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Abstract

We study a general class of dynamic multi-agent decision problems with asymmetric information

and non-strategic agents, which includes dynamic teams as a special case. When agents are non-strategic,

an agent’s strategy is known to the other agents. Nevertheless, the agents’ strategy choices and beliefs

are interdependent over times, a phenomenon known as signaling. We introduce the notions of private

information that effectively compresses the agents’ information in a mutually consistent manner. Based

on the notions of sufficient information, we propose an information state for each agent that is sufficient

for decision making purposes. We present instances of dynamic multi-agent decision problems where we

can determine an information state with a time-invariant domain for each agent. Furthermore, we present

a generalization of the policy-independence property of belief in Partially Observed Markov Decision

Processes (POMDP) to dynamic multi-agent decision problems. Within the context of dynamic teams

with asymmetric information, the proposed set of information states leads to a sequential decomposition

that decouples the interdependence between the agents’ strategies and beliefs over time, and enables us

to formulate a dynamic program to determine a globally optimal policy via backward induction.
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I. INTRODUCTION

A. Background and Motivation

Dynamic multi-agent decision problems with asymmetric information have been used to model

many situations arising in engineering, economic, and socio-technological applications. In these

applications many decision makers/agents interact with each other as well as with a dynamic

system. They make private imperfect observations over time, and influence the evolution of the

dynamic system through their actions that are determined by their strategies. An agent’s strategy

is defined as a decision rule that the agent uses to choose his action at each time based on his

realized information at that time.

In this paper, we study a general class of dynamic decision problems with non-strategic agents.

We say an agent is non-strategic if his strategy (not his specific action) is known to the other

agents. In a companion paper [2] we study dynamic decision problems with strategic agents

where an agent’s strategy is his private information and not known to the other agents.

We consider an environment with controlled Markovian dynamics, where, given the agents’

actions at every time, the system state at the next time is a stochastic function of the current

system state. The instantaneous utility of each agent depends on the agents’ joint actions as

well as the system state. At every time, each agent makes a private noisy observation that

depends on the current system state and past actions of all agents in the system. Therefore,

agents have asymmetric and imperfect information about the system history. Moreover, each

agent’s information depends on other agents’ past actions and strategies; this phenomenon is

known as signaling in the control theory literature. In such problems, the agents’ decisions and

information are coupled and interdependent over time because (i) an agent’s utility depends on the

other agents’ actions, (ii) the evolution of the system state depends, in general, on all the agents’

actions, (iii) each agent has imperfect and asymmetric information about the system history, and

(iv) at every time an agent’s information depends, in general, on the agents’ (including himself)

past actions and strategies.

There are two main challenges in the study of dynamic multi-agent decision problems with

asymmetric information. First, because of the coupling and interdependence among the agents’

decisions and information over time, we need to determine the agents’ strategies simultaneously

for all times. Second, as the agents acquire more information over time, the domains of their

strategies grow.
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In this paper, we propose a general approach for the study of dynamic decision problems

with non-strategic agents and address these two challenges. We propose the notion of sufficient

information and provide a set of conditions sufficient to characterize a compression of the agents’

private and common information in a mutually consistent manner over time. We show that such

a compression results in an information state for each agent’s decision making problem. We

show that restriction to the set of strategies based on this information state entails no loss of

generality in dynamic decision problems with non-strategic agents.

We identify specific instances of dynamic decision problems where we can discover a set of

information states for the agents that have time-invariant domain. Within the context of dynamic

teams, we further demonstrate that the notion of sufficient information leads to a sequential

decomposition of dynamic teams. This sequential decomposition results in a dynamic program

the solution of which determines the agents’ globally optimal strategies.

B. Related Literature

The Partially Observed Markov Decision Processes (POMDPs), i.e. centralized stochastic

control problems, present the simplest form of dynamic decision problems with single agent

[3], [4]. To analyze and identify properties of optimal strategies in POMDPs the notion of

information state is introduced as the agent’s belief about the current system state conditioned on

his information history. The information state provides a way to compress the agent’s information

over time that is sufficient for the decision-making purposes. When the agent has perfect recall,

this information state is independent of the agent’s strategies over time; this result is known as

the policy-independence belief property [3].

Dynamic multi-agent decision problems with non-strategic agents are considerably more dif-

ficult compared to their centralized counterparts. This is because, due to signaling, they are

(in general) non-convex functional optimization problems (see [5]–[8]). The difficulties present

in these problems were first illustrated by Witsenhausen [9], who showed that in a simple

dynamic team problem with Gaussian primitive random variables and quadratic cost function

where signaling occurs, linear strategies are suboptimal (contrary to the corresponding centralized

problem where linear strategies are optimal). Subsequently, many researchers investigated control

problems with various specific information structures such as: partially nested ( [10]–[15] and

references therein), stochastic nested [16], randomized partially nested [17], delayed sharing (

[11], [18]–[20] and references therein), information structures possessing the i-partition property
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or the s-partition property [21], the quadratic invariance property [22], and the substitutability

property [23].

Currently, there are three approaches to the analysis of dynamic multi-agent decision problems

with non-strategic agents: the agent-by-agent approach [24], the designer’s approach [25], and the

common information approach [26]. We provide a brief discussion of these approaches here. We

discuss them in details in Section VI-B, where we compare them with the sufficient information

approach we present in this paper and show that our approach is distinctly different from them.

The agent-by-agent approach [24], is an iterative method. At each iteration, we pick an agent

and fix the strategy of all agents except that agent, and determine the best response for that

agent and update his strategy accordingly. We proceed in a round robin fashion among the

agents until a fixed point is reached, that is, when no agent can improve his performance by

unilaterally changing his strategy. The designer’s approach [25], considers the decision problem

from the point of view of a designer who knows the system model and the probability distribution

of the primitive random variables, and chooses the control strategies for all agents without

having an information about the realization of the primitive random variables. The common

information approach [26], assumes that at each time all agents possess private information and

share some common information; it uses the common information to coordinate the agents’

strategies sequentially over time.

C. Contribution

We develop a general methodology for the study and analysis of dynamic decision problems

with asymmetric information and non-strategic agents. Our model includes problems with non-

classical information structures [19] where signaling is present. We propose an approach that

effectively compresses the agents’ private and common information in a mutually consistent

manner. As a result, we offer a set of information states for the agents which are sufficient

for decision making purposes. We characterize special instances where we can identify an

information state with a time-invariant domain. Based on the proposed information state, we

provide a sequential decomposition of dynamic teams over time. We show that the methodology

developed in this paper generalizes the existing results for dynamic teams with non-classical

information structure. Our results in this paper, along those appearing in the companion paper

[2] present a set of information states sufficient for decision making in strategic and non-strategic
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settings. Therefore, we provide a unified approach to decision making problems that can be used

to study dynamic games and dynamic teams as well as dynamic games among teams of agents.

D. Organization

The rest of the paper is organized as follows. In Section II, we describe the model and

present few examples. In Section III, we discuss the main challenges that are present in dynamic

multi-agent decision problems with non-strategic agents. We present the sufficient information

approach in Section IV. We present the main results of the paper in Section V. We discuss an open

problem associated with the sufficient information approach in Section VI-A. In Section VI-B,

we compare the sufficient information approach with the existing approaches in the literature.

We provide a generalization of the sufficient information approach in Section VII. We present

an extension of our results to infinite-horizon dynamic multi-agent decision problems with non-

strategic agents in Section VIII. We conclude in Section IX. The proofs of all the theorems and

lemmas appear in the Appendix.

Notation

Random variables are denoted by upper case letters, their realizations by the corresponding

lower case letters. In general, subscripts are used as time index while superscripts are used to

index agents. For t1≤ t2, Xt1:t2 (resp. ft1:t2(·)) is the short hand notation for the random variables

(Xt1 ,Xt1+1, ...,Xt2) (resp. functions (ft1(·), . . . ,ft2(·))). When we consider a sequence of random

variables (resp. functions) for all time, we drop the subscript and use X to denote X1:T (resp.

f(·) to denote f1:T (·)). For random variables X1
t , . . . ,X

N
t (resp. functions f 1

t (·), . . . ,fNt (·)),

we use Xt := (X1
t , . . . ,X

N
t ) (resp. ft(·) := (f 1

t (·), . . . ,fNt (·))) to denote the vector of the set

of random variables (resp. functions) at t, and X−nt := (X1
t , . . . ,X

n−1
t ,Xn+1

t , . . . ,XN
t ) (resp.

f−nt (·) :=(f 1
t (·), . . . ,fn−1

t (·),fn+1
t (·), . . . ,fNt (·))) to denote all random variables (resp. functions)

at t except that of the agent indexed by n. P(·) and E(·) denote the probability and expectation

of an event and a random variable, respectively. For a set X , ∆(X ) denotes the set of all

beliefs/distributions on X . For random variables X,Y with realizations x,y, P(x|y) := P(X =

x|Y = y) and E(X|y) := E(X|Y = y). For a strategy g and a belief (probability distribution)

π, we use Pgπ(·) (resp. Egπ(·)) to indicate that the probability (resp. expectation) depends on the

choice of g and π. We use 1{X=x} to denote the indicator function for event X=x. For sets A

and B we use A\B to denote all elements in set A that are not in set B. For random variables

X and Y we write X dist.
= Y when X and Y have an identical probability distribution.
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II. MODEL

1) System dynamics: Consider N non-strategic agents who live in a dynamic Markovian world

over a horizon T :={1,2, ...,T}, T <∞. Let Xt∈Xt denote the state of the world at t∈T . At

time t, each agent, indexed by i∈N :={1,2, ...,N}, chooses an action ait∈Ait, where Ait denotes

the set of available actions to him at t. Given the collective action profile At :=(A1
t , ...,A

N
t ), the

state of the world evolves according to the following stochastic dynamic equation,

Xt+1 = ft(Xt, At,W
x
t ), (1)

where W x
1:T−1 is a sequence of independent random variables. The initial state X1 is a random

variable that has a probability distribution η ∈ ∆(X1) with full support.

At every time t ∈ T , before taking an action, agent i receives a noisy private observation

Y i
t ∈ Y it of the current state of the world Xt and the action profile At−1, given by

Y i
t = Oi

t(Xt, At−1,W
i
t ), (2)

where W i
1:T , i ∈ N , are sequences of independent random variables. Moreover, at every t ∈ T ,

all agents receive a common observation Zt ∈ Zt of the current state of the world Xt and the

action profile At−1, given by

Zt = Oc
t (Xt, At−1,W

c
t ), (3)

where W c
1:T , is a sequence of independent random variables. We note that the agents’ actions

At−1 is commonly observable at t if At−1 ⊆ Zt. We assume that the random variables X1,

W x
1:T−1, W c

1:T , and W i
1:T , i ∈ N are mutually independent.

