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Abstract

We present two globally convergent Levenberg–Marquardt methods for finding zeros of Hölder met-
rically subregular mappings that may have non-isolated zeros. The first method unifies the Leven-
berg–Marquardt direction and an Armijo-type line search, while the second incorporates this direction
with a nonmonotone trust-region technique. For both methods, we prove the global convergence to a
first-order stationary point of the associated merit function. Furthermore, the worst-case global complex-
ity of these methods are provided, indicating that an approximate stationary point can be computed in
at most O(ε−2) function and gradient evaluations, for an accuracy parameter ε > 0. We also study the
conditions for the proposed methods to converge to a zero of the associated mappings. Computing a moi-
ety conserved steady state for biochemical reaction networks can be cast as the problem of finding a zero
of a Hölder metrically subregular mapping. We report encouraging numerical results for finding a zero
of such mappings derived from real-world biological data, which supports our theoretical foundations.
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1 Introduction

We consider the problem of finding zeros of the nonlinear mapping h : Rm → Rn, i.e.,

h(x) = 0, x ∈ Rm, (1)

where h is continuously differentiable and satisfies the Hölder metric subregularity (see bellow). The set of
zeros of such mappings is denoted by Ω, which is assumed to be nonempty.

A classical approach for finding a solution of (1) is to search for a minimiser of the nonlinear least-squares
problem

min
x∈Rm

ψ(x), with ψ : Rm → R given by ψ(x) :=
1

2
‖h(x)‖2, (2)

where ‖ · ‖ denotes the Euclidean norm. In order to guarantee the quadratic or superlinear convergence of
many Newton-type schemes for solving (2), the existence of some constant β > 0 satisfying

β dist(x,Ω) ≤ ‖h(x)‖, ∀x ∈ B(x∗, r) (3)

is assumed, where B(x∗, r) stands for the closed ball centered at x∗ with radius r > 0, cf. [27, 48]. Such
an inequality is referred as an error bound (Lipschitzian error bound or metric regularity) condition. The
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notion of error bound has been very popular during the last few decades to study the local convergence of
optimisation methodologies; however, there are many important mappings where (3) is not satisfied , see,
e.g., [4, 34]. This motivated the authors of [4] to propose a weaker condition so-called the Hölder metric
subregularity (Hölderian error bound), i.e.,

β dist(x,Ω) ≤ ‖h(x)‖δ, ∀x ∈ B(x∗, r), (4)

for δ ∈ ]0, 1] and r ∈ ]0, 1[. There are many mappings satisfying this condition, see, e.g., [4, 34] and references
therein. See also Section 5 for a real-world nonlinear system satisfying (4), but not (3).

The Levenberg–Marquardt method is a standard technique used to solve (1), where, in the current point
xk and for a positive parameter µk, the convex subproblem

min
d∈Rm

φk(d), with φk : Rm → R given by φk(d) := ‖∇h(xk)T d+ h(xk)‖2 + µk‖d‖2, (5)

is solved to compute a direction dk in which ∇h(xk) ∈ Rm×n is the gradient of h at xk. This requires finding
the unique solution of the linear system(

∇h(xk)∇h(xk)T + µkI
)
dk = −∇h(xk)h(xk), (6)

where I ∈ Rm×m denotes the identity matrix. Then, the next iteration is be generated by xk+1 = xk + dk
and this scheme is continued until a stationary point of (2) is found, which may correspond to a zero h,
when certain conditions are satisfied.

The choice of the parameter µk has substantial impacts on the global convergence, the local convergence
rate, and the computational efficiency of Levenberg–Marquardt methods, cf. [4, 31, 38, 47, 48]. Hence,
several ways to specify and to adapt this parameter have been proposed; see, e.g., [18, 19, 48]. A recently
proposed Levenberg–Marquardt method by the authors [4] suggests an adaptive parameter µk based on the
order δ ∈ ]0, 1] of the Hölder metric subregularity (4), i.e.,

µk = ξk‖h(xk)‖η + ωk‖∇h(xk)h(xk)‖η, (7)

where η ∈ ]0, 4δ[, ξk ∈ [ξmin, ξmax] and ωk ∈ [ωmin, ωmax] with ξmin + ωmin > 0. In [4], this Leven-
berg–Marquardt method, with adaptive regularisation (LM-AR), was presented and its local convergence
was studied for Hölder metrically subregular mappings.

If one assumes that the starting point x0 is close enough to a solution x∗ of (2), then the Leven-
berg–Marquardt method is known to be quadratically convergent if ∇h(x∗) is nonsingular, in which case
it is clearly convergent to a solution to (1). In fact, the nonsingularity assumption implies that the so-
lution of the minimisation problem (2) must be locally unique; see [10, 28, 48]. However, assuming local
uniqueness of the solution might be restrictive for many applications since the underlying mappings might
have non-isolated zeros. Therefore, much attention has been devoted to the study of local convergence of
the Levenberg–Marquardt method under local error bounds, which enables the solution of mappings with
non-isolated zeros; see, e.g., [10, 18, 19, 48]. In particular, the local convergence of the Levenberg–Marquardt
method was studied in [4] under the Hölder metric subregularity condition (4).

As is the case in many applications, one cannot provide a sufficiently close starting point x0 to a solution
x∗, and therefore the convergence of the Levenberg–Marquardt method is not guaranteed, which decreases
the chance of practical applicability. To overcome this shortcoming, two globalisation techniques have been
proposed to be combined with the Levenberg–Marquardt direction, namely, line search and trust-region; see,
e.g., [3, 31, 30, 44]. Generally, a line search method finds a descent direction dk, specifies a step-size αk,
generates the new iteration xk+1 = xk +αkdk, and repeats this scheme until a stopping criterion holds. The
step-size is usually determined by an inexact line search such as Armijo, Wolfe, or Goldstein backtracking
schemes; see [14, 43]. In particular, the Armijo line search usually finds αk using a backtracking procedure,
which ends up with a step-size satisfying

ψ(xk + αkdk) ≤ ψ(xk) + σαk∇ψ(xk)T dk, (8)

where σ ∈ ]0, 1[. In order to provide an outline for trust-region methods, let us define, firstly, the quadratic
function qk : Rm → R with

qk(d) :=
1

2
‖∇h(xk)T d+ h(xk)‖2. (9)
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Then, a Levenberg–Marquardt trust-region method solves the quadratic subproblem (5) to find a direction
dk, computes the ratio of the actual reduction to the predicted reduction

rk :=
ψ(xk)− ψ(xk + dk)

qk(0)− qk(dk)
, (10)

and updates the parameter µk using rk. For line search and trust-region methods, the global convergence
to a first-order stationary point of ψ can be guaranteed, which results to a monotone sequence of function
values, i.e., ψ(xk+1) ≤ ψ(xk).

Regardless of the fact that the monotonicity seems natural for the minimisation goal, it has some draw-
backs. We address two of them here: (i) the monotone method may lose its efficiency if iterations are trapped
at the bottom of a curved narrow valley, where the monotonicity forces the iterations to trace the valley
floor (causing very short steps or even an undesired zigzagging); (ii) the Armijo-type line search can break
down for very small step-sizes because of rounding errors, when ψ(xk + αkdk) ' ψ(xk). In this case, the
point xk may still be far from a stationary point of ψ; however, the Armijo rule cannot be satisfied due to
indistinguishability of ψ(xk + αkdk) from ψ(xk) in floating-point arithmetic. To overcome such limitations,
the seminal article by Grippo et al. [22] addressed a variant of the Armijo rule (8) by substituting ψ(xk) with
ψl(k) = max0≤j≤m(k) ψ(xk−j), where m(0) = 0 and 0 ≤ m(k) ≤ min{m(k−1)+1,M}, for some nonnegative
integer constant M for all k ≥ 1. This does not guarantee the monotonicity condition ψ(xk+1) ≤ ψ(xk) and
therefore called nonmonotone. Nonmonotonicity has also been studied for trust-region methods by replacing
ψ(xk) with a nonmonotone term; cf. [1]. On the basis of many studies in this area, nonmonotone meth-
ods have been recognised to be globally convergent and computationally efficient, even for highly nonlinear
problems; see [1, 5] and references therein.

1.1 Motivation and contribution

Our analysis was motivated by the problem of finding moiety conserved steady states of deterministic equa-
tions representing the dynamical evolution of molecular species abundance in biochemical reaction networks.
This problem can be considered as an application of finding zeros of a mapping h : Rm → Rn, that may not
satisfy the local error bound (3). It was previously established [4] that this mapping is Hölder metrically
subregular and that the merit function is real analytic using standard biochemical assumptions; cf. [7]. Ap-
plying a novel Levenberg–Marquardt algorithm with adaptive regularisation (LM-AR), to this problem, we
proved local convergence to a zero of h for all such networks if the sufficiently closeness of a starting point
to x∗ can be assumed [4]. However, providing a starting point close enough to x∗ remains as a limitation in
practice, as is the case for all local optimisation methods; see, e.g., [14, 16].

The global convergence and complexity of iterative methods has been the subject of intense debate within
the nonlinear optimisation community over the last few decades. While the global convergence guarantees
the convergence of the iteration sequence generated by a method for any given starting point x0, the worst-
case complexity provides an upper bound on the number iterations or function evaluations needed to reach a
stationary point of the underlying objective function. These two factors are more important if the convexity
or structured nonconvexity of the objective function is assumed; see, e.g., [8, 11, 39, 40, 41, 49]. In the
particular case of solving nonlinear least-squares problems by Levenberg-Marquardt methods, there are less
results about their global convergence and complexity, compared with the volume of literature concerning
Newton-type methods; cf. [45, 46]. This motivates our aim to study the global convergence properties and
complexity of two Levenberg-Marquardt methods using line search and trust-region techniques.

