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Abstract 

The hierarchical structure of production planning has the advantage of assigning different decision variables to 

their respective time horizons and therefore ensures their manageability. However, the restrictive structure of this 

top-down approach implying that upper level decisions are the constraints for lower level decisions also has its 

shortcomings. One problem that occurs is that deterministic mixed integer decision problems are often used for 

long term planning but the real production system faces a set of stochastic influences. Therefore, a planned 

utilization factor has to be included into this deterministic aggregate planning problem. In practise this decision 

is often based on past data and not consciously taken. In this paper the effect of long term forecast error on the 

optimal planned utilization factor is evaluated for a production system facing stochastic demand and the benefit 

of exploiting this decision’s potential is discussed. Overall costs including capacity, backorder and inventory 

costs, are determined with simulation for different multi-stage and multi-item production system structures. The 

results show that the planned utilization factor used in the aggregate planning problem has a high influence on 

optimal costs. Additionally, the negative effect of forecast errors is evaluated and discussed in detail for different 

production system environments. 

 

Keywords: Production Planning; MRP II; Simulation; Aggregate Production Planning, Demand and Forecast 

Uncertainty. 

 

1 Introduction 

In hierarchical production planning, mainly deterministic mixed integer decision problems are used for 

long term planning. In these deterministic problems, the objective is to minimize overall costs by 

fulfilling the customer demand and taking capacity constraints into consideration. This problem setup 

leads to utilizing nearly all available capacity, however, the real production system faces a set of 
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stochastic influences which lead to poor service level and overall cost performance. Therefore, excess 

capacity has to be provided in the long term planning to react on these stochastic influences 

(Rajagopalan and Swaminathan 2001; Mieghem 1998). A practical approach to overcome this problem 

is to apply the average utilization from past time periods. However, this average utilization from past 

data is also linked to the past demand situation and therefore biased. This means that this approach 

ignores the conscious decision to treat the planned utilization factor as a decision variable which 

affects the overall costs. Another practical approach, observed in company projects conducted by the 

authors, is that the target utilization is used as strategic value. This strategic utilization value is 

employed without any awareness of the negative effects of a too high or low production system 

utilization. 

A scientific approach to identify the optimal utilization factor applied in this study is to use simulation 

to quantify the benefits of consciously exploiting this decision variable. See Shafer and Smunt (2004) 

for a review of simulation applications and  Tsai and Liu (2015) for an recent work in the area of 

operations management. Specifically, when the impact of forecast errors on costs is investigated 

extensive experimentation using simulation is a common method (Enns 2002; Jeunet 2006; Fildes and 

Kingsman 2010; Gansterer 2015). In this study, we investigate the effect of forecast error on the 

production system performance when the hierarchical production planning approach Manufacturing 

Resource Planning (MRP II) is applied. To support the general applicability of the simulation results 

and formulate some observations, a broad simulation study investigating different production system 

structures, demand patterns and cost rates is conducted. 

Hierarchical production planning (HPP) models with decision levels differing in time horizon and 

decision variables are widely used (Hax and Meal 1975; Meal 1984; Schneeweiss 2003; Hopp and 

Spearman 2008), and its application has been proven to be very beneficial (Andersson, Axsäter, and 

Jönsson 1981; Gansterer 2015). The top-down approach of HPP causes that upper level decisions 

restrict the lower level decisions. Especially the MRP II concept, as presented in Hopp and Spearman 

(2008) or as discussed in Yeung, Wong, and Ma (1998), is a structured planning approach often 

implemented in enterprise resource planning systems and therefore frequently applied in practise. The 

MRP II planning approach hierarchy can be classified into three main planning levels, i.e. long-term 
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planning, intermediate planning and short-term control. The long-term planning includes forecasting 

and aggregate production planning (APP) and determines appropriate levels of production, inventory 

and capacity (internal capacity, overtime and external capacity). Usually, APP models are solved with 

mixed integer linear programming (MILP) solvers (Hopp and Spearman 2008), and are implemented 

in the advance planning systems of commercial software vendors (Chern and Hsieh 2007; Kung and 

Chern 2009). The intermediate planning level computes the master production schedule (MPS) and the 

material requirements plan (MRP). For a detailed description of the MPS and the MRP algorithm we 

refer to Hopp and Spearman (2008) and Orlicky (1975). MRP is the most common material planning 

method, its position against other planning methods has strengthened since the 1990s (Jonsson and 

Mattsson 2006), and is still in focus of research (Enns 2001; Louly and Dolgui 2013). Finally, the 

lowest planning level, i.e. short-term control, performs the scheduling and dispatching tasks for 

production orders on the respective resources (Panwalkar and Iskander 1977; Framinan, Ruiz-Usano, 

and Leisten 2000; El-Bouri 2012). 

There is a general agreement that uncertainty in forecasts is ubiquitous. In the literature different 

approaches are presented and investigated of how forecast error influences the production system. Ho 

and Ireland (1993) for example evaluate the impact of forecast error on the performance of a multi-

product, multi-level MRP system by analysing planning methods nervousness. In a further study Ho 

and Ireland (1998) analyse the correlation between forecast errors and MRP nervousness in more 

detail. Using a simulation study they find that forecasting errors may not cause a higher degree of 

MRP nervousness and that the planning method parameter nervousness can be mitigated by using an 

appropriate lot sizing rule. Enns (2002) investigates the effects of forecast bias and demand 

uncertainty in a batch production system using an integrated MRP planning and execution test bed. 

Thereby, the use of inflated planned lead times and safety stock, to compensate for forecast error, is 

analysed. Another study of Jeunet (2006) analyses the impact of demand forecast errors on the cost 

performance of several lot-sizing techniques. The study shows that there is a nonlinear correlation of 

forecast errors with cost performance. Fildes and Kingsman (2010) investigate the effect of demand 

uncertainty and forecast error on costs and service levels for a MRP type manufacturing system. Ho 

and Ireland (2012) mitigate forecast errors by applying different lot sizing rules in enterprise resource 
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planning controlled manufacturing systems. To evaluate the complex relationships within hierarchical 

production planning structures, a set of conference papers (Felberbauer, Altendorfer, and Hübl 2012; 

Felberbauer et al. 2013; Felberbauer and Altendorfer 2014) apply simulation to discuss different 

specific planning decisions. Felberbauer, Altendorfer, and Hübl (2012) investigate different machine 

allocation strategies when MRP and KANBAN controlled materials are produced on the same 

resources. Inspired by a simulation study for an automotive supplier, Felberbauer et al. (2013) 

compare the effect of different employee skill profiles, i.e. broader employee qualification, on 

inventory and service level. Based on the nervousness of MRP production orders, a customer 

information quality measure for hierarchical production planning is developed in Felberbauer and 

Altendorfer (2014). Using a similar planning setup, especially with respect to the APP, simulation is 

applied there to evaluate different customer order behaviours, i.e. “customer required lead time” and 

the “martingale model of forecast evolution”, for one specific production system. Note that the 

forecast error and demand uncertainty effects, which are focussed in the current paper, are neglected in 

Felberbauer and Altendorfer (2014). In addition, the current study includes a comprehensive set of 

cost rates, different production system structures and demand patterns, as well as a set of practical 

implications. 

