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PROJECTIONS OF POISSON CUT-OUTS IN THE HEISENBERG

GROUP AND THE VISUAL 3-SPHERE

LAURENT DUFLOUX AND VILLE SUOMALA

Abstract. We study projectional properties of Poisson cut-out sets E in non-
Euclidean spaces. In the first Heisenbeg group H = C × R, endowed with the
Korányi metric, we show that the Hausdorff dimension of the vertical projection
π(E) (projection along the center of H) almost surely equals min{2, dimH(E)} and
that π(E) has non-empty interior if dimH(E) > 2. As a corollary, this allows us
to determine the Hausdorff dimension of E with respect to the Euclidean metric
in terms of its Heisenberg Hausdorff dimension dimH(E).

We also study projections in the one-point compactification of the Heisenberg
group, that is, the 3-sphere S

3 endowed with the visual metric d obtained by
identifying S

3 with the boundary of the complex hyperbolic plane. In S
3, we prove

a projection result that holds simultaneously for all radial projections (projections
along so called “chains”). This shows that the Poisson cut-outs in S

3 satisfy a
strong version of the Marstrand’s projection theorem, without any exceptional
directions.

1. Introduction

In this paper, we investigate strong Marstrand-type projection theorems for ran-
dom cut-out sets in two (related) non-Euclidean spaces: the (first) Heisenberg group
H, and its compactification, that is the 3-sphere S3 endowed with the visual metric
d obtained by identifying S3 with the boundary of the complex hyperbolic plane.

Our focus is on certain projections of these cut-out sets and their dimension.
In the Heisenberg group H, we look at the dimension of the vertical projection

(along the center) as well as the dimension of the fibers; as an interesting corollary,
this allows us to compute the Hausdorff dimension of the cut-out set with respect
to the Euclidean metric on H. The following is an informal version of our main
theorem in the Heisenberg group.

Theorem A. Let E be a random Poisson cut-out set in the Heisenberg group, with
Hausdorff dimension β. Then with positive probability,
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(1) πZ(E), the vertical projection of E, has Hausdorff dimension inf{β, 2}; and
if β > 2, πZ(E) has non-empty interior;

(2) the Hausdorff dimension of E with respect to the Euclidean metric is equal
to

φ(β) =

{
β if 0 < β ≤ 2

2 + 1
2
(β − 2) if 2 < β ≤ 4 .

Recall that for any subset of the Heisenberg group with Hausdorff dimension β,
the Euclidean Hausdorff dimension is at most φ(β) (see e.g. [2, Theorem 1.1]) so
that the random sets E have the maximal Euclidean Hausdorff dimension in terms
of their Heisenberg dimension.

In the classical Euclidean setting, if X is a random Poisson cut-out set in Rn with
Hausdorff dimension s ∈ ]0, n[, then, with positive probability, for any orthogonal
projection π : Rn → Rd, the image π(X) has Hausdorff dimension inf{d, s} [17].
To generalize this result to Heisenberg group in a meaningful way, we would need
to introduce a family of projections that is a suitable generalization of the family
of Euclidean projections. One way to do this would be to start from the quotient
mapping along the center, πZ , considered in Theorem A, and to move around the
point at infinity. In this paper, we will actually work in the compactification of the
Heisenberg group, that is the 3-sphere S3 endowed with the visual distance that
comes from identifying S3 with the boundary at infinity of the complex hyperbolic
plane. The foliation ofH by translates of the center Z yields, in the compactification,
a foliation of S3 \ {∞} by the so-called chains passing through ∞. By moving ∞
around S3, one obtains the family of projections needed; more precisely, if x is some
fixed point of S3, any other point y lies on a unique chain passing through x; this
defines the radial projection along chains passing through x, or, in short, radial
projection at x which can be defined so as to take values in the Euclidean sphere
S2.

At this point, let us emphasize the following:

Unless stated otherwise, S3 will always be endowed with the visual

metric d coming from the identification with the visual boundary of the

complex hyperbolic plane.

This is not the same thing as the visual metric coming from the identification with
the visual boundary of the real hyperbolic 4-space. The former has dimension 4
whereas the latter is the familiar Euclidean 3-sphere and has dimension 3.

Given a random Poisson cut-out set E ⊂ S3, we can, with positive probability,
compute the Hausdorff dimension of the image of E through the radial projections
at every point x ∈ S3 simultaneously.

Thus, our work is related to the recent program aiming to show that for many
sets and measures of random or dynamical origin, the statement of the Marstrand’s
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projection theorem holds without any “exceptional” directions. See e.g. [10, 15, 17]
and references therein. The following is our main result.

Theorem B. Let E be a random Poisson cut-out set in S3 (endowed with the visual
distance d), with Hausdorff dimension β ∈ ]0, 4[. Then with positive probability,
for every point x of S3, the radial projection of E at x has Hausdorff dimension
inf{2, β}, and non-empty interior if β > 2.

We refer the reader to Section 5 for the exact definition of the radial projection,
the definition of the visual metric on S3 as well as the Poisson cut-out sets we
consider.

We note that the “radial projections” we consider are also studied in [6] where a
Marstrand-type projection result is stated: if A is a Borel subset of S3 of Hausdorff
dimension α with respect to the Euclidean metric dE, then for Lebesgue-almost every
x ∈ S3, the radial projection of A at x has Hausdorff dimension inf{2, α}. This is
a special case of Theorem 5 in [6]; pay attention to the fact that in this result the
dimension of A is computed with respect to the Euclidean metric. In fact, this result
is not true if we consider the visual metric d instead. For instance, the chains in S3

are 2-dimensional, but their radial projections always have Hausdorff dimension 1,
see Remark 5.13. Nevertheless, our main results shows that the behaviour of random
sets under the radial projections resembles that of a strong Marstrand theorem: with
positive probability, the dimension of the projection takes the “expected value”
simultaneously for all projections.

Many authors have previously studied Marstrand-type projection theorems in
the Heisenberg group, see e.g. [1]; the projections studied by these authors are quite
different in nature. Namely, they consider projections onto horizontal homogeneous
subgroups of H, i.e. subgroups of the form Vθ = eiθR × {0} ⊂ C × R, as well
as projections along these subgroups. The projection onto Vθ is essentially the
same thing as the vertical projection πZ followed by an orthogonal projection in C,
and there is not much to say beyond Marstrand’s original Theorem in the plane.
Projections along the horizontal Vθ are more interesting but also very different
from the projections along chains we are considering. In fact the Vθ and their
translates are the R-circle passing through the point at infinity, they are in some
way the opposite of the chains we are looking at. In the boundary of complex
hyperbolic plane, a chain is the boundary of a totally geodesic complex submanifold,
of sectional curvature −4, whereas a R-circle is the boundary of a totally geodesic
real 2-submanifold of sectional curvature −1. We refer to [9] for these notions.

The main ingredient of the proofs of our main theorems is an abstract result,
Theorem 3.2, which holds for Poisson cut-out sets under fairly general hypotheses.
The result is a straightforward generalization of the main result in [17] into a non-
Euclidean setting. In order to apply Theorem 3.2 in our non-Euclidean setting, we
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need to derive a geometric estimate of Hölder type; in the Heisenberg group, this
boils down to estimating the intersections of vertical lines with Heisenberg balls,
see (4.1). In S3 the corresponding estimate is somewhat more involved (see Lemma
5.17).

The paper is organized as follows. In Section 2, we recall the construction of
random Poisson cut-out sets (and measures) and the formula giving their Hausdorff
dimension with positive probability. In Section 3, we state the Hölder regularity
Theorem 3.2; this result will allow us to control the measure of cut-out sets along
families of “fibres”; we also state some elementary Lemmas that allow us to derive
dimensionality results from the regularity provided by the Theorem. These results
are applied in Section 4 where we deal with the Heisenberg group and its non-
Euclidean metric; this is where Theorem A is proved. This section is also a warm-up
for the next one, which is more technical and deals with S3 endowed with the visual
metric d. We spend some time introducing the needed properties of this metric,
and defining the family of projections we are studying. The main argument for the
proof of Theorem B is in Section 5.7, and the most technical part (where we prove
the geometric Hölder estimate needed to apply Theorem 3.2) is deferred to Section
5.8.

Hausdorff dimension of sets will be denoted by dimH; Hausdorff dimension of
measures will be denoted by dim. Recall that by definition

dim(µ) = inf{dimH(A) ; µ(A) > 0} .

The upper box dimension will be denoted by dimB. The s-dimensional Hausdorff
measure is Hs. For definitions, see [12].

The closed, resp. open, ball of radius r and center x is denoted by B(x, r), resp.
B◦(x, r).

Positive and finite constants will be denoted by c, C, etc. When there is no danger
of misunderstanding, we are quite flexible in the notation, for instance, the value
of C may change from line to line. We will use subscript, when there is a need to
stress the dependency of a constant on certain parameters. For instance, Cε is a
positive and finite constant whose value may depend on a parameter ε > 0 (but
not on other variables relevant for the context). If 0 < A,B < ∞ are variables
and A ≤ CB, we will denote A . B. The notation B ≍ A means that A . B
and B . A. When necessary, the dependency will be indicated with a subscript
notation, i.e. if A ≤ CB where C depends on some data D, we will write A .D B.

2. Dimension of conformal Poisson cut-out sets

In this Section, we define random Poisson cut-out sets and measures and recall
some results regarding their Hausdorff and box-counting dimensions. We present
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these results in a generality that is sufficient for the purposes of the paper. For more
general results, see e.g. [11, 13, 18].

Let Z0 be a boundedly compact metric space and assume that for some m > 0 it
carries a Borel measure H such that: For any x ∈ Z0,

H(B(x, r)) = f(r) , (2.1)

where

lim
r→0

f(r)

rm
= 1 . (2.2)

Later in this paper, we will only consider the case m = 4. More precisely, Z0

will be either the Heisenberg group H, or its compactification S3 endowed with the
visual metric, and H will be a suitable normalization of the usual Lebesgue measure
(resp. surface measure) on H (resp. S3).

We endow X = Z0×]0, 1] with the σ-finite measure

Q = H⊗ dr

rm+1
10<r≤1.

To any pair (x, r) ∈ X we associate the closed ball B(x, r) ⊂ Z0.
For any real number γ > 0, we consider a Poisson point process of intensity γQ

on X . For convenience of the reader, let us recall the definition.

Definition. Let X be a complete separable metric space and let Q be a σ-finite Borel
measure on X . A Poisson point process with intensity Q is a random subset Y ⊂ X
such that

• For each Borel set A ⊂ X , the number N(A) := #A∩Y is a Poisson random
variable with mean Q(A).

• For pairwise disjoint Borel sets Ai ⊂ X , i ∈ N, the random variables N(Ai)
are independent.

