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QUOT SCHEMES, SEGRE INVARIANTS, AND INFLECTIONAL LOCI

OF SCROLLS OVER CURVES

GEORGE H. HITCHING

Abstract. Let E be a vector bundle over a smooth curve C, and S = PE the associated

projective bundle. We describe the inflectional loci of certain projective models ψ : S 99K

P
n in terms of Quot schemes of E. This gives a geometric characterisation of the Segre

invariant s1(E), which leads to new geometric criteria for semistability and cohomological

stability of bundles over C. We also use these ideas to show that for general enough S and

ψ, the inflectional loci are all of the expected dimension. An auxiliary result, valid for a

general subvariety of Pn, is that under mild hypotheses, the inflectional loci associated to

a projection from a general centre are of the expected dimension.

1. Introduction

Let C be a smooth projective curve. It has long been known that the extrinsic geometry

of maps of C to projective space is closely connected with the cohomological properties of

line bundles over C, and the geometry of the Riemann theta divisor and other Brill–Noether

loci W r
d (C). See [ACGH85] for an overview, and [KS88], [CS00] for further examples.

Now suppose E → C is a vector bundle of rank r ≥ 2, and write S := PE. It is natural

to ask again how the properties of E and the moduli spaces containing it are reflected in

the geometry of S and its projective models. Of particular interest are properties which

have no counterpart for line bundles, such as stability, and more generally Quot schemes

of quotients of positive rank.

We mention some examples of results of this type. For r = 2, the natural identification

between sections of the ruled surface PE and line subbundles of E is exploited in [CCFM09]

to study generalised Brill–Noether loci, and in [CCFM08] to study Hilbert schemes of scrolls

and curves. Moving to higher rank; in [Bri18], certain properties of the generalised theta

divisor of E are shown to depend on a variety of defective secants to S → |OPE(1)|
∗. More

closely related to the present work is [IT97, § 1], where the degrees of minimal rank one

quotients of E∗ are linked to ampleness of S 99K |OPE(1)|
∗.

In the present article, we study a connection between inflectional properties of linearly

normal models (not necessarily embeddings) of S and the Quot schemes and stability

properties of the associated bundles E. Osculatory behaviour and inflectional properties

of scrolls have been much studied. They are used to classify scrolls over P
1 in [PT90] and

(via dual varieties) in [PS84]. The osculating spaces and dual varieties of elliptic scrolls are

studied in [MP91]. In [LMP08] a formula is given which enumerates the inflection points

of a scroll with suitable numerical invariants over a curve of any genus, when this is finite.

(More generally, this formula gives the cohomology class of the inflectional locus, when this

is of the expected dimension.)
1
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To state our results, we firstly review the notions of stability and Segre invariants for bun-

dles over curves. Recall that the slope of a vector bundle F → C is the ratio deg(F )/rk (F ).

A bundle E is said to be stable (resp., semistable) if µ(F ) < µ(E) (resp., µ(F ) ≤ µ(E)) for

all proper subbundles F ⊂ E. It is very well known that this property is of fundamental

importance in moduli questions (see for example [Le 97]).

The notion of stability can be refined as follows. Suppose E has rank r and degree d.

For 1 ≤ n ≤ r − 1, the Segre invariant sn(E) is defined by

(1.1) sn(E) = min{nd− r · deg(F ) : F ⊂ E a vector subbundle of rank n}.

The term “invariant” is used because sn(E) = sn(E ⊗L) for any line bundle L. Clearly E

is stable (resp., semistable) if and only if sn(E) > 0 (resp., sn(E) ≥ 0) for 1 ≤ n ≤ r − 1.

Segre invariants define stratifications on the moduli spaces of bundles over C, which are

studied in [BPL98] and [RT99]. In [LN83], the Segre invariants of rank two bundles are

interpreted geometrically in terms of secant varieties to a projective model of the curve.

This interpretation is generalised to higher rank and to symplectic and orthogonal bundles

in [CH10, CH12, CH16] and elsewhere.

In the present work, we study a link of a different kind between s1(E) and the extrinsic

geometry of PE =: S. Let us give an overview of our results. Let π : S → C be the

projection. For any M ∈ Pic0(C), write LM for the line bundle OPE(1) ⊗ π∗M over S.

In Proposition 4.1, we give a key technical result, which is a criterion for the nonemptiness

of the inflectional loci associated to the map S 99K |LM |∗ in terms of certain Quot schemes

of E. This leads to the following characterisation of the Segre invariant s1(E).

Theorem 5.2. Suppose k ≥ 0, and let E be a bundle of rank r and degree d. Then the

following are equivalent.

(1) s1(E) > d+ r(2g − 1 + k).

(2) For all M ∈ Pic0(C) and all x ∈ S, the osculating space Osck(S, x) ⊆ |LM |∗

has dimension kr. In particular, the kth inflectional locus associated to the map

S → |OPE(1) ⊗ π∗M |∗ is empty.

Using this, we characterise the semistability property as follows.

Theorem 5.7. Let E be a bundle of rank r and slope µ < 1 − 2g over C. Then the

following are equivalent.

(1) E is semistable.

(2) For 1 ≤ n ≤ r − 1 and for 0 ≤ k < n · µ(E∗)− (2g − 1), the osculating space

Osck (P(∧nE), y) ⊆ |OP(∧nE)(1)⊗ π∗M |∗

is of the expected dimension k ·
(
r
n

)
for all y ∈ P(∧nE) and all M ∈ Pic0(C).

Moreover, in § 5.2 we recall the notion of cohomological stability introduced in [EL92]. In

the sense of Theorem 5.7, cohomological stability is reflected more naturally than slope

stability in the properties of the inflectional loci. This will be a subject of further study.

In § 6, we give another application of the link given in Proposition 4.1 between inflectional

loci and Quot schemes. Using familiar facts about Quot schemes of general bundles, we
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show that for a general scroll S and generalM ∈ Pic0(C), the inflectional loci of S 99K |LM |∗

are all of the expected dimension (Theorem 6.4). The result proven in the appendix then

shows the same is true for a projection of S from a general centre in |LM |∗ (Corollary

6.6). In particular, this confirms that the hypothesis of expected dimension in [LMP08,

Theorem 2 and Corollary 1] required for enumerating inflection points is satisfied when the

parameters are chosen generally. Kleiman’s transversality theorem [Kle74] is essential to

the argument.

The plan of the paper is as follows. In § 2, we recall background material on osculating

spaces and inflectional loci of projective bundles. In § 3 we obtain a description of the

osculating spaces of S 99K |LM |∗ in terms of bundle-valued principal parts, which will be

convenient for proofs. We can then prove Proposition 4.1, which is the basis for Theorems

5.2, 5.7 and 6.4.

In the appendix, we prove an auxiliary result required in § 6 which may be of independent

interest: If X is a smooth variety with a map to P
n then, under a mild technical hypothesis,

the inflectional loci behave as expected under general projections (Theorem A.1). This

generalises a result in [Pie77] for curves, and also relies on Kleiman’s theorem.

