see [2], [5], [6], [11], [14], [28] and [32]).

As proved by Costa and Izquierdo in [15], the largest order of the full automor-
phism group of a complex one-dimensional family of Riemann surfaces of genus
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g, appearing in all genera, is 4g + 4. On the other hand, 4g − 4 is the maximal
possible order of the full automorphism group of a complex two-dimensional family
of compact Riemann surfaces of genus g. It is worth mentioning that the existence
of the family F̄2

g shows that this upper bound is attained in each genus, with g− 1
not necessarily prime.

Let t = 1, 2. The family F̄ t
g is a closed algebraic subvariety of the moduli space

of compact Riemann surfaces of genus g; we shall denote by F t
g its interior, and by

∂(F̄ t
g) = F̄ t

g \ F
t
g

its boundary. Based on classical results due to Singerman [43] and on Belolipetsky
and Jones’ classification [3], we are able to describe the interior and (up to possibly
finitely many exceptional cases in small genera) the boundary of the families F̄ t

g.

More precisely:

Theorem 2. Let g > 8 such that g − 1 is prime.

For g ≡ 2 mod 4, the interior F1
g of the family F̄1

g consists of those Riemann

surfaces for which G1 is the full automorphism group. Moreover, there is a positive

integer ǫ1 such that if g > ǫ1 then

∂(F̄1
g ) =

{

{X1, X2} if g ≡ 2 mod 8
∅ if g 6≡ 2 mod 8,

where X1 and X2 are the two non-isomorphic compact Riemann surfaces of genus

g with full automorphism group of order 8g − 8.
The interior F2

g of the family F̄2
g consists of those Riemann surfaces for which

G2 is the full automorphism group. Moreover, there is a positive integer ǫ2 such

that if g > ǫ2 then

∂(F̄2
g ) =

{

{Y1, Y2} if g ≡ 2 mod 3
∅ if g 6≡ 2 mod 3,

where Y1 and Y2 are the two non-isomorphic compact Riemann surfaces of genus g

with full automorphism group of order 12g − 12.

We recall that the Jacobian variety JS of a compact Riemann surface S of genus
g is an irreducible principally polarized abelian variety of dimension g. The relevance
of the Jacobian varieties lies in the well-known Torelli’s theorem, which establishes
that two compact Riemann surfaces are isomorphic if and only if the corresponding
Jacobian varieties are isomorphic as principally polarized abelian varieties. See, for
example, [4] and [16].

If H is a group of automorphisms of S then the associated regular covering map
π : S → SH given by the action of H on S induces a homomorphism

π∗ : JSH → JS

between the corresponding Jacobians; the set π∗(JSH) is an abelian subvariety of
JS which is isogenous to JSH . We keep the same notations as in Theorem 1.

Theorem 3. Let g > 8 such that g − 1 is prime.

If S ∈ F̄1
g then the Jacobian variety JS decomposes, up to isogeny, as the product

JS ∼ JS〈a〉 × (JS〈b〉)
4.

If S ∈ F̄2
g then the Jacobian variety JS decomposes, up to isogeny, as the product

JS ∼ JS〈r〉 × JS〈s〉 × JS〈sr〉.
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The article is organized as follows.

(1) In Section 2 we shall review the basic background: namely, Fuchsian groups,
actions on compact Riemann surfaces, the equisymmetric stratification of
the moduli space and the decomposition of Jacobian varieties.

(2) In Section 3 we shall prove the existence of the families F̄1
g and F̄2

g .

(3) Theorems 1, 2 and 3 will be proved in Section 4, 5 and 6 respectively.
(4) Finally, and for the sake of completeness, in Section 7 two examples will be

constructed to show that Theorem 1 is false if g − 1 is not prime.

2. Preliminaries

2.1. Fuchsian groups and group actions on Riemann surfaces. By a Fuch-

sian group we mean a discrete group of automorphisms of the upper-half plane

H = {z ∈ C : Im(z) > 0}.

If ∆ is a Fuchsian group and the orbit space H∆ given by the action of ∆ on H
is compact, then the algebraic structure of ∆ is determined by its signature:

σ(∆) = (h;m1, . . . ,ml), (2.1)

where h is the genus of the quotient surface H∆ and m1, . . . ,ml are the branch
indices in the universal canonical projection H → H∆. If l = 0 then ∆ is called a
surface Fuchsian group.