It is well-known and easy to see that this is a well-defined object.
Returning to our setup (X endowed with γQ), we let E0 be the associated random

Poisson cut-out set:
E0 = Z0 \

⋃

i∈I
B◦(xi, ri) ,

where Y = {(xi, ri) ; i ∈ I} is the Poisson point process considered. In that setting,
the most basic result is the following.

Proposition 2.1. If γ > m, then E0 is a.s. empty. If 0 < γ ≤ m, then for any
bounded subset Z of Z0, almost surely

dimB(Z ∩ E0) ≤ m− γ.

In particular,
dimH(E) ≤ m− γ.
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Proof. The proposition is well known, but let us provide the simple proof for reader’s
convenience. Let γ′ < γ and pick r0 = r0(γ) > 0 such that

f(r) >
γ′

γ
rm (2.3)

for 0 < r < r0.
First we bound the probability that some small ball is not eaten out by the

cut-out. Let A = B(x, δ) where x ∈ Z and δ > 0. Then

P(A ∩ E 6= ∅) ≤ Cδγ
′

, (2.4)

where C is some constant (which depends on d and γ). Indeed, in order to cut out
the δ-ball A it is enough that there is a ball B(xi, ri) such that ri > δ and x belongs
to B(xi, ri − δ). Now by (2.1), (2.3), and the definition of Q,

P

(
x ∈

⋃

ri>δ

B(xi, ri − δ)

)
= 1− exp

(
−γ

∫ 1

r=δ

f(r − δ)

rm+1
dr

)

≥ 1− exp

(
−γ′

∫ r0

δ

(r − δ)m

rm+1
dr

)

≥ 1− exp

(
−γ′

∫ r0

δ

dr

r

)

≥ 1− Cδγ
′

,

where C = Cγ′ > 0 is a constant.
Now for each n ≥ 1, let Qn be a covering of Z with balls of radius 2−n centered

in Z, such that #Qn ≤ C2nm, where C is some fixed constant. It is easy to check
that such a Qn does exist for any n. Let Nn be the number of A ∈ Qn that meet
E0. We know by the previous computation that E[Nn] ≤ C2n(m−γ′). Thus, for any
ε > 0,

E

[ ∞∑

n=1

2n(γ−m−ε)Nn

]
< ∞ .

In particular, a.s., Nn ≤ 2n(m−γ+ε) when n is large. The claims follow from this at
once. �

We now fix for simplicity a bounded closed subset Z ⊂ Z0 of positive H-measure.
There is no hope to prove that the estimate for dimB(Z ∩ E0) is almost surely an
equality, since, as one may check, the cut-out set E0 ∩ Z is empty with positive
probability for any γ > 0. On the other hand, it is possible to show that equality
holds with positive probability. Unsurprisingly, the proof relies on the construction
of a “natural” measure on the cut-out set.
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For every n ∈ N let

En = Z \
⋃

ri≥2−n

B(xi, ri)

and

µn = βn1En∩Z , (2.5)

where

βn = exp

(
γ

∫ 1

r=2−n

f(r)

rm+1
dr

)

is the reciprocal of P(x ∈ En) (note that βn is independent of x). Recall that
βn ∼ 2γn in the sense that limr↓0

log βn

n
= γ. Let

E =
⋂

n

En = E0 ∩ Z .

It is easy to see (see e.g. [16]) that, almost surely, the sequence of (random) finite
Radon measures µnH converges in the weak*-sense to a finite measure µ supported
on E. The following proposition shows that there is an equality in Proposition 2.1
with positive probability. For a proof, see e.g. [13]. See also Lemma 4.7.

Proposition 2.2. Assume that γ ∈]0, m[. Then there is a positive probability that
µ 6= 0; and, conditional on µ 6= 0, it holds almost surely that µ is exact-dimensional
and

dim(µ) = dimH(E) = m− γ.

Recall that exact dimensionality means that the limit

lim
r↓0

log (µ(B(x, r)))

log r

exists and obtains a constant value for µ-almost every x.

Remark 2.3. Throughout the paper, we will denote by P the law of the Poisson point
process considered (this depends only on Q = Q(H, γ)) and (with a slight abuse of
notation), we will think of P as a probability measure on the space of compact subsets
of Z.

3. Spatially independent martingales in metric spaces

In this section, we recall a version of the main result of [17] on spatially indepen-
dent martingales. This will allow us to control the measure of our Poisson cut-out
set along the fibres of the projections we will be considering. In the Heisenberg
group (Section 4), we only look at the vertical projection, so the fibres will be the
vertical lines. In S3 (Section 5) we consider the family of radial projections at every
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point, so the fibres will be all complex chains. (For technical reasons we will have
to look at compact spaces of complex chains.)

Controlling the measure of our Poisson cut-out set along the fibres of the projec-
tion is how we will be able to derive results on the projected measure.

We now describe the abstract setting of the Theorem. Let Z be a separable
locally compact metric space. We consider a random sequence of functions µn : Z →
[0,+∞), jointly defined on some probability space enjoying the following properties:

• µ0 is a deterministic function with bounded support (we will denote its
support by Ω).

• There exists an increasing filtration of σ-algebras Bn ⊂ B, such that µn is
Bn-measurable. Moreover, for all x ∈ Z and all n ∈ N,

E(µn+1(x)|Bn) = µn(x) .

• There is C < ∞ such that µn+1(x) ≤ Cµn(x) for all x ∈ Z and n ∈ N.
• There is C < ∞ such that for any (C2−n)-separated family Q of Borel sets
of diameter ≤ C−12−n, the restrictions {µn+1|Q|Bn} are independent.

Definition. Following [17], we call a random sequence (µn) satisfying the above
conditions an SI-martingale, (where SI stands for spatially independent).

Remark 3.1. The sequence (2.5) is an obvious example of an SI-martingale, and in
fact, the only example dealt with in this paper. Note that the dyadic discretization
(µn and En are approximations of µ and E at level 2−n) is used for the simplicity
of notation only.

Theorem 3.2 (Regularity of fibres). Let (µn)n∈N be an SI-martingale, and let (ηt)t∈Γ
be a family of finite Radon measures (“fibre measures”) indexed by a metric space
(Γ, d). We assume that there are constants 0 < γ, κ, θ, γ0, C < ∞ such that the
following holds:

(A1) dimBΓ < ∞.
(A2) ηt(B(x, r)) ≤ Crκ for all x ∈ Z, r > 0 and t ∈ Γ.
(A3) Almost surely, µn(x) ≤ C 2γn for all n ∈ N and x ∈ Z.
(A4) Almost surely, there is a random integer N0, such that

sup
t,u∈Γ,t6=u;n≥N0

∣∣∫ µn dηt −
∫
µn dηu

∣∣
2θn d(t, u)γ0

≤ C . (3.1)

Suppose that κ > γ. Then, almost surely,

• For all t,
∫
µn dηt converges uniformly to a finite number X(t);

• For each t ∈ Γ such that
∫
µ0(x) dηt(x) > 0, we have P(X(t) > 0) > 0.

• The function t 7→ X(t) is (Hölder) continuous.
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Suppose that κ ≤ γ. Then, almost surely,

sup
n∈N, t∈Γ

2−θn

∫
µn dηt < ∞ ,

as long as θ > γ − κ.

Remarks 3.3. (1) In [17], the Theorem is stated in the Euclidean setting Z =
Rd (see Theorems 4.1 and 4.4. in [17]). However, the proofs work verbatim
in any metric space Z. The only minor change is in the proof of [17, Lemma
3.4], where instead of the dyadic cubes of sizes 2−n, one should consider a
disjoint cover of spt ηt with sets Qj satisfying diam(Qj) ≤ C2−n and such
that each Qj contains a ball B(xj , 2

−n) for some xj ∈ spt η.
(2) As explained in [17], there is a scope for weakening the assumptions of The-

orem 3.2 We shall not discuss these generalizations here since the above
version is enough for our application in the Heisenberg group and the visual
sphere.

(3) The Hölder exponent of t 7→ X(t) is deterministic and quantitative in terms
of the data (κ, γ, γ0, θ), see [17].

In applying Theorem 3.2 we will need two companion results, Lemmas 3.4 and
3.5, corresponding to the two possible conclusions in the Theorem.

Lemma 3.4. Let Z be a compact metric space endowed with a Radon measure H.
Let also π : Z → Rk be a Lipschitz mapping and, for any t ∈ Rk, ηt be a finite
Radon measure supported on π−1(t) such that H is equivalent to the finite Borel
measure

∫
ηt dt : A 7→

∫

Rk

ηt(A) dt (3.2)

with Radon-Nikodym derivative uniformly bounded away from 0 and +∞. Finally,
let µn be a sequence of bounded Borel functions Z → [0,∞[ such that

(1) The sequence of Radon measures (µnH)n weak*-converges to a finite Radon
measure µ;

(2) For any t,
∫
µndηt converges to a finite number X(t), and the convergence

is uniform in t;
(3) The mapping t 7→ X(t) is continuous, and there is some t0 ∈ Rk such that

X(t0) 6= 0.

Then the push-forward measure πµ is absolutely continuous, and t0 is an interior
point of π(supp(µ)).
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Proof. Using (3.2) and (1), we get the follwing estimates for the projected measures
of balls centered at u ∈ R

k:

πµ(B◦(u, r)) ≤ lim inf
n→∞

π(µnH)(B◦(u, r)) . lim inf
n→∞

∫

B◦(u,r)

∫
µn dηt dt ,

πµ(B(u, r)) ≥ lim sup
n→∞

π(µnH)(B(u, r)) & lim sup
n→∞

∫

B(u,r)

∫
µn dηt dt .

Taking (2) and (3) into account, it then follows that πµ is absolutely continuous
(with respect to the Lebesgue measure on Rk), and that the Radon-Nikodym deriv-
ative of πµ at u ∈ Rk is comparable to X(u). Thus the claim. �

Lemma 3.5. In the setting of Lemma 3.4, suppose that (3.2) and (1) hold with
µ 6= 0. Assume further, that for some constants θ and C,

(4) supn∈N, t∈Rk 2−θn
∫
µn dηt < ∞;

(5) For each n ∈ N, there is a 2−n-dense family Dn ⊂ π(Ω) such that

πµ
(
B(t, 2−n)

)
≤ C

(
πµn

(
B(t, C2−n)

)
+ 2n(θ−k)

)
for all t ∈ Dn, n ∈ N .

Then, dim πE ≥ dim πµ ≥ k − θ.

Proof. The assumptions readily imply that if t ∈ Dn and 0 < r ≤ 2−n, then

πµ(B(t, r)) ≤ Cπµn(B(t, C2−n)) + C2n(θ−k)

≤ C2n(θ−k) + C

∫

t∈B(t,C2−n)

∫
µn dηt dt

≤ C2n(θ−k) ,

(3.3)

with constants that are independent of t, r and n. Since for an arbitrary t ∈ π(Ω),
B(t, r) may be covered by boundedly many B(ti, 2

−n), ti ∈ Dn, the estimate (3.3)
continues to hold (with slightly bigger constants), for all t ∈ Rk, n ∈ N. In particu-
lar, this means that dim(πµ, t) ≥ k − θ for all t ∈ spt πµ. �

In order to apply Lemma 3.5, we will also need the following probabilistic state-
ment concerning the convergence speed of the µn measures of a fixed subset of Z.
We state the lemma for measures satisfying (2.1)–(2.2) although it clearly holds
under much more general assumptions.