2) Information structure: Let Ht ∈ Ht denote the aggregate information of all agents at time

t. Assuming that agents have perfect recall, we have Ht = {Z1:t, Y
1:N

1:t , A
1:N
1:t−1}, i.e. Ht denotes

the set of all agents’ past observations and actions. The set of all possible realizations of the

agents’ aggregate information is given by Ht :=
∏

τ≤tZτ ×
∏

i∈N
∏

τ≤t Y iτ ×
∏

i∈N
∏

τ<tAiτ .

At time t ∈ T , the aggregate information Ht is not fully known to all agents; each agent

may have asymmetric information about Ht. Let Ct := {Z1:t} ∈ Ct denote the agents’ common

information about Ht and P i
t :={Y i

1:t,A
i
1:t−1}\Ct∈P it denote agent i’s private information about

Ht, where P it and Ct denote the set of all possible realizations of agent i’s private and common

information at t, respectively. In this paper, we discuss several instances of information structures
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that can be captured as special cases of our general model.

3) Strategies and Utilities: Let H i
t :={Ct,P i

t }∈Hi
t denote the information available to agent

i at t, where Hi
t denote the set of all possible realizations of agent i’s information at t. Agent

i’s strategy gi := {git, t ∈ T }, is defined as a sequence of mappings git : Hi
t → ∆(Ait), t∈ T ,

that determine agent i’s action Ait for every realization hit∈Hi
t of his history at t∈ T .

Agent i’s instantaneous utility at t depends on the state of the world Xt and the collective

action profile At and is given by uit(Xt, At). Therefore, agent i’s total utility over the horizon

T is given as

U i(X1:T , A1:T ) :=
∑
t∈T

uit(Xt, At). (4)

We assume that agents are non-strategic. That is, each agent’s, say i’s, i∈N , strategy choice

gi is known to other agents. We note that these non-strategic agents may have different utilities

over time. Therefore, the model includes a team of agents sharing the same utilities (see Sections

V) as well as agents with general non-identical utilities. In [2] we build on our results in this

paper to study dynamic decision problems with strategic agents where an agent may deviate

privately from the commonly believed strategy, and gain by misleading the other agents.

To avoid measure-theoretic technical difficulties and for clarity and convenience of exposition,

we assume that all the random variables take values in finite sets.

Assumption 1. (Finite game) The sets Xt, Zt, Y it , Ait, i ∈ N , t ∈ T , are finite.

Special Cases:

We present several instances of dynamic decision problems with asymmetric information that

are special cases of the general model described above.

1) Real-time source coding-decoding [27]: Consider a data source that generates a random

sequence {X1, ...,XT} that is k-th order Markov, i.e. for every sequence of realizations x1:T ,

P{Xt+k:T =xt+k:T |x1:t+k−1}=P{Xt+k:T =xt+k:T |xt:t+k−1} for t≤T − k. There exists an encoder

(agent 1) who observes Xt at every time t; the encoder has perfect recall. At every time t,

based on his available data {X1, ...,Xt}, the encoder transmits a signal Mt ∈ Mt through a

noiseless channel to a decoder (agent 2), where Mt denotes the transmission alphabet. At the

receiving end, at every time t, the decoder wants to estimate the value of Xt−1−δ (with delay δ)

as X̂t−1−δ based on his available data M1:t−1; we assume that the decoder has perfect recall. The
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encoder and decoder choose their joint coding-decoding policy so as to minimize the expected

total distortion function given by
∑T

t=2+δ dt(Xt, X̂t), where dt(·, ·) denotes the instantaneous

distortion function. To capture the above-described model within the context of our model,

we need to define an augmented system state X̃t that includes the last max(k, δ + 1) states

realizations as X̃t :={Xt−max(k,δ+1)+1, ...,Xt}. Moreover, the encoder’s (agent 1’s) observation is

given by Y 1
t = O1

t (X̃t, At−1) = Xt and the decoder’s (agent 2’s) observation is given by Y 2
t =

O2
t (X̃t,At−1)=Mt−1, where (A1

t ,A
2
t )=(Mt,X̂t−1−δ). The encoder’s and decoder’s instantaneous

utility are given by a distortion function uteam
t (X̃t,At) =dt(Xt−1−δ,X̂t−1−δ).

2) Delayed sharing information structure [18]–[20], [28]: Consider a N -agent decision prob-

lem where agents observe each others’ observations and actions with d-step delay. We note that

in our model we assume that the agents’ common observation Zt at t is only a function of Xt and

and At−1. Therefore, to describe the decision problem with delayed sharing information structure

within the context of our model we need to augment our state space to include the agents’ last

d observations and actions as part of the augmented state. Define X̃t := {Xt,M
1
t ,M

2
t , ...,M

d
t }

as the augmented system state where M i
t := {At−i, Yt−i} ∈ At−i × Yt−i, i ∈ N ; that is, M i

t

serves as a temporal memory for the agents’ observations Yt−i and actions At−i at t−i. Then,

we have X̃t+1 = {Xt+1,M
1
t+1,M

2
t+1, ...,M

d
t+1} = {ft(Xt, At,W

x
t ), (Yt, At),M

1
t , ...,M

d−1
t } and

Zt={Md
t }={Yt−d, At−d}.

3) Real-time multi-terminal communication [29]: Consider a real-time communication system

with two encoders (agents 1 and 2) and one receiver (agent 3). The two encoders make distinct

observations X1
t and X2

t of a Markov source. The encoders’ observation are conditionally

independent Markov chains. That is, there is an unobserved random variable variable R such

that P{X1
1,X

2
1,R}=P{X1

1 |R}P{X2
1 |R}P{R}, and

P{X1
t+1, X

2
t+1|X1

t , X
2
t , R}=P{X1

t+1|X1
t , R}P{X2

t+1|X2
t , R}.

Markov

source

X1
t , X

t
2

Encoder 1

g1t(X
1
1:t,M

1
1:t−1)

Encoder 2

g1t(X
2
1:t,M

2
1:t−1)

Channel 1

Q1
t (Y

1
t |M1

t−1)

Channel 2

Q2
t (Y

2
t |M2

t−1)

Receiver

g3t(Y
1:2
1:t−1)

X1
t

X2
t

M1
t

M2
t

Y 1
t

Y 2
t

X̂t

Each encoder encodes, in real-time, its observations into a sequence of discrete symbols and
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sends it through a memoryless noisy channel characterized by a transition matrix Qi
t(·|·), i=1, 2.

The receiver wants to construct, in real time, an estimate X̂t of the state of the Markov source

based on the channels’ output Y 1
1:t,Y

2
1:t. All agents have the same instantaneous utility given by

a distortion function dt(Xt, X̂t).

4) Optimal remote and local controller [30], [31]: Consider a decentralized control problem

for a Markovian plant with two controllers, a local controller (agent 1) and a remote controller

(agent 2).

Plant

ft(Xt, A1
t , A

2
t )

Remote Controller

gt(Y1:t, A2
1:t−1)

Local Controller

gt(X1:t, Y1:t, A1
1:t−1)

A1
tA2

t

Xt

XtYt

The local controller observes perfectly the state Xt of the Markov chain, and sends his obser-

vation through a packet-drop channel to the remote controller. The transmission is successful,

i.e. Yt =Xt, with probability p> 0 and is not successful, i.e. Yt = ∅, with probability 1−p≥ 0.

We assume that the local controller receives an acknowledgment every time the transmission is

successful. The controllers’ joint instantaneous utility is given by a uteam
t (Xt,A

1
t ,A

2
t ).

III. STRATEGIES AND BELIEFS

In a dynamic decision problem with asymmetric information agents have private information

about the evolution of the system, and they do not observe the complete history {Ht, Xt}, t∈T .

Therefore, at every time t∈T , each agent, say agent i∈N , needs to form (i) an appraisal about

the current state of the system Xt and the other agents’ information H−it (appraisal about the

history), and (ii) an appraisal about how other agents will play in the future (appraisal about the

future), so as to evaluate the performance of his strategy choices.

When agents are non-strategic, the agents’ strategies g1:N
1:T are known to all agents. Therefore,

agent i ∈ N can form these appraisals by using his private information H i
t along with the

commonly known strategies g−i. Specifically, agent i can utilize his own information H i
t at

t ∈ T , along with (i) the past strategies g1:t−1 and (ii) the future strategies gt:T to form these

appraisals about the history and the future of the overall system, respectively. As a result, the
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outcome of decision problems with non-strategic agents can be fully characterized by the agents’

strategy profile g.2

However, we need to know the entire strategy profile g for all agents and at all times to

form these appraisals so as to evaluate the performance of an arbitrary strategy git, at any time

t∈T and for any agent i∈N . Therefore, we must work with the strategy profile g as a whole

irrespective of the length of the time horizon T . Consequently, the computational complexity of

determining a strategy profile that satisfies certain conditions (e.g. an optimal strategy profile in

teams) grows doubly exponentially in |T | since the domain of agents’ strategy (i.e. |Hi
t|) and

the number of temporally interdependent decision problems (one for each time instance) grows

with |T |. As a result, the analysis of such decision problems is very challenging in general [32].

An alternative conceptual approach for the analysis of decision problems is to define a belief

system µ along with the strategy profile g. For every agent i ∈ N , at every time t ∈ T ,

define µit(h
i
t) as the agent i’s belief about {Xt,P

−i
t } conditioned on the realization of hit,

that is, µ(hit)(xt,p
−i) := Pg1:t−1{Xt = xt,P

−i
t = p−it |hit}. The belief µit provides an intermediate

instrument that encapsulates agent i’s appraisal about the past. Therefore, agent i can evaluate the

performance of any action ait using only the belief µit(h
i
t) along with the future strategy profile

gt:T . However, the belief µ(hit)(xt,p
−i) is dependent on g1:t−1 in general since the probability

distribution Pg1:t−1{Xt = xt,P
−i
t = p−it |hit} depends on g1:t−1. Therefore, the introduction of a

belief system offers an equivalent problem formulation that does not necessarily break the inter-

temporal dependence between g1:t−1 and gt:T and does not simplify the analysis of decision

problems.