Let ∆ be a Fuchsian group of signature (2.1). Then

(1) ∆ has a canonical presentation given by generators a1, . . . , ah, b1, . . . , bh,
x1, . . . , xl and relations

xm1

1 = · · · = xml

l = Πh
i=1[ai, bi]Π

l
i=1xi = 1, (2.2)

where [u, v] stands for the commutator uvu−1v−1,

(2) the elements of ∆ of finite order are conjugate to powers of x1, . . . , xl.
(3) the Teichmüller space of ∆ is a complex analytic manifold homeomorphic

to the complex ball of dimension 3h− 3 + l, and
(4) the hyperbolic area of each fundamental region of ∆ is

µ(∆) = 2π[2h− 2 + Σl
i=1(1−

1
mi

)].

Let Γ be a group of automorphisms of H. If ∆ is a subgroup of Γ of finite index
then Γ is also Fuchsian and they are related by the Riemann-Hurwitz formula

µ(∆) = [Γ : ∆] · µ(Γ).

Let S be a compact Riemann surface and let Aut(S) denote its full automorphism
group. It is said that a finite group G acts on S if there is a group monomorphism
ψ : G→ Aut(S). The space of orbits SG of the action of G on S is endowed with a
Riemann surface structure such that the projection S → SG is holomorphic.

Compact Riemann surfaces and group actions can be understood in terms of
Fuchsian groups as follows. By uniformization theorem (see, for example, [17, p.
203]), there is a (uniquely determined, up to conjugation) surface Fuchsian group
Γ such that S and HΓ are isomorphic. Moreover, G acts on S ∼= HΓ if and only if
there is a Fuchsian group ∆ containing Γ together with a group epimorphism

θ : ∆ → G such that ker(θ) = Γ.
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In this case, it is said that G acts on S with signature σ(∆) and that this action
is represented by the epimorphism θ. If G is a subgroup of G′ then the action of G
on S is said to extend to an action of G′ on S if:

(1) there is a Fuchsian group ∆′ containing ∆.
(2) the Teichmüller spaces of ∆ and ∆′ have the same dimension, and
(3) there exists an epimorphism

Θ : ∆′ → G′ in such a way that Θ|∆ = θ.

An action is termed maximal if it cannot be extended. A complete list of sig-
natures of Fuchsian groups ∆ and ∆′ for which it might be possible to have an
extension as before was determined by Singerman in [43].

2.2. Actions and equisymmetric stratification. Let Hom+(S) denote the group
of orientation preserving homeomorphisms of S. Two actions ψi : G→ Aut(S) are
topologically equivalent if there exist ω ∈ Aut(G) and f ∈ Hom+(S) such that

ψ2(g) = fψ1(ω(g))f
−1 for all g ∈ G. (2.3)

Each homeomorphism f satisfying (2.3) yields an automorphism f∗ of ∆ where
H∆

∼= SG. If B is the subgroup of Aut(∆) consisting of them, then Aut(G) × B

acts on the set of epimorphisms defining actions of G on S with signature σ(∆) by

((ω, f∗), θ) 7→ ω ◦ θ ◦ (f∗)−1.

Two epimorphisms θ1, θ2 : ∆ → G define topologically equivalent actions if and
only if they belong to the same (Aut(G)×B)-orbit (see [6]; also [19] and [34]). We
remark that if the genus h = gSG

of SG is zero and

∆ = 〈x1, . . . , xl : x
m1

1 = · · · = xml

l = x1 · · ·xl = 1〉,

then B is generated by the braid transformations Φi ∈ Aut(∆) defined by

xi 7→ xi+1, xi+1 7→ xi+1xix
−1
i+1 and xj 7→ xj when j 6= i, i+ 1

for each i ∈ {1, . . . , l − 1}. See, for example, [24, p. 31].

Let Mg denote the moduli space of compact Riemann surfaces of genus g > 2.
It is well-known that Mg is endowed with a structure of complex analytic space of
dimension 3g−3, and that for g > 4 its singular locus Sing(Mg) agrees with the set
of points representing compact Riemann surfaces with non-trivial automorphisms.

Following [7], the singular locus Sing(Mg) admits an equisymmetric stratification

{MG,θ
g }, where each equisymmetric stratum MG,θ

g , if nonempty, corresponds to one
topological class of maximal actions. More precisely:

(1) the closure M̄G,θ
g of MG,θ

g consists of those Riemann surfaces of genus g
admitting an action of the group G with fixed topological class given by θ,

(2) M̄G,θ
g is a closed irreducible algebraic subvariety of Mg,

(3) if the stratum MG,θ
g is nonempty, then it is a smooth, connected, locally

closed algebraic subvariety of Mg which is Zariski dense in M̄G,θ
g ,

(4) there are finitely many distinct strata, and

Sing(Mg) = ∪G 6=1,θM̄
G,θ
g .