We analyse the global convergence, and investigate the complexity of, two Levenberg–Marquardt methods
using line search scheme and trust-region globalisation techniques. For the first method, we use µk defined
in (7), solve the linear system (6) to specify dk, and combine this direction with a nonmonotone Armijo-
type line search. We also propose a modified version of the Levenberg–Marquardt parameter (7), which
is lower bounded, and combines the associated direction dk with a trust-region technique to adapt the
Levenberg–Marquardt parameter. A global convergence analysis is provided for both methods. Moreover,
we demonstrate that, for both methods, a first-order stationary point is attained after at most O(ε−2)
iterations or function evaluations. We also illustrate some special mappings h where the proposed methods
are convergent to a solution to the nonlinear system (1). Finally, we demonstrate that the application of
these two methods mappings derived from real-world biochemical reaction networks, from a diverse set of
biological species, shows encouraging numerical results in practice. To the best of our knowledge, these two
Levenberg–Marquardt methods are the first methods, globally convergent to a stationary point, for finding
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zeros of the mapping h arising in the study of biological networks. All algorithms are made available within
the COBRA Toolbox v.03 [25], an open source software package for modelling biochemical reaction networks.

This paper has five sections, besides this introductory section. Section 2 describes a globally convergent
Levenberg–Marquardt line search method. Section 3 addresses a globally convergent Levenberg–Marquardt
trust-region method, where in both sections the global convergence and complexity of these methods are
analysed. In Section 4, finding a zero of some specific mappings with the proposed methods is discussed.
Section 5 reports encouraging numerical results for a mapping appearing in biochemical reaction networks.
Finally, conclusions and area for further research are identified in Section 6.

2 Levenberg–Marquardt line search method

For the sake of simplicity, we define H(xk) := ∇h(xk)∇h(xk)T + µkI. If xk is not a stationary point of ψ,
from positive definiteness of H(xk), we obtain

∇ψ(xk)T dk = −dTkH(xk)dk < 0, (11)

which guarantees the descent property of dk at xk. This motivates us to develop a globally convergent Lev-
enberg–Marquardt method using (7). More precisely, we shall combine the Levenberg–Marquardt direction
with a nonmonotone Armijo-type line search using the nonmonotone term

Dk =

{
ψ(x0) if k = 0,

(1− θk−1)ψ(xk) + θk−1Dk−1 if k ≥ 1,
(12)

where θk−1 ∈ [θmin, θmax] and 0 ≤ θmin ≤ θmax < 1, cf. [2, 23].
A combination of the direction dk (given by solving (6) using the parameter (7)) with a nonmonotone

Armijo-type line search using (12) leads to Algorithm 1.

Algorithm 1: LMLS (Levenberg–Marquardt Line Search algorithm)

Input: x0 ∈ Rm, η > 0, α > 0, ε > 0, ρ, σ ∈ ]0, 1[, ξ0 ∈ [ξmin, ξmax], ω0 ∈ [0, ωmax], θ0 ∈ [θmin, θmax];
1 begin
2 k := 0; µ0 := ξ0‖h(x0)‖η + ω0‖∇h(x0)h(x0)‖η;
3 while ‖h(xk)‖ > ε or ‖∇ψ(xk)‖ > ε do
4 solve the linear system (6) to specify the direction dk; ` = 0; αk = α;

5 while ψ(xk + αkdk) > Dk + σαk∇ψ(xk)T dk do
6 ` = `+ 1; αk = ρ`α;
7 end
8 `k = `; xk+1 = xk + αkdk; update ξk, ωk, and θk;
9 update µk and Dk by (7) and (12), respectively;

10 end

11 end

In order to prove the global convergence of the sequence {xk} generated by LMLS to a stationary point
of ψ, we assume that the next assumptions hold:

(A1) The mapping h is continuously differentiable and Hölder metrically subregular of order δ ∈ ]0, 1] at
(x∗, 0); i.e., there exist some constants β > 0 and r > 0 such that (4) holds;

(A2) The lower level set L(x0) := {x ∈ Rm | ψ(x) ≤ ψ(x0)} is bounded;

(A3) ∇h is Lipschitz continuous, i.e.,

‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rm.

In the subsequent proposition, we first derive a lower bound for the step-size αk and give a bound on the
total number of function evaluations needed until the line search (Line 5 of LMLS) is satisfied.

Proposition 2.1. Let {xk} be an infinite sequence generated by LMLS. Then,
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(i) xk ∈ L(x0);

(ii) if LMLS does not terminate at xk, then

αk ≥
ρ(1− σ)µ2

ϑ(L2
0 + µ)

:= α̂, (13)

with

ϑ :=
1

2
L2
0 +

1

2
α2ρ−2L2µ−2L2

0‖h(x0)‖2 + (1 + αρ−1L2
0µ
−1)L‖h(x0)‖,

for µ ∈ ]0, εη[. Moreover, the inner loop of LMLS is terminated in a finite number of steps, denoted by
`k, which satisfies

0 ≤ `k ≤
log(α̂)− log(α)

log(ρ)
. (14)

Proof. We prove Assertions (i) and (ii) by induction at the same time. Let us assume i = 1. Since D0 =
ψ(x0), by the traditional results about the monotone Armijo line search, we have ψ(x1) ≤ D0 = ψ(x0). This
implies that x1 ∈ L(x0). The proof of Assertion (ii) is similar to i = k, i.e., we therefore omit it.

We now assume Assertions (i) and (ii) hold for i = 1, . . . , k − 1 and prove them for i = k. Since xk−1
satisfies the line search and ∇ψ(xk−1)T dk−1 < 0, similar to Lemma 2.3 in [2], we can show ψ(xk) ≤ Dk−1.
This and

Dk − ψ(xk) = θk−1(Dk−1 − ψ(xk)) ≥ 0, Dk −Dk−1 = (1− θk−1)(ψ(xk)−Dk−1) ≤ 0. (15)

imply Dk ≤ Dk−1 and
ψ(xk) ≤ Dk. (16)

Therefore,
ψ(xk) ≤ Dk−1 ≤ Dk−2 ≤ . . . ≤ D0 = ψ(x0), (17)

leading to xk ∈ L(x0), i.e., Assertion (i) holds for i = k.
From (A1) and xk ∈ L(x0), there exists some constant L0 > 0 such that

‖∇h(xk)‖ ≤ L0, (18)

which implies

‖H(xk)‖ =
∥∥∇h(xk)∇h(xk)T + µkI

∥∥ ≤ ‖∇h(xk)‖2 + µk ≤ L2
0 + µk,

leading to

λmin

(
H(xk)−1

)
=

1

λmax (H(xk))
=

1

‖H(xk)‖
≥ 1

L2
0 + µk

. (19)

From the definition of dk, we obtain

‖dk‖ = ‖H(xk)−1∇ψ(xk)‖ ≤ ‖H(xk)−1‖‖∇ψ(xk)‖ =
1

λmin(H(xk))
‖∇ψ(xk)‖ ≤ 1

µk
‖∇ψ(xk)‖. (20)

Since LMLS does not stop at xk, it holds ‖h(xk)‖ > ε and ‖∇h(xk)h(xk)‖ > ε, which imply

µk = ξk‖h(xk)‖η + ωk‖∇h(xk)h(xk)‖η > ξminε
η, ∀k ≥ 0.

Let us consider a constant µ ∈ ]0, ξminε
η[, i.e.,

µk > µ, ∀k ≥ 0. (21)

We first derive a lower bound on the step-size αk. By (20), (18) and (21), we get

‖dk‖ ≤ µ−1k ‖∇ψ(xk)‖ ≤ µ−1k ‖∇h(xk)‖‖h(xk)‖ ≤ µ−1k L0‖h(x0)‖ ≤ µ−1L0‖h(x0)‖. (22)

Therefore, for all α > 0, we have

‖h(xk) + α∇h(xk)T dk‖ ≤ ‖h(xk)‖+ α‖∇h(xk)‖‖dk‖ ≤ (1 + αL2
0µ
−1)‖h(x0)‖. (23)

5



Further, for all t ∈ [0, 1] and α > 0, (A3) and (22) yield

‖∇h(xk + tαdk)−∇h(xk)‖ ≤ Lα‖dk‖ ≤ αLL0µ
−1‖h(x0)‖. (24)

It follows from (18) that

1

2
‖h(xk) + α∇h(xk)T dk‖2 =

1

2
‖h(xk)‖2 + αh(xk)T∇h(xk)T dk +

1

2
α2‖∇h(xk)T dk‖2

≤ 1

2
‖h(xk)‖2 + αh(xk)T∇h(xk)T dk +

1

2
α2‖∇h(xk)‖2‖dk‖2

≤ 1

2
‖h(xk)‖2 + αh(xk)T∇h(xk)T dk +

1

2
α2L2

0‖dk‖2

= ψ(xk) + α∇ψ(xk)T dk +
1

2
α2L2

0‖dk‖2. (25)

By this inequality, the Taylor expansion of h(xk + αdk) around xk, and the Cauchy–Schwarz inequality, for
any α > 0, we come to

ψ(xk + αdk) =
1

2

∥∥∥∥h(xk) + α∇h(xk)T dk +

ˆ 1

0

α(∇h(xk + tαdk)−∇h(xk))T dk dt

∥∥∥∥2
=

1

2
‖h(xk) + α∇h(xk)T dk‖2 +

1

2

∥∥∥∥ˆ 1

0

α(∇h(xk + tαdk)−∇h(xk))T dk dt

∥∥∥∥2
+ (h(xk) + α∇h(xk)T dk)T

ˆ 1

0

α(∇h(xk + tαdk)−∇h(xk))T dk dt

≤ ψ(xk) + α∇ψ(xk)T dk +
1

2
α2L2

0‖dk‖2

+
1

2

(ˆ 1

0

α(‖∇h(xk + tαdk)−∇h(xk)‖ ‖dk‖dt
)2

+ ‖h(xk) + α∇h(xk)T dk‖
ˆ 1

0

α‖∇h(xk + tαdk)−∇h(xk)‖ ‖dk‖dt.

(26)

This inequality, (18), (23), (24), and (A3) suggest

ψ(xk + αdk) ≤ ψ(xk) + α∇ψ(xk)T dk

+

(
1

2
L2
0 +

1

2
α2L2µ−2L2

0‖h(x0)‖2 + (1 + αL2
0µ
−1)L‖h(x0)‖

)
α2‖dk‖2.

From (16), we come to

ψ(xk + αdk) ≤ Dk + α∇ψ(xk)T dk

+

(
1

2
L2
0 +

1

2
α2L2µ−2L2

0‖h(x0)‖2 + (1 + αL2
0µ
−1)L‖h(x0)‖

)
α2‖dk‖2.