The above reviewed literature shows that a lot of work has been done on the intermediate range 

planning methods MPS and MRP dealing with uncertainty by optimizing its parameters. See also 

Dolgui and Prodhon (2007) who present relevant literature on the parameterisation of MRP systems 

under demand and lead time uncertainties. The complex interdependence of the decisions in 

hierarchical production planning with uncertain information leads to a research gap concerning the 

influence of information uncertainties on APP decisions. Also, the surveys by Fleischmann and Meyr 

(2003), Kok and Fransoo (2003) and Missbauer and Uzsoy (2011) report the importance of integrating 

stochastic information into the decision process. 

A recent study of Gansterer (2015) is a first step to close this research gap. Nevertheless, the main 

focus of Gansterer (2015) lies on the investigation of different forecasting techniques and neglects the 

discussion on how the deterministic APP model incorporates the stochastic nature of forecasts and 

demand which is addressed in the current study. This paper extends available literature by explicitly 
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focusing on the effects of forecast error and demand uncertainty within a hierarchical production 

planning structure when applying a planned utilization factor in the APP. 

The remainder of this article is structured as follows. In Section 2 the studied production systems and 

planning approach with the extension of the APP is explained. In section 3 the study design is 

introduced and detailed research questions are stated which are answered in the numerical study 

presented in Section 4. Some conclusions are provided in Section 5.  

2 Studied production system and planning approach 

As stated above, the APP problem is usually treated as deterministic (Schneeweiss 2003; Hax and 

Meal 1975) a production system faces a set of stochastic influences such as uncertainty in forecasts 

and demand. Therefore, in this study a planned utilization factor is integrated within the APP model 

and simulation is used to identify its optimal level to account for the forecast and demand uncertainty. 

In detail, the long term production plan is optimized (determining production amount and capacity 

levels) assuming perfect forecast information and is applied to a production system where the MRP II 

concept with MPS, MRP and dispatching functionalities is used. Forecast error, customer required 

lead time, order amount and order arrivals are modelled as random variables. The overall cost 

statement includes capacity and inventory costs, which are directly part of the APP problem, as well as 

backorder costs, which can only be evaluated by simulation of the stochastic system behaviour. 

Especially, the effect of forecast error, which incorporates the difference between deterministic 

monthly forecast and the stochastic realized monthly order quantities, on the optimal planned 

utilization factor, which is integrated in the APP model, is evaluated. 

2.1 MRP II modeling  

The standard MRP II planning approach consists of long, intermediate and short term planning levels 

which are calculated on rolling horizon basis. Figure 1 shows the planning model as applied in the 

current study. The forecast is assumed to be external information provided to the production system 

including monthly order amount per finished product. On the long term planning level, the APP 

(CPLEX© is used as optimization software) is conducted using the forecast, routing information, 

available shift models, planned utilization factor and current inventory levels as input. After 

optimization, the optimal production plan (planned monthly production quantities and planned 
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inventory levels for each finished product) as well as the provided capacity, identified by the shift plan 

and external capacity, are the output of the MILP problem. The APP is conducted based on a rolling 

horizon planning approach 3 times a year. 

On the operational level, single customer orders are generated for each finished product with a random 

order amount and a random due date. The order rate of these customer orders depends on the forecast. 

However, it is disturbed by a forecast error.  

Both, customer orders and the optimal production plan according to the APP result are the input for 

the MPS where the monthly optimal production plan is disaggregated to a daily basis. The 

disaggregated optimal production plan is combined with the already available customer orders to 

generate the gross requirements for the MRP run. A cumulative calculation scheme is applied for the 

MPS calculation assuring that the maximum of cumulated customer demand and cumulated 

production program is satisfied with the cumulated MPS quantities. If there are planned inventory 

levels for a finished product from the APP solution, these planned inventory levels are also included in 

the MPS step. The gross requirements for finished products are the input for the MRP run with its 

steps: netting, lot sizing, backward scheduling and bill of material explosion. The output of the MRP 

run are the production orders for single materials with start date, end date and a production amount. 

The MRP and MPS functionality is conducted daily on a rolling horizon basis. The jobs are released 

continuously when their start date is reached and the necessary sub-materials are available. After job 

release, the production orders are produced according to their routing. Within the production process 

waiting production orders are sorted by the modified earliest due date (MEDD) dispatching rule 

according to their planned end date (Panwalkar and Iskander 1977). Due to the fact that in this study 

only the influence of stochastic demand and forecast error on the logistical performance is investigated 

all processing times are assumed to be deterministic and no setup time is applied. According to the 

suggestions of Hopp and Spearman (2008) for situations without setup times we apply the lot sizing 

policy lot-for-lot where the lot sizes are driven by specific customer orders. A detailed study of lot 

sizing effects is omitted. Machine availability is predefined for each month by the respective shift plan 

decision according to APP. The shop floor performance is measured as overall costs consisting of 

internal and external capacity costs, inventory costs and backorder costs. 
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Figure 1: Hierarchical production planning approach 

2.2 Details on APP problem studied 

In this paper, a classical APP such as presented in Gansterer (2015), is extended by an additional 

decision on planned utilization (see also Felberbauer and Altendorfer 2014).  

Table 1 shows all variables used in the MILP problem. 

The APP is executed on a rolling horizon three times per year for a planning horizon of twelve months 

(T) which means that only the plan for the next four months is applied. Therefore the problem of zero 

inventory at the end of the planning horizon T can be ignored. 

The decision variables of the APP are: production program ݔ,௧ for finished product p and month t, 

external capacity 	݁௧, for resource j in month t and the shift model identified by the binary decision 

variable ݓ௧,,௦ ൌ 1 if shift plan s, in time period t, and at machine j is applied (ݓ௧,,௦ ൌ 0 otherwise). 

Note that this external capacity, which ensures a feasible solution of the MILP problem, is assumed to 

be supplied by an external company which is able to provide the required technology of machine j. In 

the simulation model this external capacity is used in situations with high current system load. From 

the production program ݔ,௧, respective target inventory levels ݈,௧ can be identified. These inventory 
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levels state the planned pre-production of finished products, for example, to account for seasonality or 

for lower capacity in the next months. The following MILP problem is solved: 
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ଶ

௦ୀଵ

݁௧, 
ݐ ൌ 1,… , ܶ 

݆ ൌ 1,… ,  ܬ
(3) 

݈,௧ ൌ ݈,௧ିଵ  ,௧ݔ െ  ,௧ܨ
 ൌ 1,… , ܲ 

ݐ ൌ 1,… , ܶ 
(4) 

݈,௧, ,௧ݔ  0 
 ൌ 1,… , ܲ 

ݐ ൌ 1,… , ܶ 
(5) 

݁௧,  0 
ݐ ൌ 1,… , ܶ 

݆ ൌ 1,… ,  ܬ
(6) 

௧,,௦ݓ ∈ ሼ0,1ሽ 

ݐ ൌ 1,… , ܶ 

݆ ൌ 1,… ,  ܬ

ݏ ൌ 1,… ,2 

(7) 

 

Table 1: Symbols used (h=hour, d=day, m=month, CU= currency unit, pcs=pieces). 