Let F̄ be a (closed) family of compact Riemann surfaces of genus g such that
each of its members has a group of automorphisms isomorphic to G. The family F̄
is termed equisymmetric if its interior F consists of only one stratum.
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2.3. Decomposition of Jacobians. If a finite group G acts on a compact Rie-
mann surface S then it is known that this action induces an isogeny decomposition

JS ∼ A1 × . . .×Ar (2.4)

which is G-equivariant; see [10] and [29]. The factors Aj in (2.4) are in bijective
correspondence with the rational irreducible representations of G. If the factor A1

is associated with the trivial representation of G, then A1 ∼ JSG.

The decomposition of Jacobians with group actions has been extensively studied,
going back to Wirtinger, Schottky and Jung (see, for example, [42] and [47]). For
decompositions of Jacobians with respect to special groups, we refer to the articles
[9], [20], [21], [35], [36] and [39].

Assume that G acts on a compact Riemann surface S with signature (2.1), and
that this action is determined by the epimorphism θ : ∆ → G, where ∆ is written
with its canonical presentation (2.2). We define Jθ as the set of complex irreducible
representations V of G characterized as follows:

(1) the trivial representation belongs to Jθ if and only if h 6= 0, and
(2) a non-trivial representation V belongs to Jθ if and only if

dV (h− 1) + 1
2Σ

l
i=1(dV − d

〈θ(xi)〉
V ) 6= 0,

where dV is the degree of V and d
〈θ(xi)〉
V is the dimension of the subspace

of V fixed under the action of the subgroup of G generated by θ(xi).

Let H1, . . . , Ht be groups of automorphisms of S such that G contains Hi for
each i. Following [38] (and using [40, Theorem 5.12]), the collection {H1, . . . , Ht}
is termed G-admissible if

dH1

V + · · ·+ dHt

V 6 dV for each V ∈ Jθ,

and is called admissible if it is G-admissible for some group G. If {H1, . . . , Ht} is
admissible then, by [38], JS decomposes, up to isogeny, as

JS ∼ Πt
i=1JSHi

× P

for some abelian subvariety P of JS. See also [23].

Notation. Let n > 2 be an integer. Throughout this article we shall denote by Cn

the cyclic group of order n and by Dn the dihedral group of order 2n.

3. Existence of the families F̄1
g and F̄2

g

Proposition 1. Let g > 6 such that g−1 is a prime number and g ≡ 2 mod 4. There
exists a complex one-dimensional equisymmetric family F̄1

g of compact Riemann

surfaces of genus g with a group of automorphisms isomorphic to

〈a, b : ag−1 = b4 = 1, bab−1 = ar〉 = Cg−1 ⋊4 C4,

where r is a 4-th primitive root of the unity in the field of g− 1 elements, such that

the signature of the action is (0; 2, 2, 4, 4).

Proof. Set q = g − 1, and let ∆ be a Fuchsian group of signature σ = (0; 2, 2, 4, 4)
with canonical presentation

∆ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉.
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The epimorphism Θ : ∆ → Cq ⋊4 C4 defined by

Θ(x1) = b2, Θ(x2) = ab2, Θ(x3) = ab, Θ(x4) = b3

guarantees the existence of a complex one-dimensional family F̄1
g of compact Rie-

mann surfaces S of genus g with a group of automorphismsG isomorphic to Cq⋊4C4

acting on S with signature σ.
To prove that F̄1

g consists of only one stratum, we firstly notice that the involu-

tions of Cq⋊4C4 are alb2 and the elements of order 4 are alb and alb3 for 1 6 l 6 q.