For α = αk/ρ ≤ α/ρ, we have

1

2
L2
0 +

1

2
α2L2µ−2L2

0‖h(x0)‖2 + (1 + αL2
0µ
−1)L‖h(x0)‖ ≤ 1

2
L2
0 +

1

2
α2ρ−2L2µ−2L2

0‖h(x0)‖2

+ (1 + αρ−1L2
0µ
−1)L‖h(x0)‖ =: ϑ,

which yields
ψ(xk + αdk) ≤ Dk + α∇ψ(xk)T dk + ϑα2‖dk‖2. (27)

For α = αk/ρ, the Armijo-type line search (Line 5 of LMLS) does not hold, i.e.,

ψ(xk + αdk) > Dk + σα∇ψ(xk)T dk.

This and the inequality (27) lead to

ϑα‖dk‖2 ≥ (σ − 1)∇ψ(xk)T dk.
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Substituting α = αk/ρ, we have thanks to (20) and (19) that

ϑαkρ
−1µ−2k ‖∇ψ(xk)‖2 ≥ ϑαkρ−1‖dk‖2 > (σ − 1)∇ψ(xk)T dk

= (1− σ)∇ψ(xk)TH(xk)−1∇ψ(xk)

≥ (1− σ)λmin(H(xk)−1)‖∇ψ(xk)‖2

≥ (1− σ)(L2
0 + µk)−1‖∇ψ(xk)‖2

≥ (1− σ)(L2
0 + µ)−1‖∇ψ(xk)‖2.

(28)

It follows from (28) and (21) that (13) is valid. Using αk = ρ`kα and (13), we end up to

α̂ ≤ ρ`kα ≤ α,

which proves (14).

The first main result of this section demonstrates some properties of the sequence Dk and shows that
any accumulation point of the sequence {xk} generated by LMLS is either a solution of (1) or a stationary
point of ψ.

Theorem 2.2. Let {xk} be an infinite sequence generated by LMLS. Then, for all k ≥ 0, the following
assertions hold:

(i) {Dk} is convergent and
lim
k→∞

Dk = lim
k→∞

ψ(xk); (29)

(ii) ∇ψ(xk)T dk ≤ −c1‖∇ψ(xk)‖2;

(iii) LMLS either stops at finite number of iterations, satisfying ‖h(xk)‖ ≤ ε or ‖∇ψ(xk)‖ ≤ ε, or generates
an infinite sequence {xk} such that any accumulation point of this sequence is a stationary point of the
merit function ψ, i.e.,

lim
k→∞

‖∇ψ(xk)‖ = 0. (30)

Proof. From (15), we have Dk ≤ Dk−1. This, Proposition 2.1 (i) and (A2) imply that {Dk} is convergent.
Further, since θk−1 ∈ [θmin, θmax], with θmax ∈ [θmin, 1[, we have 1 − θk−1 ≥ 1 − θmax > 0. Taking limits
from both sides of Dk −Dk−1 = (1− θk−1)(ψ(xk)−Dk−1) when k goes to infinity, we deduce (29).

It follows from (19) and the definition of dk that

∇ψ(xk)T dk = −∇ψ(xk)TH(xk)−1∇ψ(xk) ≤ −λmin

(
H(xk)−1

)
‖∇ψ(xk)‖2

≤ − 1

L2
0 + µk

‖∇ψ(xk)‖2.
(31)

By the definition of µk, (17), and (18), we get

µk = ξk‖h(xk)‖η + ωk‖∇h(xk)h(xk)‖η

≤ ξmax‖h(xk)‖η + ωmax‖∇h(xk)‖η‖h(xk)‖η

≤ (ξmax + ωmaxL
η
0)‖h(x0)‖η := µ,

(32)

for all k ≥ 0. This and (31) yield

∇ψ(xk)T dk ≤ −
(
L2
0 + µ

)−1 ‖∇ψ(xk)‖2;

that is, Assertion (i) holds with c1 :=
(
L2
0 + µ

)−1
> 0.

Let us now prove the assertion (iii). If the algorithm stops in a finite number of iterations by either
‖h(xk)‖ ≤ ε or ∇ψ(xk) ≤ ε, the result is valid. Let us assume that the algorithm generates an infinite
sequence {xk}. For a fixed iteration xk, the stopping criteria of LMLS do not hold, i.e., ‖h(xk)‖ > ε and
‖∇h(xk)h(xk)‖ > ε. Therefore, from (21), we have

µk ≥ µ > 0.
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It can be deduced from Line 5 of LMLS and Assertion (ii) that

Dk − ψ(xk+1) ≥ −σαk∇ψ(xk)T dk ≥ c1σαk‖∇ψ(xk)‖2 ≥ c1σα̂‖∇ψ(xk)‖2. (33)

This and the assertion (ii) yield

lim
k→∞

‖∇ψ(xk)‖ = lim
k→∞

‖∇h(xk)h(xk)‖ = 0,

i.e., any accumulation point of {xk} is a stationary point of ψ.

We continue the analysis of LMLS by providing the worst-case global and evaluation complexities of
LMLS, which are upper bounds on the number of iterations and merit function evaluations required to get
an approximate stationary point of ψ satisfying ‖∇ψ(x)‖ ≤ ε, for the accuracy parameter ε, respectively.
Let us denote by Ni(ε) and Nf (ε) the total number of iterations and merit function evaluations of LMLS
required to find and an ε-stationary point of (2) .

Theorem 2.3. Let {xk} be the sequence generated by LMLS and (A2) and (A3) hold. Then,

(i) the total number of iterations to guarantee ‖∇ψ(xk)‖ ≤ ε is bounded above and

Ni(ε) ≤ dc−12 ψ(x0)ε−2 + 1e, (34)

with c2 := c1σα̂(1− θmax);

(ii) the total number of function evaluations to guarantee ‖∇ψ(xk)‖ ≤ ε is bounded above and

Nf (ε) ≤ dc
−1
2 ψ(x0)ε−2 + 1e(log(α̂)− log(α))

log(ρ)
. (35)

Proof. To prove Assertion (i), we define

k̂ := dc−12 ψ(x0)ε−2 + 1e,

which suggests
c2ε

2k̂ = c2ε
2dc−12 ψ(x0)ε−2 + 1e > ψ(x0). (36)

Let us assume by contradiction that Ni(ε) > k̂, which means that the algorithm does not stop in k̂ iterations.
From Line 5 of LMLS, (15), and Theorem 2.2 (ii), we obtain

Dk −Dk+1 = (1− θk)(Dk − ψ(xk+1)) ≥ −σα̂(1− θk)∇ψ(xk)T dk

≥ −σα̂(1− θmax)∇ψ(xk)T dk ≥ c1σα̂(1− θmax)‖∇ψ(xk)‖2

= c2‖∇ψ(xk)‖2,

leading to

ψ(x0) = D0 ≥ D0 −Dk̂ =

k̂−1∑
i=0

(Di −Di+1) ≥ c2
k̂−1∑
i=0

‖∇ψ(xi)‖2 > c2ε
2k̂,

which contradicts to (36). Therefore, (34) is valid.
Considering the bound on the number of merit function evaluations in step k (`k, given in Proposition

2.1), the following upper bound on the total number of merit function evaluations can be provided by

Nf (ε) ≤
Nk(ε)−1∑
k=0

`k ≤
Nk(ε)−1∑
k=0

log(α̂)− log(α)

log(ρ)

≤ dc
−1
2 ψ(x0)ε−2 + 1e(log(α̂)− log(α))

log(ρ)
,

giving the results.
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Theorem 2.3 implies that the worst-case global and evaluation complexities of LMLS to attain the ap-
proximate stationary point of ψ are of the order O(ε−2), which is the same as the gradient method; see, e.g.,
[39]. However, in practice Levenberg-Marquardt methods usually performs much better than the gradient
method.

Let us compute here the second derivative of ψ at x, i.e.,

∇2ψ(x) = ∇h(x)∇h(x)T +

m∑
i=1

hi(x)∇2hi(x) = ∇h(x)∇h(x)T + S(x), (37)

where S(x) :=
∑m
i=1 hi(x)∇2hi(x). Three types of the problem (1) are recognised with respect to the

magnitude of ‖h(x∗)‖: (i) if h(x∗) = 0, the problem is called zero residual; (ii) if ‖h(x∗)|| is small, the
problem is called small residual; and if ‖h(x∗)‖ is large, the problem is called large residual; see, e.g., [16].
Under the nonsingularity assumption of ∇h(x) at the limit point x∗ of {xk} and using (37), we investigate
the superlinear convergence of {xk} generated by LMLS for zero residual problems, which is the same as the
convergence rate given for quasi-Newton methods; see [15].

Theorem 2.4. Let ψ : Rm → R be twice continuously differentiable on L(x0), and {xk} be the sequence
generated by LMLS and (A1)-(A3) hold. If {xk} converges to x∗ and ∇h(x∗) has full rank, then

lim
k→∞

‖∇ψ(xk) +∇2ψ(xk)dk‖
‖dk‖

= 0, (38)

there exists k ≥ 0 such that αk = 1 for all k ≥ k, and {xk} converges to x∗ superlinearly.

Proof. Since ∇h(x∗) has full rank, (30) implies h(x∗) = 0. This and (37) yield that ∇2ψ(x∗) is positive
definite. Hence, h(x∗) = 0 leads to

lim
k→∞

µk ≤ ξmax lim
k→∞

‖h(xk)‖η + ωmax lim
k→∞

‖∇ψ(xk)‖η = 0. (39)

From (37), we obtain
∇ψ(xk) +∇2ψ(xk)dk = (S(xk)− µkI)dk,

which implies

‖∇ψ(xk) +∇2ψ(xk)dk‖
‖dk‖

≤ ‖S(xk)− µkI‖‖dk‖
‖dk‖

≤ ‖S(xk)‖+ µk = ‖
m∑
i=1

hi(x)∇2hi(x)‖+ µk

≤
m∑
i=1

‖hi(xk)‖‖∇2hi(x)‖+ µk.