Lemma 3.6. Let µn be an SI-martingale on a space Z and let H be a measure on
Z satisfying (2.1)–(2.2). Suppose µn(x) ≤ C2γn for all x ∈ Z, n ∈ N. Let Z ⊂ Z
be open and ̺ < m− γ. Then

P
(
(µ(Z) > 4

(
µn(Z) + 2−n̺

)
| Bn

)
≤ C exp

(
−c2n(m−γ−̺)

)
.
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Proof. Applying [17, Lemma 3.4] with η = H|T and κl = (l − n)−22−n̺/2 yields

P

(
µl(T ) ≥ µl−1(T ) + (l − n)−22−n̺/2

√
µl−1(T )

)
≤ C exp

(
−c(l − n)−42l(m−γ)−n̺

)
.

Noting the bounds 2−n̺/2
√

µl−1(T ) ≤ max{2−n̺, µl−1(T )} and
∑

l>n(l − n)−2 < 4
and summing over all l > n implies

P

(
lim sup

l→∞
µl(T ) ≥ 4

(
µn(T ) + 2−n̺

))
≤ C exp

(
−c2n(m−γ−̺)

)
.

Since T is open, µ(T ) ≤ lim inf l µl(T ) ≤ lim supl µl(T ) and the claim follows. �

4. Conformal cut-outs in the Heisenberg space

4.1. Basic facts about the Heisenberg group. Let H denote the Heisenberg
group C×R equipped with the group law (u, s) · (v, t) = (u+ v, s+ t+Im(ūv)) and
the Korányi metric d(p, q) = ||q−1 · p||, where ||(u, s)|| = (|u|4 + 4s2)1/4 (here |u| is
the usual modulus of u ∈ C). This is a boundedly compact separable metric space.

With this metric, H has Hausdorff dimension 4. Indeed, the Haar measure H on
H (which is just the Lebesgue measure on R3), suitably normalized, is 4-uniform,
that is,

H(B(x, r)) = r4 for all x ∈ H, r > 0 .

The identification H = C×R allows to endow this space with the usual Euclidean
metric dE. The following well known lemma describes the way both metrics relate
to each other. Recall that the center Z of H is the “vertical” line {0} × R and
it is also equal to the derived group D(H); we denote by π the quotient mapping
H → H/Z.

Lemma 4.1. (1) The identity mapping from any compact subset of H into C×R

is Lipschitz.
(2) If π(x) = π(y),

d(x, y) =
√
2dE(x, y)

1

2 .

(3) The Euclidean and Heisenberg metrics are equal modulo Z, i.e. for all u, v ∈
H/Z,

inf
x,y

dE(x, y) = inf
x,y

d(x, y)

where x, resp. y, runs through π−1(u), resp. π−1(v).

Note that the identity mapping from H into R3 is not globally Lipschitz. Another
way to put the third statement is to say that H/Z, endowed with the quotient of
the Heisenberg metric, identifies isometrically with the Euclidean plane.



12 LAURENT DUFLOUX AND VILLE SUOMALA

4.2. Poisson cut-out sets in Heisenberg group. As in section 2, we define the
intensity measure

Q = H⊗ dr

r5
1r<1

on H×]0, 1[.
Let Ω be the unit ball in H. Fix some parameter γ ∈]0, 4[ and consider a random

Poisson point process {(xi, ri) ; i ∈ I} ⊂ H×]0, 1[ with intensity γQ. The resulting
random cut-out set is

E = Ω \
⋃

i∈I
B(xi, ri).

As before, we let also µ be the random cut-out measure supported on E.
We will denote Hausdorff dimension (of sets and measures) with respect to the

Korányi metric by dimHeis
H .

In this setting, the general Proposition 2.2 implies the following

Proposition 4.2. Almost surely, conditional on µ 6= 0,

dimHeis(µ) = dimHeis
H (E) = 4− γ .

In what follows, we denote the “expected Hausdorff dimension” of E (with respect
to the Heisenberg metric) by β = 4− γ.

4.3. Vertical projection of Poisson cutouts in Heisenberg group.

Theorem 4.3. Almost surely, conditional on µ 6= 0,

(1) if β > 2, the push-forward measure πµ is absolutely continuous and π(E)
has non-empty interior;

(2) if β ≤ 2, dim(πµ) = dimH(π(E)) = β.

Remark 4.4. The first results concerning the projections of random sets were ob-
tained by Falconer [7], and Falconer and Grimmett [8]. According to these results,
the vertical projection of a random Cantor set E ⊂ R2 has Hausdorff dimension
min{1, dimH(E)}, and nonempty interior if dimH(E) > 1. The Theorem 4.3 can be
considered an analogue of this classical result in the Heisenberg setting.

Before proving Theorem 4.3, let us state the main geometric ingredient of the
proof. For any u ∈ H/Z, let ηu be the 2-dimensional Hausdorff measure on π−1(u),
ηu = H2|π−1(u); the reader may check that ηu is equal to the usual Lebesgue measure
on the affine line π−1(u).

Lemma 4.5. There is a constant 0 < C < ∞ such that for all 0 < r ≤ 1 and all
u, v ∈ H/Z,

|ηu(B(0, r))− ηv(B(0, r))| ≤ C|u− v| 12 . (4.1)
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Proof. By definition,

B(0, r) = {(z, t) ∈ H : |z|4 + t2 ≤ r4} ,
and a straightforward computation (using the fact that ηu is the Lebesgue measure
on π−1(u), and assertion 2 in Lemma 4.1) gives

H2(Lu ∩ B(0, r)) =

{
c1
√

r4 − |u|4 if |u| ≤ r
0 otherwise

,

(where c1 is some constant) which after a simple computation leads to the estimate

H2(Lu ∩ B)− H2(Lv ∩B)| ≤ c2
√

|u− v| .
(Here we are ignoring the term

√
r since r ≤ 1, and c2 is some fixed constant). �

Proof of Theorem 4.3. We apply Theorem 3.2 to the SI-martingale (µn)n, Γ = H/Z
(endowed with the quotient metric).

In the notations of Theorem 3.2, κ = 2. The only non-trivial hypothesis is (A4)
and we will verify this using Lemma 4.5. Let u, v ∈ H/Z. Identifying H/Z with
C and u, v with (u, 0), (v, 0), we consider u, v also as elements of H if necessary.
Moreover, we use the notation ηy for ηπ(y), for any y ∈ H. If we can show that

ηv(B(x, r) \ vu−1B(x, r)) ≤ C|u− v|γ , (4.2)

for some constants 0 < γ,C < ∞, the hypothesis (A4) follows using the same
argument as in [17, Proposition 6.1]. Indeed, (4.2) implies the estimate (6.1) of [17]
for the map Π: Z → H, Πu(x) = ux. See also Lemma 5.17, where a similar estimate
is derived in a more complicated situation.

Denote x = (w, p). Since the map y 7→ x−1y is a Heisenberg isometry and it maps
vertical lines onto vertical lines, we have

ηv
(
B(x, r) \ vu−1B(x, r)

)
= ηx−1v

(
B(0, r) \ x−1vu−1B(x, r)

)

= ηx−1v (B(0, r) \ zB(0, r)) ,

where z = x−1vu−1x. A simple calculation implies that z = (a, b), where |a|, |b| ≤
C|u− v|. Thus, the map y 7→ zy, π−1(u) → π−1(v) has the form

z(u, s) = (v, s+ ε) ,

where ε ≤ C|u − v|. It follows that π−1(x−1v) ∩ zB(0, r) is a Euclidean translate
of the line segment π−1(x−1u) ∩ B(0, r) tilted in the horizontal direction by (a
Euclidean distance) at most C|u − v|. Since ηx−1v is the Lebesgue measure on the
line π−1(π(x−1v)), it follows that

ηx−1v (B(0, r) \ zB(0, r)) ≤ ε+ |ηx−1v (B(0, r))− ηx−1u (B(0, r)) | ≤ C|u− v|
1
2 ,

using Lemma 4.5 and the fact ε ≤ |u− v| ≤ |u− v| 12 .
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Now that we have Theorem 3.2 at our disposal, we finish the proof by applying
Lemma 3.4 or Lemma 3.5 according as β > 2 or β ≤ 2. If β > 2 (that is, γ < 2),
Lemma 3.4 implies directly that πµ is absolutely continuous and that π(E) has
non-empty interior.

If β ≤ 2 (i.e. γ ≥ 2), we know that the assumption (4) of Lemma 3.5 holds
for all θ > 2 − β, but it still remains to verify (5). We use Lemma 3.6 as follows:
Fix δ > 0 and denote θ = 2 − β + δ. Given n ∈ N, consider a 2−n-dense family
Dn ⊂ π(Ω) ⊂ H/Z with cardinality at most C22n. Lemma 3.6 applied to each
Z = π−1(B(t, 2−n)), t ∈ Dn (with ̺ = β − δ) gives

P
(
πµ(B(t, 2−n)) > 4

(
πµn(B(t, 2−n)) + 2n(δ−β)

)
for some t ∈ Dn

)

≤ C22n exp
(
−c2nδ

)
.

Thus,
∞∑

n=1

P
(
πµ(B(t, 2−n)) > 4

(
πµn(B(t, 2−n)) + 2n(δ−β)

)
for some t ∈ Dn

)
< ∞ .

and by the Borel-Cantelli lemma, almost surely, there exists N0 ∈ N such that

πµ(B(t, 2−n)) ≤ 4
(
µn(B(t, 2−n)) + 2n(δ−β)

)
for all t ∈ Dn, n ≥ N0 .

Replacing 4 by (a random) constant M < ∞, the above remains true also for
1 ≤ n < N0. Lemma 3.5 now implies that dimH E ≥ dim(π(µ)) ≥ β− δ and letting
δ ↓ 0 completes the proof. Recall that π is locally Lipschitz, so that it cannot
increase the dimension of E nor µ. �

4.4. Dimension of random Heisenberg cutouts with respect to the Eu-

clidean metric. Consider the continuous piecewise linear function φ : [0, 4] → [0, 3]

φ(β) =

{
x if β ≤ 2

2 + 1
2
(β − 2) if β > 2

.

It is a general fact (see [2]) that for any Borel subset A ⊂ H, if we let β (resp. α)
be the Hausdorff dimension of A with respect to the Heisenberg (resp. Euclidean)
metric, then

α ≤ φ(β). (4.3)

Our next Theorem states that for Heisenberg Poisson cut-outs, this is an equality
with positive probability.