Then, up to a permutation, an epimorphism θ : ∆ → Cq ⋊4 C4 representing an
action of G on S is defined by

θ(x1) = al1b2, θ(x2) = al2b2, θ(x3) = al3b, θ(x4) = al4b3,

for some 1 6 l1, . . . , l4 6 q. After applying an inner automorphism of G, we can
assume that l4 ≡ 0 mod q and therefore l2 ≡ l1 + l3 mod q. Note that if l1 ≡ l3 ≡
0 mod q then θ is not surjective; thus, without loss of generality, we can assume
l3 6≡ 0 mod q. Now, consider the automorphism of G given by a 7→ at3 , b→ b, where
l3t3 ≡ 1 mod q, to obtain that θ is equivalent to the epimorphism θn defined by

θn(x1) = anb2, θn(x2) = an+1b2, θn(x3) = ab, θn(x4) = b3

for some 1 6 n 6 q. Finally, as Φ1 · θn = θn+1, each θn is equivalent to θ0 = Θ. �

Proposition 2. There exists a complex two-dimensional family F̄2
g of compact

Riemann surfaces of genus g > 2 with a group of automorphisms isomorphic to the

dihedral group of order 4g−4 such that the signature of the action is (0; 2, 2, 2, 2, 2).
If, in addition, g − 1 is prime then the family is equisymmetric.

Proof. Set q = g−1, and let ∆ be a Fuchsian group of signature σ = (0; 2, 2, 2, 2, 2)
with canonical presentation

∆ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.

The epimorphism Θ : ∆ → D2q = 〈r, s : r2q = s2 = (sr)2 = 1〉 defined by

Θ(x1) = s, Θ(x2) = s, Θ(x3) = srq+1, Θ(x4) = sr, Θ(x5) = rq

guarantees the existence of a complex two-dimensional family F̄2
g of compact Rie-

mann surfaces S of genus g with a group of automorphisms G isomorphic to D2q

acting on S with signature σ.
We now assume q to be prime and proceed to prove that F̄2

g is equisymmetric.
Let θ : ∆ → D2q be an epimorphism representing an action of G on S. Note that
the involutions of G are rq and srt for 1 6 t 6 2q, and if some θ(xi) equals r

q then,
after considering suitable braid automorphisms, it can be supposed i = 5.

We claim that one and only one among the elements θ(xi) equals rq. Indeed,
if l denotes the number of elements θ(xi) which are equal to rq , then clearly l is
different from 4 and 5 because otherwise θ is not surjective. If l = 3 then it can be
supposed θ(x1x2) = rq. If we write θ(xi) = srti then t2 − t1 ≡ q mod 2q, showing
that t2 − t1 is odd and therefore, after considering the automorphism of G given
by r 7→ r, s 7→ sr, we can assume that t1 is even and that t2 is odd. Now, we
apply an appropriate inner automorphism of G to suppose that t1 ≡ 0 mod 2q
and t2 ≡ q mod 2q. The contradiction is obtained by noticing that 〈s, rq〉 ∼= C2

2 .

Similarly, if l = 2 then we can suppose θ(x1x2x3) = 1. If we write θ(xi) = srti then
srt1−t2+t3 = 1, which is not possible.
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It follows that, up to equivalence, the epimorphism θ : ∆ → D2q is given by

θ(x1) = srt1 , θ(x2) = srt2 , θ(x3) = srt3 , θ(x4) = srt4 , θ(x5) = rq

for some 1 6 t1, . . . , t4 6 2q which satisfy t2 − t1 + t4 − t3 ≡ q mod 2q. Now, after
considering, if necessary, braid automorphisms and the automorphism of G given by
r 7→ r, s 7→ sr, we can suppose t1, t2, t3 to be even and t4 to be odd. Furthermore,
after applying a suitable inner automorphism of G, we can assume that t1 = 0.

If t4 6= q then we apply the automorphism of G given by r 7→ rl4 , s 7→ s, where
t4l4 ≡ 1 mod 2q, to see that θ is equivalent to the epimorphism θn given by

θn(x1) = s, θn(x2) = srn, θn(x3) = srn+q+1, θn(x4) = sr, θn(x5) = rq

for some 1 6 n 6 2q even. The equality Φ2
2 ·θn = θn−2 shows that θn is equivalent to

θ0 = Θ. Similarly, if now t4 = q then t2 ≡ t3 mod 2q; we write t = t2 = t3.We apply
the inner automorphism of G induced by srt/2 and then the braid automorphism
Φ2 ◦ Φ1 to see that θ is equivalent to the epimorphism θt defined by

θt(x1) = s, θt(x2) = s, θt(x3) = srt, θt(x4) = srt+q, θt(x5) = rq

where t 6≡ 0 mod 2q. Finally, consider the automorphism of G given by r 7→ rl, s 7→
s, where (q + t)l ≡ 1 mod 2q, to see that θt is equivalent to Θ. �

4. Proof of Theorem 1

Set q = g − 1 and let S be a compact Riemann surface of genus g > 8 with a
group of automorphisms G of order 4q where q is prime. By the Riemann-Hurwitz
formula the possible signatures of the action of G on S are

(1; 2), (0; 2, 2, 4, 4) and (0; 2, 2, 2, 2, 2).