 ൌ 1,… , ܲ Index of the finished products 1 
ܲ Index of the last finished product 1 
ݐ ൌ 1,… , ܶ Index of the time period month m 
ܶ Index of the last time period of the planning horizon (12 month) m 
߬ Index of the time period day d 
݆ ൌ 1, … ,  Index of the machines 1 ܬ
 Index of the last machine 1 ܬ
,ሼ1	߳	ݏ 2ሽ Index of the shift plan possibilities (10-shifts per week or 15-shifts per 

week) 
1 

 ,௧ Decision variable production program of finished product p in timeݔ
period t 

pcs/m 

݈,௧ Inventory of finished product p at the end of time period t  pcs/m 

݈, Initial inventory of finished product p at the beginning of the aggregate 
planning 

pcs/m 

 ௧,,௦ Binary decision variable applying shift plan s in time period t atݓ
machine j 

1 

ܽ, Required capacity for one piece of finished product p on machine j h/pcs 

ܿ  Internal capacity cost rate for one capacity unit at machine j for shift 
plan s 

CU/h 
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ܿ  External capacity cost rate for one capacity unit at machine j CU/h 
ܿ̃  Inventory cost rate for one finished product p per month t CU/ m 

ܿ  Inventory cost rate for one finished product p per time period ߬ CU/d 

ܿ  Backorder cost rate for one finished product per time period ߬ CU/d 

 ௧,,௦ Available internal capacity of machine j in time period t applying shiftܭ
plan s  

h/m 

݁௧, Decision variable for the external capacity per machine j in time period 
t 

h/m 

 Planned utilization factor which defines the planned internal production ߟ
system utilization  

1 

 ,௧ Forecast error which is identically independent normally distributed pcs/mߝ
 ,௧ Real demand for finished product p in time period t pcs/mܦ
  The actual amount per order and finished product p which is identically

independent log-normally distributed
pcs 

 ,௧ Arrival rate of finished product p in time period t 1ߣ
 Average annual capacity demand  shifts ߩ
L Customer required lead time which is identically independent log-

normally distributed 
d 

  Annual forecast of finished product p pcsܨ
 ,௧ Forecast of finished product p in time period t pcs/mܨ
α Forecast error parameter for the calculation of the forecast error 

deviation  
1 

 

The objective function (1) minimizes the costs of internal and external capacity (at cost rate ܿ and ܿ 

for machine j respectively) and the inventory costs (inventory cost rate per day	ܿ) which accrue by 

fulfilling the required demand. The main trade-off treated in the APP problem is between pre-

production on stock and application of additional internal or external capacity assuming that the 

internal capacity cost rate is lower than the external one (ܿ ≪ ܿ). Due to constraint (2) only one shift 

plan can be applied for one machine per time period t. Two possibilities for the shift plan decisions are 

available, which are the 10-shifts per week and the 15-shifts per week alternative. Constraints (3) 

ensure that the capacity needed to produce the optimal production program on the machines is lower 

than or equal to the available capacity of internal and external resources. The required capacity with 

respect to time period t and machine j is calculated using the processing time ܽ, per finished product 

p and machine j and the respective optimal production program ݔ,௧. The external capacity is unlimited 

and the internal available capacity per machine j is dependent on the applied shift plan and the planned 

utilization factor η. This factor is a real number between zero and one and defines the planned internal 

capacity utilization. Constraints (4) ensure that for the planning horizon T the forecast ܨ,௧ per period t 

is fulfilled by the optimal production program whereby it is also possible to use inventory as well. 
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Finally, the constraints (5)-(7) define the decision variables. As the external capacity ensures that the 

deterministic MILP problem is always feasible, no backorder costs are included in the cost statement. 

In a real production system (and also in the simulation model applied in this study) where the forecast 

is not exactly met and additional short term disturbances occur (random required lead time and order 

amount of single customer orders), not all orders will be on time. Note that a lower η leads to higher 

optimal costs in the MILP problem (as more capacity has to be provided) but on the short term 

decision level, this decreased η leads to lower backorder costs since additional capacity is available to 

react on the short term stochastic influences. As this effect cannot directly be included in the MILP 

model, the solution approach in this paper is to enumerate a set of possible utilization factor values and 

evaluate their expected overall costs by simulation. 

2.3 Production system structures and simulation model 

A production system with 6 machines, M1 to M6 and scenario specific routing, number of finished 

products as well as bills of materials is simulated using AnyLogic®. The modelled production systems 

follow either a flow shop or a job shop structure. The production system structures are streamlined 

versions of different production facilities operating in the automotive sector. These structures have 

been observed in a set of company projects. Table 2 shows the two investigated bill of material 

structures (for 4 and 8 finished products, material 10 - 17) and the two routing possibilities (job shop 

and flow shop). The abbreviation, for the scenario with 4 finished products and 4 sub materials, is 

“low number of products” and the abbreviation for the scenario with 8 finished products and 8 sub 

materials is “many products”. Raw materials (material 100, 120 and 130) are assumed to be always 

available. In addition to the shop structure and the number of products, a constant and a seasonal 

forecast are investigated, whereby the seasonality is modelled by a sinusoidal function. These two 

demand patterns are again chosen based on empirical data from a set of company projects. 

Furthermore, also Rossi, Kilic, and Tarim (2015) recently discussed constant and seasonal demand in 

an inventory model investigation. Nevertheless, there are many further demand pattern alternatives 

which limit the findings of this study. 
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Table 2: Bill of material and routing data. 

 

To account for the unbiased forecast error the random monthly customer demand ܦ,௧ is modelled as 

being the deterministic forecast value of this month ܨ,௧ disturbed by a random error term ߝ,௧. This 

leads to ܦ,௧ ൌ ,௧ܨ  ,௧ߝ . This forecast error ε,௧  is an identically independent truncated-normal-

distributed random variable with an expected value Eൣε,௧൧ ൌ 0 and variance ܸܽݎሾε,௧ሿ ൌ ൫ܨߙ,௧൯
ଶ
. 

The finished products p are independently being forecasted. Therefore, the forecast error parameter α, 

which is independent of time period t and item p, defines the quality of the forecast. A limitation of 

this modelling assumption is that an unbiased forecast is assumed for which the true long term 

behaviour is known. The short term disturbances are included by a lognormal distributed amount per 

order ܱ (for finished product p) and a lognormal distributed customer required lead time L (which has 

the same distribution for each finished product). Based on this order amount definition and the 

monthly demand, the order rate follows as: ߣ,௧ ൌ
,
ாൣை൧

ൌ
ி,ାఌ,
ாൣை൧

. Note that in the simulation study 

the order rate ߣ,௧ is adjusted monthly to account for the forecast error and the seasonality. In literature 

the above described order behaviour is known as “customer required lead time” order behaviour. The 

flow shop many products job shop flow shop low number of  products

material machine component # pieces material machine component # pieces material machine component # pieces

M6
M4
M1
M4

M1
M3
M2
M3

1

1

1

1

30

31

32

33

100

110

120

130

30

23

22

21

20

M1

M2M2

M1

M1

M4

M3

M4

M3 30

31

32

33

100

110

120

1

1

1

1

33 M2 130 1 1

1

1

1

1

1

1

20

21

22

M3

M4

23

30

31

32

33

32

31

23 1 31 M2 110 117 M6 33 1 17 M6

23 1 30 M1 100 116 M6 32 1 16 M6

22 1 21 M4 31 115 M5 23 1 15 M5

22 1 20 M3 30 114 M5 22 1 14 M5

21 1 13 M6 21 113 M6 21 1 13 M6

21 1 12 M6 21 112 M6 21 1 12 M6

20 1 11 M5 20 111 M5 20 1 11 M5

20 1 10 M5 20 110 M5 20 1 10 M5
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differences to another common order behaviour, i.e. the “martingale model of forecast evolution”, is 

discussed Felberbauer and Altendorfer (2014). 