Acknowledgements. I thank Michael Hoff and Ragni Piene for helpful comments and

discussions. I acknowledge gratefully a period of research leave supported by Oslo Metro-

politan University in 2017–2018.

Notation. We work over an algebraically closed field K of characteristic zero. Throughout,

C denotes a projective smooth curve of genus g ≥ 1, and K = T ∗
C the canonical bundle of

C. If F → C is a fibration, we write F |p for the fibre of F at p ∈ C. If D is a divisor on

C, we abbreviate V ⊗OC(D) to V (D). If E → C is a vector bundle, we will occasionally

abuse language by referring to a projective model ψ : PE 99K P
n as a “scroll” even though

ψ may not be an embedding.

2. Osculating spaces and inflectional loci

In this section we recall basic definitions and facts, referring to [LMP08] and [LM09] for

more detail. (Note that in these papers, “PV ” denotes the projective space of hyperplanes

in V , which we denote by PV ∗ here.)

2.1. Osculating spaces. Let X be a smooth projective variety and L → X a line bundle

with nonempty linear system. Let V ⊆ H0(X,L) be a nonzero subspace of dimension n+1,

and ψ : X 99K PV ∗ = P
n the natural map. For k ≥ 0, we have the jet bundle Pk(L), and

the jet map

jk : OX ⊗ V → Pk(L)

which sends a section of L to its value modulo Ik+1
x at each x ∈ X. This may be thought

of as a truncated Taylor expansion.

Definition 2.1. For x ∈ X and k ≥ 0, the kth osculating space Osck(X,x) is defined as

PIm
((
jkx

)∗
: Pk(L)|∗x → V ∗

)
⊆ PV ∗ = P

n.
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Since V ∩H0
(
X,L ⊗ Ik+1

x

)
= Ker(jkx), we have also

(2.1) Osck(X,x) = P

(
V ∩H0(X,L ⊗ Ik+1

x )
)⊥

.

Clearly dim(Osck(X,x)) is lower semicontinuous in x. We write dk for the generic value of

dim(Osck(X,x)).

Remark 2.2. As Osc0(X,x) is generated by the evaluation map evx : V → L|x, it is

simply the point ψ(x). Furthermore, Osc1(X,x) is the embedded tangent space of ψ(X)

at ψ(x). In general, a section s of L vanishes to order at least k at x if and only if every

differential operator of order at most k at x annihilates a local expression for s. Thus, by

(2.1) we see that Osck(X,x) is the subspace of PH0(X,L)∗ spanned by differential operators

of order at most k at x. Therefore,

dim
(
Osck(X,x)

)
≤ dk ≤

(
dim(X) + k

dim(X)

)
− 1.

Note that the inequality on the right can be strict at the generic point; for example, if X

is a scroll as described in § 2.2, or a quadric fibration.

Remark 2.3. If K = C and we work with the classical topology, then [Poh62, II.3] gives

another description of Osck(X,x). For each arc A ⊆ X through x, the osculating space

Osck(A, x) is the limit of the secants spanned by k distinct points of A as these points

approach x. Then Osck(X,x) is the span of the union of all Osck(A, x) for all such A.

Definition 2.4. Let ψ : X 99K P
n be as above. The kth inflectional locus Φk is defined by

Φk :=
{
x ∈ X : dim

(
Osck(X,x)

)
< dk

}
=
{
x ∈ X : rk

(
jkx

)
< dk + 1

}
.

In particular, Φk is a determinantal variety. Hence, if Φk is nonempty, then

(2.2) codim(Φk,X) ≤ n+ 1− dk.

Moreover, as there are natural surjections Pk+1(L) ։ Pk(L) for k ≥ 0, we have Φk ⊆ Φk+1.

2.2. Scrolls over curves. Let C be a projective smooth curve of genus g ≥ 1, and E a

vector bundle of rank r over C. Write S := PE and let π : S → C be the projection. Let L

be the relative hyperplane bundle OPE(1) → S. IfM → C is a line bundle, we write LM :=

OPE(1)⊗ π∗M to ease notation. By the projection formula, H0(S,LM ) ∼= H0(C,E∗ ⊗M).

Let us describe this identification explicitly in local coordinates.

Suppose p ∈ C and x ∈ S|p. Let U be a neighbourhood of p in C over which E and M

are trivial. Let z be a uniformiser at p and let w1 be a section of E ⊗M−1 near p such

that w1(p) spans the line x ∈ P(M−1 ⊗E|p) = S|p. Complete w1 to a frame w1, . . . , wr for

(E⊗M−1)|U and let φ1, . . . , φr be the dual frame for E∗⊗M |U . Then a section of E∗⊗M

over U is given by an expression

(2.3)
∑

j≥0

zj ·

(
r∑

i=1

αj,i · φi

)
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where the αj,i are scalars. To view this as a section of LM near x, we note that the φi define

homogeneous coordinates on the factor P
r−1 of U × P

r−1 ∼= S|U . We restrict to the open

subset {φ1 6= 0} and set ui = φi/φ1 for 2 ≤ i ≤ r. In the coordinates π∗z, u2, . . . , ur the

point x is (0, . . . , 0). Henceforth, we will abuse notation and write z for the local function

π∗z on S|U . On the set {φ1 6= 0}, the above section (2.3) can be written

(2.4) φ1 ·
∑

j≥0

zj ·

(
αj,1 +

r∑

i=2

αj,i · ui

)
.

In the sequel, we will use the expressions (2.3) and (2.4) repeatedly.

Furthermore, let us find the expected dimension of Φk in this case. By (2.4), clearly
∂2s

∂ui∂ui′
= 0 for all s ∈ H0(X,LM ) and for 2 ≤ i, i′ ≤ r. Hence Osck(S, x) is spanned by

differential operators of order at most 1 in the ∂
∂ui

; more precisely, by

evx,
∂

∂z
, . . . ,

∂k

∂zk
together with

∂ℓ

∂zℓ
∂

∂u2
, . . . ,

∂ℓ

∂zℓ
∂

∂ur
for 0 ≤ ℓ ≤ k − 1.

In particular, dk ≤ kr. If V ⊆ H0(S,LM ) is a fixed subspace of dimension n+ 1, set

(2.5) k′ = k′n := max{k ≥ 0 : kr ≤ n}.

Assuming dk = kr for 0 ≤ k ≤ k′, by (2.2) the expected dimension of Φk is

(2.6)

{
(k + 1)r − n− 1 if k = k′;

−1 if 0 ≤ k < k′.

Notation 2.5. Until § 6.1, the linear system will always be complete; that is, V =

H0(S,LM ). However, as M may vary, we write Osck(X,x;LM ) and Φk(LM ) and dk(LM )

where necessary.