By the classical Sylow’s theorems if q ≡ 3 mod 4 then G is isomorphic to either

C4q, Cq × C2
2 , D2q or 〈a, b : aq = b4 = 1, bab−1 = a−1〉 = Cq ⋊2 C4,

and if q ≡ 1 mod 4 then, in addition to these groups, G can be isomorphic to

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq ⋊4 C4

where r is a 4-th primitive root of the unity in the field of q elements.

The proof of Theorem 1 is a consequence of the following three claims.

Claim 1. The following statements are equivalent.

(1) S is a compact Riemann surface of genus g with a group of automorphisms
of order 4q acting on S with signature σ = (0; 2, 2, 4, 4).

(2) g ≡ 2 mod 4 and S ∈ F̄1
g .

Let us assume that S is a compact Riemann surface of genus g with a group of
automorphisms G of order 4q acting on S with signature σ. Let ∆ be a Fuchsian
group of signature σ with canonical presentation

∆ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉,

and assume the action of G on S to be represented by the epimorphism θ : ∆ → G.

First of all, note that G cannot be isomorphic to Cq×C2
2 or D2q because they do

not have elements of order 4, and cannot be isomorphic to C4q because otherwise
C4q would be generated by elements of order 2 and 4. We claim that G cannot be
isomorphic to Cq ⋊2 C4 either. Indeed, as b2 is the unique involution of Cq ⋊2 C4
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and as its elements of order 4 are atb and atb3 for 1 6 t 6 q, after considering the
automorphism of Cq ⋊2 C4 given by a 7→ a, b 7→ b3, the epimorphism θ could only
be defined either by

(1) θ(x1) = b2, θ(x2) = b2, θ(x3) = at1b, θ(x4) = at2b, or
(2) θ(x1) = b2, θ(x2) = b2, θ(x3) = at1b, θ(x4) = at2b3,

for some 1 6 t1, t2 6 q. The former case cannot yield an action because the image
of x1x2x3x4 is different from 1 for each possible choice of t1 and t2. Similarly, the
latter case could give rise to an action only if t1 ≡ t2 mod q; however, in this case
θ would not be surjective.

All of the above shows that g ≡ 2 mod 4 and that G is isomorphic to Cq ⋊4 C4;
consequently S ∈ F̄1

g . The converse is direct, and the proof of the claim is done.

Claim 2. There is no a compact Riemann surface S of genus g with a group of
automorphisms of order 4q acting on it with signature (1; 2).

Let G be a group of order 4q and let ∆ be a Fuchsian group of signature (1; 2).
For every torsion-free kernel epimorphism

∆ = 〈a1, b1, x1 : [a1, b1]x1 = x21 = 1〉 → G,

the image of x1 must belong to the commutator subgroup of G. Thus, to conclude
suffice to notice that the commutator subgroup of each group of order 4q does not
contain involutions.

Claim 3. The following statements are equivalent.

(1) S is a compact Riemann surface of genus g with a group of automorphisms
of order 4q acting on S with signature σ = (0; 2, 2, 2, 2, 2).

(2) S ∈ F̄2
g .

Let us assume that S is a compact Riemann surface of genus g with a group of
automorphisms G of order 4q acting on S with signature σ. Let ∆ be a Fuchsian
group of signature σ with canonical presentation

∆ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉,

and assume the action of G on S to be represented by the epimorphism θ : ∆ → G.

The group G cannot be isomorphic to Cq⋊2C4 because it has a unique involution
and therefore every homomorphism ∆ → Cq ⋊2 C4 is not surjective. Similarly, the
group G cannot be isomorphic to Cq ⋊4C4 because it has exactly q involutions and
all of them are contained in the proper subgroup 〈a, b2〉 ∼= Dq. Finally, if G were
abelian then G would be isomorphic to a subgroup of C4

2 ; but this is not possible.
All the above ensures that G is isomorphic to the dihedral group of order 4q and

therefore S ∈ F̄2
g . The converse is direct, and the proof of the claim is done.