We fix γ ∈]0, 4[ and consider a random Heisenberg cut-out E of parameter γ as
in the previous section. Let also µ be the cut-out measure and, as before, β = 4−γ.
Conditional on µ 6= 0, β is almost surely equal to the Hausdorff dimension of E and
µ (with respect to the Heisenberg metric).
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Theorem 4.6. With positive probability, the Hausdorff dimension of E with respect
to the Euclidean metric, dimEucl

H (E), is given by

dimEucl
H (E) =

{
β if β ≤ 2

2 + 1
2
(β − 2) if β > 2

.

We first prove the following

Lemma 4.7. If β > 2 and µ 6= 0, then with positive probability, dimHeis
H (Lu ∩E) ≥

β − 2 for (Lebesgue) positively many u ∈ R2.

Recall that Lu is the vertical line π−1(u) for u ∈ H/Z ≃ R2.

Proof. Fix u ∈ R2. The restricted sequence µn|Lu is clearly an SI-martingale on Lu.
Furthermore, denoting

νn = µnηu = 2(4−β)nηu|En ,

a standard calculation using the second moment method implies that for any ε > 0,

E

(
lim sup
n→∞

∫ ∫
d(x, y)2−β+ε dνn dνn

)
< ∞ ,

see e.g. [13, Lemma 2.3]. Thus, if ν is a weak*-limit of the sequence νn, then almost
surely, ∫ ∫

d(x, y)−t dν dν < ∞

for all t < β − 2. Thus, dimHeis
H (E ∩ Lu) ≥ dimH ν ≥ 2 − β almost surely, provided

ν 6= 0.
Note that the total mass of ν equals the random variable X(u) from Theorem

3.2. Since P(X(u) > 0) > 0 for all u ∈ B◦(0, 1), Fubini’s theorem yields

P×L
{
(E, u) : dimHeis

H (E ∩ Lu) ≥ 2− β
}
=

∫
P
(
dimHeis

H (E ∩ Lu) ≥ 2− β
)
du

≥
∫

P(X(u) > 0) du

> 0 .

(where L is the Lebesgue measure on H/Z ≃ R
2). Thus

L{u : dimHeis
H (E ∩ Lu) ≥ 2− β} > 0

with positive probability. �

Remark 4.8. Although we will not use it, we note that Lemma 4.7 actually holds
in a much stronger form: Almost surely, dimHeis

H (E ∩ Lu) = β − 2 for all u ∈ R
2

with X(u) > 0, in particular for an open set of u ∈ R2, provided µ 6= 0. This
stronger form of dimension conservation may be derived using similar arguments as
in [17, Theorem 12.1].
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Proof of Theorem 4.6. Assume first that β ≤ 2. If µ 6= 0, we know by Theorem
4.3 that almost surely, the projection π(E) has Hausdorff dimension β; since the
quotient mapping π : H → H/Z identifies with the projection mapping π : C×R →
R, and the latter is Lipschitz, we deduce that

dimEucl
H (E) ≥ dimH(π(E)) = β

and the converse inequality is true because it is always true that dimEucl
H (E) ≤

dimHeis
H (E), recall Lemma 4.1, and dimHeis

H (E) is almost surely ≤ β (Proposition
2.1).

Now assume that β > 2. Suppose that dimH(E∩Lu) ≥ β−2 for positively many
u ∈ H/Z. By Lemma 4.7, this is an event of positive probability.

We are going to show that dimEucl
H (E) ≥ 1 + β

2
. We argue by contradiction and

assume that for some t < 1 + β
2
, the t-dimensional Hausdorff measure of E with

respect to the Euclidean metric,

Ht
Eucl(E)

is finite. By Theorem 7.7 in [12], we deduce that for Lebesgue-almost all u ∈ R2,

Ht−2
Eucl(E ∩ Lu) < ∞

(where Lu is still the vertical line {u} × R). Hence, by Lemma 4.1 (2),

H2t−4
Heis (E ∩ Lu) < ∞

for almost all u, which contradicts the fact that dimHeis
H (E ∩ Lu) = β − 2 > 2t− 4

for positively many u by Lemma 4.7. �

Remark 4.9. Other families of fractals that enjoy equality in equation (4.3) can be
found in [2] (“horizontal fractals”) and [5] (limit sets of Schottky groups in “good
position” at the boundary of the complex hyperbolic plane).

We note that our result also provides an alternative to Theorem 1.7 in [2]: for
any β ∈]0, 4[, we construct a “natural” example of a bounded Borel subset A of H
with Hausdorff dimension β with respect to the Heisenberg, such that the Euclidean
Hausdorff dimension of A is equal to φ(β).

5. Projections of Poisson cut-outs in S3

This is the main section of the paper. In the first subsection, 5.1 we introduce the
Euclidean metric dE on P2

C
and S3 as well as the visual metric d on S3. In 5.2 we

define chains and state some useful Lemmas. In 5.3 we look at the radial projection
along chains passing through a given point of S3. In 5.4 we show that the metric dE
on the space of chains passing through a given point x is comparable, away from x,
to the Hausdorff distance between these chains seen as subsets of S3. In 5.5 and 5.7
we state and prove our main result (Theorem B from the Introduction). In 5.6 we
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recall why S3, endowed with the visual distance, can be seen as the compactification
of H, and how the disintegration, along chains passing through a point x, of the
Lebesgue measure on S3, is comparable to the 2-dimensional Hausdorff measure on
these chains. The last paragraph 5.8 is devoted to a Hölder estimate for the measure
of chains intersected with a small annulus.

5.1. The 3-sphere and its metrics. We endow C3 with two non-degenerate Her-
mitian forms: for u = (u0, u1, u2) and v = (v0, v1, v2) in C3, let

u · v =

2∑

i=0

uivi and 〈u, v〉 = u0v0 − u1v1 − u2v2.

Note that u · v is the usual inner Hermitian product of u and v. The Euclidean
norm of u is ‖u‖ =

√
u · u. We denote by q the quadratic form associated to 〈·, ·〉,

i.e. q(u) = 〈u, u〉. The group of unimodular q-isometries SU(1, 2) is denoted by G.
For any non-zero w ∈ C3, we denote by w⊥ the set of all u ∈ C3 such that

〈u, w〉 = 0.
It is a general fact (see [3], §1.9) that if E is a finite-dimensional complex vector

space endowed with a non-degenerate Hermitian form Φ, then for any k ≥ 1 there
is a canonical extension of Φ to the exterior product

∧k E, denoted by
∧k Φ, such

that
k∧
Φ(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det(Φ(ui, vj))

where the right-hand side is the usual determinant of the k× k matrix whose (i, j)-
coefficient is Φ(ui, vj).

In this paper we will mostly consider the extension of the inner Hermitian product
to
∧2

C3, defined by the relation

(u ∧ v) · (u′ ∧ v′) =

∣∣∣∣
u · u′ u · v′
v · u′ v · v′

∣∣∣∣

and the corresponding Euclidean norm will be denoted by ‖u∧v‖; it is characterized
by the fact that ‖u ∧ v‖ = ‖u‖ · ‖v‖ if and only if u · v = 0.

Let P2
C
be the complex projective plane,

P
2
C
= {[x0 : x1 : x2] ; (x0, x1, x2) ∈ C

3 \ {0}}
where [x0 : x1 : x2] are the usual homogenous coordinates of (x0, x1, x2), so that
[x0 : x1 : x2] = [λx0 : λx1 : λx2] for any λ 6= 0. We will often use the same notation
for elements of P2

C
and arbitrary lifts in C

3 \ {0}, and the letters u, v, w, x, y, z may
denote at the same time a non-zero vector in C3 or the corresponding point of P2

C
.

Likewise, we will usually denote by w⊥ the complex projective line that is the image
of w⊥ \ {0} in P2

C
.
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We endow P2
C
with the metric defined by

dE(u, v) =
‖u ∧ v‖
‖u‖ · ‖v‖ (5.1)

Let us recall why dE satisfies the triangle inequality. When v lies in the plane
spanned by u and w this is easy to check; otherwise, let v′ be the orthogonal projec-
tion of v onto that plane (with respect to the Hermitian inner product); it follows
from the definition of dE (and the obvious inequality ‖v′‖ ≤ ‖v‖) that

dE(u, v
′) ≤ dE(u, v)

and likewise with w instead of u; we thus have

dE(u, w) ≤ dE(u, v
′) + dE(v

′, w) ≤ dE(u, v) + dE(v, w)

which is the triangle inequality.
The definition of dE above is equivalent to

dE(u, v)
2 = 1− |u · v|2

‖u‖2 · ‖v‖2 (5.2)

which shows that dE is the sinus of the angle metric. It is therefore biLipschitz
equivalent to the usual Riemannian metric on P2

C
.

In P2
C
we consider the 3-sphere

S3 = {[1 : x1 : x2] ∈ P
2
C
; |x1|2 + |x2|2 = 1} = {u ∈ P

2
C
; q(u) = 0}.

On S3 the restriction of dE is biLipschitz-equivalent to the usual Euclidean metric,
but we are more interested in the visual metric d which we now define:

d(u, v) =

√
|〈u, v〉|
‖u‖ · ‖v‖ (5.3)

for any u, v ∈ S3. If S3 is viewed as the boundary of the complex hyperbolic plane
H2

C
, then d is the visual metric associated to the hyperbolic metric on H2

C
. See

e.g. [14]. Note that if S3 was identified with the boundary of the real hyperbolic
4-space, the corresponding visual metric would be biLipschitz-equivalent to dE .

Balls of S3 with respect to d will be denoted by B(x, r) for x ∈ S3 and r > 0.
Such a ball will sometime be called a “visual ball”.

Let H be the usual Lebesgue measure on S3. One may check (Lemma 5.16) that
if f(r) is the measure of a visual ball of radius r, then

lim
r↓0

f(r)

r4
= a ,

for some 0 < a < ∞.
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For convenience, we normalize H such that a = 1. Note that the measure of a
Euclidean ball of radius r is equal, up to some multiplicative constant, to r3 for any
r small enough.

In the next Lemma we state some easy facts which we will use freely. Recall that
G = SU(1, 2) acts on S3 (because it preserves q). For g ∈ G, we benote by ||g|| the
usual operator norm of g.

Lemma 5.1. In S3 endowed with the visual metric d:

(1) For any u, v ∈ S3,

d(u, v)2 ≤ dE(u, v) . d(u, v).