3. Osculating spaces via principal parts

Let ψ : S 99K |LM |∗ be as in § 2.2. We will describe the osculating spaces Osck(S, x) =

Osck(S, x;LM ) using principal parts. As will be indicated below, this is a familiar approach

for k = 0 and k = 1, and is convenient for proofs.

3.1. Vector bundle-valued principal parts. For any locally free sheaf F over C, we

have a sequence of OC -modules

(3.1) 0 → F → Rat (F ) → Prin (F ) → 0

where Rat (F ) is the sheaf of rational sections of F , and Prin (F ) = Rat (F )/F the sheaf

of principal parts with values in F . We write Rat (F ) and Prin (F ) respectively for their

groups of global sections. As both of these sheaves are flasque, there is an exact sequence

(3.2) 0 → H0(C,F ) → Rat (F ) → Prin (F )
∂
−→ H1(C,F ) → 0.

An element q ∈ Prin (F ) can be represented by a collection (qp : p ∈ C) where each qp
is a germ of a rational section of F near p, and qp is regular for all but finitely many p.

We write f for the principal part of f ∈ Rat (F ), and ∂(q) for the class in H1(C,F ) of
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q ∈ Prin (F ). By exactness, ∂(f) = 0 for all f ∈ Rat (F ). When we need to specify F , we

write ∂F for ∂.

Caution 3.1. In the literature, the term “principal part” is sometimes used as a synonym

for “jet”, which is a different object from a section of Prin (F ).

3.2. Motivation. Let E → C be a vector bundle and M ∈ Pic0(C). As C has dimension

1, by Serre duality and the discussion in § 2.2, we have identifications

(3.3) H1(C,KM−1 ⊗ E) ∼= H0(C,E∗ ⊗M)∗ ∼= H0(S,LM )∗.

Thus ψ(S) ⊆ |LM |∗ can be regarded naturally a subvariety of PH1(C,KM−1 ⊗ E). This

can be realised concretely using principal parts as follows. Let p be a point of C and

x ∈ S|p. As in § 2.2, let w1 be a local section of M−1 ⊗ E such that w1(p) spans the

line x ∈ P(M−1 ⊗ E)|p = S|p, and let z be a uniformiser on C at p. Then the point

ψ(x) = Osc0(S, x) is defined by the cohomology class

∂

(
dz ⊗ w1

z

)
∈ H1(C,KM−1 ⊗ E).

This approach was utilised in [KS88] for E = OC =M , and in [CH12], [CH16] and elsewhere

for bundles of higher rank. Generalising, we now use principal parts to describe Osck(S, x)

directly as a subspace of PH1(C,KM−1 ⊗ E) for all k ≥ 0.

3.3. Osculating spaces via principal parts. We continue to use the notation of the last

subsection. Moreover, as in § 2.2, we extend w1 to a frame w1, . . . , wr for M−1 ⊗E near p,

and let φ1, . . . , φr be the dual frame for E∗ ⊗M .

Now let Πk
x be the K-linear span of the principal parts

(3.4)
dz ⊗ w1

zk+1
and

dz ⊗ wi

zj
: 1 ≤ i ≤ r; 1 ≤ j ≤ k.

It is not hard to see that Πk
x is a K-vector subspace of Prin (KM−1 ⊗ E) of dimension

kr + 1, and that Πk
x is independent of the choice of frame and uniformiser. It depends on

the line bundle M , but this will always be clear from the context. The coboundary map of

(3.2) restricts to a map ∂ : Πk
x → H1(C,KM−1 ⊗E).

Proposition 3.2. Via the identification (3.3), we have Osck(S, x) = P
(
∂
(
Πk

x

))
.

Proof. By the identification H0(S,LM )
∼
−→ H0(C,E∗⊗M) described in § 2.2, Serre duality

defines a perfect pairing

H0(S,LM )×H1(C,KM−1 ⊗ E) → H1(C,K) = K.

In view of (2.1) with V = H0(S,LM ), and by linear algebra, it suffices to show that under

this pairing, H0(S,LM ⊗ Ik+1
x ) coincides with ∂

(
Πk

x

)⊥
⊆ H1(C,KM−1 ⊗ E)∗.

We will need the commutative diagram of possibly infinite dimensional K-vector spaces

H0(C,E∗ ⊗M)× Prin (KM−1 ⊗ E)
〈 , 〉

//

Id×∂
KM−1⊗E

��

Prin (K)

∂K
��

H0(C,E∗ ⊗M)×H1(C,KM−1 ⊗ E)
Σ( , )

// H1(C,K)
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where Σ is the Serre duality pairing, and both Σ and 〈 , 〉 are induced by the trace pairing

(E ⊗M)⊗ (E ⊗M)∗ → OC , twisted by the canonical bundle K.

Now suppose s ∈ H0(S,LM ⊗ Ik+1
x ). In the local coordinates (2.4), the restriction of

such an s must be of the form

φ1 · z
k · (αk,2u2 + · · ·+ αk,rur) + multiple of zk+1.

Viewing s as a section of E∗ ⊗M → C as in (2.3), near p we obtain the local expression

zk · (αk,2φ2 + · · · + αk,rφr) + multiple of zk+1.

Now let q = dz⊗w
zℓ

be any element of Πk
x. Here 1 ≤ ℓ ≤ k + 1, and w is an M−1 ⊗E-valued

germ near p. If ℓ ≤ k then clearly 〈s, q〉 is everywhere regular, so is trivial in Prin (K).

If ℓ = k + 1 then by definition of Πk
x we have w ≡ λw1 mod z for some λ ∈ K. Since

φi(w1) = 0 for 2 ≤ i ≤ r, again 〈s, q〉 is regular. Thus in either case the cohomology class

Σ (s, ∂KM−1⊗E(q)) = ∂K〈s, q〉 ∈ H1(C,K)

is zero for all q ∈ Πk
x. Therefore, H

0(S,LM ⊗ Ik+1
x ) ⊆ ∂(Πk

x)
⊥.

Conversely, suppose s 6∈ H0(S,LM ⊗ Ik+1
x ); equivalently, jkx(s) 6= 0. Viewing s as a

section of E∗ ⊗M → C as above, the local expression near p is

zℓfℓ +multiple of zℓ+1

where fℓ is a nonzero linear combination of φ1, . . . , φr. Since jkx(s) is nonzero, ℓ ≤ k, and

if ℓ = k then fℓ(w1) 6= 0. If ℓ = k then set w = w1. Otherwise, let w be any linear

combination of w1, . . . , wr such that fℓ(w) 6= 0. Then the principal part dz⊗w
zℓ+1 belongs to

Πk
x. We compute 〈

s,
dz ⊗ w

zℓ+1

〉
= fℓ(w) ·

dz

z
∈ Prin (K).

As fℓ(w) 6= 0, this has a pole of order exactly 1 at p, so defines a nonzero class in H1(C,K)

since g ≥ 1. Hence s 6∈ ∂(Πk
x)

⊥.