Nevertheless, the definition of a belief system has been shown to be suitable for the analysis of

single-agent decision making problems (POMDP) for the following reasons. First, in POMDPs,

under perfect recall, the probability distribution Pg1:t−1{Xt = xt|ht} is independent of g1:t−1;

this is known as the policy-independence property of beliefs in stochastic control. Second, the

complexity of the belief function does not grow over time since at every time t the agent

only needs to form a belief about Xt, which has a time-invariant domain. As a result, we can

sequentially decompose the problem over time to a sequence of static decision problems with

time-invariant complexity; such a decomposition leads to a dynamic program. At each stage

2We discuss the decision problems with strategic agents in the companion paper [2].When agents are strategic each agent
may have incentive to deviate an any time from the strategy the other agents commonly believe he uses if it is profitable to him
(see [2] for more discussion).
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t ∈ T of the dynamic program, we specify gt by determining an action for each realization of

the belief µt(·) fixing the future strategies gt+1:T . Therefore, the computational complexity of

the analysis is reduced from being exponential in T to linear in T .

Unfortunately, the above approach for POMDPs does not generalize to decision problems with

many agents. This is because of three reasons. First, with many agents, currently in the literature,

there exists no information state for each agent that provides a compression of the agent’s

information, in a mutually consistent manner among the agents, that is sufficient for decision

making purposes. Therefore, an agent’s, say agent i’s, strategy git has a growing domain over

time. Second, at every time t∈T , each agent i∈N needs to form a belief about the system state

Xt as well as the other agents’ private information P−it that has a growing domain. Therefore the

complexity of belief functions grows over time. Third, in decision problems with many agents,

the policy-independence property of belief does not hold in general and the agents’ beliefs at

every time t depend on the past strategy profile g1:t−1. Therefore, the agents’ beliefs µ1:N
t (·) are

correlated with one another. This correlation depends on g1:t−1, and thus, it is not known a priori.

Consequently, if we follow an approach similar to that of POMDP to sequentially decompose

the problem, we need to solve the decision problem at every stage for every arbitrary correlation

among the agents’ belief functions, and such a problem is not tractable.3 Hence, the methodology

proposed for the study of POMDPs is not directly applicable to decision problems with many

agents and non-classical information structures.

In the sequel, we propose a notion of sufficient private information and sufficient common

information as a mutually consistent compression of the agents’ information for decision making

purposes. Therefore, we address (partially) the first two problems on the growing domain of the

agents’ beliefs and strategies. We provide instances of decision problems where we can discover

time-invariant information state for each agent. We then utilize the agents’ sufficient common

information as a coordination instrument, and thus, capture the implicit correlation among the

agents’ beliefs over time. Accordingly, we present a sequential decomposition of the original

decision problems such that at every stage the complexity of the decision problem is similar

to that of a static decision multi-agent problem and the size of state variable at every stage is

proportional to the dimension of the sufficient private information; thus, we (partially) address

the third problem discussed above.

3Alternatively, one can consider arbitrary correlation among the agents’ information rather than their beliefs. This is the main
idea that underlies the designer’s approach proposed by Winstenhausen [25]. Please see Section VI-B for more discussion.
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IV. SUFFICIENT INFORMATION

We present the sufficient information approach and characterize an information state that results

from compressing the agents’ private and common information in a mutually consistent manner.

Therefore, we introduce a class of strategy choices that are simpler than general strategies as

they require agents to keep track of only a compressed version of their information over time.

We proceed as follows. In Section IV-A we provide conditions sufficient to determine the subset

of private information an agent needs to keep track of over time for decision making purposes. In

Section IV-B, we introduce the notion of sufficient common information as a compressed version

of the agents’ common information that along with sufficient private information provides an

information state for each agent. We then show, in Section V, that this compression of the agents’

private and common information provides a sufficient statistic in dynamic decision problems

with non-strategic agents. In Section VII, we provide a generalization of sufficient information

approach presented here.

A. Sufficient Private Information

The key ideas for compressing an agent’s private information appear in Definitions 1 and 2

below. To motivate these definitions we first consider the decision problem with single agent,

that is, a Partially Observed Markov Decision Process (POMDP), which is a special case of the

model described in Section II where N = 1, H1
t = P 1

t and Ct = ∅ for all t ∈ T .

In a POMDP, the agent’s belief about the system state Xt conditioned on his history realization

hit is an information state. We highlight the three main proprieties that underlie the definition of

information state in POMDP (see [33], [34]): (1) the information state can be updated recursively,

that is, at any time t the information state at t can be written as a function of the information

state at t − 1 and the new information that becomes available at t, (2) the agent’s belief about

the information state at the next time conditioned on the current information state and action is

independent of his information history, and (3) at any time t and for any arbitrary action the

agent’s expected instantaneous utility conditioned on the information state is independent of his

information history.

We generalize the key properties of information state for POMDPs, described above, to

decision problems with many agents. We propose a set of conditions sufficient to compress

the agents’ private information in two steps. First, we consider a decision problem with many

agents where there is no signaling among them. Motivated by the definition of information state
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in POMDPs, we describe conditions sufficient to determine a compression of the agents’ private

information (Definition 1). Next, we build on Definition 1 as an intermediate conceptual step,

and consider the case where agents are aware of possible signaling among them. Accordingly,

we present a set of conditions sufficient to determine a compression of the agents’ private

information in decision problems with many agents (Definition 2) .

Therefore, we first characterize subsets of an agent’s private information that are sufficient for

the agent’s decision making process when there is no signaling among the agents.

Definition 1 (Private payoff-relevant information). Let P i,pr
t = ζ̄ it(P

i
t , Ct) denote a private signal

that agent i ∈ N forms at t ∈ T based on his private information P i
t and common information

Ct. We say P i,pr
t is a private payoff-relevant information for agent i if, for all open-loop strategy

profile (A1:N
1:T = â1:N

1:T ) and for all t ∈ T ,

(i) it can be updated recursively as

P i,pr
t = φ̄it(P

i,pr
t−1 , H

i
t\H i

t−1) if t 6=1,

(ii) for all realizations {ct, pit} it satisfies

P(A1:N
1:T=â1:N1:T )

{
pi,prt+1

∣∣∣pit,ct,at}=P(A1:N
1:T=â1:N1:T )

{
pi,prt+1

∣∣∣pi,prt ,ct,at

}
,

(iii) for all realizations {ct, pit} ∈ Ct × P it such that P(A1:N
1:T =â1:N1:T ){ct, pit} > 0,

E(A1:N
1:t−1=â

1:N
1:t )
{
uit(Xt,At)

∣∣∣ct,pit,at}= E(A−i1:t−1=â
−i
1:t)
{
uit(Xt,At)

∣∣∣ct, pi,prt , at

}
.

By assuming that all other agents play open-loop strategies we remove the interdependence

between agents −i’s strategy choices and agent i’s information structure, thus, we eliminate

signaling among the agents. Fixing the open-loop strategies of agents −i, agent i faces a

centralized stochastic control problem. Definition 1 says that P i,pr
t , t ∈ T , is a private payoff-

relevant information for agent i if (i) it can be recursively updated, (ii) P i,pr
t includes all

information in P i
t that is relevant to P i,pr

t+1 and (iii) agent i’s instantaneous conditional expected

utility at any t ∈ T is only a function of Ct,P
i,pr
t , and his action Ait at t. These three conditions

are similar to properties (1)-(3) for an information state in POMDP, but they concern only agent

i’s private information P i
t instead of the collection H i

t = {Ct,P i
t } of his private and common
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information.4

While the definition of private payoff-relevant information suggests a possible way to compress

the information required for an agent’s decision making process, it assumes that other agents

play open-loop strategies and do not utilize the information they acquire in real-time for decision

making purposes (i.e. no signaling). However, open-loop strategies are not in general optimal

for agents −i. As a result, to evaluate the performance of any strategy choice gi agent i needs

also to form a belief about the information that other agents utilize to make decisions.

Definition 2 (Sufficient private information). We say Sit = ζ it(P
i
t , Ct; g1:t−1), i ∈ N , t ∈ T , is

sufficient private information for the agents if,

(i) it can be updated recursively as

Sit = φit(S
i
t−1, H

i
t\H i

t−1; g1:t−1) for t ∈ T \{1}, (5)

(ii) for any strategy profile g and for all realizations {ct, pt, pt+1, zt+1, at} ∈ Ct×Pt×Pt+1×Zt+1

of positive probability,

Pg1:t
{
st+1,zt+1

∣∣∣pt,ct,at}=Pg1:t
{
st+1,zt+1

∣∣∣st,ct,at} , (6)

where s1:N
τ =ζ1:N

τ (p1:N
τ ,cτ ;g1:τ−1) for τ ∈ T ;

(iii) for every strategy profile g̃ of the form g̃ :={g̃it : S it×Ct → ∆(Ait), i∈N,t∈T } and at∈At,

t∈T ;

Eg̃1:t−1

{
uit(Xt,At)

∣∣∣ct,pit,at}=Eg̃1:t−1

{
uit(Xt,At)

∣∣∣ct,sit,at}, (7)

for all realizations {ct,pit}∈Ct×P it of positive probability where s1:N
τ =ζ1:N

τ (p1:N
τ ,cτ ; g̃1:τ−1)

for τ ∈ T ;

(iv) given an arbitrary strategy profile g̃ of the form g̃ := {g̃it : S it×Ct → ∆(Ait), i∈N , t∈T },

i∈N , and t∈T ,

Pg̃1:t−1

{
s−it

∣∣∣pit,ct}=Pg̃1:t−1

{
s−it

∣∣∣sit,ct} , (8)

4We note that we interpret a centralized control problem as a special case of our model where N=1, H1
t =Pt and Ct=∅ for

all t∈T , Definition 1 coincides with the definition of information state for the single agent decision problem. We would like to
point out that conditions (i)-(iii) can have many solutions including the trivial solution P i,prt =P it . 5
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for all realizations {ct,pit}∈Ct×P it of positive probability where s1:N
τ =ζ1:N

τ (p1:N
τ ,cτ ; g̃1:τ−1)

for τ ∈ T .

There are four key differences between the definition of sufficient private information and that

of private payoff relevant information. First, we allow that the definition and the update rule

of sufficient information Sit to depend on the agents’ strategies g1:t−1. Second, comparing to

part (ii) of Definition 1, part (ii) of Definition 2 requires that sufficient information St includes

all information relevant to the realization of Zt+1 in addition to the information relevant to the

realization of St+1. As we discuss further in Section VI, this is because when signaling occurs in

a multi-agent decision problems agents need to have a consistent view about future commonly

observable events. Third, comparing part (iii) of Definition 2 to part (iii) of Definition 1, we

note that the probability measures in Definition 2 depend on the strategy profile g instead of the

ope-loop strategy profile (A1:N
1:T = â1:N

1:T ). Fourth, in part (iv) of Definition 2 there is an additional

condition requiring that agent i’s sufficient private information Sit must be rich enough so that

he can form beliefs about agents −i’s sufficient private information S−it ; such a condition is

absent in Definition 1.