Since ψ is twice continuously differentiable in the compact set L(x0), ‖∇2hi(x)‖ (i = 1, . . . ,m) is bounded.
This, the last inequality, and (39) give

lim
k→∞

‖∇ψ(xk) +∇2ψ(xk)dk‖
‖dk‖

≤ lim
k→∞

m∑
i=1

‖hi(xk)‖‖∇2hi(x)‖+ lim
k→∞

µk = 0,

giving (38).
From Theorem 6.4 in [15] and (38), we have that (8) is valid with αk = 1, for all k sufficiently large.

Therefore, the superlinear convergence of {xk} follows from Theorem 3.1 in [15].

3 Levenberg–Marquardt trust-region method

Trust-region methods are known to be effective for nonconvex optimisation problems (see [14]). Therefore,
this section concerns with the development of a globally convergent Levenberg–Marquardt method using a
trust-region technique and the investigation on its convergence analysis and complexity.
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Let us start with some details of a trust-region globalisation technique that will be coupled with the
Levenberg–Marquardt direction. We first draw your attention to some literature, e.g., [1, 3] and references
therein, about the efficiency of nonmonotone trust-region methods compared to monotone ones for either
optimisation or nonlinear systems. This motivates us to develop a nonmonotone Levenberg–Marquardt
trust-region method for solving systems of nonlinear equations. To do so, we take advantage of the quadratic
function qk (9) and define the ratio

r̂k :=
Dk − ψ(xk + dk)

qk(0)− qk(dk)
, (40)

where the nonmonotone term Dk defined by (12). In this ratio, the nominator is called nonmonotone
reduction and the denominator is called the predicted reduction. Further, let us introduce a new Leven-
berg–Marquardt parameter that is a modified version of (7), i.e.,

µ̂k := max {µmin, λkµk} , (41)

where µk is given by (7) with η ∈ ]0, 4δ[, µmin > 0, ξk ∈ [ξmin, ξmax], ωk ∈ [ωmin, ωmax] with ξmin +ωmin > 0,
and λk is updated by

λk+1 :=

 ρ1λk if r̂k < υ1,
λk if υ1 ≤ r̂k < υ2,
ρ2λk if r̂k ≥ υ2,

in which 0 < ρ2 < 1 < ρ1 and 0 < υ1 < υ2 < 1 are some constants. A simple comparison between (7) and
(41) indicates that µ̂k is lower bounded and λk helps to have a better control on the Levenberg–Marquardt
parameter, which shows its effect on numerical performance of the method (see Section 5 for more details).

In our Levenberg–Marquardt trust-region method, we first determine µ̂k (41), specify the direction dk
by solving the linear system (6), and compute the ratio r̂k (40). If r̂k ≥ υ1, the trial point dk is accepted,
i.e., xk+1 = xk + dk; otherwise, the parameter λk should be increased by setting λk = ρ1λk. In the case
that r̂k ≥ υ2, the parameter λk is decreased by setting λk+1 = ρ2λk. The final step will be the evaluation
of stopping criteria, which here is either ‖h(xk+1)‖ ≤ ε or ‖∇ψ(xk+1)‖ ≤ ε. We summarise this scheme in
Algorithm 2.

Algorithm 2: LMTR (Levenberg–Marquardt Trust-Region algorithm)

Input: x0 ∈ Rm, η > 0, ε > 0, 0 < ρ2 < 1 < ρ1,0 < υ1 < υ2 < 1, µmin > 0, ξ0 ∈ [ξmin, ξmax],
ω0 ∈ [0, ωmax], θ0 ∈ [θmin, θmax];

1 begin
2 k := 0; λ0 = 1; µ0 := max {µmin, λ0 (ξ0‖h(x0)‖η + ω0‖∇h(x0)h(x0)‖η)} ;
3 while ‖h(xk)‖ > ε or ‖∇ψ(xk)‖ > ε do
4 solve the linear system (6) to specify dk; compute r̂k by (40); p = 0;
5 while r̂k < υ1 do
6 p = p+ 1, λk = ρp1λk; solve (6) to specify dk; compute r̂k by (40);
7 end
8 if r̂k ≥ υ2 then
9 λk+1 = ρ2λk;

10 else
11 λk+1 = λk;
12 end
13 pk = p; xk+1 = xk + dk; update ξk, ωk, and θk; update µk and Dk by (7) and (12);

14 end

15 end

In LMTR, the loop starts from Line 5 to Line 7 is called the inner loop and the loop starts from Line 3
to Line 14 is called the outer loop.

The subsequent proposition points out that the inner loop of LMTR is terminated after a finite number
of steps and provides upper bounds for µ̂k and pk.

Proposition 3.1. Let {xk} be an infinite sequence generated by LMTR and (A1)-(A3) holds. Then,
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(i) qk(0)− qk(dk) ≥ 1
2(L2

0+µmin)
‖∇ψ(xk)‖2;

(ii) qk(0)− qk(dk) ≤ ( 1
2L

2
0 + µ̂k)‖dk‖2;

(iii) the inner loop is terminated in a finite number of steps. Moreover, if LMTR does not terminate at xk,
then

µ̂k ≤ τ, (42)

with

τ :=
ρ1

(1− υ1)

(
1

2
(1 + υ1)L2

0 +
1

2
L2L2

0µ
−2
min‖h(x0)‖2 + (1 + L2

0µ
−1
min)L‖h(x0)‖

)
,

and

pk ≤
log(τ)− log(µmin))

log(ρ1)
. (43)

Proof. By the definition of qk in (9) and (19), we get

qk(0)− qk(dk) ≥ 1

2
‖h(xk)‖2 − 1

2
‖∇h(xk)T dk + h(xk)‖2 − 1

2
µ̂k‖dk‖2

= −1

2
dTkHkdk −∇ψ(xk)T dk =

1

2
∇ψ(xk)TH−1k ∇ψ(xk)

≥ 1

2(L2
0 + µmin)

‖∇ψ(xk)‖2,

(44)

giving Assertion (i).
It follows from (9) that

qk(0)− qk(dk) =
1

2
‖h(xk)‖2 − 1

2
‖∇h(xk)T dk + h(xk)‖2

= −1

2
dk∇h(xk)∇h(xk)T dk − h(xk)T∇h(xk)T dk

=
1

2
dTkHkdk +

1

2
µ̂k‖dk‖2

≤
(

1

2
L2
0 + µ̂k

)
‖dk‖2,

(45)

proving Assertion (ii).
For the first part of the assertion (iii), we show that the inner loop is terminated after a finite number of

steps. From Assertion (i) and (20), we obtain

qk(0)− qk(dk) ≥ 1

2(L2
0 + µmin)

‖∇ψ(xk)‖2 ≥ µ̂2
k

2(L2
0 + µmin)

‖dk‖2. (46)

By (A3) and (20), for t ∈ [0, 1], we get

‖∇h(xk + tdk)−∇h(xk)‖ ≤ tL‖dk‖ ≤ tLµ̂−1k ‖∇ψ(xk)‖ ≤ LL0µ̂
−1
k ‖h(xk)‖. (47)

By the Taylor expansion of ψ(xk + dk) around xk, we come to

ψ(xk + dk) =
1

2
‖h(xk + dk)‖2 =

1

2

∥∥∥∥h(xk) +∇h(xk)T dk +

ˆ 1

0

(∇h(xk + tdk)−∇h(xk))T dk dt

∥∥∥∥2
=

1

2

∥∥h(xk) +∇h(xk)T dk
∥∥2 +

1

2

∥∥∥∥ˆ 1

0

(∇h(xk + tdk)−∇h(xk))T dk dt

∥∥∥∥2
+ (h(xk) +∇h(xk)T dk)T

ˆ 1

0

(∇h(xk + tdk)−∇h(xk))T dk dt.

(48)
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From this, (23), and (47), it consequently holds

|qk(dk)− ψ(xk + dk)| =
∣∣∣∣12‖∇h(xk)T dk + h(xk)‖2 − ψ(xk + dk)

∣∣∣∣
=

1

2

∥∥∥∥ˆ 1

0

(∇h(xk + tdk)−∇h(xk))T dk dt

∥∥∥∥2
+ (h(xk) +∇h(xk)T dk)T

ˆ 1

0

(∇h(xk + tdk)−∇h(xk))T dk dt

≤ 1

2

(ˆ 1

0

‖∇h(xk + tdk)−∇h(xk)‖‖dk‖ dt
)2

+ ‖h(xk) +∇h(xk)T dk‖
ˆ 1

0

‖∇h(xk + tdk)−∇h(xk)‖‖dk‖ dt

≤
(

1

2
L2L2

0‖h(xk)‖2µ̂−2k + (1 + L2
0µ̂
−1
k )‖h(xk)‖

)
‖dk‖2.

(49)

Since r̂k−1 ≥ υ1, we have ψ(xk) ≤ Dk−1. This and

Dk −Dk−1 = (1− θk−1)(ψ(xk)−Dk−1) ≤ 0, Dk − ψ(xk) = θk−1(Dk−1 − ψ(xk)) ≥ 0 (50)

imply Dk ≤ Dk−1 and ψ(xk) ≤ Dk, leading to ψ(xk) ≤ Dk ≤ Dk−1 ≤ . . . ≤ D0 = ψ(x0), i.e.,

xk ∈ L(x0). (51)

It can be deduced from this and (49) that

qk(dk)− ψ(xk + dk) ≤
(

1

2
L2L2

0‖h(x0)‖2µ̂−2k + (1 + L2
0µ̂
−1
k )‖h(x0)‖

)
‖dk‖2

= µ̂−2k
(
c̃0 + c̃1µ̂k + c̃2µ̂

2
k

)
‖dk‖2,

(52)

where c̃0 := 1
2L

2L2
0‖h(x0)‖2, c̃1 := L2

0‖h(x0)‖, and c̃2 := ‖h(x0)‖. For sufficiently large pk, we have µ̂k =
ρpk1 λkµk. This, (10), and (46) yield

|rk − 1| =
∣∣∣∣qk(dk)− ψ(xk + dk)

qk(0)− qk(dk)

∣∣∣∣
≤

2(L2
0 + µmin)

(
c̃0 + c̃1ρ

pk
1 λkµk + c̃2ρ

2pk
1 λ2kµ

2
k

)
ρ4pk1 λ4kµ

4
k

→ 0, as pk → +∞.