(2) For any u, v ∈ S3 and g ∈ G,

d(gu, gv) = d(u, v)

√
‖u‖
‖gu‖

‖v‖
‖gv‖

and
d(gu, gv)

d(u, v)
≤ 1 + ‖ Id−g−1‖ (5.4)

(3) For any x ∈ S3, and g ∈ G,

d(x, gx) ≤
√

‖ Id−g‖ · ‖g−1‖ (5.5)

(4) For g ∈ G, x ∈ S3 and r > 0,

gB(x, r) ⊂ B
(
x, r +

√
‖ Id−g‖ · ‖g−1‖

)
. (5.6)

Proof. Statement (1) is verified by an elementary computation that we omit. First
part of statement (2) follows from the definition of d, see (5.3), and implies the
second part. Let us prove statement (3) briefly; because x belongs to S3, we have
〈x, x〉 = 0 so |〈x, gx〉| = |〈x, gx− x〉| ≤ ‖x‖‖x− gx‖. Hence

d(x, gx) ≤
√

‖x‖2‖ Id−g‖
‖x‖‖gx‖ ≤

√
‖Id− g‖ · ‖g−1‖

where we used the fact that ‖x‖ ≤ ‖g−1‖ · ‖gx‖. Finally, (4) follows from (3) and
the triangle inequality. �

5.2. Chains.

Definition. If L ⊂ P2
C
is a (complex) projective line which meets S3 in more than

one point, we say that the intersection

L ∩ S3

is a chain.
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If follows from the definition that through two points of S3 there passes one and
only one chain. Chains are not geodesics, though, and the reader should not think
that they minimize length in any way.

If x is a fixed point of S3, the family of all chains passing through x yields a
foliation of S3 \ {x}, the leaves of which are of the form L \ {x}, where L is a chain
passing through x. We will shortly (see 5.3) provide an explicit family of projections
(πx)x∈S3 such that the fibres of πx are the chains passing through x (with x removed)
and πx, restricted to any compact subset of S3 \ {x}, is a Lipschitz mapping into S2

(with one point removed).

Remark 5.2. At this point, it is perhaps useful to draw the reader’s attention to
the fact that in the Euclidean sphere S3 with a fixed point x, the family of all small
circles (in the usual sense) passing through x does not yield a foliation of S3 \ {x},
because a single point y belongs to several (indeed, infinitely many) small circles
passing through x. In order to obtain a foliation, one would have to fix both a point
x and a direction in the 3-dimensional space tangent to S3 at x.

The chains we are considering are very special “small circles”: they are the small
circles which are the boundaries of totally geodesic submanifolds of the complex
hyperbolic space H2

C
of curvature −4 (assuming the complex hyperbolic metric is

normalized to have curvature between −4 and −1).
A crucial property of chains is that they are Ahlfors-regular of dimension 2 with

respect to the restriction of the visual metric. See Lemma 5.6 and the discussion
thereafter.

It is easy to check that any chain is of the form w⊥ ∩ S3, where w ∈ C3 \ {0}
is such that q(w) < 0, and the projective class of w is uniquely defined. We will
denote by LC the space of all chains; LC identifies with the space of all w ∈ P2

C
such

that q(w) < 0 (where we denote by w both an element of P2
C
and some lift of this

element in C3):
LC = {w ∈ P

2
C
; q(w) < 0}.

This space will be endowed with the restriction of dE. We will use the letter L to
denote a chain. The chain w⊥ ∩ S3, where w ∈ LC, will be denoted by Lw.

Lemma 5.3. Let K be a compact set of chains, i.e. a compact subset of LC. Then
for any fixed chain w0 ∈ LC, there is a compact subset K of G such that K = K ·w0.

Proof. The operation of G on LC is transitive (because of Witt’s transitivity The-
orem, see e.g. [3, §4.3]) and smooth. Let H be the stabilizer of w0 in G; then the
quotient G/H is homeomorphic to LC (because G is a Lie group); and any compact
subset of this quotient space can be lifted to a compact subset of G. Indeed let y
be some point of G/H and fix a lift x of y in G; there is a compact neighbourhood
V of x in G and the image of V in G/H is a neighbourhood of y (because the
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mapping G → G/H is open) that is also compact. Hence we have found a compact
lift of a small compact neighbourhood of y. Using the local compactness of G/H
we see that any of its compact subsets can indeed be lifted to a compact subset of
G. Hence the Lemma. �

The previous Lemma will allow us to prove metric estimate for compact sets of
chains by considering a fixed chain, carrying out explicit computations, and then
using Lemma 5.1 to move the chain around using elements g in a compact subset
of G, only losing some bounded multiplicative constants in the process.

We will also need the following more precise version:

Lemma 5.4. Fix a chain L0 ∈ LC. There is a neighbourhood U of L0 in LC such
that for any L ∈ U there is g ∈ G mapping L0 onto L and satisfying ‖ Id−g‖ ≍
dE(L0, L) ≍ ‖ Id−g−1‖.
Proof. As before, let H be the stabilizer of L0 in G; the homeomorphism φ : G/H →
LC, considered in the proof of the previous Lemma, is locally biLipschitz when G/H
is endowed with the usual Riemannian metric, that is the quotient, by H , of the
right-invariant Lie group metric on G.

Fix a neigbourhood U of L0 where the restriction of φ−1 is biLipschitz, and small
enough that there is a smooth section σ : φ−1(U) → G that maps the image of Id
in G/H to Id. Recall that smooth sections exist locally because G is a Lie group
and H is closed.

Then σ ◦ φ−1 is a biLipschitz mapping from U onto its image. If L belongs to U
and g = σ ◦φ−1(L), then L = gL0 by definition of σ and φ, and ‖ Id−g‖ ≍ d(L, L0)
because the operator norm is locally Lipschitz equivalent to the right-invariant Lie
group metric of G. �

5.3. Radial projection along chains. To any x ∈ S3 we are going to associate a
projection mapping from S3 \ {x} into the Euclidean 2-sphere:

πx : S3 \ {x} → S2

If we call x the “direction” of the projection, we can then study Hausdorff di-
mension of projections in some direction, in almost every direction, or in every
direction.

Let x ∈ S3. The orthogonal x⊥ (in P2
C
) is a complex projective line tangent to S3

at x. For any y ∈ S3 distinct from x, the projective lines y⊥ and x⊥ have a single
intersection point, which belongs to LC (i.e. if u is a lift of this element to C3, then
q(u) < 0).

Let πx(y) be this intersection point. Then πx(y)
⊥∩S3 is the chain passing through

x and y. Although x and y play symmetric roles (so that πx(y) is actually equal
to πy(x)), our notation emphasizes the fact that we see πx(y) as an element of the
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projective line x⊥. This is, by definition, the projection of y in the “direction” of x.
Note that

πx : S3 \ {x} → x⊥ \ {x}
is onto and the fibres of this mapping are the chains passing through x; this is, of
course the main point here: the geometric structure we are interested in is the family
of foliations of S3 by chains, and projection mappings are but a tool to study the
geometry of our cut-out sets with respect to these foliations.

The codomain x⊥ \ {x} is endowed with the restriction of dE. Note that x⊥ is a
complex projective line, so that we have indeed defined a mapping from S3 \ {x}
onto a Euclidean 2-sphere with one point removed.

Lemma 5.5. The restriction of πx to any compact subset of S3 \ {x} is Lipschitz
when S3 is endowed with the restriction of either d or dE.

Proof. For dE, this is proved in [6, Proposition 1]. Recalling Lemma 5.1 (1), this
holds also for the visual metric d. �

We will need the following

Lemma 5.6. Let x, y be in S3 and consider πx(y) as an element of C3. Then

〈πx(y), πx(y)〉
‖πx(y)‖2

= − |〈x, y〉|2
‖x ∧ y‖2

Note that the left-hand side is well-defined and equal to 〈w,w〉
‖w‖2 for any representa-

tive w of πx(y) in C3.
In this Lemma, the left-hand side depends only on the complex projective line

passing through x and y; in particular, if L is a fixed chain, then for any distinct
x, y ∈ L the number

|〈x, y〉|2
‖x ∧ y‖2

depends only on L. This is a quantitative version of the fact that along chains, d2E
is comparable to d.

Proof. Consider the mapping κ :
∧2

C3 → C3 defined by the relation

〈κ(u ∧ v), w〉e0 ∧ e1 ∧ e2 = u ∧ v ∧ w

for any u, v, w ∈ C
3, where (e0, e1, e2) is the canonical basis of C3. It is easy to

check that κ is an isometry when C3 is endowed with either 〈·, ·〉 or the Hermitian
inner product, and

∧2
C3 is endowed with the corresponding extension.
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Also, by definition κ(u ∧ v) is a representative, in C3, of πx(y) if u (resp. v) is a
representative of x (resp. y). We thus have

〈πx(y), πx(y)〉
‖x ∧ y‖2 =

〈κ(x ∧ y), κ(x ∧ y)〉
‖κ(x ∧ y)‖2

and this proves the Lemma because using the relations q(x) = q(y) = 0 one sees
that 〈x ∧ y, x ∧ y〉 = −|〈x, y〉|2. �

5.4. Metric inequalities.

5.4.1. Distance to a chain.

Lemma 5.7. Let K be a compact set of chains. For any L ∈ K, let ηL be the 2-
dimensional Hausdorff measure with respect to the restriction d|L. Then uniformly
in L ∈ K,

ηL(B(x, r)) . r2

for any x ∈ S3 and r > 0.

Proof. If L satisfies the conclusion of the Lemma (for any x and r), and g belongs
to some compact subset of G, then gL also satisfies the conclusion of the Lemma,
with a new constant that depends continuously on g. Indeed, g yields a biLipschitz
mapping from L to gL,see Lemma 5.1 (2); the 2-dimensional Hausdorff measure on
gL is thus equivalent to the push-forward, through g, of the 2-dimensional Hausdorff
measure on L, and the Radon-Nikodym density is bounded.

Now if L is the chain orthogonal to, e.g., w = [0 : 0 : 1], an easy computation
shows that indeed ηL(B(x, r)) . r2 for any x ∈ S3 and r > 0. Hence the Lemma
follows from an application of Lemma 5.3. �

Lemma 5.8. Fix a compact subset K of LC. For w ∈ K such that q(w) < 0 we
denote by Lw the corresponding chain, i.e. Lw = w⊥ ∩ S3.