In general, the notion of sufficient private information S1:N
t is more restrictive than that of

private payoff relevant information P 1:N,pr
t . This is because, S1:N

t , t ∈ T , needs to satisfy the

additional condition (iv), and furthermore, open-loop strategies are a strict subset of closed loop

strategies. Definition 2 provides (sufficient) conditions under which agents can compress their

private information in a “mutually consistent’ manner. We would like to point out that conditions

(i)-(iv) of Definition 2 can have many solutions including the trivial solution Sit = P i
t .

6

B. Sufficient Common Information

Based on the characterization of sufficient private information, we present a statistic (com-

pressed version) of the common information Ct that agents need to keep track of over time for

decision making purposes.

Fix a choice of sufficient private information S1:N
t , t ∈ T . Define S it to be the set of all

possible realizations of Sit , and St :=
∏N

i=1 S it . Given the agents’ strategy profile g, let γt : Ct →

∆(Xt × St) denote a mapping that determines a conditional probability distribution over the

6We do not discuss the possibility of finding a minimal set of sufficient private information in this chapter, and leave it for
future research as such investigation is beyond the scope of this chapter.
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system state Xt and all the agents’ sufficient private information St conditioned on the common

information Ct at time t as

γt(ct)(xt, st) = Pg1:t−1{Xt = xt, St = st|ct}, (9)

for all ct ∈ Ct, xt ∈ Xt, st ∈ St.

We call the collection of mappings γ := {γt, t ∈ T } a sufficient information based belief

system (SIB belief system). Note that γt is only a function of the common information Ct, and

thus, it is computable by all agents. Let Πγ
t :=γt(Ct) denote the (random) common information

based belief that agents hold under belief system γ at t. We can interpret Πγ
t as the common belief

that each agent holds about the system state Xt and all the agents’ (including himself) sufficient

private information St at time t. We call the SIB belief Πt a sufficient common information for

the agents. In the rest of the paper, we write Πt and drop the superscript γ whenever such a

simplification in notation is clear. Moreover, we use the terms sufficient common information

and SIB belief interchangeably.

C. Sufficient Information based Strategy

The combination of sufficient private information S1:N
t and sufficient common information

(the SIB belief) Πt offers a mutually consistent compression of the agents’ private and common

information. Consider a class of strategies that are based on the information given by (Πt, S
i
t) for

each agent i∈N at time t ∈ T . We call the mapping σit :∆(Xt ×St)×S it →∆(Ait) a Sufficient

Information Based (SIB) strategy for agent i at time t. A SIB strategy σit determines a probability

distribution for agent i’s action Ait at time t given his information (Πt, S
i
t). A SIB strategy is

a strategy where agents only use the sufficient common information Πt = γt(Ct) (instead of

complete common information Ct), and the sufficient private information Sit = ζ it(P
i
t , Ct; g1:t−1)

(instead of complete private information P i
t ). A collection of SIB strategies {σ1

1:T , ..., σ
N
1:T} is

called a SIB strategy profile σ. The set of SIB strategies is a subset of general strategies, defined

in Section II, as we can define,

g
(σ,γ),i
t (hit) := σit(π

γ
t , s

i
t) ∀t∈T (10)

We note that from Definition 2 and (9), the realizations πt and s1:N
t at t only depends on g1:t−1.

Therefore, strategies g(σ,γ),i
t , defined above via (10) needs to be determined iteratively as follows;

for t= 1, g(σ,γ),i
1 (hi1) = σi1(πγ1 , ζ

i
1(P i

1, C1)); for t= 2, g(σ,γ),i
2 (hi2) = σi2(πγ2 , ζ

i
2(P i

2, C2; g
(σ,γ)
1 )); ...;
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for t=T , g(σ,γ),i
t (hit)=σit(π

γ
t , ζ

i
2(P i

t , Ct; g
(σ,γ)
t−1 )). Therefore, strategy g(σ,γ),i

t is well-defined for all

t∈T and i∈N .

D. Sufficient Information based Update Rule

When the agents play a SIB strategy profile σ, it is possible to determine the SIB belief Πt

recursively over time based on Πt−1 and the new common information Zt via Bayes’ rule. Let

ψ
σt−1

t :∆(Xt−1×St−1)×Zt → ∆(Xt×St) describe such a update rule for time t+ 1 ∈ T /{1} so

that

Πt = ψ
σt−1

t (Πt−1, Zt). (11)

We note that the SIB update rule ψσt−1

t depends on the SIB strategy profile σt−1 at t−1. In

the rest of the paper, we drop the superscript σ whenever such a simplification in notation is

clear.

E. Special Cases

We consider the special cases (1)-(3) of the general model we presented in Section II,

and identify the sufficient private information S1:N
1:T ; we discuss the application of sufficient

information approach to special case (4) in Section VII.

1) Real-time source coding-decoding: The encoder’s and decoders’ private information are

given by P 1
t = {X1:t} and P 2

t = {X̂1:t−1−δ}, respectively. The agents’ common information is

given by Ct={M1:t−1}. We can verify that S1
t = X̃={Xt−max(k,δ+1)+1, ...,Xt} and S2

t = ∅ satisfy

the conditions of Definition 2 ; this is similar to the structural results in [27, Sections III and

VI]. Consequently, the common information based belief is Πt=Pg{Xt−max(k,δ+1)+1:t|M1:t−1}.

2) Delayed sharing information structure: We have P i
t ={Y i

t−d+1:t,A
i
t−d+1:t} and Ct={Y1:t−d,

A1:t−d}. Since we do not assume any specific structure for the system dynamics and the agents’

observations, agent i’s complete private information P i
t is payoff-relevant for him. Therefore,

we set Sit =P i
t . Consequently, we have Πt = Pg{Xt,Yt−d+1:t,At−d+1:t|Y1:t−d,A1:t−d}. The above

sufficient information appears in the first structural result in [18].

3) Real-time multi-terminal communication: We have P 1
t ={X1

1:t,M
1
1:t−1}, P 2

t ={X2
1:t,M

2
1:t−1},

P 3
t ={Y 1

1:t,Y
2

1:t,X̂1:t−1}, and Ct=∅. It is easy to verify that S1
t =(X1

t ,P{R|X1
1:t},P{Y 1

1:t−1|M1
1:t−1}),

S2
t = (X2

t ,P{R|X2
1:t},P{Y 2

1:t−1|M2
1:t−1}), and S3

t = P 3
t ; this sufficient information corresponds to

the structural results that appear [29].
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V. MAIN RESULTS

In this section, we present our main results for the analysis of dynamic decision problems with

asymmetric information and non-strategic agents using the notion of sufficient information. We

first provide a generalization of the policy-independence property of beliefs to decision problems

with many agents (Theorem 1). Second, we show that the set of SIB strategies are rich enough

so that restriction to them is without loss of generality (Theorem 2). That is, given any strategy

profile g, there exists a SIB strategy profile σ such that every agent gets the same flow of

utility over time under σ as the one under g. Third, we consider dynamic team problems with

asymmetric information. We show that using the SIB strategies, we can decompose the problem

sequentially over time, formulate a dynamic program, and determine a globally optimal policy

via backward induction (Theorem 3).

Theorem 1 (Policy-independence belief property).

(i) Consider a general strategy profile g. If agents −i play according to strategies g−i, then

for every strategy gi that agent i plays,

Pg
{
xt, p

−i
t

∣∣∣hit} = Pg−i
{
xt, p

−i
t

∣∣∣hit} . (12)

(ii) Consider a SIB strategy profile σ along with the associated update rule ψ. If agents −i

play according to SIB strategies σ−i, then for every general strategy gi that agent i plays,

Pσ
−i,gi

ψ

{
xt, p

−i
t

∣∣∣hit}=Pσ−iψ

{
xt, p

−i
t

∣∣∣hit}. (13)

Theorem 1 provides a generalization of the policy-independence belief property for the central-

ized stochastic control problem [3] to multi-agent decision making problems. Part (i) of Theorem

1 states that, under perfect recall, agent i’s belief is independent of his actual strategy gi. Part (ii)

of Theorem 1 refers to the case where agents −i play SIB strategies σ−i and update their SIB

belief according to SIB update rule ψ. The update rule ψ is determined based on (σ−i, σi) via

Bayes’ rule, where σi denotes the SIB strategy that agents −i assume agent i utilizes. Equation

(13) states that even if agent i unilaterally and privately deviates from his SIB strategy, his belief

is independent of his actual strategy gi, and only depends on the other agents’s strategy σ−i as

well as the other agents’ assumption about the SIB strategy σi (or equivalently the SIB update

November 23, 2018 DRAFT



19

rule ψ).7

In POMDPs it is shown that restriction to Markov strategies is without loss of optimality.

We provide a generalization of this result to decision problems with many agents. We show

that restriction to SIB strategies is without loss of generality in non-strategic settings given that

the agents have access to a public randomization device. We say that the agents have access

to a public randomization device if at every time t ∈ T they observe a public random signal

ωt that is completely independent of all events and primitive random variables in the decision

problem and is uniformly distributed on [0,1], and is independent across time. As a result, in

general, at every t∈T , all agents can condition their actions on the realization of ωt as well as

their own information. In other words, a public randomization device enables the agents to play

correlated randomized strategies. We denote by σit(Πt, S
i
t , ωt) agent i’s SIB strategy using the

public randomization device for every i ∈ N and t ∈ T .

Theorem 2. Assume that the non-strategic agents have access to a public randomization device.

Then, for any strategy profile g there exists an equivalent SIB strategy profile σ that results in

the same expected flow of utility, i.e.

Eg
{

T∑
τ=t

uiτ (g
1:N
τ (H1:N

τ ),Xτ)

}
= Eσ

{
T∑
τ=t

u1:N
τ (σiτ(Πτ,S

1:N
τ , ωτ ),Xτ)

}
, (14)

for all i∈N and t∈T .