The following example should clarify the relationship between the forecast, order rate and a customer 

order. Assuming a forecast value of ܨ,௧=1000 pcs per month, a forecast error value of  ε,௧ ൌ 200 and 

an expected value of a single customer order EሾOሿ ൌ 10 would lead to an order rate of ߣ,௧ ൌ 120. 

This means that the customer is going to order 120 times within this specific month where he requires 

for each of this orders an expected order amount of EሾOሿ ൌ 10 and a random customer required lead 

time L. 

The hierarchical production planning approach as described above is modelled with a simulation 

generator (Hübl et al. 2011; Felberbauer, Altendorfer, and Hübl 2012; Felberbauer and Altendorfer 

2014), whereby the calculation of the APP is a function call within the simulation model. During 

simulation there is a cross data exchange between the simulation model and the MILP-Solver as 

described in previous section. The building blocks of the discrete event simulation model (built in 

AnyLogic®) are described in Hübl et al. (2011). 

3 Study design 

The following research questions are addressed in this study: 

1) What is the impact of the planned utilization factor in a hierarchical production planning 

system on overall costs when forecasts are accurate or inaccurate and how do different 

demand or production system structures influence it? (Section 4.1) 

2) What cost penalty results, if the planned utilization is not a decision variable but predefined at 

certain (past) values? (Section 4.2) 

3) What influence does the level of inaccuracy of forecasts have on the optimal costs and optimal 

utilization? (Section 4.3) 

4) How sensitive is this influence to: shop structure, number of products, demand pattern, 

capacity costs and backorder costs? (Section 4.4) 

Section 4 presents the simulation study results, with detailed discussions of these research questions in 

the sub-sections. The following tables, Table 3 and Table 4, provide an overview over all parameters 

and scenarios applied to discuss the formulated questions.  
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Table 3: Scenario specific parameters. 

Average shop load ρ in shifts per day: low … ρ=2.2 shifts/d 

med … ρ=2.5 shifts/d 

high … ρ=2.8 shifts/d 

Internal ܿ and external ܿ	capacity cost rates: low … ܿ ൌ 50; ܿ ൌ  	݄/ܷܥ	100

med … ܿ ൌ 100; ܿ ൌ  ݄/ܷܥ	200

high … ܿ ൌ 200; ܿ ൌ  ݄/ܷܥ	400

Backorder cost rate ܿ (independent of product)1: low … ܿ ൌ 9 ݀/ܷܥ  

med …ܿ ൌ 19  ݀/ܷܥ

high … ܿ ൌ 99 ݀/ܷܥ  

Forecast ܨ,௧ for constant demand 	߳ ሼ10,12,14,16ሽ: ܨ,௧ ൌ 1000 ݉/ݏܿ  

Forecast ܨ,௧ for constant demand 	߳ ሼ11,13,15,17ሽ: ܨ,௧ ൌ 1500 ݉/ݏܿ  

 

Forecast ܨ,௧ for seasonal demand 	߳ ሼ10,12,14,16ሽ: 
,௧ܨ ൌ 1000  ݊݅ݏ500 ൬2ߨ

ݐ െ 5
12

൰	

 ݉/ݏܿ

 

Forecast ܨ,௧ for seasonal demand 	߳ ሼ11,13,15,17ሽ: 
,௧ܨ ൌ 1500  ݊݅ݏ750 ൬2ߨ

ݐ െ 5
12

൰	

 ݉/ݏܿ
1 Axsäter (2000) shows for streamlined inventory models that the low ratio leads to a target service level of 90%, 
the medium ratio leads to a target service level of 95% and the high ratio leads to a target service level of 99% 
which are feasible objectives for real production systems. 
 
Table 4: Parameters independent of scenario. 

Order amount finished product 10, 12, 14 and 16: ൣܧ ܱ൧ ൌ 10 pcs; ൣݎܸܽ  ܱ൧ ൌ 2.25	pcs 

Order amount finished product 11, 13, 15 and 17: ൣܧ ܱ൧ ൌ 15 pcs; ൣݎܸܽ  ܱ൧ ൌ 6.25pcs 

Customer required lead time for finished products: ܧሾܮሿ ൌ 3 d; ሿܮሾݎܸܽ ൌ 3 ݀ 

Machine capacity for the 10-shifts per week plan: ܭ௧,,ଵ ൌ 320 ݄ 

Machine capacity for 15-shifts per week plan: ܭ௧,,ଶ ൌ 480 ݄ 

APP planning frequency: 3 times a year 

APP Planning horizon: ܶ ൌ 12 ݉ 

MPS planning frequency: daily 

MPS planning horizon: 60 d 

MRP planning frequency: daily 

MRP planning horizon: 30 d 

MRP lotsizing policy for all materials: lot-for-lot1 

MRP planned lead time for all materials: 2 d 

MRP safety stock: 
ݏݏ ൌ

ܨ0.1
12
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Materials inventory holding costs: ܿ ൌ 0.5 ݀/ܷܥ ∀  ߳ ሼ20,21, . . . ,33ሽ 

Finished products inventory holding costs: ܿ ൌ 1 ݀/ܷܥ ∀  ߳ ሼ10,11, . . . ,17ሽ		 

Forecast error parameter: ߙ ൌ ߢ0.05 ∀ ߢ ߳ ሼ0,1, . . . ,10ሽ2 

Planned utilization values enumerated: ߟ ൌ 0.5  0.02ܳ ∀ ܳ ߳ ሼ0,1, . . . ,25ሽ	 
1 see Hopp and Spearman (2008) for situations without setup times 
2 see Fildes and Kingsman (2010) for similar levels of forecast error uncertainty 

The deterministic processing times are adjusted in each scenario to reach the predefined shop loads ρ 

per machine j. For the constant demand pattern, average demand capacity per month and machine j is 

352h / 400h / 448h when shop load ρ is 2.2/2.5/2.8, respectively. Note that for all scenarios all 

machines have exactly the same capacity load and that the utilization predefined by the planned 

utilization factor is also reached in the simulation model. For the flow shop structure with shop load 