This establishes equality H0(S,LM ⊗ Ik+1
x ) = ∂(Πk

x)
⊥, which completes the proof. �

Remark 3.3. The notation could be simplified by working with the spaces H1(C,E⊗M)

instead of H1(C,KM−1 ⊗ E). The reason we have not done so is that we wish to obtain

scrolls in PH0(C,E∗⊗M)∗ = PH0(S,OPE(1)⊗π
∗M)∗, in order to maintain the connection

with [LMP08] and other works on this topic.

3.4. Osculating spaces and elementary transformations. This logically independent

subsection is included to show the connection between the Proposition 3.2 and some existing

descriptions of the embedded tangent spaces to models of other fibrations over C.

Corollary 3.4. For x ∈ S|p, let 0 → E → Ẽ → Kp → 0 be the elementary transformation

such that Ker(E|p → Ẽ|p) is the line x. Then Osck(S, x) coincides with the projectivised

image of the coboundary map in

H0(C,KM−1 ⊗ Ẽ(kp)) → H0

(
C,
KM−1 ⊗ Ẽ(kp)

KM−1 ⊗ E

)
∂
−→ H1(C,KM−1 ⊗ E).
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Proof. The elementary transformation Ẽ can be realised as the subsheaf of Rat (E) of

sections regular away from p and with at most simple poles at p in the direction of w1.

Thus M−1 ⊗ Ẽp is spanned by w1
z
, w2, . . . , wr, and M

−1 ⊗ Ẽ(kp)p is spanned by

w1

zk+1
,
w2

zk
, . . . ,

wr

zk
.

It follows from the description (3.4) that H0
(
C, KM−1⊗Ẽ(kp)

KM−1⊗E

)
is exactly Πk

x. Hence the

corollary follows from Proposition 3.2. �

Remark 3.5. Corollary 3.4 is a result of the same type as [CH10, Lemma 5.3], [CH12,

Lemma 3.5] and [CH16, Lemma 3.2] which describe the embedded tangent spaces to various

quadric and Grassmannian fibrations over C in terms of elementary transformations. (The

applications to Segre invariants studied in these papers are however of a different nature

to that in § 5.)

4. Quot schemes and inflectional loci

4.1. Motivation. We will now use Quot schemes to describe inflectional loci of scrolls.

To motivate the use of Quot schemes in this context, we note that in the situation of

Proposition 3.2, the osculating space Osck(S, x) fails to be of dimension kr if and only if

∂

(
dz ⊗ w

zℓ

)
= 0 ∈ H1(C,KM−1 ⊗ E)

for certain ℓ and w. By exactness of (3.2), the principal part dz⊗w
zℓ

arises from a global

section of H0(C,KM−1 ⊗ E(ℓp)), giving a sheaf injection OC(−ℓp) → KM−1 ⊗ E. Thus

the existence of inflection points implies the existence of invertible subsheaves of the form

OC(−ℓp) ⊂ KM−1 ⊗ E; and the latter define points in a Quot scheme of KM−1 ⊗ E. In

the following we will make this correspondence precise.

4.2. Quot schemes of invertible subsheaves. Let E be a vector bundle of rank r and

degree d over C, and let M be a line bundle of degree zero. For any integer ℓ, invertible

subsheaves of degree ℓ of KM−1 ⊗ E are in canonical bijection with coherent quotients of

rank r − 1 and degree

deg(KM−1 ⊗ E)− ℓ = d+ 2r(g − 1)− ℓ.

Such quotients are parametrised by the Quot scheme Quotr−1, d+2r(g−1)−ℓ(KM−1⊗E). To

ease notation, and to emphasise that we are primarily interested in subsheaves, we denote

this by Qℓ(KM
−1 ⊗E). For points of this scheme we write [σ : L→ KM−1 ⊗E], where σ

is a sheaf injection and L ∈ Picℓ(C). If there is no ambiguity, we may simply write σ.

4.3. A parameter space. For any integer ℓ, let aℓ : C → Picℓ(C) be the map p 7→ OC(ℓp),

and

b : Qℓ(KM
−1 ⊗ E) → Picℓ(C)
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the forgetful map [σ : L→ KM−1 ⊗ E] 7→ L. We have the fibre product

(4.1) Rk
M

//

��

C

a−(k+1)

��

Q−(k+1)(KM
−1 ⊗ E)

b
// Pic−(k+1)(C).

Set-theoretically, Rk
M is the set of pairs of the form

(
p,
[
σ : OC(−(k + 1)p) → KM−1 ⊗ E

])
.

We define a map ek : R
k
M 99K PE =: S by

(
p,
[
σ : OC(−(k + 1)p) → KM−1 ⊗ E

])
7→ Im(σ|p) ∈ S|p.

This is defined at (p, σ) if and only if σ is a vector bundle injection at p. (Note that ek also

depends on M , but M will always be clear from the context.)

Proposition 4.1. Let E be a bundle of rank r and degree d. Let x be a point of a fibre

S|p. For k ≥ 0 and M ∈ Pic0(C), the following holds.

(a) If x ∈ ek(R
k
M ) then dim(Osck(S, x;LM )) < kr.

(b) If dim(Osck(S, x;LM )) < kr, then x ∈ Im(ek) or Im(eℓ)∩S|p is nonempty for some

ℓ < k.

Proof. (a) Suppose x = ek(p, σ) for some (p, σ) ∈ Rk
M . Then

σ ∈ H0(C,Hom(OC(−(k + 1)p),KM−1 ⊗ E)) = H0(C,KM−1 ⊗ E((k + 1)p))

is a sheaf injection which is saturated at p. We view σ as a rational section of KM−1 ⊗E

with a pole of order at most k + 1 at p. Since σ is saturated, in fact the pole has order

exactly k + 1. Hence the principal part σ is of the form

dz ⊗ w

zk+1

for some local section w of M−1 ⊗E which is nonzero at p, and such that

x = Im(σ|p) ∈ P(KM−1 ⊗ E)|p = S|p,

so x is the line spanned by w(p). Thus σ is a nonzero element of Πk
x (cf. 3.4). The exactness

of (3.2) implies that ∂(σ) = 0 in H1(C,KM−1 ⊗ E). By Proposition 3.2, the osculating

space Osck(S, x;LM ) has dimension strictly less than dim(P(Πk
x)) = kr.

(b) Suppose dim(Osck(S, x;LM )) < kr. By Proposition 3.2, there exists a nonzero

q ∈ Ker
(
∂ : Πk

x → H1(C,KM−1 ⊗ E)
)
.

Such a q has the form dz⊗w
zℓ+1 , where 0 ≤ ℓ ≤ k and w is a local section of M−1 ⊗E which is

nonzero at p. By exactness of (3.2), there exists

σ ∈ H0
(
C,KM−1 ⊗ E((ℓ+ 1)p)

)
= H0(C,Hom(OC(−(ℓ+ 1)p),KM−1 ⊗ E))
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with σ = q, which is a vector bundle injection at p. Let x′ ∈ S|p be the line spanned by

w(p). Then

x′ = Im(σ(p)) = eℓ
(
p, [σ : OC(−(ℓ+ 1)p) → KM−1 ⊗ E]

)
.