It can be deduced from this and ψ(xk) ≤ Dk that r̂k ≥ rk ≥ υ1, for sufficiently large pk, proving the first
part of Assertion (iii).

In the second part of Assertion (iii), we provide upper bounds for µ̂k and pk. Let us denote by dk the
solution of the system (6) corresponding to the parameter µk := ρpk−11 λkµk and set xk+1 = xk +dk. By (20)
and (18), we get

‖dk‖ ≤ µ−1k ‖∇ψ(xk)‖ ≤ µ−1k ‖∇h(xk)‖‖h(xk)‖ ≤ µ−1k L0‖h(x0)‖ ≤ µ−1minL0‖h(x0)‖. (53)

It follows from this and the triangle inequality that

‖h(xk) +∇h(xk)T dk‖ ≤ ‖h(xk)‖+ ‖∇h(xk)‖‖dk‖ ≤ (1 + L2
0µ
−1
min)‖h(x0)‖. (54)

For all t ∈ [0, 1], (A3) and (53) imply

‖∇h(xk + tdk)−∇h(xk)‖ ≤ L‖dk‖ ≤ LL0µ
−1
min‖h(x0)‖. (55)

From (18), (25), (48), and (11), we obtain

ψ(xk + dk) ≤ ψ(xk) +∇ψ(xk)T dk

+

(
1

2
L2
0 +

1

2
L2L2

0µ
−2
min‖h(x0)‖2 + (1 + L2

0µ
−1
min)L‖h(x0)‖

)
‖dk‖2.
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Following ψ(xk) ≤ Dk and ∇ψ(xk)T dk = −dTkHkdk ≤ −µk‖dk‖2, it can be deduced

ψ(xk + dk) ≤ Dk − µk‖dk‖2

+

(
1

2
L2
0 +

1

2
L2L2

0µ
−2
min‖h(x0)‖2 + (1 + L2

0µ
−1
min)L‖h(x0)‖

)
‖dk‖2.

(56)

It follows from (45) and the definition µk that r̂k < υ1 and

Dk − ψ(xk + dk) < υ1(qk(0)− qk(dk)) ≤ υ1
(

1

2
L2
0 + µk

)
‖dk‖2.

Combining this inequality with that in (56) suggest(
µk −

1

2
L2
0 −

1

2
L2L2

0µ
−2
min‖h(x0)‖2 − (1 + L2

0µ
−1
min)L‖h(x0)‖

)
‖dk‖2 ≤ υ1

(
1

2
L2
0 + µk

)
‖dk‖2,

leading to

µ̂k = ρ1µk ≤
ρ1

1− υ1

(
1

2
(1 + υ1)L2

0 +
1

2
L2L2

0µ
−2
min‖h(x0)‖2 + (1 + L2

0µ
−1
min)L‖h(x0)‖

)
,

giving (42). Since µ̂k = ρpk1 λkµk, taking the logarithm from both sides of

τ ≥ ρpk1 λkµk ≥ ρ
pk
1 µmin,

implies (43), completing the proof.

We now draw your attention to the global convergence of the sequence {xk} generated by LMTR to a
first-order stationary point x∗ of ψ satisfying ∇ψ(x∗) = 0. Let us first recall the following result for local
convergence of the Levenberg–Marquardt method given in [4].

Theorem 3.2. Let {xk} be the sequence generated by LMTR and (A1)-(A3) hold. Then, {Dk} is convergent
and

lim
k→∞

Dk = lim
k→∞

ψ(xk). (57)

Further, the algorithm either stops at finite number of iterations, satisfying ‖h(xk)‖ ≤ ε or ∇ψ(xk) ≤ ε, or
generates an infinite sequence {xk} such that any accumulation point of this sequence is a stationary point
of the merit function ψ, i.e.,

lim
k→∞

‖∇ψ(xk)‖ = 0. (58)

Proof. From (50) and (51), we have Dk ≤ Dk−1 and xk ∈ L(x0). Hence, the sequence {Dk} is decreasing
and bounded below, i.e., it is convergent. From θk ∈ [θmin, θmax], with θmax ∈ [θmin, 1[, we obtain 1 − θk ≥
1− θmax > 0. Taking limits when k goes to infinity from Dk ≤ ψ(xk) ≤ Dk+1 gives (57).

If the algorithm stops in a finite number of iterations by either ‖h(xk)‖ ≤ ε or ∇ψ(xk) ≤ ε, the result is
valid. If the algorithm generates the infinite sequence {xk}, Proposition 3.1 (i) yields

Dk − ψ(xk+1) ≥ υ1(q(0)− q(dk)) ≥ υ1
2(L2

0 + µmin)
‖∇ψ(xk)‖2 ≥ 0.

From this and (57), we obtain

lim
k→∞

‖∇ψ(xk)‖ = lim
k→∞

‖∇h(xk)h(xk)‖ = 0,

i.e., any accumulation point of {xk} is a stationary point of ψ.

Let us continue this section by providing global and evaluation complexities of the sequence {xk} gener-
ated by LMTR using the results presented in Proposition 3.1.

Theorem 3.3. Let {xk} be the sequence generated by LMTR and (A1)-(A3) hold. Then,
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(i) the total number of iterations to guarantee ‖∇ψ(xk)‖ ≤ ε is bounded above by

Ni(ε) ≤ dc−13 ψ(x0)ε−2 + 1e, (59)

where c3 := υ1(1− ηmax)/(2(L2
0 + µmin));

(ii) the total number of function evaluations to guarantee ‖∇ψ(xk)‖ ≤ ε is bounded above by

Nf (ε) ≤ dc−13 ψ(x0)ε−2 + 1e
(

log(τ)− log(µmin))

log(ρ1)

)
. (60)

Proof. To prove Assertion (i), we first define

k̃ := dc−13 ψ(x0)ε−2 + 1e,

which is equivalent to
c3ε

2k̃ = c3ε
2dc−13 ψ(x0)ε−2 + 1e > ψ(x0). (61)

Let us assume by contradiction that Ni(ε) > k̃, which means that LMTR does not stop in k̃ iterations. For
a successful iteration k of LMTR, it follows from (15) and Proposition 3.1 (i) that

Dk −Dk+1 = (1− θk)(Dk − ψ(xk+1))

≥ υ1(1− θk)(q(0)− q(dk))

≥ υ1(1− ηmax)

2(L2
0 + µmin)

‖∇ψ(xk)‖2 = c3‖∇ψ(xk)‖2,

leading to

ψ(x0) = D0 ≥ D0 −Dk̃ =

k̃−1∑
i=0

(Di −Di+1) ≥ c3
k̃−1∑
i=0

‖∇ψ(xi)‖2 > c3ε
2k̃,

which contradicts to (61), proving Assertion (i).
From (43) and (59), we obtain

Nf (ε) ≤
Ni(ε)−1∑
k=0

pk ≤
Ni(ε)−1∑
k=0

log(τ)− log(µmin))

log(ρ1)

≤ dc−13 ψ(x0)ε−2 + 1e
(

log(τ)− log(µmin))

log(ρ1)

)
,

giving (60).

We conclude this section by providing the local convergence rate of LMTR if the corresponding sequence
{xk} is convergent to a solution of (1) under the Lojasiewicz gradient inequality (see [35, 36]). To this end,
the presence of the subsequent two lemmas are necessary in our local analysis of LMTR.

Lemma 3.4. [7, Lemma 1] Let {sk} be a sequence in R+ and let ζ, ν be some nonnegative constants. Suppose
that sk → 0 and that the sequence satisfies

sζk ≤ ν(sk − sk+1), (62)

for all k sufficiently large. Then

(i) if ζ = 0, the sequence {sk} converges to 0 in a finite number of steps;

(ii) if ζ ∈ ]0, 1], the sequence {sk} converges linearly to 0 with rate 1− 1
ν ;

(iii) if ζ > 1, there exists ς > 0 such that, for all k sufficiently large,

sk ≤ ςk−
1
ζ−1 .
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Lemma 3.5. [29, Theorem 2.5 and Lemma 2.3] The sequence {xk} generated by LMTR with p = 0 satisfies

‖dk‖ ≤
1

2
√
µ̂k
‖h(xk)‖,

and

‖h(xk+1)‖2 ≤ ‖h(xk)‖2 + dTk∇h(xk)h(xk) + ‖dk‖2
[
L2

4
‖dk‖2 + L‖h(xk)‖ − µ̂k

]
. (63)

Let us describe now the  Lojasiewicz gradient inequality in the following definition.

Definition 3.6. Let ψ : U → R be a function defined on an open set U ⊆ Rm, and assume that the set
of zeros Ω := {x ∈ Rm, ψ(x) = 0} is nonempty. The function ψ is said to satisfy the  Lojasiewicz gradient
inequality if for any critical point x, there exist constants κ > 0, ε > 0 and θ ∈ [0, 1[ such that

|ψ(x)− ψ(x)|θ ≤ κ‖∇ψ(x)‖, ∀x ∈ B(x, ε). (64)

This inequality is valid for a large class of functions such as analytic, subanalytic, and semialgebraic
functions, cf. [35, 36, 33]. See Section 5 for a mapping with a real analytic merit function, where finding
zeros of this mapping is the main motivation of this study. Here, we further assume that

(A4) the merit function ψ satisfies the  Lojasiewicz gradient inequality (64).

The next theorem is the third main result of this section, which provides the convergence of the sequences
{dist(xk,Ω)} and {ψ(xk)} to 0 if an accumulation point x∗ of {xk} is a solution of the nonlinear system (1).

Theorem 3.7. Suppose that (A4) holds and assume that the sequence {xk} generated by LMTR is convergent
to a solution x∗ of the nonlinear system (1). Then,

(i) for sufficiently large k, it holds xk+1 = xk + dk;

(ii) there exist constants s > 0, s > 0, and k′ ∈ N such that, for xk′ ∈ B(x∗, s),

{xk}k≥k′ ⊂ B(x∗, s), {ψ(xk)} → 0, {dist(xk,Ω)}, as k →∞;

(iii) if θ = 0, the sequences {ψ(xk)} and {dist(xk,Ω)} converge to 0 in a finite number of steps;

(iv) if θ ∈
]
0, 12
]
, the sequences {ψ(xk)} and {dist(xk,Ω)} converge linearly to 0;

(v) if θ ∈
]
1
2 , 1
[
, there exist some positive constants ς1 and ς2 such that, for all large k,

ψ(xk) ≤ ς1k−
1

2θ−1 and dist(xk,Ω) ≤ ς2k−
δ

2(2θ−1) .