5. Proof of Theorem 2

Let g > 8 such that q = g − 1 is prime. Assume g ≡ 2 mod 4 and let S be a
compact Riemann surface lying in the family F̄1

g . We recall that S has a group of
automorphisms G1 isomorphic to

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq ⋊4 C4,
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where r is a 4-th primitive root of the unity in the field of q elements, and that the
action is represented by the epimorphism Θ : ∆ → Cq ⋊4 C4 defined by

Θ(x1) = b2, Θ(x2) = ab2, Θ(x3) = ab, Θ(x4) = b3

where ∆ = 〈x1, x2, x3, x4 : x21 = x22 = x43 = x44 = x1x2x3x4 = 1〉.
By classical results due to Singerman [43], the action ofG1 on a (generic) member

S of F̄1
g can be possibly extended to only an action of a group of order 8q with

signature σ̂ = (0; 2, 2, 2, 4). However, as proved in [3] for g > 18 and in [12] for g =
14, there is no compact Riemann surfaces of genus g with a group of automorphisms
of order 8q acting with signature σ̂. It follows that:

(1) the interior F1
g of the family F̄1

g consists of those Riemann surfaces for
which G1 agrees with the full automorphism group, and

(2) the boundary

∂(F̄1
g ) = F̄1

g \ F1
g = {X ∈ F̄1

g : G1 $ Aut(X)}

consists of finitely many points.

Note that for each X ∈ ∂(F̄1
g ) its full automorphism group has order µq where 4

divides µ. Then, following [3], there exists a positive integer ǫ1 such that if g > ǫ1
then either:

(1) Aut(X) ∼= Cq ⋊8 C8 acting with signature (0; 2, 8, 8), for g ≡ 2 mod 8; or
(2) Aut(X) ∼= (Cq⋊6C6)×C2 acting with signature (0; 2, 6, 6), for g ≡ 2 mod 3.

The latter case is not possible because (Cq ⋊6 C6)× C2 does not have elements
of order 4, showing that if g 6≡ 2 mod 8 then ∂(F̄1

g ) is empty. Let us now assume
that g ≡ 2 mod 8, and let

∆′ = 〈y1, y2, y3 : y
2
1 = y82 = y83 = y1y2y3 = 1〉

be a Fuchsian group of signature (0; 2, 8, 8). Again, following [3], there are exactly
two non-isomorphic Riemann surfaces X1 and X2 of genus g > 18 such that

Aut(Xi) ∼= 〈α, β : αq = β8 = 1, βαβ−1 = αu〉 = Cq ⋊8 C8,

where u is a 8-th primitive root of the unity in the field of q elements, and the
action of Aut(Xi) on Xi is determined by the epimorphisms Θi : ∆

′ → Cq ⋊8 C8

Θ1(y1) = β4, Θ1(y2) = α−uβ, Θ1(y3) = αβ3

Θ2(y1) = β4, Θ2(y2) = αuβ, Θ2(y3) = αβ7.

The subgroup of ∆′ generated by the elements

x̂1 = y1, x̂2 = y1, x̂3 = y23 , x̂4 = y63

is isomorphic to ∆, and

Θi(x̂1) = β4, Θi(x̂2) = β4, Θi(x̂3) = α1+(−1)i+1u3

β6, Θi(x̂4) = αu3+(−1)iu2

β7

Thus, for i = 1, 2, the restriction of Θi to ∆ ∼= 〈x̂1, . . . , x̂4〉

∆ → 〈β4, α1±u3

β6〉 = 〈α, β2〉 = Cq ⋊4 C4

defines an action Cq ⋊4 C4 on Xi with signature (0; 2, 2, 4, 4), showing that ∂(F̄1
g )

agrees with {X1, X2}.

Now, let S be a compact Riemann surface lying in the family F̄2
g . We recall that

S has a group of automorphisms G2 isomorphic to

〈r, s : r2q = s2 = (sr)2 = 1〉 = D2q,
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and that the action of G2 on S is represented by the epimorphism Θ : ∆ → D2q

Θ(x1) = s, Θ(x2) = s, Θ(x3) = srq+1, Θ(x4) = sr, Θ(x5) = rq

where ∆ = 〈x1, x2, x3, x4 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.

By [43] the action of G2 on a generic member S of F̄2
g cannot be extended. Thus:

(1) the interior F2
g of the family F̄2

g consists of those Riemann surfaces for
which G2 agrees with the full automorphism group, and

(2) the boundary

∂(F̄2
g ) = F̄2

g \ F2
g = {Y ∈ F̄2

g : G $ Aut(Y )}

consists of finitely many points and finitely many one-dimensional families.