If ℓ = k then by definition of Πk
x the section w spans the line x at p, and x′ = x = ek(p, σ).

If ℓ < k then x′ ∈ S|p ∩ Im(eℓ), as desired. �

Caution 4.2. We may have Rk
M 6= ∅ even if dim(Osck(S, x;LM )) = kr for all x. If

(4.2) H0(C,KM−1 ⊗ E) ∼= H0(C,KM−1 ⊗ E((k + 1)p)) for all p ∈ C,

then ∂ : Πk
x → H1(C,KM−1 ⊗ E) is injective for all x ∈ S, and dim(Osck(S, x;LM )) = kr

by Proposition 3.2. But in this situation, if s is a nonzero section of KM−1 ⊗E, then Rk
M

contains the point
(
p,
[
σ : OC(−(k + 1)p) → OC

s
−→ KM−1 ⊗ E

])
.

This does not contradict Proposition 4.1, because (p, σ) is a point of indeterminacy for ek;

by (4.2), the map σ is not saturated at p. The distinction between nonemptiness of Rk
M and

that of the image ek(R
k
M ) is significant. Clearly this situation can arise only if KM−1 ⊗E

is special ; that is, both h0(C,KM−1 ⊗ E) and h1(C,KM−1 ⊗ E) are nonzero.

An example of such a E for k = 0 can be given as follows. Suppose C is general of genus

g ≥ 4, and set M = OC . Let N ∈ Pic−(g+1)(C) be general, and suppose L ∈ Pic−(g+2)(C)

satisfies h0(C,KL) = 1 and |L−1| base point free. Then one can check that any extension

0 → L→ E → N → 0 satisfies h0(C,K ⊗ E) = h0(C,K ⊗ E(p)) 6= 0 for all p ∈ C.

5. Segre invariant and dimensions of osculating spaces

In this section, we will give the first application of Proposition 4.1, linking the degrees of

invertible subsheaves of a bundle E → C to the dimensions of osculating spaces to S = PE.

We use the language of Segre invariants, as defined in (1.1). This will lead to a geometric

characterisation of the semistability and cohomological stability properties. Let us first

state an important result on Segre invariants.

Taking direct sums of line bundles, it is easy to find a bundle E with sn(E) arbitrarily

small. Conversely, however, Hirschowitz [Hir88] determined the following upper bound on

sn(E), valid for all E (see also [CH10]).

Theorem 5.1. Let E be a bundle of rank r ≥ 2 and degree d. For 1 ≤ n ≤ r− 1, we have

sn(E) ≤ n(r − n)(g − 1) + δ, where δ ∈ {0, . . . , r − 1} satisfies n(r − n)(g − 1) + δ ≡ nd

mod r.

We now give a characterisation of s1(E) using osculating spaces.

Theorem 5.2. Suppose k ≥ 0, and let E be a bundle of rank r and degree d. Then the

following are equivalent.

(1) s1(E) > d+ r(2g − 1 + k).

(2) For all M ∈ Pic0(C) and all x ∈ S, the osculating space Osck(S, x;LM ) has dimen-

sion kr.
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(3) For all M ∈ Pic0(C) we have dk(LM ) = kr and Φk(LM ) is empty.

Remark 5.3. By Theorem 5.1, we have s1(E) ≤ (r− 1)g in any case. Then one computes

that (1) can obtain only if

d < −(r + 1)(g − 1)− (kr + 1) ≤ −(r + 1)(g − 1)− 1,

the latter since k ≥ 0. We will use this line of argument again in Corollary 5.4 (b).

Proof. The equivalence of (2) and (3) follows from the definitions. We will prove the

equivalence of (1) and (2). Suppose s1(E) > d+r(2g−1+k). Recall that s1(KM
−1⊗E) =

s1(E) for any line bundle M . Thus for any M ∈ Pic0(C), each invertible subsheaf L of

KM−1 ⊗ E satisfies

deg(KM−1 ⊗ E)− r · deg(L) > d+ r(2g − 1 + k),

that is, deg(L) < −(k + 1). Thus Q−(ℓ+1)(KM
−1 ⊗ E) is empty for ℓ ≤ k. In particular,

the fibre product Rℓ
M defined in (4.1) is empty for 0 ≤ ℓ ≤ k. By Proposition 4.1 (b), we

have dim(Osck(S, x;LM ) = kr for all M and all x, establishing (2).

Conversely, suppose s1(E) ≤ d+ r(2g − 1 + k). Then there is a sheaf injection σ′ : L →

K ⊗ E where L is invertible of degree −(k + 1). Let p ∈ C be any point where σ′|p is a

vector bundle injection. Set M = L((k + 1)p), a line bundle of degree zero. Then

σ := σ′ ⊗ IdM−1 : OC(−(k + 1)p) → KM−1 ⊗ E

is a vector bundle injection at p. This determines a point (p, σ) ∈ Rk
M at which ek is

defined. Writing x := ek(p, σ), by Proposition 4.1 (a) we have dim(Osck(S, x;LM )) < kr.

Thus (2) implies (1). �

Let us now discuss some special cases.

Corollary 5.4. Suppose d ≤ r(1 − 2g). Let E be a vector bundle of rank r and degree d,

and S = PE.

(a) Suppose E is stable (or more generally, s1(E) > 0). Then for k ≤ µ(E∗)− (2g− 1)

and for all M ∈ Pic0(C), we have dim(Osck(S, x;LM )) = kr for all x ∈ S.

(b) Let E be any bundle of rank r and degree d. If

k ≥ µ(E∗)−
(r + 1)g − 1

r

then dim(Osck(S, x;LM )) < kr for some M ∈ Pic0(C).

(c) If s1(E) is the generic value (for example, if E is a general stable bundle), then the

converse to (b) also holds.

Proof. (a) Suppose k ≤ µ(E∗) − (2g − 1). (The condition on d is to ensure that this can

obtain for some k ≥ 0.) Then d + r(2g − 1 + k) ≤ 0. Thus if s1(E) > 0 then by Theorem

5.2, for all M ∈ Pic0(C) we have dim(Osck(S, x;LM )) = kr for all x ∈ S.

(b) As k is an integer, the hypothesis implies that

(5.1) kr ≥ −d− (r + 1)g + 1 + δ
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where 0 ≤ δ ≤ r − 1 is such that −d − (r + 1)g + 1 + δ ≡ 0 mod r. One computes that

inequality (5.1) is equivalent to

(r − 1)(g − 1) + δ ≤ d+ r(2g − 1 + k)

and that δ satisfies (r−1)(g−1)+δ ≡ d mod r. Thus s1(E) ≤ (r−1)(g−1)+δ by Theorem

5.1. It follows that s1(E) ≤ d+ r(2g− 1+ k). By Theorem 5.2, for some M ∈ Pic0(C) and

some x ∈ S we have dim(Osck(S, x;LM )) < kr.