Proof. Since x∗ is an accumulation point of {xk} and a solution of the nonlinear system (1), it can be deduced

lim
k→∞

‖h(xk)‖ = 0. (65)

From this, Proposition 3.1 (i), Proposition 2.1 (ii), (49), µ̂k ≥ µmin, and (65), we obtain

|rk − 1| =
∣∣∣∣qk(dk)− ψ(xk + dk)

qk(0)− qk(dk)

∣∣∣∣
≤

2(L2
0 + µmin)

(
1
2L

2L2
0‖h(xk)‖2µ̂−2k + (1 + L2

0µ̂
−1
k )‖h(xk)‖

)
‖dk‖2

‖∇ψ(xk)‖2

≤
2(L2

0 + µmin)
(
1
2L

2L2
0‖h(xk)‖2 + (µ̂2

k + L2
0µ̂k)‖h(xk)‖

)
µ̂4
k

≤
2(L2

0 + µmin)
(
1
2L

2L2
0‖h(xk)‖2 + (µ2

min + L2
0µmin)‖h(xk)‖

)
µ4
min

→ 0, as k → +∞,
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which implies that there exists a k0 ∈ N such that rk ≥ υ1. Hence, for all k ≥ k0, it follows from Dk ≥ ψ(xk)
that

r̂k =
Dk − ψ(xk + dk)

qk(0)− qk(dk)
≥ ψ(xk)− ψ(xk + dk)

qk(0)− qk(dk)
= rk ≥ υ1,

which means that xk+1 = xk + dk with pk = 0 that justifies Assertion (i).
We divide the proof of Assertion (ii) into three parts. First, we will provide the values of s and s. Let

us set ε > 0 and κ > 0 such that (64) holds and let s := min{r, ε} > 0. By the definition of µ̂k, (A2), and
(42), we get

µ̂k ≥ µmin and
∥∥∇h(xk)∇h(xk)T

∥∥+ µ̂k ≤ L2
0 + τ, for xk ∈ B(x∗, s). (66)

By making s smaller if needed, we can guarantee

µmin ≥
2 +
√

5

4
L‖h(x)‖, ∀x ∈ B(x∗, s). (67)

Lipschitz continuity of h and s ≤ r < 1, for all x ∈ B(x∗, s), lead to

ψ(x) =
1

2
‖h(x)− h(x∗)‖2 ≤ L2

2
‖x− x∗‖2 ≤ L2

2
‖x− x∗‖. (68)

We now define

∆ :=
2θκL2(1−θ)(L2

0 + τ)

(1− θ)µmin
, s :=

(
s

1 + ∆

) 1
1−θ

.

From s < 1 and θ ∈ [0, 1[, we obtain s ≤ s.
For k′ ≥ k0, let us choose any xk′ ∈ B(x∗, s). Lemma 3.5 and dk = −H−1k ∇h(xk)h(xk) imply, for all

k ∈ N,

ψ(xk+1) ≤ ψ(xk)− 1

2
dTkHkdk +

‖dk‖2

2µ̂k

(
L2

16
‖h(xk)‖2 + Lµ̂k‖h(xk)‖ − µ̂2

k

)
. (69)

Next, let us show by induction that, for i ∈ N,

xk′+i ∈ B(x∗, s), ‖dk′+i−1‖ ≤
2κ(L2

0 + τ)

(1− θ)µmin

(
ψ(xk′+i−1)1−θ − ψ(xk′+i)

1−θ) (70)

It follows from xk′ ∈ B(x∗, s) and (67) that

µ̂k′ ≥ µmin ≥
2 +
√

5

4
L‖h(xk′)‖,

leading to
L2

16
‖h(xk′)‖2 + Lµ̂k′‖h(xk′)‖ − µ̂2

k′ ≤ 0.

Then, from (69), one can deduce

ψ(xk′+1) ≤ ψ(xk′)−
1

2
dTk′Hk′dk′ ≤ ψ(xk′)−

µmin

2
‖dk′‖2. (71)

From the convexity of the function ϕ(t) := −t1−θ with t > 0, we come to

ψ(x)1−θ − ψ(y)1−θ ≥ (1− θ)ψ(x)−θ (ψ(x)− ψ(y)) , ∀x, y ∈ Rm \ Ω. (72)

This and (71) suggest

ψ(xk′)
1−θ − ψ(xk′+1)1−θ ≥ (1− θ)µmin

2
ψ(xk′)

−θ‖dk′‖2. (73)

It follows from x0 ∈ B(x∗, s) ⊆ B(x∗, s) and (66) that ‖H0‖ ≤ (L2
0 + τ). Hence, by the  Lojasiewicz gradient

inequality (64), we get

ψ(xk′)
θ ≤ κ‖∇ψ(xk′)‖ ≤ κ‖Hk′‖‖dk′‖ ≤ κ(L2

0 + τ)‖dk′‖.
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This, (73), and (68) yield

‖dk′‖ ≤
2κ(L2

0 + τ)

(1− θ)µmin

(
ψ(xk′)

1−θ − ψ(x1)1−θ
)

≤ 2κ(L2
0 + τ)

(1− θ)µmin
ψ(xk′)

1−θ ≤ ∆‖xk′ − x∗‖1−θ,

which, proves the second assertion in (70) for i = 1. Then, we have

‖xk′+1 − x∗‖ ≤ ‖xk′ − x∗‖+ ‖dk′‖ ≤ ‖xk′ − x∗‖+ ∆‖xk′ − x∗‖1−θ

≤ (1 + ∆)‖xk′ − x∗‖1−θ ≤ (1 + ∆)s1−θ = s,

implying xk′+1 ∈ B(x∗, s). Now, let us assume that (70) holds for all i = 1, . . . , k. From xk ∈ B(x∗, s)
and (67), it can be deduced

µ̂k′+k ≥ µmin ≥
2 +
√

5

4
L‖h(xk′+k)‖,

leading to
L2

16
‖h(xk′+k)‖2 + Lµ̂k′+k‖h(xk′+k)‖ − µ̂2

k′+k ≤ 0.

It follows from this and (69) that

ψ(xk′+k+1) ≤ ψ(xk′+k)− 1

2
dTk′+kHk′+kdk′+k ≤ ψ(xk′+k)− µmin

2
‖dk′+k‖2. (74)

A combination of this inequality and (72) leads to

ψ(xk′+k)1−θ − ψ(xk′+k+1)1−θ ≥ (1− θ)µmin

2
ψ(xk′+k)−θ‖dk′+k‖2 (75)

Further, from xk′+k ∈ B(x∗, s), (64), and (66), we obtain

ψ(xk′+k)θ ≤ κ‖∇ψ(xk′+k)‖ ≤ κ‖Hk′+k‖‖dk′+k‖ ≤ κ(L2
0 + τ)‖dk′+k‖.

By the latter inequality and (75), we come to

‖dk′+k‖ ≤
2κ(L2

0 + τ)

(1− θ)µmin

(
ψ(xk′+k)1−θ − ψ(xk′+k+1)1−θ

)
,

proving the second assertion in (70) for i = k + 1. Then, it follows from (68) that

‖xk′+k+1 − x∗‖ ≤ ‖xk′ − x∗‖+

k′+k∑
i=k′

‖di‖

≤ ‖xk′ − x∗‖+
2κ(L2

0 + τ)

(1− θ)µmin

k′+k∑
i=k′

(
ψ(xi)

1−θ − ψ(xi+1)1−θ
)

= ‖xk′ − x∗‖+
2κ(L2

0 + τ)

(1− θ)µmin

(
ψ(xk′)

1−θ − ψ(xk′+k+1)1−θ
)

≤ ‖xk′ − x∗‖+
2κ(L2

0 + τ)

(1− θ)µmin
ψ(xk′)

1−θ

≤ (1 + ∆)‖xk′ − x∗‖1−θ ≤ (1 + ∆)s1−θ = s.

Hence, the first assertion in (70) is valid for i = k + 1.
Finally, we are in a position to show that Assertions (ii) is true. As shown in (70), xk ∈ B(x∗, s) for all

k ≥ k′. This and (66), implies that ‖Hk‖ ≤ (L2
0 + τ) for all k ≥ k′. Hence, for k ≥ k′, we have

dTkHkdk = ∇ψ(xk)TH−1k ∇ψ(xk) ≥ 1

‖Hk‖
‖∇ψ(xk)‖2 ≥ 1

(L2
0 + τ)

‖∇ψ(xk)‖2.
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Then, by (74), we get

ψ(xk+1) ≤ ψ(xk)− 1

2(L2
0 + τ)

‖∇ψ(xk)‖2.

From this and (64), it can be deduced

ψ(xk+1) ≤ ψ(xk)− 1

2κ2(L2
0 + τ)

ψ(xk)2θ, ∀ k ≥ k′,

which implies that {ψ(xk)} converges to 0. This ans the Hölder metric subregularity validate the statement
of the assertion (ii).

Applying Lemma 3.4 with sk := ψ(xk), ν := 2κ2(L2
0 + τ) and ζ := 2θ, we have that the convergence rate

are dependent to θ as claimed in Assertions (iii)-(v). Therefore, the Hölder metric subregularity of h implies
that {dist (xk,Ω)} converges to 0 with the rate given in (iii)-(v).

4 Convergence to a solution of nonlinear systems

Let us emphasis that the algorithms LMLS and LMTR only guarantee the convergence of the sequence {xk}
to a stationary point x∗ of the merit function ψ, which can be a local non-global minimiser of (2), i.e.,

∇h(x∗)h(x∗) = 0, h(x∗) 6= 0.

Therefore, the remainder of this section concerns with considering more restrictions on the mapping h such
that the global convergence of {xk} to a solution of (1) is guaranteed.