The following holds uniformly in x ∈ S3 and w ∈ K:

d(x, Lw) ≍ dE(x, Lw) ≍ dE(x, w
⊥) =

|〈x, w〉|
‖x‖ · ‖w‖ (5.7)

Here, d(x, Lw) is the visual distance from x to Lw, that is,

d(x, Lw) = inf
y∈Lw

d(x, y)

Likewise dE(x, Lw) is the corresponding Euclidean distance (the same quantity,
where dE(x, y) is replaced by d(x, y)) and dE(x, w

⊥) is the Euclidean distance from
x to w⊥ in P

2
C
.

The content of this lemma is two-fold: first, d and dE are comparable transversally
to chains (compare to Lemma 4.1 (1)); second, this transversal distance is given by
the simple formula above.
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Proof. Fix w ∈ C3 such that q(w) < 0. For any x ∈ P2
C
, the formula

dE(x, w
⊥) =

|〈x, w〉|
‖x‖ · ‖w‖

is well-known and easy to check. Also, the inequality dE(x, Lw) ≥ dE(x, w
⊥) is

obvious.
Now fix w0 = [0 : 0 : 1] and let x be some element of S3. A simple calculation

shows that dE(x, Lw0
) . dE(x, w

⊥
0 ). If g is some element of SU(1, 2) and we denote

by w the image gw0, then we have, for any x ∈ S3,

dE(x, Lw) . dE(g
−1x, Lw0

) . dE(g
−1x, w⊥

0 ) . dE(x, gw
⊥
0 ) = dE(x, w

⊥)

where the constants depend on the operator norms of g and g−1.
If K is a fixed compact subset of LC, there is a compact subset K of G such that

K = K · w0. The previous argument then gives

dE(x, Lw) .K dE(x, w
⊥)

for any x ∈ S3 and w ∈ K.
Similarly, one can check that for any x ∈ S3, d(x, Lw0

) . dE(x, Lw0
) and then for

g ∈ G,

d(x, Lgw0
) . d(g−1x, Lw0

) . dE(g
−1x, Lw0

) . dE(x, Lw)

where the constants depend on the operator norms of g and g−1, and we argue as
before. �

Lemma 5.9. Let K1, K2 be non-empty disjoint compact subsets of S3. For any
x ∈ K1, y ∈ K2 and any chain Lw (w ∈ LC) passing through x and K2,

dE(πx(y), w) ≍ d(y, Lw)

Proof. Let K ⊂ S3 be a compact set such thatK∩K1 = ∅ and the δ-neighbourhood
K2(δ) = ∪u∈K2

B(u, δ) ⊂ K for some δ > 0. Recall that the restriction of πx to K
is Lipschitz, with a uniform Lipschitz constant when x ∈ K1, when K is endowed
with the restriction of (the Euclidean or) the visual metric. This yields at once the
inequality

dE(πx(y), w) . d(y, Lw ∩K) .

Because K1 and K2 are disjoint (and y belongs to K2), the right-hand side is com-
parable to d(y, Lw). Hence, we obtain dE(πx(y), w) . d(y, Lw) and what is left is to
prove the converse inequality.

Recalling Lemma 5.8, it suffices to prove that

|〈y, w〉|
‖y‖‖w‖ .

‖w ∧ πx(y)‖
‖w‖‖πx(y)‖

. (5.8)
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First, remark that the exterior product
∧3

C
3 is a complex line; it is readily

checked that the canonical extension of 〈·, ·〉 to this complex line is equal to the
extension of the Hermitian inner product. We thus have

‖w ∧ πx(y) ∧ y‖2 = 〈w ∧ πx(y) ∧ y, w ∧ πx(y) ∧ y〉

=

∣∣∣∣∣∣

〈w,w〉 〈w, πx(y)〉 〈w, y〉
〈πx(y), w〉 〈πx(y), πx(y)〉 〈πx(y), y〉
〈y, w〉 〈y, πx(y)〉 〈y, y〉

∣∣∣∣∣∣
.

By definition, y is orthogonal to πx(y) and to y itself, from this, it follows at once
that the above determinant is equal to

−|〈w, y〉|2 × 〈πx(y), πx(y)〉
Now use the fact (Lemma 5.6) that

〈πx(y), πx(y)〉 = −‖πx(y)‖2 ×
|〈x, y〉|2
‖x ∧ y‖2 .

All in all, we thus have

‖w ∧ πx(y) ∧ y‖ = ‖πx(y)‖ × |〈w, y〉| × |〈x, y〉|
‖x ∧ y‖ .

We can now prove inequality (5.8). The above computations yields

‖w ∧ πx(y) ∧ y‖
‖w‖‖πx(y)‖‖y‖

=
|〈w, y〉|
‖w‖‖y‖ × d(x, y)2

dE(x, y)

and for x ∈ K1, y ∈ K2 the distance d(x, y) is uniformly bounded below by some
positive constant, while dE(x, y) is bounded above by 1. We thus have

‖w ∧ πx(y) ∧ y‖
‖w‖‖πx(y)‖‖y‖

&
|〈w, y〉|
‖w‖‖y‖

and the left-hand side is bounded above by dE(w, πx(y)) because, for any u1, u2, u3 ∈
C3, one has

‖u1 ∧ u2 ∧ u3‖ ≤ ‖u1‖ × ‖u2 ∧ u3‖
and this finishes the proof. �

Corollary 5.10. Let K1, K2 be non-empty disjoint compact subsets of S3 and let
K be a compact set such that K ∩K1 = ∅ and K2(δ) ⊂ K. For any x ∈ K1 and
any u, v ∈ LC such that Lu and Lv both pass through x and K2,

dE(u, v) ≍ d(Lu ∩K,Lv ∩K)

where the right-hand side denotes the Hausdorff distance between the Lu ∩ K and
Lv ∩K, with respect to either the visual or the Euclidean metric.
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Recall that if A,B are closed subsets of some metric space X , the Hausdorff
distance d(A,B) is the number

max{θ(A,B), θ(B,A)}
where

θ(A,B) = sup
x∈A

d(x,B)

Proof. The previous Lemma (recall (5.4.1)) shows that if u, v are as in the statement
of the Corollary, then for any y ∈ Lu ∩K2,

d(y, Lv ∩K) ≍ dE(u, v)

and in particular the supremum, for y ∈ Lu∩K, of the left-hand side, is comparable
to dE(u, v). With the notation above, we thus have

θ(Lu ∩K,Lv ∩K) ≍ dE(u, v)

and the corollary follows from this. �

The content of the above results should be clear: it is a generalization of the
fact that in Heisenberg group, the Hausdorff distance between two vertical chains
is the same when computed with respect to either the Euclidean or the Heisenberg
metric, and it is also equal (by definition) to the distance between the images of
these vertical chains in the quotient space H/Z. We are now replacing the vertical
projection with the radial projection with respect to any point, simply losing some
multiplicative constants in the process.

The following lemma will be needed in the course of the proof of Lemma 5.18.

Lemma 5.11. Let B, V be non-empty disjoint compact subsets of S3. There is a
constant C > 0 such that the following holds: for any x, x′ ∈ B, any chains Lu, Lu′

passing through x, x′ respectively and also meeting V , and for any r > 0,

π−1
x (B(u, r)) ∩ V ⊂ π−1

x′ (B(u′, C(r + dE(u, u
′)))) .

Proof. Note that u ∈ x⊥ and u′ ∈ x′⊥. The claim follows from the previous results
along with the triangle inequality for the Hausdorff metric. Let V ′ be a compact
set disjoint form B such that it contains the δ-neighbourhood V (δ) for some δ > 0.
Then, we know from Corollary 5.10 that d(Lu ∩ V ′, Lu′ ∩ V ′) is comparable to
dE(u, u

′). Thus, for all y ∈ π−1
x (B(u, r)) ∩ V , the triangle inequality along with

Lemma 5.9, (5.4.1), and Corollary 5.10 yields

dE(πx′(y), u′) ≍ d(y, Lu′ ∩ V ′) ≤ d(y, Lu ∩ V ′) + d(Lu ∩ V ′, Lu′ ∩ V ′)

≍ dE(πx(y), u) + dE(u, u
′) ≤ r + dE(u, u

′)

and this is equivalent to the required inclusion. �
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5.5. Statement of the main result. Just like in the previous section, we can
define random Poisson cut-outs in S3 with respect to the visual metric. We obtain
a random cut-out set E and a random finite Borel measure µ, supported on E, and
non-zero with positive probability.

Let γ be the intensity parameter of the cut-out as in Section 2. Conditional
on µ 6= 0, we know that, almost surely, dimH(E) = 4 − γ and, also, µ has exact
dimension 4− γ.

Our main Theorem deals with the behaviour of the cut-out set with respect to
radial projections along chains in every “direction”, i.e. along πx for every x ∈ S3.
This extends the corresponding results for projections of Euclidean cut-out sets
along every orthogonal projection [17].

Theorem 5.12. Let E be a random Poisson cut-out set in S3 and let µ be the
cut-out measure.

Let β be the Hausdorff dimension of E (with respect to the visual metric). Then,
almost surely on µ 6= 0, the following holds: For every x ∈ S3,

dimH(πx(E)) = dim(πxµ) = inf{2, β}
and, if β > 2, πx(µ) is absolutely continuous and πx(E) has non-empty interior.

Theorem 5.12 will be proved in Section 5.7.

Remark 5.13. As explained in the introduction to this paper, it is not true that if
A is a Borel subset of S3 of Hausdorff dimension β with respect to the visual metric,
and if we pick x at random with respect to the Lebesgue measure on H, then the
image πx(A) has almost surely Hausdorff dimension inf{2, β}.

For instance, any chain L ⊂ S3 has (visual) Hausdorff dimension 2, but all of
its radial projections πx(L) are smooth curves (or singletons if x ∈ L) so their
dimension is ≤ 1.

However, in the special case when α, the Hausdorff dimension of A with respect
to the Euclidean metric, is given by

α = φ(β)

(where φ is as in (4.4)), it is true that πx(A) has Hausdorff dimension inf{2, β} for
almost all x; this follows at once from Theorem 5 in [6]. The Theorem 5.12 shows
that for Poisson cut-outs, we have a much stronger result: We can replace “almost
all x ∈ S3”, by “all x ∈ S3”.

5.6. Relating S3 to Heisenberg group. It is well-known that the Euclidean
sphere Sn minus one point x is mapped onto the Euclidean space Rn through the
so-called stereographic projection. This mapping is one-to-one and conformal. Small
circles of Sn passing through x are mapped onto affine lines of Rn.
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Likewise, the visual sphere S3 minus x is mapped onto the Heisenberg group H;
this mapping is locally biLipschitz, and chains passing through x are mapped onto
vertical lines, that is, translates of the center Z = R×{0}. We will now define this
mapping and derive some useful results.

The operation of SU(1, 2) on C3 passes to the quotient and gives an operation of
PU(1, 2) on P

2
C
. Since S3 is the set of all w ∈ P

2
C
such that q(w) = 0, the operation

of PU(1, 2) on P2
C
can be restricted to the invariant subset S3.

Now fix a point x ∈ S3 and let Px be the stabilizer of x inPU(1, 2). The unipotent
transformations in Px form a subgroup isomorphic to H. The operation of H on
S3 \ {x} is simply transitive, allowing for an identification of S3 \ {x} with H. We
refer the reader to [9, Chapter 4] for details and for explicit descriptions of Px and H

in appropriate coordinates (using an Iwasawa decomposition of PU(1, 2)). Another
useful (and more accessible) reference is [14]. See also [4, pp. 47–55].