(c) Suppose s1(E) is the generic value (r− 1)(g− 1)+ δ stated in Theorem 5.1. Suppose

dim(Osck(S, x;LM )) < kr for some x ∈ S and M ∈ Pic0(C). By Theorem 5.2, we have

d+ r(2g − 1 + k) ≥ (r − 1)(g − 1) + δ.

Computing, we obtain k ≥ µ(E∗)− 1
r
((r + 1)g − 1) as desired. �

Remark 5.5. Let us examine the situation for k = 0 and k = 1. By definition, Φ0(LM ) is

empty if and only if |LM | is base point free; that is, E∗ ⊗M is globally generated. Thus

from Corollary 5.4 (a) we recover the fact (see [IT97, Proposition 2 (ii)]) that if E is stable

of slope ≤ −(2g − 1), then E∗ ⊗M is generated for all M of degree zero, so all S → |LM |∗

are base point free. In fact Theorem 5.2 gives a more precise statement: If µ(E) ≤ 1− 2g

then E∗ ⊗M is generated for all M of degree zero if and only if s1(E) > 0. Similarly,

if µ(E) ≤ −2g then the differential of S → |LM |∗ is everywhere injective for all M if and

only if s1(E) > 0.

Remark 5.6. Theorem 5.2 does not hold for incomplete linear systems. For any M , by

projecting |LM |∗ from a point of Osck(S, x), one obtains a projective model of S with an

inflection point at x, regardless of s1(E).

5.1. A geometric characterisation of semistability. We will now use Theorem 5.2 to

give a characterisation of the semistability property for vector bundles of slope less than

1− 2g over C. If E → C is such a vector bundle, for 1 ≤ n ≤ r − 1 we write

πn : P(∧
nE) =: Sn → C,

a projective bundle of dimension
(
r
n

)
. If M is a line bundle over C, we write Ln,M :=

OP(∧nE)(1) ⊗ π∗nM , and consider the map Sn 99K |Ln,M |∗.

Theorem 5.7. Let E be a bundle of rank r and slope µ < 1−2g over C. Then the following

are equivalent.

(1) E is semistable.

(2) For 1 ≤ n ≤ r − 1 and for 0 ≤ k < n · µ(E∗) − (2g − 1), the osculating space

Osck(Sn, y;Ln,M ) is of the expected dimension k ·
(
r
n

)
for all y ∈ Sn and all M ∈

Pic0(C).

Proof. Suppose E is semistable. As K has characteristic zero, by [Le 97, Theorem 10.2.1],

for 1 ≤ n ≤ r the exterior product ∧nE is semistable of slope n · µ(E). In particular,

s1(∧
nE) ≥ 0. By Theorem 5.2, for all M ∈ Pic0(C) and all y ∈ Sn, the osculating space

Osck(Sn, y;Ln,M )) has dimension k ·
(
r
n

)
for all k ≥ 0 such that

deg(∧nE) + rk (∧nE)(2g − 1 + k) < 0,
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that is, k < n · µ(E∗)− (2g − 1).

Conversely, assume (2) holds. By Theorem 5.2, for 1 ≤ n ≤ r − 1 we have

s1(∧
nE) > deg(∧nE) + rk (∧nE) · (2g − 1 + kn),

where kn = max {k ≥ 0 : k < n · µ(E∗)− (2g − 1)}. By the definition (1.1) of s1(E), the

left and right hand sides of the last inequality are congruent modulo rk (∧nE). Therefore,

s1(∧
nE) ≥ deg(∧nE) + rk (∧nE) · (2g − 1 + kn + 1)

By definition of kn, this becomes s1(∧
nE) ≥ 0.

Now suppose F is a rank n subbundle of E. Then ∧nF is a line subbundle of ∧nE. Since

we have shown that s1(∧
nE) ≥ 0, it follows that

µ(∧nF ) = deg(F ) ≤ µ(∧nE) = n · µ(E),

whence µ(F ) ≤ µ(E). Hence E is semistable. �

5.2. Cohomological stability. The implication (1) ⇒ (2) of Theorem 5.7 fails if we

replace “semistability” with “stability”, as stability of E only implies semistability of ∧nE

for n ≥ 2. The notion of cohomological stability, introduced in [EL92] and studied further

in [MS12] and elsewhere, turns out to be more natural here. We recall the definition:

Definition 5.8. A vector bundle E → C of rank r is cohomologically stable (resp., coho-

mologically semistable) if for 1 ≤ n ≤ r − 1 we have h0(C,N−1 ⊗ ∧nE) = 0 for all line

bundles N with deg(N) ≥ n · µ(E) (resp., deg(N) > n · µ(E)).

It is not hard to see that E is cohomologically stable if and only if s1(∧
nE) > 0 for

1 ≤ n ≤ r − 1. Thus if rk (E) = 2 then cohomological stability is equivalent to slope

stability, both being equivalent to the single inequality s1(E) > 0. For r ≥ 3, however,

cohomological stability is stronger. For example, by [CH12, Proposition 3.1] a generic

symplectic bundle E of rank 2n and trivial determinant is a stable vector bundle, but if

rk (E) ≥ 4 then E is only cohomologically semistable since h0(C,∧2E) 6= 0.

Cohomological stability lends itself to a characterisation via inflectional loci more nat-

urally than slope stability. An argument virtually identical to that of Theorem 5.7 shows

the following:

Theorem 5.9. Let E be a bundle of rank r and degree d ≤ r(1 − 2g) over C. Then E

is cohomologically stable if and only if for all M ∈ Pic0(C) and for 1 ≤ n ≤ r − 1, the

osculating space Osck(Sn, y;Ln,M ) are of dimension k ·
(
r
n

)
for 0 ≤ k ≤ n ·µ(E∗)− (2g− 1)

and for all y ∈ Sn.

6. Inflectional loci of general scrolls

In this section we will give another application of the ideas in § 4, showing that for

general S and M the inflectional loci Φk(LM ) are of the expected dimension. Firstly, we

recall Kleiman’s theorem on transversality of intersection of translates [Kle74, Theorem 2].

Note that this theorem requires the hypothesis char(K) = 0.
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Theorem 6.1. Let G be a connected algebraic group (not necessarily linear). Let Z be an

irreducible variety with a transitive G-action. Let a : X → Z and b : Y → Z be maps of

nonsingular integral schemes. For γ ∈ G, let γ · Y denote Y considered as a Z-scheme by

the map y 7→ γ ·b(y). Then there exists a dense open subset U ⊆ G such that for γ ∈ U , the

fibre product (γ · Y )×Z X is either empty, or equidimensional and smooth of the expected

dimension dim(X) + dim(Y )− dim(Z).

We will also require the following generalisation of [LN03, Lemma 3.3]. Recall that a

vector bundle map E → K ⊗ E can be composed with itself m times to obtain a map

E → Km ⊗ E. Thus it makes sense to speak of nilpotent maps E → K ⊗ E.