ρ=2.5 this leads to a deterministic processing time ܽ, ൎ 10  minutes in the scenario with a low 

number of products. In the scenario with many products the deterministic processing time is ܽ, ൎ 5 

minutes. For the scenarios with seasonal demand pattern the demand requirement per machine j 

changes for each month following the sinusoidal function. Assuming a shop load of ρ=2.5 this means 

that demand starts with 400h in month 1, decreases to its lowest value of 200h in month 4, and 

increases again later to its peak value of 600h in month 10. MRP planning parameters for all materials 

have been identified in a preliminary study, again applying enumeration schemes to find appropriate 

values, and are not changed within the simulation study. In the further course of the paper the 

expression optimal overall costs and optimal planned utilization factor is a synonym for the best value 

found using the above described enumeration of planned utilization factors ߟ. The numerical study, 

where a full factorial design is used, investigates 162 different scenarios: 3 shop structures (flow shop 

with many products, flow shop with low number of products and job shop with many products), 2 

demand patterns, 3 shop loads, 3 capacity cost rates, 3 backorder cost rates. Combined with the 11 

forecast error parameters this leads to 1,782 test instances for which the planned utilization factor is 

enumerated (26 possible values are tested according to ߟ ൌ 0.5  0.02ܳ	∀	ܳ	߳	ሼ0,1, . . . ,25ሽ ) and 

therefore 46,332 simulation iterations are evaluated. Each iteration is replicated 10 times to account 

for stochastic variance which leads to 463,320 simulation runs. Four whole years are simulated 

whereby the first year is the warm up time of the simulation model and therefore excluded from the 
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analysis. Customer orders that cannot be fulfilled at the end of the simulation time lead to extra costs 

in the form of penalties for their delay. 

4 Simulation study results 

The results presented in this section are coded according to the respective production system structures 

combined with the demand pattern: f_m_c is flow shop with many products and constant demand 

(which is also called basic scenario), j_m_s job shop with many products and seasonal demand or 

f_l_s flow shop with low number of products and seasonal demand. Please mention that in section 4.1 

- 4.3 the cost rates and shop load parameters are always the medium setting for the discussion of the 

basic scenario. 

4.1 Impact of Planned Internal Utilization Factor η on optimal costs and service level 

The influence of the planned utilization factor η for the basic scenario, with medium levels setting of 

cost rates and shop load parameters, is studied here in detail. 

In Figure 2 the case without forecast errors (ߙ ൌ 0) and in Figure 3 the case with a moderate forecast 

error (ߙ ൌ 0.25) is presented. Furthermore, the figures show the single cost shares and the service 

level reached with respect to the planned utilization factor η. 

For the basic scenario (f_m_c), which is the production system with flow shop, many products, 

constant demand, and medium levels of shop load ρ=2.5, capacity cost rate ܿ ൌ 100/c ൌ 200 and 

backorder cost rate c ൌ 19, Figure 2a shows that a rather high utilization factor of 98% is optimal for 

the situation without forecast error. This exhibits that the short term stochastic influences of order 

amount ܱ  and customer required lead time ܮ  for the production system assuming perfect forecast 

information and no further sources of uncertainty are very well compensated by the MPS and MRP 

functionality. The MPS function smoothes the gross requirements which are input for the MRP run. 

Additionally to the MPS, also the MRP-parameters planned lead time and safety stock lead to a certain 

amount of pre-production which compensates for some of the material shortages resulting from the 

stochastic demand uncertainty. The further sources of uncertainty linked to a real production process 

(stochastic processing times, setup times and machine failures) which usually lead to lower optimal 

utilization values (see, Jodlbauer and Altendorfer 2010) are not the focus of this paper. Nevertheless, 

the simulation model and the APP optimization process including the planned utilization factor can 
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also be applied to a situation with these kinds of uncertainty. The detailed cost structure from Figure 

2b shows that until a very high planned utilization, this factor only affects the external costs (which 

clearly decrease with higher internal utilization). In situations with high utilization values also 

backorder costs increase substantially. 

a.) b.) 

  
Figure 2: Service level and costs with respect to the planned utilization factor η for basic scenario without forecast 

error =0 

A first observation from this setting, (cf research question 1) is that in the hierarchical production 

planning structure modelled (which is the MRP II structure) the MPS and MRP functionality mitigate 

the negative effects of short term customer demand uncertainties. However, also in this situation it is 

necessary to reduce the planned utilization factor below 100%. 

Figure 3 shows the results for a situation with inaccurate forecasts, =0.25, and already provides some 

further insights on the effect of such a forecast error. The optimal utilization, again for the basic 

scenario (f_m_c), is in this case 84 % and also the backorder costs become at utilization levels of 

above 85% already relevant. This means that for inaccurate forecasts a certain capacity has to be 

reserved to react on this inaccuracy. For both tested cases, the service level decreases very fast if the 

planned utilization factor is above the optimal value. 
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a.) b.) 

  
Figure 3: Service level and costs with respect to the planned utilization factor η for basic scenario with forecast error 

=0.25 

A further observation (cf. research question 1) from this setting is that in the hierarchical production 

planning structure modelled, it is necessary to include excess capacity in the APP optimization 

problem (for example with a planned utilization factor) to mitigate the effect that APP assumes a 

deterministic forecast but the realization of this forecast is stochastic. 

Note that simulation is an appropriate tool to quantify the amount of excess capacity needed, however, 

the detailed results shown in Figure 3 are limited to the studied production system structure. To 

investigate the effects of different production systems and demand structures, the optimal utilization 

factors are evaluated by enumeration. Table 5 and Table 6 show the optimal planned utilization factors 

for the different scenarios, averaging over shop load ρ and cost rates ܿ, c, c, differentiating in cases 

without (see Table 5 where ߙ ൌ 0) and cases with forecast error (see Table 6 where ߙ ൌ 0.25), 

respectively. The “ in %” values show the difference to the basic scenario.  

Table 5: Optimal planned utilization η* and costs without forecast errors =0 

 

f_m_c* f_m_s f_l_c f_l_s j_m_c j_m_s
optimal 96% 96% 92% 93% 96% 96%

 in % 0 0.00% -4.17% -3.12% 0.00% 0.00%
optimal 13,637 14,590 12,521 13,804 13,550 14,525

 in % 0 6.99% -8.18% 1.22% -0.64% 6.51%

f   … flow shop j … job shop

m … many products l … low number of products

c  … constant demand pattern s … seasonal demand pattern

* cost and utilization -values are compared to this scenario

scenario

utilization

costs
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Table 6: Optimal planned utilization η* and costs with forecast error =0.25 

 

The results of both Table 5 and Table 6, indicate that a lower number of products lead to lower costs 

and lower optimal planned utilization. The lower optimal planned utilization results from a balancing 

effect of forecast errors that more products have. The counterintuitive result of lower costs is linked to 

the cost structure in the simulation model. As backorder and holding costs are not dependent on the 

processing times the lower number of products, which leads to less throughput in pieces, leads to 

lower costs. In section 4.4, the effects of a lower number of products are further discussed. 

An observation (cf. research question 1) concerning seasonal demand pattern is that for both cases, 

without and with forecast error, the seasonal demand leads to higher costs in comparison to the 

constant demand.  