We provide an intuitive explanation for the result of Theorem 2 below. For every agent

i ∈ N , his complete information history H i
t at any time t ∈ T consists of two components: (i)

one component captures his information about past events that is relevant to the continuation

decision problem; and (ii) another component that, given the first component, captures the

information about past events that is irrelevant to the continuation decision problem. We show

that the combination of sufficient private information Sit and sufficient common information Πt

contains the first component. Nevertheless, in general, the agents can coordinate their action by

incorporating the second component into their decision since their information about the past

events is correlated. Let Ri
t denote the part of agent i’s information H i

T that is not captured by

(Πt, S
i
t). We show that the set of {R1

t , ..., R
N
t } are jointly independent of {(Πt, S

i
t), ..., (Πt, S

N
t )}

7The results of Theorem 1 provides a crucial property for the analysis of decision problems with strategic agents. This is
because it ensures that an agent’s unilateral deviation does not influence his belief (see the companion paper [2] for more details).
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(Lemma 2 in the Appendix). Therefore, at every time t ∈ T , we can generate a set of signals

{R̃1
t , ..., R̃

N
t }, one for each agent, using the public randomization device ω so that they are

identically distributed as {R1
t , ..., R

N
t }. Using the signals {R̃1

t , ..., R̃
N
t } along with the information

state (Πt, S
i
t) for every agent i ∈ N , we can thus recreate a (simulated) history that is identically

distributed to H i
t . This implies that, given a public randomization device ω, it is sufficient for

each agent i ∈ N to only keep track of (Πt, S
i
t) instead of his complete history H i

t , and play a

SIB strategy σi to achieve an identical (in distribution) sequence of outcomes per stage as those

under the strategy profile g.

The result of Theorem 2 states that the the class of SIB strategies characterizes a set of simpler

strategies where the agents only keep track of a compressed version of their information rather

than their entire information history. Moreover, the restriction to the class of SIB strategies is

without loss of generality. Thus, along with results appearing in the companion paper [2], the

result of Theorem 2 suggests that the sufficient information approach proposed in this paper

presents a unified methodology for the study of decision problems with many non-strategic or

strategic agents and asymmetric information.

We would like to discuss the implication of Theorem 2 for two special instances of our model.

First, when N = 1, there is no need for a public randomization device since the single decision

maker does not need to correlate the outcome of his randomized strategy with any other agent.

Therefore, the result of Theorem 2 states that the restriction to Markov strategies in POMDPs

is without loss of generality. Second, when N > 1 and the agents have identical utilities, i.e.

dynamic teams, utilizing a public randomization device does not improve the performance. This

is because, in dynamic teams a randomized strategy profile is optimal if and only if it is optimal

for every realization of the randomization. Therefore, the restriction to SIB strategies in dynamic

teams is without loss of optimality.

Using the result of Theorem 2, we present below a sequential decomposition of dynamic

teams over time. We formulate a dynamic program that enables us to determine a globally

optimal strategy profile via backward induction.

Theorem 3. A SIB strategy profile σ is a globally optimal solution to a dynamic team problem

with asymmetric information if it solves the following dynamic program:

VT+1(πt+1) := 0, ∀πt+1,∀i ∈ N ; (15)
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at every t ∈ T , and for every πt,

σ1:N
t (πt,·)∈ arg max

α1:N :S1:Nt →∆(A1:N
t )

Eπt
{
uteam
t (Xt,α

1:N(S1:N
t )) + Vt+1(ψ

σt
t (πt,α

1:N,Zt+1))
}
, (16)

Vt(πt) := max
α1:N :S1:Nt →∆(A1:N

t )
Eπt
{
uteam
t (Xt,α

1:N(S1:N
t )) + Vt+1(ψ

σt
t (πt,α

1:N,Zt+1))
}
. (17)

The results of Theorems 2 and 3 extend the results of [18], [26] for the study of dynamic

teams in two directions. First, they state that restriction to the set of SIB strategies is without

loss of generality, while the results of [18], [26] only state that this restriction is without loss

of optimality. Second, the definition of Common Information Based strategies, first presented in

[18], [26], requires the agents to use all of their private information P i
t , i ∈ N (or all their private

memory that is a predetermined function of their private information if they do not have perfect

recall); the result of Theorem 3 holds for SIB strategies where the agents’ private information

is effectively compressed , thus, it generalizes/extends the definition of CIB strategies proposed

in [18], [26].

VI. DISCUSSION

A. Constructive algorithm

The sufficient information approach described in Sections IV and V, presents a generalization

of the notion of information state to dynamic multi-agent decision problems with non-classical

information structure. Nevertheless, we would like to point out that our approach does not address

all the issues present in the study of dynamic multi-agent decision problems. We discuss the

main limitation of our approach below.

In POMDPs, an information state with time-invariant domain can be determined by forming

the probability distribution over the system state conditioned on the current information. Our

approach does not offer an explicit constructive algorithm that determines a mutually-consistent

set of information states, one for each agent, with time-invariant domains in dynamic multi-agent

decision problems. Specifically, Definition 2 describes only a set of sufficient conditions that one

can use to evaluate whether a specific compression of agents’ private information is sufficient for

decision making purposes; it does not offer a constructive algorithm to determine a compression

of the agents’ private information that leads to an information state with time-invariant domain.

Given a set of sufficient private information with time-invariant domain for the agents, we

achieve, through the formation of SIB beliefs, a compression of the agents’ common information
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that results in a set of information states with time-invariant domains. In Sections II and IV, we

presented instances of multi-agent decision problems where we can discover a set of information

states with time-invariant domains. Nonetheless, it is not clear if such a set of mutually-consistent

information states with time-invariant domains exist for every dynamic multi-agent decision

problem. Therefore, an interesting, but challenging, future direction would be to identify classes

of dynamic decision problems with non-classical information structure where we can guarantee

the existence of a set of mutually-consistent information states with time-invariant domains, and

prescribe a constructive methodology for their identification. Moreover, we would like to point

out that the sufficient information approach presented here provide sufficient conditions that can

be used to evaluate an educated-guess one may have for specific multi-agent problems.

B. Comparison with other Approaches

The sufficient information approach proposed in this paper shares similarities and also has

differences with existing conceptual approaches to the study of dynamic multi-agent decision

problems. Below, we briefly discuss these approaches and compare them with the sufficient

information approach.

1) Comparison with Agent-by-Agent Approach: The agent-by-agent approach proceeds as

follows: start with an initial guess of a strategy profile g for all agents. At each iteration, select

one agent, say agent i. and update his strategy to a best response strategy given the strategy g−i

of all other agents. Repeat the process until a fixed point is reached, that is, when no agent can

improve performance by unilaterally changing his strategy.

If the above-described iterative process converges, the resulting strategy profile determines an

agent-by-agent optimal strategy profile; however, such an agent-by-agent optimal strategy profile,

in general, is not a globally optimal strategy profile [24]. This is because the multi-agent decision

problems are, in general, not convex in the agents’ strategies [5]. Therefore, the above-described

iterative process does not necessarily converge, or it may converge to a locally optimal strategy

profile that is not a globally optimal strategy profile. In contrast to agent-by-agent approach, the

sufficient information approach determines a globally optimal strategy profile for multi-agent

decision problems with non-strategic agents.

The agent-by-agent approach can be used to discover qualitative properties of optimal strate-

gies. Specifically, we fix the strategies of all agents except one, say agent i, to an arbitrary set

of strategies g−i, and solve for agent i’s best response; to determine agent i’s best response we
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need to solve a POMDP, where the system state and system dynamics, in general, depend on

g−i. If agent i’s best response possesses a property that holds for every choice of g−i, then a

globally optimal strategy for agent i possesses the same property. In contrast to the agent-by-

agent approach where one need to solve a POMDP parameterized by g−i, to discover qualitative

properties of a globally optimal strategy profile using the sufficient information approach we only

need to check the set of conditions appearing in Definition 2 (or equivalently a more general

Definition 3 that will appear in Section VII).

Moreover, using the sufficient information approach we can discover qualitative properties

of optimal strategies that cannot be discovered by the agent-by-agent approach. For instance,

consider the following example.

Example. Consider a team problem with two agents and observable actions, where agent 2’s

action A2
t does not affect the evolution of Xt for all t, i.e. Xt+1 = ft(Xt,A

1
t,Wt). Each agent

i, i= 1, 2, has an imperfect private observation of state Xt at t given by Y i
t =Oi

t(Xt,W
i
t ). An

arbitrary choice of strategy git for agent i at t depends, in general, on his complete information

history given by {Y i
1:t, A1:t−1}. Therefore, following the agent-by-agent approach, if agent i’s

strategy depends on A2
τ for some τ , 1 ≤ τ ≤ t − 1, then agent j’s, j 6= i, best response

also depends on A2
τ . Consequently, the agent-by-agent approach fails to characterize A2

1:t−1 as

irrelevant information for decision making purposes for agents 1 and 2. However, using the

sufficient information approach we can simply show that a globally optimal strategy profile

depend only on P{Xt|Y i
1:t,A

1
1:t} for agent i.

2) Comparison with the Designer’s Approach: The designer’s approach was originally pro-

posed by Witsenhausen in [25], and was further investigated in [35]. This approach considers the

decision problem from the point of view of a designer (she) who knows the system model and the

probability distribution of the primitive random variables, and chooses control/decision strategies

for all agents; she chooses these strategies without having any observation/knowledge about the

realizations of primitive random variables (i.e. she chooses these strategies before the system

evolution starts). Therefore, the designer effectively solves a centralized panning problem. The

designer’s approach proceeds by: (i) formulating the centralized planning problem as a multi-

stage, open-loop stochastic control problem in which the designer’s decision at each time is a

set of control strategies for all agents; (ii) using the standard techniques in centralized stochastic

control to obtain a dynamic programming decomposition of the decision problem. Each step of

the resulting dynamic program is a functional optimization problem.
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The designer’s approach breaks the interdependencies between the agents’ decision and infor-

mation over time by transferring all the complexity that arises due to non-classical information

structure and signaling to a larger information state which at each time is given by a probability

distribution on Ht, the domain of which increases with time as agents have perfect recall.8 There-

fore, the sequential decomposition resulting from the designer’s approach is not, in general, very

practical for the study of multi-agent dynamic decision problems with asymmetric information.

In contrast to the designer’s approach, the sufficient information approach provides a sequential

decomposition of the decision problem over time where at each time t each agent makes decision

based on only a compression of his information H i
t . Therefore, it leads to a dynamic program

where the state variable at each step of the program is a probability distribution on St instead

of a probability distribution on Ht in the designer’s approach.

3) Comparison with the Common Information Approach: The common information approach,

proposed in [18], [26], addresses some of the drawbacks of designer’s approach by modeling the

decision problem as a closed-loop centralized planning problem (POMDP) in which a coordinator

observes perfectly the common information Ct at each time t and, based on this knowledge,

chooses a set of partial control strategies/prescriptions that determine how each agent takes

an action based on his private information at time t. The coordinator’s information state at

time t is his belief on (Xt, Pt) conditioned Ct. As shown in [26], the dynamic programming

decomposition achieved by the common information approach is simpler than that achieved by

the designer’s approach. In the common information approach the agents’ private information

remains intact. Therefore, the resulting decomposition is not very practical whenever the agents’

private information grows in time (see special cases 1,3 and 4 in Section II). Furthermore, the

common information approach becomes identical to the designer’s approach whenever the agents

do not share any common information over time (see special case 3).