Lemma 6.2. Let E be a vector bundle. Assume that there is no rank one nilpotent map

E → K ⊗ E. Then for any line bundle L and all integers ℓ, every component of the Quot

scheme Qℓ(L⊗ E) is smooth and of the expected dimension at all points.

Proof. The association [N → L⊗ E] 7→
[
L−1N ⊗ E

]
defines an isomorphismQℓ(L⊗E)

∼
−→

Qℓ−deg(L)(E). Thus it suffices to prove the statement for L = OC . By the theory of Quot

schemes, we must show that the obstruction space H1(C,Hom(N,E/N)) is zero for all

invertible subsheaves N ⊂ E. Write N for the saturation of N and T ∼= N/N for the

torsion subsheaf of E/N . From the exact sequence

0 → Hom(N,T ) → Hom(N,E/N) → Hom(N,E/N ) → 0

and since Supp(T ) is zero-dimensional, we have

(6.1) H1(C,Hom(N,E/N) ∼= H1(C,Hom(N,E/N )).

Similarly, in view of the exact sequence

0 → Hom(N,E/N ) → Hom(N,E/N )) → Ext1(T,E/N ) → 0,

there is a surjection H1(C,Hom(N,E/N )) ։ H1(C,Hom(N,E/N )). Combining this with

(6.1), it suffices to prove that h1(C,Hom(N,E/N )) = 0. This follows from the hypothesis

on E by the argument of [LN03, Lemma 3.3]. �

Remark 6.3. By [Lau88], a general bundle E admits no nilpotent map E → K ⊗ E, so

the hypothesis of Lemma 6.2 and the following theorem is satisfied if E is general in moduli

(with no assumptions on the smooth curve C).

Now fix d < r(1− g) and write n := r(1− g)− d− 1. As in (2.5), set

k′ := max{k ≥ 0 : kr ≤ n}.

Theorem 6.4. Let E be a bundle of rank r and degree d. Assume that there is no rank

one nilpotent map E → K ⊗ E. Let π : S := PE → C be the associated projective bundle,

and LM the line bundle OPE(1)⊗ π∗M as before. For general M ∈ Pic0(C), the following

holds.

(a) The linear series |LM | has dimension n.

(b) If 0 ≤ k < k′, then dk(LM ) = kr and Φk(LM ) is empty.
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(c) We have dk
′

(LM ) = k′r and Φk′(LM ) is either empty or of the expected dimension

(k′ + 1)r − n− 1.

Proof. (a) By Serre duality, it suffices to show that

(6.2) h1(C,E∗ ⊗M) = h0(C,KM−1 ⊗ E) = 0 for general M ∈ Pic0(C).

If M is any degree zero invertible subsheaf of K ⊗ E, then by hypothesis and by Lemma

6.2, we have

dim(Q0(K ⊗ E)) = χ(C,Hom(M, (K ⊗ E)/M)) = d+ r(g − 1) + (g − 1).

As d < r(1− g), this is at most g − 2. Thus a general M ∈ Pic0(C) cannot be a subsheaf

of K ⊗ E. Statement (6.2) follows.

(b) The same argument as in part (a) shows that for any M ∈ Pic0(C) we have

dim(Q−(k+1)(KM
−1 ⊗ E)) = r(k + 1) + d+ (r + 1)(g − 1).

Next, recall the space Rk
M and the map b from (4.1). For any M ∈ Pic0(C), we have

b
(
Q−(k+1)(KM

−1 ⊗ E)
)

= M−1 · b
(
Q−(k+1)(K ⊗ E)

)

where Pic0(C) acts on itself by translation. Thus for general M , by Theorem 6.1 each

component of Rk
M is empty or has dimension

(6.3) dim(Q−(k+1)(KM
−1 ⊗E)) + dim(C)− dim(Pic0(C))

= r(k + 1) + d+ (r + 1)(g − 1) + 1− g = r(k + 1)− n− 1

when this is nonnegative. For k < k′, this is negative. Taking M general enough (bearing

in mind that Q−(k+1)(K ⊗E) may not be irreducible), we may assume that Rk
M is empty.

By Proposition 4.1 (b) we conclude that dk(LM ) = kr and Φk(LM ) is empty for 0 ≤ k < k′.

(c) By part (b), for all x ∈ S and for 0 ≤ k < k′ the space Osck(S, x;LM ) has dimension

kr. Therefore, by Proposition 4.1 (b) the locus of x ∈ S where dim(Osck
′

(S, x;LM )) < k′r

is exactly the image of ek′ : R
k′

M 99K S. Thus it has dimension at most dim(Rk′

M ) = (k′ +

1)r − n − 1 (cf. (6.3)). As this is at most r − 1, we have dk
′

(LM ) = k′r. Since Φk′(LM )

is determinantal, if it is nonempty then in this case it has dimension exactly the expected

one (k′ + 1)r − n− 1. This completes the proof of (c). �

Remark 6.5. If d ≤ r(1 − 2g), then for some values of k, we can strengthen Theorem

6.4 slightly using the results of the previous section. Let E be as in Lemma 6.2. Then

for any ℓ such that d − rℓ − (r − 1)(g − 1) < 0, the Quot scheme Qℓ(E) is empty. Thus

s1(E) ≥ (r− 1)(g − 1). It follows easily that s1(E) is the maximal value (r− 1)(g − 1) + δ

defined in Theorem 5.1. By Corollary 5.4 (c), for

0 ≤ k < µ(E∗)−
(r + 1)g − 1

r
= −

d

r
− g −

g − 1

r
,

we have dk(LM ) = kr and Φk(LM ) is empty for all M ∈ Pic0(C) (not only for general M).

For comparison,

k′ =

⌊
−
d

r
− (g − 1)−

1

r

⌋
.
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6.1. Scrolls which are not linearly normal. Using the general result proven in the

appendix, we can generalise Theorem 6.4 to incomplete linear systems. During this sub-

section, we assume S = PE and M ∈ Pic0(C) are fixed, and are general in the sense of

Theorem 6.4. We now change our notation.

For any nonzero subspace W ⊂ H0(S,LM ), we consider the natural map ψW : S 99K

PW ∗, which is the composition of S 99K |LM |∗ with the projection to PW ∗. For x ∈ S

and k ≥ 0 we have the osculating space OsckW (S, x) ⊆ PW ∗. Write dkW for the dimension

of OsckW (S, x) at a general point x ∈ S, and Φk
W for the associated inflectional locus. For

0 < m < n, write k′m := max{k ≥ 0 : kr ≤ m}.

Theorem 6.6. Let E, S and M be fixed as above. Let W ⊆ H0(S,LM ) be a general

subspace of dimension m+ 1 < n+ 1.

(a) For 0 ≤ k < k′m, we have dkW = kr and Φk
W is empty.