By [3], there exists ǫ2 such that if g > ǫ2 and Y ∈ ∂(F̄2
g ) then either

(1) Aut(Y ) ∼= Cq ⋊8 C8 acting with signature (0; 2, 8, 8), for g ≡ 2 mod 8, or
(2) Aut(Y ) ∼= (Cq⋊6C6)×C2 acting with signature (0; 2, 6, 6), for g ≡ 2 mod 3.

The former case is not possible because Cq⋊8C8 does not have elements of order
2q; thus, if g 6≡ 2 mod 3 then ∂(F̄2

g ) is empty. Let us now assume that g ≡ 2 mod 3,
and let ∆′ be a Fuchsian group of signature (0; 2, 6, 6) with canonical presentation

∆′ = 〈y1, y2, y3 : y21 = y62 = y63 = y1y2y3 = 1〉.

Again, following [3], for g > ǫ2 there are exactly two non-isomorphic Riemann
surfaces Y1 and Y2 of genus g with full automorphism group isomorphic to

〈α, β, γ : αq = β6 = γ2 = [γ, α] = [γ, β] = 1, βαβ−1 = αu〉 = (Cq ⋊6 C6)× C2,

where u is a 6-th primitive root of the unity in the field of q elements, and the action
of Aut(Yi) on Yi is determined by the epimorphisms Θi : ∆

′ → (Cq ⋊6 C6)× C2

Θ1(y1) = β3, Θ1(y2) = α−uβγ, Θ1(y3) = αβ2γ

Θ2(y1) = β3γ, Θ2(y2) = α−u2

β2γ, Θ2(y3) = αβ.

The subgroup of ∆′ generated by

x̃1 = y33 , x̃2 = y1, x̃3 = y2y1y
−1
2 , x̃4 = y22y1y

−2
2 , x̃5 = y32

is isomorphic to ∆, and

Θ1(x̃1) = γ, Θ1(x̃2) = β3, Θ1(x̃3) = α−2uβ3, Θ1(x̃4) = α2−4uβ3, Θ1(x̃5) = α2−2uβ3γ

Θ2(x̃1) = α2uβ3, Θ2(x̃2) = β3γ, Θ2(x̃3) = α−2u2

β3γ, Θ2(x̃4) = α2β3γ, Θ2(x̃5) = γ.

Thus, for i = 1, 2, the restriction of Θi to ∆ ∼= 〈x̃1, . . . , x̃4〉

∆ → 〈αγ, β3〉 = D2q

defines an actionD2q on Yi with signature (0; 2, 2, 2, 2, 2), showing that ∂(F̄2
g ) agrees

with {Y1, Y2}.
The proof is done.
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6. Proof of Theorem 3

Let g > 8 such that q = g − 1 is prime.
We recall the well-known fact that the dihedral group

〈r, s : r2q = s2 = (sr)2 = 1〉 = D2q

has, up to equivalence, 4 complex irreducible representations of degree one; namely,

U±
1 : r 7→ 1, s 7→ ±1, U±

2 : r 7→ −1, s 7→ ±1,

and q − 1 complex irreducible representations of degree two; namely,

Vj : r 7→ diag(ωj
2q, ω̄

j
2q), s 7→ ( 0 1

1 0 )

for 1 6 j 6 q − 1 and ωt = exp(2πit ). See, for example, [41, p. 36].

Following the notations introduced in Subsection 2.3, the trivial representation
U+
1 does not belong to Jθ, where θ represents the action of D2q on each member

S of the family F̄2
g . The following table summarizes the dimension of the vector

subspaces of the non-trivial complex irreducible representations of D2q fixed under
the action of the subgroups 〈r〉, 〈s〉 and 〈sr〉.

U−
1 U+

2 U−
2 Vj

〈s〉 0 1 0 1
〈r〉 1 0 0 0
〈sr〉 0 0 1 1

It follows that the collection {〈r〉, 〈s〉, 〈sr〉} is admissible and therefore, by [38],
if S ∈ F̄2

g then there exists an abelian subvariety P of JS such that

JS ∼ JS〈s〉 × JS〈r〉 × JS〈sr〉 × P.

The covering maps given by the action of 〈s〉, 〈r〉 and 〈sr〉 ramify over six, two
and two values respectively; then, the Riemann-Hurwitz formula implies that

gS〈s〉
= q−1

2 , gS〈r〉
= 1 and gS〈sr〉

= q+1
2 .

It follows that P = 0 and the desired decomposition is obtained.

Remark 1. Note that if S ∈ F̄2
g then JS contains an elliptic curve.