Intuitive reasons for this behaviour are higher external capacity costs in the peak months and 

additional inventory costs for pre-production. A further interesting result concerning seasonality is that 

for the situation without forecast error, the optimal planned utilization is nearly equal to the constant 

demand scenarios. When a forecast error occurs (see Table 6) the seasonal demand leads to a lower 

optimal planned utilization which may be linked to the higher absolute effect the forecast error has on 

the peak months.  

The results from Table 5 and Table 6 show that there is nearly no difference between job shop 

(scenario j_m_c and j_m_s) and flow shop structure (scenario f_m_c and f_m_s). As in this study the 

difference between job shop and flow shop are only the routing paths, this result indicates that 

problems in job shop production systems are not mainly triggered by the more complex routing of 

products but have some other reasons. A discussion of these effects is left to further research. 

f_m_c* f_m_s f_l_c f_l_s j_m_c j_m_s
optimal 85% 83% 79% 76% 85% 84%

 in % 0 -2.35% -7.06% -10.59% 0.00% -1.18%
optimal 15,331 16,712 14,713 16,234 15,202 16,567

 in % 0 9.01% -4.03% 5.89% -0.84% 8.06%

* cost and utilization -values are compared to this scenario

costs

scenario

utilization
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4.2 Cost penalty for ignoring planned utilization decision variable 

As motivated in the introduction, practise in hierarchical production planning is often to set the 

planned utilization at the average level from past periods, e.g. the last year, which ignores the cost 

reduction potential of treating η as a decision variable. In this subsection the cost effect of this often 

unconsciously taken decision is discussed. The following Figure 4 shows the percentage in cost 

increase if the planned utilization factor is above or below the optimal value. In detail, for each of the 

162 scenarios the optimal costs are compared with the costs reached when the planned utilization 

factor deviates from the optimum. The values shown in Figure 4 are the average, minimum and 

maximum percentage of cost increase. Figure 4a shows the case without forecast error =0 and Figure 

4b the values for =0.25. 

For the situation without forecast error, the results show that assuming a utilization value from past 

data which is too low, leads to a slight cost increase (only 1.35% average costs increase if utilization is 

set 2% below the optimal value) but higher utilization values lead to very high cost increases. This 

very fast increase in costs for high utilization values is based on the situation that without forecast 

error only little excess capacity is needed in the current setting to react on customer demand 

uncertainty (optimal planned utilization factor for basic scenario is 98%). Therefore the optimal 

planned utilization factor is near 100% but a planned utilization of exactly 100% is still far more 

expensive than a few percentage points below. 

a.) b.) 

  
Figure 4: Cost effect of wrong planned utilization factor η. 

Figure 4b shows that the relative cost increase for the situation with forecast error =0.25 is lower 

than in the situation without forecast error, which results from an average planned utilization of 85% 

to be optimal in this setting. Therefore, an increase by 2%, which leads to an average utilization of 
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87%, has less relative effect. Nevertheless, the absolute cost value reached, which is depicted in Table 

5 and Table 6, is for the situation without forecast error 13,637 which is less than the 15,331 for the 

situation with forecast error. 

Figure 4b shows that a too high planned utilization value leads also in this case to a considerable cost 

increase. On average a planned utilization value of 4% above the optimum leads to a cost increase of 

about 4%. For both situations the cost risk for too low planned utilization values is lower but still 

considerable. Looking at the maximum values of cost increases shows that for some single scenarios 

this decision variable has an even higher effect. 

This leads to the observation (cf. research question 2) that a high optimization potential is wasted if 

the planned utilization decision is not consciously taken. Furthermore, higher target utilizations 

(which could be a management tool) have a high risk of damaging the production system performance. 

This second risk of too high target utilization values in production systems is based on higher 

backorder costs resulting from lower capacity provided. 

4.3 Influence of forecast error  on optimal costs and planned utilization 

Based on the simulation results for each test instance (where the optimal planned utilization factor is 

already identified), Figure 5 shows the average results over all test instances for the basic case f_m_c 

(flow shop, many products and constant demand) and the f_l_c scenario (flow shop, low number of 

products and constant demand). 

a.) b.) 

  
Figure 5: Optimal costs and optimal planned utilization factor η* with respect to the forecast error parameter α. 

In Figure 5, the optimal planned utilization factor is shown with respect to the forecast error and also 

the optimal overall costs are depicted. Furthermore, a linear regression analysis is conducted for each 

single test instance and the average values over all test instances are presented here. The finding 
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already motivated by the results in section 4.1 is that an increase in forecast error leads to an increase 

of optimal overall costs. For flow shop production structure, many products and constant demand 

(f_m_c-scenario) an improvement of forecast quality from α=0.3 to α=0.1 leads to an decrease of 

overall cost by ≈11%, whereby the planned utilization could be increased from 82% to 94%. For the 

same production structure and demand pattern but a lower number of products (f_l_c-scenario) the 

cost reduction potential is ≈16% and the internal utilization level could be increased from 76% to 89%. 

Analysing the slopes β and intercepts of the linear regression models for the f_m_c and f_l_c-scenario 

leads us to the finding that an improvement of forecast quality by α=-0.1 improves costs in average by 

5% / 8%, respectively.  

An observation (cf. research question 3) from these results is that higher long term information 

uncertainty, which leads to forecast errors, has to be compensated by a higher capacity provided by 

the aggregate planning which leads to significantly higher costs. 

This finding is in line with Jeunet (2006) who also discusses the impact of demand forecast errors on 

the cost performance of several lot-sizing techniques in a multi-level context. Other studies show that 

there are non-linear dependencies of forecast errors and key performance indicators. Fildes and 

Kingsman (2010) found in a MRP controlled manufacturing system non-linear relationships of unit 

costs and demand uncertainty with respect to certain service level constraints. Nevertheless, Lee and 

Adam (1986) show that for a complex MRP controlled production system, which applies forecasts, the 

rationality of higher forecast error resulting in higher total cost may not be guaranteed. In results from 

Figure 5a and 5b, the introduction of the planned utilization factor and its adaption with respect to the 

unbiased forecast error lead to a nearly linear dependency of forecast error and costs. 

The comparison between the optimal utilization in Figure 5a and Figure 5b further indicates that a 

lower number of products also means a higher capacity to be provided and shows that it holds for a 

broad range of forecast error situations.  

An observation (cf. research question 3) is therefore, that hierarchical production planning systems 

facing unbiased (expected values 0) and uncorrelated (independent between items) forecast errors 

with more different products are more robust with respect to the forecast error influence. 
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This intuitive result is interesting as it shows that the hierarchical planning structure supports the 

underlying statistics (coefficient of variation of the sum of n independent random variables reduces 

with respect to n) and that also this negative long term stochastic influence can be affected by the 

number of products. The higher average -value in Figure 5b further shows that also the slope of the 

planned utilization decrease is for lower number of products steeper. 