In the sufficient information approach, we provide conditions sufficient to identify mutually-

consistent compressions of the agents’ private information that are sufficient for decision making

purposes and do not result in any loss in system performance. Thus, the sufficient information

approach gives rise to a dynamic program that is simpler than the one resulting from the common

information approach. As we show in Section VII, these conditions are the core of sufficient

information approach; they are generalized by Definition 3 to captures a mutually-consistent

8An instance where the domain of the control law is time-invariant is presented in [35].
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joint compressions of the agents’ private and common information. Moreover, in the model of

Section II, we do not assume that the agents share a common objective. Therefore, we do not

reformulate the original multi-agent decision problem as a centralized planning problem from the

coordinator’s point of view when signaling occurs. Alternatively, we provide conditions sufficient

to identify compression of the agents’ information in a mutually-consistent manner on individual

level. As a result, our approach is applicable to both strategic and non-strategic settings (see our

companion paper [2] for strategic settings).

VII. GENERALIZATION

In the sufficient information approach presented in Section IV, we treat the agents’ private

information and common information separately. This is because the main challenge in the

study of dynamic decision problems with non-strategic agents is due to the presence of the

agents’ private information. Nevertheless, such a separate treatment of private and common

information is not necessary. Using the same rationale that leads to Definition 2, we present

below a set of conditions sufficient to characterize a mutually consistent compression of agents’

information, without separating private and common components, that is sufficient for decision

making purposes.

Definition 3 (Sufficient information). We say Lit = ζ̃ it(P
i
t , Ct, g1:t−1) ∈ Lit, i ∈ N , t ∈ T , is

sufficient information for the agents if,

(i) it can be updated recursively as

Lit = φ̃it(L
i
t−1, H

i
t\H i

t−1, g1:t−1) for t ∈ T \{1}, (18)

(ii) for any strategy profile g and for all realizations {ct, pt, pt+1, zt+1, at} ∈ Ct×Pt×Pt+1×Zt+1

with positive probability,

Pg1:t
{
lt+1

∣∣∣pt,ct,at}=Pg1:t
{
lt+1

∣∣∣lt,at} , (19)

where l1:N
τ = ζ̃1:N

τ (p1:N
τ ,cτ ;g1:τ−1) for τ ∈ T ;

(iii) for every strategy profile g̃ of the form g̃ := {g̃it : Lit → ∆(Ait), i∈N,t∈T } and at ∈At,

t∈T ;

Eg̃1:t−1

{
uit(Xt,At)

∣∣∣ct,pit,at}=Eg̃1:t−1

{
uit(Xt,At)

∣∣∣lit,at}, (20)
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for all realizations {ct,pit}∈Ct×P it of positive probability where l1:N
τ = ζ̃1:N

τ (p1:N
τ ,cτ ; g̃1:τ−1)

for τ ∈ T ;

(iv) given an arbitrary strategy profile g̃ of the form g̃ := {g̃it : Lit → ∆(Ait), i ∈ N , t ∈ T },

i∈N , and t∈T ,

Pg̃1:t−1

{
l−it

∣∣∣pit,ct}=Pg̃1:t−1

{
l−it

∣∣∣lit} , (21)

for all realizations {ct,pit}∈Ct×P it with positive probability where l1:N
τ = ζ̃1:N

τ (p1:N
τ ,cτ ; g̃1:τ−1)

for τ ∈ T .

The conditions of Definition 3 are similar to those of Definition 2, but they concern agents’

private and common information rather than just their private information. Throughout the paper,

we do not make any assumption that the agents’ private observations are necessarily disjoint.

Therefore, one can define P i
t = H i

t and Ci
t = ∅, for all i ∈ N and t ∈ T , in which case

Definition 3 would be the same as Definition 2. Consequently, all the results appearing in this

paper (Theorems 1-6) also hold for sufficient information characterized by Definition 3.

We show below that the set of information states (Sit ,Πt), i ∈ N} proposed in Section IV

satisfies the conditions of Definition 3. Therefore, Definition 3 provides a generalization of the

sufficient information approach presented in Section IV as it does not require to compress the

agents’ private and common information separately.

Theorem 4. The set of information states Lit := (Sit ,Πt), i ∈ N , t ∈ T , satisfies Definition 3.

Compared to Definition 2, Definition 3 provides conditions sufficient for a mutually-consistent

joint compression of the agents’ private and common information. However, similar to the

discussion in Section VI-A, it does not provide a constructive algorithm to determine a set

of sufficient information Lit, i ∈ N , t ∈ T , with time-invariant domain.

Remark 1. In view of Definition 3, one can replace condition (ii) of Definition 2 with a weaker

one that requires that St include all the information necessary to form a belief about the

realizations (of parts) of Zt+1 only if (those parts of) Zt+1 affect the realization of Πt+1 given

Πt.

Using Definition 3 we identify a set of sufficient information for special case 4 described in

Section II.
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Special Case:

4) Optimal remote and local controller: We have Ct={Y1:t}, P 1
t ={X1:t,A

1
1:t−1}\Ct, and P 2

t =

{A2
1:t−1}. Let τ ≤ t denote the last time the data transmission was successful between the local

and remote controllers. We can restrict attention, without loss of optimality, to the class of pure

strategies for both controllers. Therefore, one can show that L1
t ={Xt,{Pg{Xt=xt|Xτ̂},∀xt∈Xt}}

and L2
t ={Pg{Xt=xt|Xτ̂},∀xt∈Xt} satisfy the conditions of Definition 3; this is similar to the

structural results in [30], [31].

VIII. EXTENSION TO INFINITE HORIZON

In the model of Section II, we assume that the horizon T is finite. We present a model similar

to that of Section II with infinite horizon, i.e. T =∞, and provide the extensions of our results

to dynamic decision problems with infinite horizon.

Infinite Horizon Dynamic Decision Problem: There are N non-strategic agents who live

in a dynamic Markovian world over an infinite horizon. Consider a time-invariant model where

the system state, actions, and observations spaces are finite and time-invariant, i.e. X∞ = Xt,

A∞ = At, Z∞ = Zt, and Y∞ = Yt for all t ∈ N. Let Xt ∈ X∞ denote the system state at

t ∈ N. Given the agents’ actions At at t, the system state evolution is given by

Xt+1 = f∞(Xt, At,W
x
t ), (22)

where {W x
t , t ∈ N} is a sequence of independent and identically distributed random variables.

The initial state X1 is a random variable with probability distribution η ∈ ∆(X∞) with full

support that is common knowledge among the agents.

At every time t ∈ N, each agent i ∈ N , receives a noisy observation Y i
t given by

Y i
t = Oi

∞(Xt, At−1,W
i
t ), (23)

where {W i
t , t ∈ N, i ∈ N} is a sequence of independent and identically distributed random

variables.

In addition, at every t ∈ N all agents receive a common observation Zt ∈ Z∞ given by

Zt = Oc
∞(Xt, At−1,W

c
t ), (24)
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where {W c
t , t ∈ N} is a sequence of independent and identically distributed random variables;

the sequences {W x
t , t ∈ N}, {W c

t , t ∈ N}, and {W i
t , t ∈ N, i ∈ N} and the initial state X1 are

mutually independent.

Similar to the model of Section II, let P i
t and Ct denote agent i’s, i ∈ N , private and common

information at t ∈ N, respectively. Agent i has a time-invariant instantaneous utility function

δt−1ui∞(Xt, At), and his total discounted utility is given by

U i
in(X,A) :=

∞∑
t=1

δt−1ui∞(Xt, At), (25)

where δ denotes the discount factor.

We provide an extension of our results to infinite horizon dynamic decision problems with non-

strategic agents. For that matter, we first present a generalization of the definition of sufficient

private information to infinite horizon decision problems.

Definition 4 (Time-invariant sufficient private information). We say Sit , i ∈ N , t ∈ N, is a

time-invariant sufficient private information if it is a sufficient private information and has a

time-invariant domain denoted by S i∞, i ∈ N .

We note that for the special cases presented in Section IV, the characterized sufficient private

information is time-invariant.

Following an argument similar to the one presented in Section V, we extend the result of

Theorem 2 to infinite horizon dynamic decision problems with non-strategic agents.

Theorem 5. Consider an infinite horizon dynamic decision problem with non-strategic agents

having access to a public randomization device. Then, for any arbitrary strategy profile g there

exists an equivalent stationary SIB strategy profile σ that results in the same expected flow of

utility, i.e.,

Eg
{
∞∑
τ=t

δt−1ui∞(g1:N
τ (H1:N

τ ),Xτ)

}
= Eσ∞

{
∞∑
τ=t

δt−1ui∞(σ1:N
τ (Πτ,S

1:N
τ , ωτ ),Xτ)

}
, (26)

for all i ∈ N and t ∈ N.

Next, we consider the case where agents share the same objective ui∞(·, ·) = uteam
∞ (·, ·) for

all i ∈ N ., i.e. an infinite horizon dynamic team problem. It is shown that in infinite horizon
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POMDPS we can restrict attention, without loss of generality, to stationary Markov policies [3].

We provide a generalization of this results to dynamic multi-agent decision problems below.

Given a set of time-invariant sufficient private information, let Πt ∈∆(X∞×S∞) denote the

SIB belief about (Xt, St) at time t. We call the mapping σi∞ : ∆(X∞ × S∞) × S i∞ → ∆(Ai∞)

a stationary SIB strategy for agent i if Sit , i ∈ N , t ∈ N, is a time-invariant sufficient private

information. Similarly, given a stationary SIB strategy profile σ∞, we define a stationary SIB

update rule as a time-invariant mapping ησ∞∞ : ∆(X∞ × S∞) × Z∞ → ∆(X∞ × S∞), that

recursively determines the SIB belief via Bayes’ rule for all t ∈ N. Similarly, let σi∞(Πt, S
i
t , ωt)

denote agent i’s stationary SIB strategy using the public randomization device for every i∈N

and t∈T , when the agents have access to a public randomization device ωt for every t∈T .

We provide a sequential decomposition similar to that of Theorem 3 for infinite horizon

dynamic teams below.