We now assume g ≡ 2 mod 4. Let r be a 4-th primitive root of the unity in the
field of q elements, write m = q−1

4 and choose 1 6 k1, . . . , km 6 q − 1 such that

{1, . . . , q − 1} = ⊔m
j=1{±kj ,±rkj},

where the symbol ⊔ stands for disjoint union. Then

〈a, b : aq = b4 = 1, bab−1 = ar〉 = Cq ⋊4 C4

has, up to equivalence, m complex irreducible representations of degree 4, given by

Vj : a 7→ diag(ωkj
q , ω

kjr
q , ω−kj

q , ω−kjr
q ), b 7→

(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)

where ωt = exp(2πit ),

and four complex irreducible representations of degree 1, given by

Ul : a 7→ 1, b 7→ ωl
4, for 0 6 l 6 3

(see, for example, [41, p. 62]). Choose four pairwise different integers t1, t2, t3, t4 ∈
{1, . . . , q − 1}, and consider the following subgroups of Cq ⋊4 C4

〈a〉 = Cq and 〈atib〉 = C4 for 1 6 i 6 4.
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The trivial representation U0 does not belong to Jθ, where θ represents the
action of Cq⋊4C4 on each member S of the family F̄1

g . The dimension of the vector
subspaces of the non-trivial complex irreducible representations of Cq ⋊4 C4 fixed
under the action of the subgroups 〈a〉 and 〈atib〉 is:

U
〈a〉
l = V

〈ati b〉
j = 1 and U

〈atib〉
l = V

〈a〉
j = 0.

Thus {〈a〉, 〈at1b〉, . . . , 〈at4b〉} is admissible and therefore, by [38], if S ∈ F̄1
q then

JS ∼ JS〈a〉 ×Π4
i=1JS〈ati b〉 ×Q ∼= JS〈a〉 × (JS〈b〉)

4 ×Q,

for some abelian subvariety Q of JS, where the isomorphism follows after noticing
that each 〈atib〉 and 〈b〉 are conjugate. The covering map S → S〈a〉 is unbranched,
and the covering map S → S〈b〉 ramifies over four values, two marked with 2 and
two marked with 4. Then, the Riemann-Hurwitz formula implies that

gS〈a〉
= 2 and gS〈b〉

= m.

Thereby, Q = 0 and the decomposition of JS stated in Theorem 3 is done.

7. The case g − 1 not prime

Example 1. Let n > 3 be an integer, and consider the group

〈x, y, z : x4 = zn = 1, x2 = y2, yxy−1 = x3, [x, z] = [y, z] = 1〉 = Q8 × Cn

where Q8 denotes the quaternion group, and let ∆ be a Fuchsian group of signature
(1; 2) with canonical presentation ∆ = 〈a1, b1, x1 : [a1, b1]x1 = x21 = 1〉. For each n
odd, the epimorphism ∆ → Q8×Cn given by a1 7→ x, b1 7→ yz, x1 7→ y2 guarantees
the existence of a complex one-dimensional family of compact Riemann surfaces of
genus g = 1 + 2n with a group of automorphisms of order 8n = 4g − 4 isomorphic
to Q8 × Cn acting with signature (1; 2).

Example 2. Let n > 3. Choose m ∈ {±1, 2n−1 ± 1}, consider the group

〈r, s, t : r2
n

= s2 = (sr)2 = t2 = 1, trt = rm, tst = s〉 = D2n ⋊ C2,

and let ∆ be a Fuchsian group of the signature σ = (0; 2, 2, 2, 2, 2) with presentation

∆ = 〈x1, x2, x3, x4, x5 : x21 = x22 = x23 = x24 = x25 = x1x2x3x4x5 = 1〉.

The epimorphism ∆ → D2n ⋊ C2 given by

x1 7→ sr, x2 7→ sr, x3 7→ s, x4 7→ t, x5 7→ st

guarantees the existence of a complex two-dimensional family of compact Riemann
surfaces of genus g = 2n+1, with a group of automorphisms of order 2n+2 = 4g−4
isomorphic to D2n ⋊ C2 acting with signature σ. Two different choices of m yield
non-isomorphic groups, showing that if g − 1 = 2n then there exist at least four
pairwise non-isomorphic groups of order 4g−4 acting on compact Riemann surfaces
of genus g with the same signature σ.
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[37] S. Reyes-Carocca, On the one-dimensional family of Riemann surfaces of genus q with 4q

automorphisms, To appear in: J. Pure and Appl. Algebra, doi: 10.1016/j.jpaa.2018.07.011
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