4.4 Sensitivity analysis and broad numerical study 

To identify the sensitivity of the results with respect to shop structure, number of products, demand 

pattern, capacity costs and backorder costs, the following tables provide aggregated results of the full 

factorial simulation study design (only selected α-values are presented). The average results 

concerning optimal planned utilization factor and overall costs for the basic scenario f_m_c (flow shop, 

many products and constant demand pattern) over all respective test instances with the specified 

parameters are presented in Table 7. This shows that for a medium shop load level =2.5 and a 

moderate forecast error parameter of =0.2 the optimal planned utilization factor η* is 0.87 and the 

optimal overall costs are 14,805 for the f_m_c-scenario. Note that the optimal planned utilization 

factor η* of 0.87 is the average value over all capacity cost rate and backorder cost rate levels (low, 

med, and high). The column labelled with Ø reports the average value of η* and optimal overall costs 

over the forecast error parameter α with respect to the shop load ρ, capacity cost rates c୧/cୣ and the 

backorder cost rate cୠ. The sub table rows indicated with Ø report the average value η* and optimal 

overall costs with respect to a specific forecast error parameter α. 
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Table 7: Optimal planned utilization η* and overall costs– sensitivity analysis for basic scenario f_m_c. 

 

In addition to the findings from section 4.3, the results in Table 7 show that there is only a slight 

influence of shop load ρ on the optimal planned utilization but the overall costs increase significantly. 

Furthermore, a positive relation between the planned utilization factor and the increasing capacity cost 

rate ܿ/ܿ can be observed for high α values whereby also overall costs increase. This finding supports 

previous literature stating that the more expensive capacity is, the higher the production system 

utilization should be (see, Jodlbauer and Altendorfer 2010). Based on this finding, an intuitive result is 

that a higher backorder cost rate ܿ leads to lower optimal planned utilization factor and higher overall 

costs. 

The following tables, Table 8 and Table 9, show the aggregated results of a linear regression analysis 

which has been performed for each of the 162 scenarios to identify the relationship between forecast 

error  and the optimal planned utilization η* as well as between forecast error  and the optimal 

overall costs. The results are grouped by the different production system structures investigated. For 

the abbreviations of the scenario, we refer to the legend below Table 8. The presented R-values 

(correlation coefficient) and -values (slope of the relationship) in the tables are the average values 

over the respective scenarios and parameter combinations. The “%” value describes the difference 

measured in percentage points between no forecast error (=0) and a high forecast error (=0.5). All 

correlations are significant at a level above 99.99% for each single scenario. 

0 0.1 0.2 0.3 0.4 0.5 Ø 0 0.1 0.2 0.3 0.4 0.5 Ø

2.2 0.95 0.93 0.87 0.81 0.78 0.76 0.85 2.2 12,319 12,823 13,668 14,405 14,834 15,240 13,881

2.5 0.96 0.94 0.87 0.83 0.79 0.76 0.86 2.5 13,732 14,163 14,805 15,394 16,168 16,650 15,152

2.8 0.96 0.94 0.89 0.82 0.80 0.77 0.86 2.8 14,859 14,977 15,868 17,373 18,187 18,898 16,694

Ø 0.96 0.94 0.88 0.82 0.79 0.76 0.86 Ø 13,637 13,987 14,780 15,724 16,396 16,929 15,242

0 0.1 0.2 0.3 0.4 0.5 Ø 0 0.1 0.2 0.3 0.4 0.5 Ø

low 0.96 0.93 0.87 0.80 0.77 0.74 0.85 low 7,564 7,812 8,269 8,743 9,064 9,365 8,470

med 0.96 0.93 0.88 0.82 0.79 0.76 0.86 med 12,162 12,470 13,216 14,066 14,667 15,149 13,622

high 0.96 0.94 0.89 0.84 0.81 0.78 0.87 high 21,183 21,679 22,856 24,362 25,457 26,274 23,636

Ø 0.96 0.94 0.88 0.82 0.79 0.76 0.86 Ø 13,637 13,987 14,780 15,724 16,396 16,929 15,242

0 0.1 0.2 0.3 0.4 0.5 Ø 0 0.1 0.2 0.3 0.4 0.5 Ø

low 0.98 0.96 0.91 0.86 0.83 0.81 0.89 low 13,417 13,710 14,289 15,148 15,680 16,076 14,720

med 0.96 0.94 0.90 0.83 0.80 0.78 0.87 med 13,538 13,908 14,651 15,542 16,167 16,688 15,082

high 0.93 0.91 0.83 0.78 0.74 0.70 0.81 high 13,954 14,343 15,400 16,481 17,342 18,024 15,924

Ø 0.96 0.94 0.88 0.82 0.79 0.76 0.86 Ø 13,637 13,987 14,780 15,724 16,396 16,929 15,242

Ø … average value  ci/ce … capacity cost rates internal / external

 … shop load cb … backorder cost rate



ci /c
e

ci /c
e

cb cb

a - forecast error parameter a - forecast error parameter

a - forecast error parameter a - forecast error parameter

optimal planned utilization η* optimal overall costs*
a - forecast error parameter a - forecast error parameter
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Table 8: Aggregated results of the linear regression analysis for optimal planned utilization factor η*. 

 

An observation from Table 8 (cf. research question 4) is that the planned utilization factor decrease 

with increasing forecast error is found for any production system and cost structure. Furthermore, 

lower capacity cost rates and higher backorder cost rates lead for any production system and cost 

structure to a steeper planned utilization factor decrease. 

The comparison between the production system structures shows, that especially the scenarios with a 

low number of products (labelled as f_l_c and f_l_s in Table 8) have a significantly higher cost 

increase when forecast error increases which supports the respective observation of section 4.3.  

Therefore the general observation (cf. research question 4) related to forecast error variance is that 

companies facing high forecast error variances can achieve a significant cost reduction without 

traditional investments by improving customer collaboration and therefore getting more accurate 

forecast information, which may also imply some investment in information systems. 

This finding is in line with traditional operations management literature (Wijngaard and Karaesmen 

2007; Altendorfer and Minner 2011). Empirical evidence on the benefits through information sharing 

with substantial improvements in forecast accuracy is presented in Cui et al. (2015) and Trapero, 

Kourentzes, and Fildes (2012). In the current study this finding is extended to the accuracy of long 

term forecasts.  

R  % R  % R  % R  % R  % R  % 
2.2 ‐0.97 ‐0.43 ‐21% ‐0.97 ‐0.45 ‐23% ‐0.97 ‐0.50 ‐26% ‐0.97 ‐0.60 ‐32% ‐0.97 ‐0.41 ‐20% ‐0.97 ‐0.42 ‐22%

2.5 ‐0.98 ‐0.42 ‐21% ‐0.97 ‐0.41 ‐21% ‐0.98 ‐0.46 ‐26% ‐0.97 ‐0.56 ‐30% ‐0.97 ‐0.41 ‐20% ‐0.97 ‐0.39 ‐20%

2.8 ‐0.98 ‐0.42 ‐20% ‐0.97 ‐0.43 ‐21% ‐0.98 ‐0.55 ‐29% ‐0.96 ‐0.53 ‐28% ‐0.98 ‐0.39 ‐19% ‐0.97 ‐0.40 ‐20%