(b) Suppose k = k′m. Then d
k′m
W = k′mr and the inflectional locus Φ

k′m
W is either empty or

equidimensional of the expected dimension (k′m +1)r−m− 1. If k′m 6= k′ then Φ
k′m
W

is smooth. If k′m = k′ then Φ
k′m
W is smooth except possibly along the closed sublocus

Φk′.

Proof. By hypothesis and by Theorem 6.4 we have dk = kr for 0 ≤ k ≤ k′. In particular

d(k
′
m−1) = dk

′
m − r and hypothesis (A.1) holds. Suppose 0 ≤ k < k′m. Since W is general,

by Theorem A.1 (a) we have dkW = dk = kr and also Φk
W = Φk. But the latter is empty by

Theorem 6.4. This proves (a).

If k = k′m then, by Theorem A.1 (b) we have d
k′m
W = dk

′
m = k′mr, and the locus Φk

W is the

union of Φk and a locus which, if nonempty, is smooth and equidimensional of the expected

dimension r+ dk
′
m −m− 1 = (k′m+1)r−m− 1. If k′m < k′ then Φk′m is empty by Theorem

6.4, so Φ
k′m
W is smooth. Suppose k′m = k′. As Φ

k′m
W is determinantal, every component has

dimension at least

(k′m + 1)r −m− 1 = (k′ + 1)r −m− 1 > (k′ + 1)r − n− 1.

Hence if Φk′ is nonempty then it belongs to the closure of the aforementioned smooth

equidimensional locus. �

Remark 6.7. In [LMP08, Theorem 2 and Corollary 1], a formula is given for the cohomol-

ogy class of Φk′m , assuming this is of the expected dimension (k′m+1)r−m−1. In particular,

when m = (k′m + 1)r − 1, the formula enumerates the finitely many inflection points of or-

der k′m. Theorem 6.4 and Corollary 6.6 show that the assumption of expected dimension

in [LMP08] is satisfied when E and M are chosen generally and when the projection is

general.

Appendix A. Inflectional loci under general projections

In this section we will prove a general statement on the behaviour of inflectional loci

under general projections. Let X be a smooth projective variety of dimension r. Let

ψ : X 99K PV ∗ = P
n be a map, where n ≥ 2. We denote by dk the dimension of Osck(X,x)
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at the generic point, and write k′ := max{k ≥ 0 : dk ≤ n}. For 0 ≤ k ≤ k′, we consider the

associated inflectional loci Φk ⊂ X.

Now suppose W ⊂ V is a proper subspace of dimension m + 1. Composing with the

projection PV ∗
99K PW ∗, we obtain a map X 99K P

m, together with osculating spaces

OsckW (X,x) ⊆ P
m and inflectional loci Φk

W ⊂ X. We write dkW for the generic value of

dim(OsckW (X,x)). Write k′m := max{k : dk ≤ m}.

Note moreover that the centre of the projection P
n
99K P

m is PW⊥ = P
n−m−1, where

W⊥ = Ker(V ∗ → W ∗) is the orthogonal complement of W under the natural pairing

V × V ∗ → K.

Theorem A.1. Let ψ : X 99K PV ∗ = P
n be as above, and let W ⊂ V be a proper subspace

of dimension m+ 1. Assume in addition that

(A.1) d(k
′
m−1) ≤ dk

′
m − r,

where dim(X) = r. If W is general in the Grassmannian Gr(m+1, V ), the following holds.

(a) Suppose 0 ≤ k < k′m. Then dkW = dk and Φk
W = Φk. In particular, the projection

Osck(X,x) → OsckW (X,x) is an isomorphism for all x 6∈ Φk.

(b) Suppose k = k′m. Then dkW = dk and Φk
W is the union of Φk and a locus which, if

nonempty, is smooth and equidimensional of the expected dimension r+dkW −m−1.

Proof. For k ≥ 0, it follows from the definitions that OsckW (X,x) is the image of Osck(X,x)

under the projection P
n
99K P

m. For 0 ≤ k ≤ k′m, we have

dim(Osck(X,x)) + dim(PW⊥)− n ≤ dk + (n−m− 1)− n = dk −m− 1 < 0.

Thus, since W is general, Osck(X,x) ∩ PW⊥ is empty for general x ∈ X. Therefore, for

0 ≤ k ≤ k′m we have dkW = dk. Hence

(A.2) x ∈ Φk
W if and only if x ∈ Φk or Osck(X,x) ∩ PW⊥ is nonempty.

We reformulate this last property. For fixed k with 0 ≤ k ≤ k′, denote by Z the Grassmann

variety Gr(dk + 1, V ∗). For any W ⊂ V , we consider the special Schubert cycle

YW⊥ := {Λ ⊂ V ∗ of dimension dk + 1 : Λ ∩W⊥ 6= 0} ⊂ Z.

The association x 7→ Osck(X,x) defines a rational map a : X 99K Z, whose indeterminacy

locus is exactly Φk. (This may be thought of as a generalised Gauss map.) Write X ′ :=

X \ Φk for the locus of definition of a. Then (A.2) is equivalent to

(A.3) Φk
W = Φk ∪ a−1 (YW⊥) ∼= Φk ∪

(
YW⊥ ×Z X

′
)
.

Now G := GL(V ∗) has a natural transitive action on Gr(ℓ, V ∗) for any 1 ≤ ℓ ≤ n.

Unwinding the definitions, we see that

(A.4) γ · YW⊥ = Yγ·W⊥ .
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Let us estimate the dimension of YW⊥ . Any Λ ∈ YW⊥ fits into an exact diagram

0 // λ //

=

��

Λ //

��

Λ/λ //

��

0

0 // λ // V ∗ // V ∗/λ // 0

where λ is a one-dimensional subspace of W⊥. Thus

dim(YW⊥) ≤ dim(PW⊥) + dim(Gr(dk, n)) = (n−m− 1) + dk(n − dk).

Computing, we obtain

(A.5) dim(YW⊥) + dim(X)− dim(Z) ≤ r + dk −m− 1.

Suppose now that k < k′m. By (A.1), we have dk ≤ dk′m − r ≤ m − r, from which it

follows that r+ dk −m− 1 < 0. Perturbing W⊥ to a general translate γ ·W⊥ if necessary,

by Theorem 6.1 and (A.4) we may assume YW⊥ ×Z X
′ is empty. By (A.3), we conclude

that Φk
W = Φk. Statement (a) now follows.

Next, suppose k = k′m. Again, possibly after perturbingW⊥, by Theorem 6.1 and (A.4)

we may assume that (γ · YW⊥) ×Z X
′ is either empty, or smooth and equidimensional of

dimension at most r + dk − m − 1. In view of (A.3), and since Φk
W is determinantal, if

(γ · YW⊥) ×Z X
′ is nonempty then the dimension is exactly r + dk −m − 1. This proves

part (b). �

Remark A.2. If X is a curve, part (a) follows from [Pie77, Proposition 4.2]. Compare

also with [Pie78, Theorem 4.1] on the behaviour of polar loci under general projections.
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