The identification of H with S3 \ {x} depends on the choice of a point in S3 \ {x}
(this is the point that will be identified with the origin of H). One way to choose this
point is to let o = [1 : 0 : 0] be the base point in the 4-ballB4 = {w ∈ P2

C
; q(w) > 0};

the stabilizer K of o in PU(1, 2) identifies with U(2) = SO(3) and the stabilizer of
x in K identifies with SO(2) and fixes exactly two points: x and x̂ ∈ S3. We let
x̂ be the point of S3 associated to the origin of H. (This identification of H with
S3 \ {x} is uniquely defined up to conjugation by an element of SO(2), that is, up
to a Euclidean rotation with axis Z.)

Let φx : S3 \ {x} → H be the mapping we just defined. This is a “Heisenberg
stereographic projection at x”.

Proposition 5.14. (1) The Heisenberg stereographic projection φx maps chains
passing through x (with x removed) onto vertical lines in H. Any vertical
line in H is the image of one and only one chain passing through x.

(2) Fix x ∈ S3 and let K be a compact subset of S3 \ {x}. There is a constant
C > 0 such that

• for any y, y′ ∈ K, C−1d(y, y′) ≤ d(φx(y), φx(y
′)) ≤ Cd(y, y′) (where

as before we use the symbol d for both the visual metric on S3 and the
Korányi metric on H).

• The push-forward of the Lebesgue measure on K through φx is equivalent
to the Lebesgue measure on φx(K), and the Radon-Nikodym derivative
is continuous and lies between C−1 and C.

Proof. For the first point, see [9, 4.2.3.], The second point follows from the fact that
the push-forward of the visual metric through φx is locally biLipschitz-equivalent to
the Korányi metric, and the Lipschitz constant is locally continuous in x; explicit
formulas can be found in [4, p. 54], but let us provide our own formulas for reader’s
convenience.
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Computations are made easier by replacing q with the orthogonally equivalent
q′(x) = 2Re(x0x2) − |x1|2 (x = (x0, x1, x2)). Fix, in these new coordinates, x =
(1, 0, 0), x′ = (0, 0, 1) in S3. Explicitly, if we denote by (e0, e1, e2) the canonical
basis of C3, in which q is given by q(x) = |x0|2−|x1|2−|x2|2, and we let f0 =

e0+e2√
2
,

f1 = e1, f2 =
e0−e2√

2
, then

q(x0, x1, x2) = q′(x0f0 + x1f1 + x2f2) .

Note that this change of basis is orthogonal with respect to the inner product
structure on C3.

It can be checked that the Heisenberg group associated with x (i.e. stabilizing x)
consists of the matrices of the form


1 α is+ |α|2

2
0 1 α
0 0 1




where α ∈ C and s ∈ R (see [14]). The orbit of x′ through H is equal to S3 \ {x}
and the inverse of the Heisenberg stereographic mapping is given by

φ : (α, s) 7→
(
is +

|α|2
2

, α, 1

)
∈ S3

If we let h = (α, s), h′ = (β, t) be elements of H, a routine computation shows
that the quotient

d(φ(h), φ(h′))

d(h, h′)

is a continuous mapping that is uniformly bounded away from 0 and +∞ in any
compact subset of H.

If K is a compact subset of S3 \ {x}, the restriction of φ to K, composed with
the quotient mapping H → H/Z, gives, by passing to the quotient, a biLipschitz
mapping

K/R → H/Z

where K/R is the quotient of K by the equivalence relation R defined by “y, y′

are equivalent if they lie on the same chain through x”, endowed with the quotient
metric.

The Proposition follows. �

Lemma 5.15. Fix x ∈ S3 and let K be a compact subset of S3 \ {x}. Denote by

H1 the restriction of Lebesgue measure to K and by H̃x the Borel measure on K
defined, for any Borel subset A ⊂ K, by

H̃x(A) =

∫
ηπ−1

x (u)(A)d(πxH1)(u)
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where ηL is the 2-dimensional Hausdorff measure on the chain L; in other words,

H̃x is the measure obtained by taking the Lebesgue measure on K and replacing the
conditional measures on the fibres of πx with the 2-dimensional Hausdorff measure
restricted to these fibres.

Then, H̃x is equivalent to H1, and the Radon-Nikodym derivative lies between
C−1 and C, where C is a non-zero constant (depending on K).

Proof. This Lemma follows from the previous Proposition recalling that on the ver-
tical lines of H, the conditional measures are equal to the two-dimensional Hausdorff
measure. �

Lemma 5.16. The Lebesgue measure H on S3 can be rescaled in such a way that
for any x′ ∈ S3,

lim
r→0

H(B(x′, r))

r4
= 1

where B(x′, r) is the ball of radius r centered at x′ with respect to the visual metric
d.

Proof. It is enough to show this for a fixed x′ because the group of Euclidean isome-
tries of S3 preserve H as well as d. Let x, x′ be as in the proof of Proposition 5.14,
and let φ : H → S3 \{x}. The push-forward, through φ, of the Korányi metric on H

is called the Hamenstädt metric based at x, denoted dx (it is a metric on S3 \ {x});
an easy computation shows that

lim
y→x′

d(x′, y)

dx(x′, y)

exists and may be taken to be 1 up to rescaling dx. Now let also Hx be the push-
forward, through φ, of the Lebesgue measure H on H, so that any ball of radius r
with respect to dx has Hx-measure r4. Existence of the previous limit then implies
the exisence of

lim
r→0

Hx(B(x′, r))

r4

and because Hx is equivalent toH and the Radon-Nikodym derivative is continuous,
we conclude that

lim
r→0

H(B(x′, r))

r4

exists. �

5.7. Proof of the main result. We now set out to prove Theorem 5.12. Fix a
countable family (Bn) of balls such that any x ∈ S3 belongs to infinitely many of
the Bn, and

inf{diamBn ; x ∈ Bn} = 0 .
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We denote by 2Bn the ball with same centre as Bn and twice the radius; the radii
are chosen so that 2Bn \ Bn 6= ∅. The closure of the complement S3 \ 2Bn will be
denoted by Vn. We will work locally by using the fact that for any x ∈ S3, any finite
Borel measure µ giving zero measure to {x} can be written as

µ =
∑

µi

where, letting (Bni
) be the family of those Bn that contain x, µi is supported on

Vni
.
As in Section 5.5, consider a random Poisson cut-out set E and let µ be the

corresponding cut-out measure supported on E; and fix a ball Bn0
from the previous

family. We first state the main technical lemma. Its proof is postponed to Section
5.8. Recall that for any chain L, ηL is the 2-dimensional Hausdorff measure restricted
to L.

Lemma 5.17. The space of chains LC can be covered by open subsets U satisfying
the following property: for any L, L′ ∈ U ,

∣∣∣∣∣ηL

(
N⋃

i=1

Bi

)
− ηL′

(
N⋃

i=1

Bi

)∣∣∣∣∣ . N · d(L, L′)1/4 (5.9)

for any finite family of (visual) balls (Bi)1≤i≤N . The constant implied in the notation
. depends only on U .

Assuming Lemma 5.17 holds, we will fix n0 ∈ N and prove the statement of
Theorem 5.12 for µ|Vn0

and πx, x ∈ Bn0
.

Lemma 5.18. Conditional on µ(Vn0
) 6= 0, the following, where µ′ = µ|Vn0

, holds
almost surely: for any x ∈ Bn0

,

dim(πx(µ
′)) = inf{2, dim(µ′)} .

Moreover, πx(µ
′) is absolutely continuous and πx(E ∩ Vn0

) has non-empty interior,
if dim(µ′) > 2.

Proof of the Lemma. Let K be the space of all chains passing through the compact
subsets Bn0

and Vn0
. Then, K is compact; indeed the mapping that sends a pair

(x, y) of distinct points of S3 to the chain passing through x and y is continuous,
thus compactness of K follows from the compactness of Bn0

× Vn0
.

By virtue of Lemma 5.17, we can cover K with open sets U1, . . . ,Up, such that
the conclusion of Lemma 5.17 holds for any L, L′ ∈ Ui. Denote Ki = K ∩ Ui.

For each index i, we wish to apply Theorem 3.2 to

• the restricted SI-martingale (µ′
n)n where µ′

n = µn|Vn0
(this is again an SI-

martingale);
• the space of chains Γ = Ki;
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• the family of measures (ηL)L∈Ki
where for any chain L ∈ Ki, ηL is the 2-

dimensional Hausdorff measure on L: ηL = H2|L.
We will also apply Lemmas 3.4 and 3.5 for the projections πx, x ∈ Bn0

. Note
that the co-domain of πx, x

⊥ \ {x} ⊂ P2
C
, is a punctured Euclidean 2-sphere, which

is locally biLipschitz equivalent to R2. Thus we may apply these lemmas for k = 2.
Let us now check that the assumptions of Theorem 3.2 are satisfied. Assumption

(A1) holds trivially. From (2.5) it follows that (A3) holds with any exponent γ′ > γ.
Assumption (A2) is the content of Lemma 5.7.

Finally, to verify the assumption (A4), we note that if Nn denotes the number of
Poisson cut-out balls with radius > 2−n (i.e. those (xi, ri) ∈ Y for which, ri > 2−n),
then almost surely, there is a random integer M0 such that Nn ≤ 25n for all n ≥ M0.
See [17, Lemma 5.15] for a proof of this fact. (Here 5 may be replaced by any
number > 4). Combining this with Lemma 5.17 yields

∫
µn dηL −

∫
µn dηL′ ≤ C2n(5+γ′)d(L, L′)1/4

for any n ≥ N0 and for all L, L′ ∈ Ki, recall (2.5).
Thus, the assumptions of Theorem 3.2 are satisfied. Let us now consider the case

dim(µ′) > 2 (this is the case when, in the notations of Theorem 3.2, γ < 2, since
dim(µ′) = 4− γ). Theorem 3.2 implies that for any L ∈ Ki,

∫
µ′
n dηL

converges uniformly to a finite number X(L) and the mapping L 7→ X(L) is contin-
uous on Ki. Since the sets Ki are relatively open, this mapping remains continuous
on K = K1 ∪ . . . ∪ Kp as well. Now fix some x ∈ Bn0

and apply Lemma 3.4 to
the compact metric space Z = Vn0

, the projection π = πx, the measure H|Vn0
,

the sequence of Borel functions (µ′
n|Vn0

)n and the family of fibre measures (ηL|Vn0
)

where L goes through all chains passing through x and meeting Vn0
. This Lemma

yields the absolute continuity of πxµ
′, and the fact that πx(suppµ

′) has non empty
interior, as desired.

Now we look at the case dim(µ′) ≤ 2 and fix some θ > 2−dim(µ′). The conclusion
of Theorem 3.2 now gives, for any chain L ∈ K, and any n,

∫
µ′
n dηL . 2θn . (5.10)

In order to apply Lemma 3.5, we still need to check that, almost surely, the
assumption (5) in that lemma holds simultaneously for each πx, x ∈ Bn0

.
Let us fix ε = 1/(1000C), where C is the constant from Lemma 5.11, when the

lemma is applied for B = Bn0
, V = Vn0

. For each n, let Dn be an (ε2−n)- dense
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subset of K and for each L ∈ Dn pick x ∈ Bn0
and u ∈ πx(V0) such that L = π−1

x (u)
and consider

TL := π−1
x (B(u, 21−n)) ∩ Vn0

.