The next theorem extracts some classical results for cases that ∇h(x∗) is nonsingular, which implies that
x∗ is a solution of (1). Moreover, the worst-case global and evaluation complexities to attain solution of (1)
are provided under the nonsingularity of ∇h(x)∇h(x)T for all x ∈ L(x0). Under the assumption that all
accumulation points of {xk} are solutions of (1) and ∇h(x∗) is nonsingular for the accumulation point x∗,
it is proved that the whole sequence {xk} converges to the isolated solution x∗ of (1).

Theorem 4.1. Let {xk} be the sequence generated by LMLS or LMTR and (A1)-(A3) hold. Then

(i) if ∇h(x∗) is nonsingular at any accumulation point x∗ of {xk}, then x∗ is a solution of the nonlinear
system (1).

(ii) if the matrix ∇h(x)∇h(x)T is nonsingular for all x ∈ L(x0), i.e., there exists λ > 0 such that
λmin(∇h(x)∇h(x)T ) > λ, then, for LMLS,

Ni(ε) ≤ dλ−2c−12 ψ(x0)ε−2 + 1e (76)

and

Nf (ε) ≤ dλ
−2c−12 ψ(x0)ε−2 + 1e(log(α̂)− log(α))

log(ρ)
, (77)

and, for LMTR,
Ni(ε) ≤ dλ−2c−13 ψ(x0)ε−2 + 1e (78)

and

Nf (ε) ≤ dλ−2c−13 ψ(x0)ε−2 + 1e
(

log(τ)− log(λminµmin))

log(ρ1)

)
. (79)

(iii) if all accumulation points of {xk} are solutions of the nonlinear system (1), x∗is an accumulation point
of {xk} such that ∇h(x∗) is nonsingular, and

lim
k→∞

‖xk+1 − xk‖ = 0, (80)

then {xk} converges to x∗.
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Proof. For any accumulation point x∗of {xk}, it follows from Theorem 3.2 that ∇h(x∗)h(x∗) = 0. This,
along with the nonsingularity of ∇h(x∗), implies Assertion (i).

To prove Assertion (ii), we note that

‖∇ψ(xk)‖2 = h(xk)∇h(xk)∇h(xk)Th(xk) ≥ λ‖h(xk)‖2,

i.e., ‖h(xk)‖ ≤ λ−1/2‖∇ψ(xk)‖. This and Proposition 2.3 (i)-(ii) give (76) and (77), respectively. Similarly,
(78) and (79) follow from this inequality and Proposition 3.3 (i)-(ii).

In order to prove Assertion (iii), let us assume that all accumulation points of {xk} are solutions of (1),
x∗is an accumulation point such that ∇h(x∗) is nonsingular, and (80) holds. From the inverse function
theorem and the nonsingularity of ∇h(x∗), there exists a neighborhood around 0 such that h is invertible.
Therefore, there exists a neighborhood B(x∗, r1) for r1 > 0 such that

h(x) 6= 0, ∀x ∈ B(x∗, r1) and x 6= x∗,

implying

‖h(x)‖ > 0, ∀x ∈ B(x∗, r1) and x 6= x∗.

Since x∗is an accumulation point of {xk}, B(x∗, r1) contains an infinite number of iteration points of {xk}.
It remains to show that there exists k2 ∈ N such that xk ∈ B(x∗, r1), for all k ≥ k2. Hence, for an arbitrary
ε ∈ (0, r1), the set B(x∗, r1) − B(x∗, ε) involves only a finite number of iterations of {xk}, i.e., there exists
k3 ∈ N such that

xk ∈ B(x∗, ε), ∀ k ≥ k3.

It follows from (80) that there exists k4 ∈ N such that

‖xk+1 − xk‖ ≤ δ − ε, ∀ k ≥ k3.

Let us set k2 := max {k3, k4} leading to

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk − x∗‖ ≤ δ, ∀ k ≥ k2,

giving the result.

The mapping h is called strictly monotone on Rm if

(h(x)− h(y))T (x− y) > 0, ∀x, y ∈ Rm.

In addition, the mapping h is called strictly duplomonotone with constant τ > 0 if

(h(x)− h(x− τh(x)))Th(x) > 0, ∀x ∈ Rm, τ ∈ (0, τ ],

whenever h(x) 6= 0; see [6, 44]. In the next result, we will show that if the mapping h or −h is strictly
monotone (duplomonotone), then the sequence {xk} generated by LMLS converges to the unique solution
of the nonlinear system (1).

Theorem 4.2. Let {xk} be the sequence generated by LMLS or LMTR and (A1)-(A3) hold.

(i) If the mapping h or −h is strictly monotone, then {xk} converges to the unique solution of the nonlinear
system (1).

(ii) If the mapping h or −h is strictly duplomonotone, then {xk} converges to a solution of the nonlinear
system (1).

Proof. In order to prove Assertion (i), let h or −h be strictly monotone and x∗ be an accumulation point of
{xk}. If h is strictly monotone, for the points x and x+ th with t > 0 and h ∈ Rm, we can deduce

zT∇h(x)z = zT
(

lim
t→0

h(x+ tz)− h(x)

t

)
= lim
t→0

(
zT
h(x+ tz)− h(x)

t

)
> 0, ∀x, z ∈ Rm.
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If −h is strictly monotone, then

zT∇h(x)z = −zT
(

lim
t→0

h(x+ tz)− h(x)

t

)
= − lim

t→0

(
zT
h(x+ tz)− h(x)

t

)
< 0, ∀x, z ∈ Rm.

By setting z = h(x∗) and x = x∗ in the last two inequalities, we get

h(x∗)T∇h(x∗)h(x∗) 6= 0, ∀h(x∗) ∈ Rm, h(x∗) 6= 0.

This, (30), and (58) imply h(x∗) = 0.
To prove Assertion (ii), let h be strictly duplomonotone, which leads to

h(x)T∇h(x)h(x) =

(
lim
τ→0

h(x− τh(x))− h(x)

−τ

)T
h(x)

= lim
τ→0

(
h(x)− h(x− τh(x))

τ

)T
h(x) > 0, ∀x ∈ Rm, τ ∈ (0, τ ].

If −h is strictly duplomonotone, then

−h(x)T∇h(x)h(x) = −
(

lim
τ→0

h(x+ τh(x))− h(x)

τ

)T
h(x)

= lim
τ→0

(
−h(x) + h(x− τ(−h(x)))

τ

)T
(−h(x)) > 0, ∀x ∈ Rm, τ ∈ (0, τ ].

The result follows from the last two inequalities at x = x∗, (30), and (58).

Note that the strict monotonicity of h does not implies the positive definiteness of ∇h(x). Therefore the
results of Theorem 4.2 (i) is not a trivial consequence of Theorem 4.1 (i).

5 Application to biochemical reaction networks

In this section, we use the following notation: Zm×n+ := {A ∈ Zm×n | Aij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n},
Rm+ := {a ∈ Rm | ai ≥ 0, i = 1, . . . ,m}, and Rm++ := {a ∈ Rm | ai > 0, i = 1, . . . ,m}. Let us consider a
biochemical reaction network with m molecular species and n reversible elementary reactions1. We define
forward and reverse stoichiometric matrices, F,R ∈ Zm×n+ , respectively, where Fij denotes the stoichiom-
etry2 of the ith molecular species in the jth forward reaction and Rij denotes the stoichiometry of the ith

molecular species in the jth reverse reaction. We assume that every reaction conserves mass, i.e., there exists
at least a positive vector l ∈ Rm++ such that (R − F )T l = 0; cf. [21]. The matrix N := R − F represents
net reaction stoichiometry and may be viewed as an incidence matrix of a directed hypergraph; see [32]. In
practice, there are less molecular species than net reactions (m < n). We assume the cardinality of each
row of F and R is at least one, and the cardinality of each column of R − F is at least two. The matrices
F and R are sparse and the sparsity pattern depends on the particular biochemical reaction network being
modeled. It is here assumed that rank([F,R]) = m, which is a requirement for kinetic consistency; cf. [20].

Let c ∈ Rm++ be a vector of molecular species concentrations. For nonnegative elementary kinetic pa-
rameters kf , kr ∈ Rn+, elementary reaction kinetics for forward and reverse elementary reaction rates as
s(kf , c) := exp(ln(kf ) + FT ln(c)) and r(kr, c) := exp(ln(kr) +RT ln(c)), respectively, where exp(·) and ln(·)
denote the respective componentwise functions; see, e.g., [7, 20]. Then, the system of differential equations

dc

dt
≡ N(s(kf , c)− r(kr, c)) (81)

= N
(
exp(ln(kf ) + FT ln(c)

)
− exp

(
ln(kr) +RT ln(c))

)
=: −f(c).

1An elementary reaction is a chemical reaction for which no intermediate molecular species need to be postulated in order
to describe the chemical reaction on a molecular scale.

2Reaction stoichiometry is a quantitative relationship between the relative quantities of molecular species involved in a single
chemical reaction.
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shows the deterministic dynamical equation for time evolution of molecular species concentration. A vector
c∗ is called a steady state if and only if f(c∗) = 0. Hence, c∗ is a steady state of the biochemical system if
and only if

s(kf , c
∗)− r(kr, c∗) ∈ N (N),

where N (N) stands for the null space of N . The set of steady states Ω1 =
{
c ∈ Rm++, f(c) = 0

}
will be

unchanged if N is replaced by a matrix N̄ with the same kernel. Suppose that N̄ ∈ Zr×n is the submatrix
of N whose rows are linearly independent, then rank

(
N̄
)

= rank(N) =: r. If one replaces N by N̄ and
transforms (81) into logarithmic scale, by letting x := ln(c) ∈ Rm, k := [ln(kf )T , ln(kr)

T ]T ∈ R2n, then the
right-hand side of (81) can be translated to

f̄(x) :=
[
N̄ ,−N̄

]
exp

(
k + [F, R]Tx

)
, (82)

where [ · , · ] stands for the horizontal concatenation operator.
Let L ∈ Rm−r,m be a basis for the left nullspace of N , i.e., LTN = 0, where rank(N) = r and rank(L) =

m− r. The system satisfies moiety conservation if for any initial concentration c0 ∈ Rm++, it holds

Lc = L exp(x) = l0,

where l0 ∈ Rm++. It is possible to compute L such that each corresponds to a structurally identifiable conserved
moiety in a biochemical reaction network; cf. [24]. Therefore, finding the moiety conserved steady state of a
biochemical reaction network is equivalent to finding a zero of the mapping

h : Rm → Rn with h(x) :=

(
f̄(x)

L exp(x)− l0

)
. (83)

It was shown by the authors in Section 4.1 of [4] that the merit function ψ satisfies  Lojasiewicz gradient
inequality (with an exponent θ ∈ [0, 1[) and the mapping h is Hölder metrically subregular at (x∗, 0), i.e.,
the assumption (A1) holds.