Theorem 6. A stationary SIB strategy profile σ∞ is an optimal solution to an infinite horizon

dynamic team problem with asymmetric information if it solves the following Bellman equation:

V∞(πt) := max
α1:N :S1:N∞ →A1:N

∞

Eπ
{
uteam
∞ (Xt,α

1:N(S1:N
t )) + V∞(η∞(πt,α

1:N,Zt+1))
}
, (27)

for all πt ∈ ∆(X∞ × S∞).

The result of Theorem 6 provide a generalization of Bellman equation for POMDPS (see [3,

Ch. 8]) to decision problems with many agents and asymmetric information.

IX. CONCLUSION

We presented a general approach to study a general class of dynamic multi-agent decision

making problems with non-strategic agents. We proposed the notion of sufficient information

that enables us to compress effectively the agents’ (private and common) information in a

mutually consistent manner for decision making purposes. We showed that the restriction to

the class of SIB strategies are without loss of generality. Accordingly, we provided a sequential

decomposition of dynamic decision problems with non-strategic agents, and formulated a dy-

namic program to determine a globally optimal strategy profile in dynamic teams. The proposed

sufficient information approach presented in this paper generalizes a set of existing results in

the literature for the study of dynamic multi-agent decision making problems with non-strategic

agents. Our results in this paper, along with those appearing in the companion paper [2], provide
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a unified appraoch to study dynamic decision problems with non-strategic agents (teams) and

strategic agents (games). For future directions, we will investigate the problem of determining a

constructive algorithm that enables us to identify sufficient (private) information in a systematic

way.
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APPENDIX

Proof of Theorem 1. We prove the result of part (i) by induction. For t = 1 the result holds

since the agents have not taken any action yet. Suppose that (12) holds for t−1. Then,

Pg
{
xt,h

−i
t |hit

}
=
∑
xt−1

Pg
{
xt, xt−1, h

−i
t |hit

}
=
∑
xt−1

Pg
{
xt, xt−1, h

−i
t−1, a

−i
t−1, y

−i
t |hit−1, a

i
t−1, y

i
t, zt
}

=
∑
xt−1

P{y−it |xt,at−1}Pg
{
xt,xt−1,h

−i
t−1,a

−i
t−1|hit−1,a

i
t−1,y

i
t,zt
}

=
∑
xt−1

[
P{y−it |xt,at−1}P{xt|xt−1,at−1}Pg

{
xt−1,h

−i
t−1,a

−i
t−1|hit−1,a

i
t−1,y

i
t,zt
} ]

=
∑
xt−1

[
P{y−it |xt, at−1}P{xt|xt−1, at−1}g−it−1(h−it−1)(a−it−1)Pg

{
xt−1, h

−i
t−1|hit−1, a

i
t−1, y

i
t, zt
}]

=
∑
xt−1

[
P{y−it |xt, at−1}P{xt|xt−1, at−1}g−it−1(h−it−1)(a−it−1)

Pg
{
xt−1, h

−i
t−1, y

i
t, zt|hit−1, a

i
t−1

}
Pg
{
yit, zt|hit−1, a

i
t−1

} ]
. (28)

Consider the term Pg
{
xt−1, h

−i
t−1, y

i
t, zt|hit−1, a

i
t−1

}
in the nominator of the expression above. We

have,

Pg
{
xt−1, h

−i
t−1, y

i
t, zt|hit−1, a

i
t−1

}
=
∑
a−it−1,xt

[
P{yit, zt|xt, a−it−1, a

i
t−1}P{xt|xt−1, a

−i
t−1, a

i
t−1}g−it−1(h−it−1)(a−it−1)Pg

{
xt−1, h

−i
t−1|hit−1, a

i
t−1

}]
=
∑
a−it−1,xt

[
P{yit, zt|xt, a−it−1, a

i
t−1}P{xt|xt−1, a

−i
t−1, a

i
t−1}g−it−1(h−it−1)(a−it−1)Pg−i

{
xt−1, h

−i
t−1|hit−1, a

i
t−1

}]
=Pg−i

{
xt−1, h

−i
t−1, y

i
t, zt|hit−1, a

i
t−1

}
(29)

where the second equality follows from the induction hypothesis (12) for t−1. Consequently,

we also have,

Pg
{
yit,zt|hit−1,a

i
t−1

}
=
∑
ĥ−it−1,x̂t

Pg
{
yit, zt, x̂t−1, ĥ

−i
t−1|hit−1, a

i
t−1

}
by (29)

=∑
ĥ−it−1,x̂t

Pg−i
{
yit,zt,x̂t−1,ĥ

−i
t−1|hit−1,a

i
t−1

}
=Pg−i

{
yit,zt|hit−1,a

i
t−1

}
(30)
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Substituting (29) and (30) in (28),

Pg
{
xt,h

−i
t |hit

}
=
∑
xt−1

[
P{y−it |xt, at−1}P{xt|xt−1, at−1}g−it−1(h−it−1)(a−it−1)

Pg−i
{
xt−1,h

−i
t−1,y

i
t,zt|hit−1,a

i
t−1

}
Pg−i

{
yit, zt|hit−1, a

i
t−1

} ]
=Pg−i

{
xt,h

−i
t |hit

}
which establishes the induction step for t.

Given the result of part (i), the result of part (ii) follows directly from the definition of SIB

strategies (10) and SIB update rule (11).

To provide the proof for Theorem 2, we need the following result.

Lemma 1. Given a SIB strategy profile σ and update rule ψ consistent with σ,

Pσψ{st+1, πt+1|pt, ct, at}=Pσψ{st+1, πt+1|st, πt, at}, (31)

for all st+1, πt+1, st, πt, at.

Proof of Lemma 1. Let gσ denote the strategy profile, given by (10), that corresponds to SIB

strategy profile σ. We have,

Pσψ{st+1,πt+1|pt,ct,at}
πt=γt(ct)

= Pσψ{st+1,πt+1|pt,ct,at,πt}
using update rule (11)

=∑
zt+1

[
Pσψ{st+1, zt+1|pt, ct, at, πt}1{πt+1=ψt+1(πt,zt+1)}

]
by (6)
=∑

zt+1

[
Pσψ{st+1, zt+1|st, ct, at, πt}1{πt+1=ψt+1(πt,zt+1)}

]
=∑

yt+1,xt+1,xt,zt+1

[
Pσψ{st+1, zt+1, yt+1, xt+1, xt|st, ct, at, πt}1{πt+1=ψt+1(πt,zt+1)}

]
by system dynamics (1) and (2)

=
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∑
yt+1,xt+1,xt,zt+1

[
Pσψ{st+1|st, ct, at, πt, zt+1, yt+1, xt+1, xt}

P{zt+1, yt+1|at, xt+1}P{xt+1|xt, at}Pσ{xt|st, ct, at, πt}1{πt+1=ψt+1(πt,zt+1)}

]
by (5)
=∑

yt+1,xt+1,xt,zt+1

[(∏
j

1{sjt+1=φjt+1(sjt ,{y
j
t+1,zt+1,a

j
t};gσ)}

)
P{zt+1, yt+1|at, xt+1}P{xt+1|xt, at}Pσψ{xt|st, ct}1{πt+1=ψt+1(πt,zt+1)}

]
by Bayes’ rule

=∑
yt+1,zt+1,xt+1,xt

[(∏
j

1{sjt+1=φjt+1(sjt ,{y
j
t+1,zt+1,a

j
t};gσ)}

)
P{zt+1, yt+1|at, xt+1}P{xt+1|xt, at}

Pσψ{xt, st|ct}
Pσψ{st|ct}

1{πt+1=ψt+1(πt,zt+1)}

]
=∑

yt+1,zt+1,xt+1,xt

[(∏
j

1{sjt+1=φjt+1(sjt ,{y
j
t+1,zt+1,a

j
t};gσ)}

)
P{zt+1, yt+1|at, xt+1}P{xt+1|xt, at}

πt(xt, st)∑
x̂t
πt(x̂t, st)

1{πt+1=ψt+1(πt,zt+1)}

]
=

Pσψ{st+1, πt+1|st, πt, at}.

Proof of Theorem 2. Consider an arbitrary strategy profile g. We prove the existence of SIB

strategy profile that is equivalent to g by construction.

With some abuse of notation, let σi(Πt, S
i
t , ωt) denote agent i’s strategy using the public

randomization device ωt. We construct a SIB strategy profile σt that has the following properties:

(a) the induced distribution on {Πt+1, St+1} under σ coincides with one under g, i.e.

Pσ1:t {πt+1, st+1} = Pg1:t {πt+1, st+1} . (32)

(b) the continuation payoff for all the agents under σ is the same as that under g, i.e. for all
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i ∈ N ,

Eg
{

T∑
τ=t

uiτ (Xτ , gτ (Hτ ))

}
= Eσ

{
T∑
τ=t

uiτ (Xτ , στ (Πτ , Sτ , ωτ ))

}
. (33)

We prove condition (a) by forward induction and condition (b) by backward induction. We

note that condition (a) is satisfied for t = 1, since at t = 1 no action has been taken. Moreover,

condition (b) is satisfied for t = T + 1 since there is no future.

Assume that condition (a) is satisfied from 1 to t, t ∈ T . We construct σt below such that

condition (a) is satisfied at t+1.

To construct σt, we first define below a random vector R1:N
t based on H1:N

t , such that for

every i∈N , (i) R1:N
t is independent of Πt and S1:N

t , and (ii) H i
t can be reconstructed using Ri

t

along with Πt and Sit .

We proceed as follows. For every time t ∈ T , let (πt, s
1:N
t ) denote the realization of the agents’

sufficient common information and private information, respectively. Let Hi
t := {hi,1t , ..., h

i,|Hit|
t }

denote the set of all histories of agent i at time t, where |Hi
t| denote the number of possi-

ble realizations of agent i’s history at time t. Conditioned on the realization of (πt, s
i
t), let

{p(hi,kt |πt, sit), 1≤ k≤ |H i
t |)} denote the probability mass function on Hi

t that leads to (πt, s
i
t)

for agent i. Define the random variable Ri
t on [0, 1] as follows:

1) P
{

0≤Ri
t≤p(h

i,1
t |πt,sit)

}
= p(hi,1t |πt,sit), (34)

and conditioned on the event
{

0≤Ri
t≤p(h

i,1
t |πt,sit)

}
, Ri

t is uniformly distributed on [0,p(hi,1t |πt,sit)].

2) For 1 < k ≤ |Hi
t|,

P
{k−1∑
j=1

p(hi,jt |πt,sit)≤Ri
t≤

k∑
j=1

p(hi,jt |πt,sit)
}

= p(hi,kt |πt,sit), (35)

and conditioned on the event
{∑k−1

j=1 p(h
i,j
t |πt,sit)≤Ri

t ≤
∑k

j=1 p(h
i,j
t |πt,sit)

}
, Ri

t is uniformly

distributed on
[∑k−1

j=1 p(h
i,j
t |πt,sit),

∑k
j=1 p(h

i,j
t |πt,sit)

]
.