Note that such a Dn may be chosen to have cardinality ≤ CK,ε2
4n.

Using Lemma 3.6 as in the proof of Theorem 4.3 implies the existence of a random
constant M < +∞ such that

µ′(TL) ≤ M(µ′
n(TL) + 2n(θ−2)) (5.11)

for all L ∈ Dn and all n ∈ N.
Now, let us fix x ∈ Bn0

and let n ∈ N. For each L = Lu ∈ Dn, consider
uL,x ∈ πx(Vn0

) such that dE(uL,x, u) ≤ ε2−n if there is any. Let Dx
n be the collection

of all such uL,x. It follows from Lemma 5.11 that Dx
n ⊂ πx(Vn0

) is 2−n-dense and

π−1
x (B(u′, 2−n)) ∩ Vn0

⊂ TL ⊂ π−1
x (B(u′, C2−n)) , (5.12)

whenever u′ ∈ Dx
n is such that u′ = uL,x.

Combining (5.11) and (5.12) we have

πxµ
′(B(u, 2−n)) ≤ C

(
µ′
n(B(u, C2−n)) + 2n(θ−2)

)
,

for all n ∈ N, and all u ∈ Dx
n Recalling (5.10), we may now apply Lemma 3.5

which implies that dim(πxµ
′) ≥ 2− θ. Note that, almost surely, this holds for all

x ∈ Bn0
simultaneously. Hence the conclusion. �

Proof of Theorem 5.12. If µ 6= 0, for any x ∈ S3 we can write µ as a countable sum

µ =
∑

i

µi

where each µi 6= 0 is supported on some Vni
and x belongs to the corresponding Bni

.
Now for any i, µi has same dimension as µ, and πx(µ

i) is absolutely continuous, resp.
has same dimension as µi, if dim(µ) > 2, resp dim(µ) ≤ 2. The same must hold for
πx(µ) =

∑
i πx(µ

i). In the same way, one obtains that πx(suppµ) is non-empty if
dim(µ) > 2. �

5.8. Technical Lemma. It remains to prove the technical Lemma 5.17. We will
accomplish this in several parts. One of the key steps is an estimate on the size of the
intersection of a chain and an annulus, see Lemma 5.19. Recall that G = SU(1, 2).

Lemma 5.19. Let K be a compact subset of the space of chains LC. There is a
constant r0 such that for any x ∈ S3, L ∈ K and 0 < δ ≤ r ≤ r0,

ηL (A(x, r, δ)) . δ1/2 (5.13)

where ηL is the 2-dimensional Hausdorff measure on L, and

A(x, r, δ) = {y ∈ S3 ; r ≤ d(x, y) ≤ r + δ} .
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The proof of this lemma relies on two facts. First, we devise an explicit parametriza-
tion of chains in general position.

Fix w = [1 : w1 : w2] where |w1|2 + |w2|2 > 1, so that w belongs to LC, and let
κ2 = |w1|2 + |w2|2 and υ2 = κ2 − 1. We denote by L the chain w⊥ ∩ S3. Then the
mapping

θ 7→ yθ = [κ2, y1, y2] ∈ P
2
C

; (y1, y2) = (w1, w2) + υeiθ(−w2, w1) (5.14)

(where θ ∈ [0, 2π[) is a smooth parametrization of L. If 1 + ε ≤ κ2 ≤ ε−1, the
modulus of the derivative of this mapping is bounded away from 0 and +∞ by
a constant depending only on ε; in particular, θ 7→ yθ is, by (1) in Lemma 5.1,
1
2
-Hölder (with a multiplicative constant depending on ε) when [0, 2π[= R/(2πZ) is

endowed with the usual torus metric and S3 is endowed with the Heisenberg metric.
Secondly, we need an elementary estimate from plane geometry. Let S1 be the

unit circle in the complex plane. For any 0 < δ ≤ r ≤ 0.001 (say), and any z ∈ C,
the Euclidean length of the intersection of S1 with the annulus A(z, r, δ) = {u ∈
C ; r ≤ d(z, u) ≤ r + δ} is dominated by δ1/2, i.e.

H1(S1 ∩A(z, r, δ)) . δ1/2 . (5.15)

We leave it to the reader to verify the claims of the last paragraphs. Let us now
prove the Lemma 5.19.

Proof of Lemma 5.19. Our approach is fairly down-to-earth: we prove the needed
estimate for a fixed x which allows for explicit computations, and we use the tran-
sitivity of K = SO(3) on S3 to deduce that the Lemma holds for any x ∈ S3. Until
further notice, we let x be the fixed element [1 : 1 : 0] of S3.

We denote by L0 the set of all w = [1 : w1 : w2] ∈ P2
C
where κ2 = |w1|2+ |w2|2 > 1

and w2 6= 0, and L0(ε) those w such that also 1 + ε ≤ κ2 ≤ ε−1 and |w2| ≥ ε. Any
compact subset of L0 is contained in some L0(ε) for ε small enough. Now fix ε > 0
and w ∈ L0(ε), and let θ 7→ yθ be the mapping onto the chain L = w⊥ ∩ S3 defined
above (5.14).

A simple computation gives

d(x, yθ)
2 =

|κ2 − y1|
2κ2

=
|w2|υ
2κ2

|eiθ − z| , (5.16)

where we denote

z =
w1 − κ2

w2υ
.

Direct application of (5.15) yields that there is a constant r0 = r0(ε) such that for
0 < r < r0(ε) and 0 < δ ≤ r2,

H1({θ ∈ [0, 2π[ ; r ≤ d(x, yθ) ≤ r + δ}) .ε δ
1/2
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If, on the other hand, r2 < δ ≤ r, then it holds trivially that

H1({θ ∈ [0, 2π[ ; r ≤ d(x, yθ) ≤ r + δ}) . r ≤ δ1/2

We thus see that this estimate holds, provided that 0 < δ ≤ r ≤ r0(ε), and we
deduce (using the 1

2
-Hölderness of θ 7→ yθ) that

ηL (A(x, r, δ)) .ε δ
1/2 (5.17)

for 0 < δ ≤ r ≤ r0(ε), and w ∈ L0(ε).
Let us now denote by L1 the set of all w = [1 : w1 : 0] where |w1| > 1, and let

L1(ε) be those w such that 1 + ε ≤ |w1|2 ≤ ε−1. Since

|〈x, ω〉|
||x||||ω|| & 1− |ω1|2 ≥ ε ,

there is a constant r1(ε) such that for any w ∈ L0(ε), and any 0 < δ ≤ r ≤ r1(ε),
the intersection A(x, r, δ) ∩L is empty; the estimate (5.17) thus holds trivially also
in this case.

Finally, we leave it to the reader to deal with the subset L2 ⊂ LC of all w = [0 :
w1 : w2] where w1 and w2 are not both 0.

All in all, we have the following: let K be a compact subset of LC; there is a
constant r(K) such that, for any L ∈ K and 0 < δ ≤ r ≤ r(K),

ηL (A(x, r, δ)) . δ1/2 . (5.18)

Now recall the Iwasawa decomposition PU(1, 2) = KAN , where the operation
of K on S3 ⊂ P2

C
identifies with the natural operation of SO(3). This operation is

transitive, and it preserves both dE and d, as well as chains (in other words, the
image of a chain through an element of K is another chain).

Apply the result above to the compact subset KK ⊂ P
2
C
instead in K. We obtain

r(KK) > 0 such that, for any 0 < δ ≤ r ≤ r(KK), and any w ∈ KK,

ηLw
(A(x, r, δ)) . δ1/2 ,

(where still x = [1 : 1 : 0]). If ω ∈ K and x′ ∈ S3, let g ∈ K such that gx′ = x.
Then

ηLw
(A(x′, r, δ)) = H2

Heis(w
⊥ ∩ A(x′, r, δ)) = H2

Heis((gw)
⊥ ∩A(x, r, δ))

= ηLgw
(A(x, r, δ)) . δ1/2 ,

as desired. �

We may now finally complete the proof of Lemma 5.17.
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Proof of Lemma 5.17. Let L1, L2 be two chains and let g ∈ G be such that L2 = gL1.
For any Borel subset A of S3,

η1(A)− η2(A) ≤ O (‖ Id−g‖) + η2(gA \ A) (5.19)

Indeed, η1(A) = g∗η1(gA) (where g∗η1 is the push-forward of η1 through g) and
g−1 : L2 → L1 is a Lipschitz mapping with Lipschitz constant (1 + ‖ Id−g‖) (see
(5.4)), so

g∗η1(gA) ≤ (1 + ‖ Id−g‖)2 η2(gA) (5.20)

and (5.19) follows.
In particular, if A is the union ∪iBi of N balls, (5.19) implies

∣∣∣∣∣η1

(
⋃

i

Bi

)
− η2

(
⋃

i

Bi

)∣∣∣∣∣

≤ O
(
‖ Id−g‖+ ‖ Id−g−1‖

)
+
∑

i

η1(g
−1Bi \Bi) + η2(gBi \Bi) .

In view of this, our task is to show that locally we can find g such that d(L1, L2) ≍
‖ Id−g‖ ≍ ‖ Id−g−1‖ and to bound η(gB \B) by (a power of) ‖ Id−g‖ where η is
the 2-dimensional Hausdorff measure on some chain L sitting in a compact subset
of LC.

The first step is accomplished in Lemma 5.4. The second step follows from Lemma
5.19, and from the fact that if B = B(x, r) is a ball of radius r, then by (5.6)

gB \B ⊂ A
(
x, r,

√
‖ Id−g‖ · ‖g−1‖

)
,

where A(x, r, δ) = {y ∈ S3 ; r ≤ d(x, y) ≤ r + δ}. �
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E-mail address : laurent.s.dufloux@jyu.fi

Department of Mathematical Sciences, University of Oulu, Finland

E-mail address : ville.suomala@oulu.fi

URL: http://cc.oulu.fi/~vsuomala/


	1. Introduction
	2. Dimension of conformal Poisson cut-out sets
	3. Spatially independent martingales in metric spaces
	4. Conformal cut-outs in the Heisenberg space
	4.1. Basic facts about the Heisenberg group
	4.2. Poisson cut-out sets in Heisenberg group
	4.3. Vertical projection of Poisson cutouts in Heisenberg group
	4.4. Dimension of random Heisenberg cutouts with respect to the Euclidean metric

	5. Projections of Poisson cut-outs in S3
	5.1. The 3-sphere and its metrics
	5.2. Chains
	5.3. Radial projection along chains
	5.4. Metric inequalities
	5.5. Statement of the main result
	5.6. Relating S3 to Heisenberg group
	5.7. Proof of the main result
	5.8. Technical Lemma

	References