5.1 Computational results

We find zeros of the mapping (83) with a set of real-world biological data using LMLS and LMTR. In
details, we compare the performance of LMLS and LMTR with some state-of-the-art algorithms on a set
of 21 biochemical reaction networks given in Table 1. In Section 4.2 of [4], it is computationally shown
that ∇h is rank-deficient or ill-conditioned at zeros of the mapping h (83) for these biological models. This
clearly justifies the reason of unsuccessful performance of many existing algorithms (e.g., gradient descent,
Gauss-Newton, and trust-region methods) and vindicates the development of the two adaptive Levenberg-
Mardquart methods (LMLS and LMTR) for such difficult problems.

Table 1: The list of 21 biological models, where the stoichiometric matrix N is m× n and rank is the rank
of the matrix N .

Model m n rank Model m n rank

1. Ecoli core 72 73 61 12. iMB745 525 598 490

2. iAF692 462 493 430 13. iNJ661 651 764 604

3. iAF1260 1520 1931 1456 14. iRsp1095 966 1042 921

4. iBsu1103 993 1167 956 15. iSB619 462 508 435

5. iCB925 415 558 386 16. iTH366 583 606 529

6. iIT341 424 428 392 17. iTZ479 v2 435 476 415

7. iJN678 641 669 589 18. iYL1228 1350 1695 1280

8. iJN746 727 795 700 19. L lactis MG1363 483 491 429

9. iJO1366 1654 2102 1582 20. Sc thermophilis rBioNet 348 365 320

10. iJP815 524 595 501 21. T Maritima 434 470 414

11. iJR904 597 757 564

All codes are written in MATLAB and runs are performed on a Dell Precision Tower 7000 Series 7810
(Dual Intel Xeon Processor E5-2620 v4 with 32 GB RAM). We compare LMLS and LMTR with
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• LM-YF: a Levenberg–Marquard line search method with µk = ‖h(xk)‖2, given by Yamashita and
Fukushima [48];

• LM-FY: a Levenberg–Marquardline search method with µk = ‖h(xk)‖, given by Fan and Yuan [18];

• LevMar: a Levenberg–Marquard trust-region method with µk = ‖∇h(xk)h(xk)‖, given by Ipsen et
al. [26].

The codes of LMLS and LMTR are publicly available as a part of the COBRA Toolbox v3.0 [25]. Users can
pass the solver name to the parameter structure of the MATLAB function optimizeVKmodels.m. For both
LMLS and LMTR, on the basis of our experiments with the mapping (83), we set ωk := 1− ξk and

ξk :=

{
0.95 if (0.95)k > 10−2,
max

(
(0.95)k, 10−10

)
otherwise,

(84)

implying ξk ∈ [10−10, 0.95]. We here use the starting point x0 = 0 and consider the stopping criterion

‖h(xk)‖ ≤ max(10−6, 10−12‖h(x0)‖) or ‖∇ψ(xk)‖ ≤ max(10−6, 10−12‖∇ψ(x0)‖), (85)

cf. [9]. We stop the algorithms if either (85) holds or the maximum number of iterations (say 10,000 for
tuning η and 100,000 for the comparison) is reached. While LMLS uses the parameters

α = 1, ρ = 0.5, σ = 10−2, θmin = 0, θmax = 0.95, θk = 0.95,

LMTR employs the parameters

ρ1 = 2, ρ2 = 0.5, υ1 = 10−4, υ1 = 0.9, λ0 = 10−2, µmin = 10−8, θmin = 0, θmax = 0.95, θk = 0.95.

In our comparison, Ni, Nf and T denote the total number of iterations, the total number of function
evaluations, and the running time, respectively. To illustrate the results, we used the Dolan and Moré
performance profile [17] with the performance measures Nf and T . In this procedure, the performance of
each algorithm is measured by the ratio of its computational outcome versus the best numerical outcome of
all algorithms. This performance profile offers a tool to statistically compare the performance of algorithms.
Let S be a set of all algorithms and P be a set of test problems. For each problem p and algorithm s, tp,s
denotes the computational outcome with respect to the performance index, which is used in the definition
of the performance ratio

rp,s :=
tp,s

min{tp,s : s ∈ S}
. (86)

If an algorithm s fails to solve a problem p, the procedure sets rp,s := rfailed, where rfailed should be strictly
larger than any performance ratio (86). Let np be the number of problems in the experiment. For any factor
τ ∈ R, the overall performance of an algorithm s is given by

ρs(τ) :=
1

np
size{p ∈ P : rp,s ≤ τ}.

Here, ρs(τ) is the probability that a performance ratio rp,s of an algorithm s ∈ S is within a factor τ of the
best possible ratio. The function ρs(τ) is a distribution function for the performance ratio. In particular,
ρs(1) gives the probability that an algorithm s wins over all other considered algorithms, and limτ→rfailed ρs(τ)
gives the probability that algorithm s solves all considered problems. Therefore, this performance profile can
be considered as a measure of efficiency among all considered algorithms. In Figures 1 and 3, the number τ
is represented in the x-axis, while P (rp,s ≤ τ : 1 ≤ s ≤ ns) is shown in the y-axis.

First, let us tune the parameter η to get the best performance of LMLS and LMTR. To do so, we
consider several versions of these algorithms corresponding to several levels of the parameter η (η =
0.6, 0.8, 1.0, 1.2, 1.4) and compare the results in Figure 1. From this figure, it is clear that η = 1.2
attains the best results for both LMLS and LMTR. Therefore, we use η = 1.2 for finding a zero of the
mapping h defined in (83); however, to solve a different mappings, one may tune this parameter carefully
before any practical usage.
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(a) LMLS, the number of iterations Ni
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(b) LMTR, the number of function evaluations Ni

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  = 0.6
  = 0.8
  = 1.0
  = 1.2
  = 1.4

(c) LMLS, the number of function evaluations Nf
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(d) LMTR, the number of function evaluations Nf
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(e) LMLS, the running time T
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(f) LMTR, the running time T

Figure 1: Performance profile for the number of iterations (Ni), the number of function evaluations (Nf ),
and the running time (T ) of LMLS and LMTR to tune the parameter η, with η ∈ {0.6, 0.8, 1.0, 1.2, 1.4}.
The best performance is attained by η = 1.2 for both methods.
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Next, we report the results of a comparison among LM-YF, LM-FY, LevMar, LMLS, and LMTR for
finding a zero of h (83) with respect to the total number of iterations (Ni), the total number of function
evaluations (Nf ), the mixed measure Nf +3Ni, and the running time (T ) in Figure 2. From this figure, it can
be seen that LMLS and LMTR outperform the others substantially with respect to all considered measures.
Moreover, LMTR solves the problems even faster than LMLS; however, the slope of curve of LMLS indicates
that its performance is much better than LM-YF, LM-FY, and LevMar, and its performance is close to the
performance of LMTR. Surprisingly, both LMLS and LMTR are convergent to a zero of the mapping h (83)
not to a stationary point of the merit function ψ given by (2). This clearly show the potential of LMLS and
LMTR for finding the moiety conserved steady state of biochemical reaction networks.
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(b) the number of function evaluations Nf
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(c) the mixed measure 3Ni + Nf
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(d) the running time T

Figure 2: Performance profiles for the number of iterations and the running time of LM-YF, LM-FY, LevMar,
LMLS, and LMTR on a set of 21 biological models for the mapping (83), where LMLS and LMTR outperform
the others substantially.

Finally, we conclude this section by displaying the evolution of the merit function values during run of
the considered algorithms. To this end, we illustrate the function values ψ versus iterations in Figure 3 for
the mapping (83) with the biological models iBsu1103 and iSB619. Here, we limit the maximum number
of iterations to 1,000. From Figure 3, it can be seen that LMLS and LMTR perform much better than the
others; however, the best performance is attained by LMTR.
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Figure 3: Value of the merit function with respect to the number of iterations for LM-YF, LM-FY, LevMar,
LMLS and LMTR, when applied to the mapping (83) defined by the biological models iBsu1103 and iSB619.
LMLS and LMTR require much less iterations than the others to achieve the accuracy given in (85).

6 Conclusion and further research

We have employed two globalisation techniques for Levenberg-Marquardt methods for finding a zero of
Hölder metrically subregular mappings. First, we combined the Levenberg-Marquardt direction with a non-
monotone Armijo-type line search. Then, we modified the Levenberg-Marquardt parameter and combined
the corresponding direction with a nonmonotone trust-region technique. Next, we studied the global conver-
gence and the worst-case global and evaluation complexities or both methods, which are of the order O(ε−2).
The worst-case behavior of the proposed methods, up to a factor, are equivalent to that of the steepest de-
scent method for unconstrained optimisation, cf. [12, 39], which is not the best-known global complexity for
nonconvex problems, cf. [13, 42]; however, practical usage of these methods show much better performance
than the worse-case complexity, giving scope for future establishement of tigher complexity bounds. Finally,
we have studied some special mappings that satisfy certain conditions for a stationary point to corresponds
to a zero of a mapping, when obtained with the proposed methods.

We also investigate finding zeros of Hölder metrically subregular mappings that appear in modelling of
biochemical reaction networks. Our numerical experiments establish the suitability of the proposed methods
for a range of medium- and large-scale biochemical network problems. Nevertheless, biochemical reaction
networks on the order of tens of millions of dimensions already exist [37], and the projection is for even larger
models in the future. Therefore, considerable scope exists for development of accelerated solution methods.
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systems with applications to hölderian stability in optimization and spectral theory of tensors. Mathe-
matical Programming 153, 2 (Nov 2015), 333–362.
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