Therefore, Ri
t is uniformly distributed on [0, 1] and is independent of (Πt, S

i
t). Furthermore,
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for any realization (πt, s
i
t, r

i
t) we can uniquely determine hi,lt where

l := min{k : rit ≥
k−1∑
j=1

p(hi,jt |πt, sit)}. (36)

Therefore, the random variable Ri
t defined above, satisfies the mentioned-above conditions (i)

and (ii) when H i
t takes finite values.

We show below that Ri
t is independent of St.

Lemma 2. The random variable Ri
t, i ∈ N , is independent of Πt and St for all t ∈ T .

Proof of Lemma 2. Consider an arbitrary realization (h1
t, ...,h

N
t ) of (H1

t , ...,H
N
t ). Let ((s1

t,πt, r
1
t ),

...,(sNt ,πt, r
N
t )) denote the realization of ((S1

t ,Πt, R
1
t ), ..., (S

N
t ,Πt, R

N
t )) where (sit, πt, r

i
T ) cor-

responds to hit as it is defined above for every i ∈ N .

For every i ∈ N we have,

Pg{rit|πt, st} = Pg{rt|πt, sit, s−iT } =
Pg{rit, s−it |πt, sit}
Pg{s−it |πt, sit}

=
Pg{s−it |rit, πt, sit}Pg{rit|πt, sit}

Pg{s−it |πt, sit}
replace

(πt, sit, r
i
t) by hit

=
Pg{s−it |hit}Pg{rit|πt, sit}

Pg{s−it |πt, sit}
(37)

The last equality holds because H i
t is uniquely determined by (Πt, S

i
t , R

i
t) and vice versa; see

(34)-(36). Moreover,

Pg{s−it |ht}
by (8)
= Pg{s−it |st, ct} =

Pg{s−it , sit|ct}
Pg{sit|ct}

=
πgt (s

−i
t , s

i
t)∑

ŝ−it
πgt (ŝ

−i
t , s

i
t)

= P{s−it |st, π
g
t }. (38)

Combining (37) and (38)

Pg{rit|πt, st} =
Pg{s−it |sit, π

g
t }Pg{rit|πt, sit}

Pg{s−it |πt, sit}
= Pg{rit|πt, sit} = Pg{rit} (39)

where the last equality is true since by definition Ri
t is independent of (Πt, S

i
t). Therefore, by

(39), Ri
t is independent of Πt and St for all i ∈ N .

Using the result of Lemma 2, we prove that for every i∈N , (i) R1:N
t is independent of Πt

and S1:N
t , and (ii) H i

t can be reconstructed using Ri
t along with Πt and Sit .

In the following, we construct a SIB strategy profile σt equivalent to gt as follows. Let R̂1:N
t (ωt)

denote a random vector the agents construct using the public randomization device ωt that has
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an identical joint cumulative distribution to that of R1:N
t . Note that by Lemma 2, the distribution

of R1:N
t is independent of St and Πt.

Define,

σit(Πt, S
i
t , ωt) := git(F

−1
Rit|Sit ,Πt

(R̂i
t(ωt),Πt, S

i
t)). (40)

Then,

Pg1:t{πt+1, st+1|Ht} =Pg1:t{πt+1, st+1|Πt, St, Rt}
distribution

= Pg1:t{πt+1, st+1|Πt, St, R̂t}

=Pσ1:t{πt+1, st+1|Πt, St, R̂t}.

Taking the expectation of the left and right hand sides with respect to ωt and Rt, respectively,

and using the fact that R̂t(ωt) and Rt are independent of St and Πt (Lemma 2), we obtain

Pσ1:t {πt+1, st+1|Πt, St} = Pg1:t {πt+1, st+1|Πt, St} w.p.1. (41)

By the induction hypothesis, we have Pσ1:t−1 {πt, st} = Pg1:t−1 {πt, st}. Therefore, taking the

expectation of both sides of (41) with respect to Πt, St, we establish that condition (a) holds for

time t+ 1.

Next, we prove condition (b) by backward induction. We have,

Eg{uit(Xt, At)|Ht} =Eg{uit(Xt, At)|Πt, St, Rt}
distribution

= Eg{uit(Xt, At)|Πt, St, R̂t}

=Eσ{uit(Xt, At)|Πt, St, R̂t} (42)

Using (42) for t = T , we have condition (b) is satisfied for t = T .

Now we assume that condition (b) is satisfied from t+1 to T , t ∈ T . We prove that condition

(b) is satisfied at t.

Using condition (a) at time t, i.e Pσ1:t−1{st, πt} = Pg1:t−1{st, πt}, the induction hypothesis on

condition (b) for t+ 1 along with equation (42) for t, and the fact that Rt and R̂t are identically

distributed and independent of Πt and St, we obtain

Eg
{

T∑
τ=t

uiτ (Xτ , gτ (Hτ ))

}
= Eσ

{
T∑
τ=t

uiτ (Xτ , στ (Πτ , Sτ , ωτ ))

}
.
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Proof of Theorem 3. By the result of Theorem 2, we can restrict attention to SIB strategies

with public randomization device without loss of generality. Moreover, since by Assumption 1

all space are finite, we can restrict attention to SIB strategies (with no public randomization

device) without loss of generality. The proof of Theorem 3 then follows from an argument

identical to the one given for dynamic programming for POMDP (see [3, Ch. 6.7]).

The dynamic program described by (15-17) can be viewed as a solution to the following

decision problem that is equivalent to the original dynamic team problem. Consider a “super

agent” that knows the functional forms of system dynamics and the agents’ utilities, and the set

of spaces Xt,A1:N
t ,S1:N

t for all t. The super agent coordinates the agents’ decisions at each time

as follows. The super agent observes πt (which is common knowledge among all agents) but

does not know the realizations s1:N
t of the agents’ sufficient private information. Based on his

information, the super agent chooses a joint set of prescriptions/partial functions σ1:N
t (πt, ·), one

for each agent, that determine agent i’s action for every realization sit as σit(πt, s
i
t) for ∀t, i. The

dynamic program described by (15-17) determines an optimal solution for the above-described

super agent, and thus, equivalently, determine the optimal strategy for the original dynamic team

problem.9

Proof of Theorem 4. We show below that Lit := (Sit ,Πt), i ∈ N , t ∈ T satisfies conditions

(i)-(iv) of Definition 3.

Condition (i) is satisfied since both S1:N
t and Πt can be updated recursively via update rules

φ1:N
t and ψt, respectively, for every t ∈ T .

Condition (ii) is satisfied by Lemma 1.

To prove condition (iii), we have

P{xt|ct, st} =
P{xt, st|ct}∑
x̂t
P{x̂t, st|ct}

= P{xt|πt, st}. (43)

Therefore,

9The above interpretation of the dynamic program from the point of view of a super agent is similar to the coordinator
problem formulated in [18], [26].
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Eg̃
−i
1:t−1

{
uit(Xt,At)

∣∣∣ct,pit,at} by (7)
= Eg̃

−i
1:t−1

{
uit(Xt,At)

∣∣∣ct,sit,at}
=

Eg̃
−i
1:t−1

{
Eg̃
−i
1:t−1

{
uit(Xt,At)

∣∣∣Xt,at

} ∣∣∣∣∣ct, sit, at
}

by (43)
=

Eg̃
−i
1:t−1

{
Eg̃
−i
1:t−1

{
uit(Xt,At)

∣∣∣Xt,at

} ∣∣∣∣∣πt, sit, at
}

=

Eg̃
−i
1:t−1

{
uit(Xt,At)

∣∣∣πt,pit,at}
Condition (iv) holds since,

Pg̃
−i
1:t−1,g̃

i
1:t−1

{
l−it

∣∣∣pit,ct} =Pg̃
−i
1:t−1

{
s−it

∣∣∣pit,ct} by (7)
= Pg̃

−i
1:t−1

{
s−it

∣∣∣sit,ct} =
Pg̃
−i
1:t−1{st|ct}

Pg̃
−i
1:t−1,g

i
1:t−1{sit|ct}

by (43)
= Pg̃

−i
1:t−1

{
s−it

∣∣∣sit,πt} = Pg̃
−i
1:t−1

{
l−it

∣∣∣lit}

Proof of Theorem 5. Consider the SIB strategy σt constructed in the proof of Theorem 2 for

every t ∈ N. We show below that σt satisfies (26).

By the proof of Theorem 2, condition (32) holds for all t ∈ N. To prove (26), we show that

under strategy σt, t ∈ N, we have∣∣∣∣∣Eg
{
∞∑
τ=t

δt−1ui∞(g1:N
τ (H1:N

τ ),Xτ)

}
− Eσ∞

{
∞∑
τ=t

δt−1ui∞(σ1:N
∞ (Πτ,S

1:N
τ ),Xτ)

}∣∣∣∣∣ ≤ ε (44)

for all ε > 0.

Let M = maxat,xt,i |ui∞(xt, at)|. For every ε > 0, choose T ∈ N such that δT

1−δM ≤
ε
2
. Then,

for any arbitrary strategy g̃,∣∣∣∣∣Eg̃
{
∞∑
τ=T

δt−1ui∞(g̃1:N
τ (H1:N

τ ),Xτ)

}∣∣∣∣∣ ≤ ε

2
. (45)

Therefore, for every t < T , condition (44) is satisfied by (45) and the triangle inequality.
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For t > T , consider a finite decision problem with horizon T resulting by the truncation of

the original infinite-horizon decision problem at T . Then, by Theorem 2,

Eg
{

T∑
τ=t

uiτ (g
1:N
τ (H1:N

τ ),Xτ)

}
= Eσ

{
T∑
τ=t

u1:N
τ (σiτ(Πτ,S

1:N
τ ),Xτ)

}
, (46)

for all i∈N and t∈T . Combining (46) with the result for t > T , we show that (26) is satisfied

for t.

Proof of Theorem 6. By Theorem 5, we can restrict attention to stationary SIB strategies with

public randomization device without loss of generality. Moreover, since by Assumption 1 all

space are finite, we can restrict attention to SIB strategies (with no public randomization device)

without loss of optimality. Consequently, following the same rationale as the one given in the

proof of Theorem 3, the result of Theorem 6 follows from an argument identical to the one

given for dynamic programming in infinite-horizon Markovian Decision Processes (see [3, Ch.

8.2 and Ch.8.3]).
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