Ø ‐0.98 ‐0.42 ‐20% ‐0.97 ‐0.43 ‐22% ‐0.98 ‐0.50 ‐27% ‐0.96 ‐0.50 ‐30% ‐0.98 ‐0.40 ‐19% ‐0.97 ‐0.41 ‐21%

R  % R  % R  % R  % R  % R  % 
low ‐0.98 ‐0.46 ‐22% ‐0.97 ‐0.45 ‐24% ‐0.98 ‐0.58 ‐32% ‐0.97 ‐0.65 ‐34% ‐0.98 ‐0.44 ‐21% ‐0.97 ‐0.43 ‐22%

med ‐0.98 ‐0.42 ‐20% ‐0.98 ‐0.44 ‐22% ‐0.97 ‐0.49 ‐26% ‐0.97 ‐0.60 ‐31% ‐0.98 ‐0.41 ‐20% ‐0.98 ‐0.41 ‐21%

high ‐0.97 ‐0.38 ‐18% ‐0.97 ‐0.39 ‐20% ‐0.98 ‐0.44 ‐23% ‐0.95 ‐0.43 ‐24% ‐0.97 ‐0.37 ‐17% ‐0.97 ‐0.38 ‐19%

Ø ‐0.98 ‐0.42 ‐20% ‐0.97 ‐0.43 ‐22% ‐0.98 ‐0.50 ‐27% ‐0.96 ‐0.50 ‐30% ‐0.98 ‐0.40 ‐19% ‐0.97 ‐0.41 ‐21%

R  % R  % R  % R  % R  % R  % 

low ‐0.98 ‐0.37 ‐17% ‐0.97 ‐0.38 ‐19% ‐0.98 ‐0.43 ‐22% ‐0.96 ‐0.50 ‐27% ‐0.97 ‐0.35 ‐16% ‐0.97 ‐0.36 ‐18%

med ‐0.98 ‐0.41 ‐20% ‐0.98 ‐0.42 ‐21% ‐0.97 ‐0.49 ‐25% ‐0.97 ‐0.57 ‐30% ‐0.98 ‐0.39 ‐19% ‐0.97 ‐0.39 ‐20%

high ‐0.98 ‐0.48 ‐25% ‐0.97 ‐0.49 ‐26% ‐0.98 ‐0.59 ‐33% ‐0.96 ‐0.61 ‐33% ‐0.98 ‐0.47 ‐24% ‐0.97 ‐0.47 ‐24%

Ø ‐0.98 ‐0.42 ‐20% ‐0.97 ‐0.43 ‐22% ‐0.98 ‐0.50 ‐27% ‐0.96 ‐0.50 ‐30% ‐0.98 ‐0.40 ‐19% ‐0.97 ‐0.41 ‐21%

* Sig. for R  is ≤ 0.000

f   … flow shop j … job shop Ø … average value ci/ce … capacity cost rates internal / external

m … many products l … low number of products … shop load cb … backorder cost rate

c  … constant demand pattern s … seasonal demand pattern
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Table 9: Aggregated results of the linear regression analysis for the optimal overall costs. 

 

5 Conclusions 

In this paper the effect of unbiased forecast errors on a hierarchical production planning system (MRP 

II) is investigated. The APP optimization problem is extended by including a planned utilization factor 

to mitigate the effect of assuming a deterministic setting in the APP but facing stochastic customer 

behaviour. A high cost reduction potential is identified when consciously applying this planned 

utilization factor as decision parameter. It is shown that for different production system structures, a 

set of different demand patterns and cost rates the planned utilization factor, and therefore the excess 

capacity, increases with respect to forecast error. The overall costs are as well found to significantly 

increase with forecast error (consistent over all parameter settings). For the basic scenario we find that 

an increase of the forecast error parameter α from 0.2 to 0.4 leads to a cost increase of approximately 

10%. The results show that considerable cost reductions can be gained through improved collaboration 

of supply chain members on forecast accuracy. These findings on the effects of forecast error are in 

line with earlier studies. However, the contribution of this study lies in the focus on the long term 

forecasts provided and not on required lead times or order amounts stated by the customers. Note that 

the results are limited to situations with unbiased forecast errors. An additional contribution of this 

paper is the rigid modelling of the MRP II concept with the MPS and MRP step included which is 

R  % R  % R  % R  % R  % R  % 
2.2 0.93 5,948 24% 0.88 6,533 26% 0.93 7,277 33% 0.91 8,161 35% 0.92 5,569 22% 0.87 6,131 23%

2.5 0.92 6,081 21% 0.87 6,406 22% 0.92 9,274 36% 0.90 9,172 31% 0.90 5,682 19% 0.84 5,978 19%

2.8 0.91 9,071 27% 0.87 7,558 23% 0.94 13,539 48% 0.89 10,182 31% 0.90 8,580 25% 0.86 7,228 22%

Ø 0.92 7,033 24% 0.87 6,832 23% 0.93 10,030 39% 0.70 13,368 32% 0.91 6,610 22% 0.86 6,446 21%

R  % R  % R  % R  % R  % R  % 
low 0.91 3,711 24% 0.85 3,517 22% 0.93 5,396 44% 0.91 5,124 39% 0.90 3,512 22% 0.84 3,416 21%

med 0.92 6,366 25% 0.88 6,309 25% 0.92 9,082 41% 0.91 9,069 38% 0.91 5,943 22% 0.86 5,844 22%

high 0.92 11,022 24% 0.89 10,671 23% 0.93 15,612 37% 0.88 13,323 28% 0.91 10,375 22% 0.87 10,077 21%

Ø 0.92 7,033 24% 0.87 6,832 23% 0.93 10,030 39% 0.70 13,368 32% 0.91 6,610 22% 0.86 6,446 21%

R  % R  % R  % R  % R  % R  % 
low 0.93 5,756 20% 0.91 6,011 21% 0.94 7,863 31% 0.89 8,046 29% 0.92 5,429 19% 0.89 5,726 19%

med 0.92 6,730 23% 0.88 6,571 22% 0.93 9,436 37% 0.91 8,928 32% 0.91 6,274 21% 0.87 6,232 21%

high 0.91 8,613 29% 0.83 7,915 27% 0.92 12,791 50% 0.90 10,542 35% 0.88 8,128 27% 0.81 7,379 24%

Ø 0.92 7,033 24% 0.87 6,832 23% 0.93 10,030 39% 0.70 13,368 32% 0.91 6,610 22% 0.86 6,446 21%

* Sig. for R  is ≤ 0.000
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m … many products l … low number of products … shop load cb … backorder cost rate

c  … constant demand pattern s … seasonal demand pattern

Correlation coefficients for overall costs*
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shown to already mitigate some of the negative effects of short term information uncertainty. A further 

limitation of the results is that simulation is needed to identify the optimal planned utilization value. 

Nevertheless, a practical approach to identify a good planned utilization value can be suggested based 

on the observed convex overall cost function, if simulation is not feasible. Starting with a moderate 

planned utilization factor, this value can be increased until backorder costs start to become significant 

and overall costs increase. Then the value with the lowest overall cost or with a still acceptable service 

level can be chosen. 

Further research could include the production system uncertainties concerning processing times, setup 

times and machine failures. Additionally, further investigation is required to study other demand 

functions, to investigate mis-specified forecasts (biased forecasts), and to analyse the impact of 

demand autocorrelation. 
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