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Abstract

In this paper we propose a new efficient linear programming based
approach for multi-resource allocation and location problems in disas-
ter management. Such problems require an integer solution and there-
fore, in most cases, the computations rely on integer and mixed-integer
linear programming solvers. In general, these solvers can not handle
large scaled problem. In this paper we demonstrate that there exists a
large class of disaster management problems whose exact solutions can
be obtained by applying the simplex method (linear programming).
The results of numerical experiments are provided. Another impor-
tant contribution of this paper is related to general cluster analysis
and allocation. Namely, we demonstrate that the classical k-medoid
clustering method can be implemented using linear programming tech-
niques (simplex method) without relying on integer solvers.
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1 Introduction

Many disaster management approaches are based on optimisation techniques.
In particular, the problems are formulated as mathematical programs and
then solved using available optimisation techniques [27]. In the simplest
case, problems can be formulated as linear or convex programs, while some
others require more advanced techniques.

A large class of applications can be formulated as mixed-integer linear
programs. In these problems, all or some of the variables are integers. This
makes the corresponding optimisation problems much harder to solve. More-
over, in some cases, we can not even guaranty that an obtained solution is
optimal.

One approach to solve these problems is to apply standard linear opti-
misation methods and then round the solution to the nearest integer. This
approach is not always very precise, especially when the integer variables are
binary (that is, can only take values from {0, 1}). In this paper we derive a
rich class mixed-integer linear problems whose optimal solution can be ob-
tained by applying the simplex method, a powerful methods developed for
classical linear programs.

There are several advantages of our approach. First of all, we can guar-
anty that the obtained solution is integer and optimal. Second, the simplex
method is part of most linear programming packages, where mixed-integer
programming solvers may not be available. Third, linear programming tech-
niques can deal with very large problems, while the applicability of mixed-
integer techniques to same size problems may not be possible.

In this paper we consider three applications taken from the field of dis-
aster management. There are many more applications where our approach
is applicable. The list of such applications is rich and goes well beyond the
area of disaster management.

The paper is organised as follows. In section 2 we give an overview of
disaster management problems. Then, in section 3, we formulate the most
important results from the area of linear programming. In section 4 we dis-
cuss the application of the classical simplex method to integer programming
problems whose constraint matrices are totally unimodular. In section 5 we
formulate our main results. In section 6 we provide the results of the nu-
merical experiments. Finally, in section 7 we provide our conclusions and
discussions.
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2 Disaster management

Disaster management contains five general phases, namely: prediction, warn-
ing, emergency relief, rehabilitation, and reconstruction [19]. The related ac-
tivities which are conducted in these phases usually contain mitigation and
preparedness, response, and recovery [12].

In emergency relief operation, resource allocation problem (RAP) is often
a complex challenge due to a number of issues, such as dealing with crucial
demands, time criticality, competing priorities, the extent of availabilities,
and different constraints and uncertainties [26]. Emergency resources can
be grouped into non-expendable and expendable resources [4, 25]. Non-
expendable resources are non-consumable and renewable and might include
emergency personnel and volunteers. Expendable resources are consumable
and cannot be renewed in the emergency, or the recovery cost surpasses the
original value of the resource (for instance, medical supplies, water, food and
fuel). Failure to assign adequate resources in a timely manner has been the
main cause of adverse impacts in disaster situations [23, 18, 20]. Efficient
reduction of losses and fatalities in disaster-struck locations are significantly
dependent on the rapid deployment of resources for emergency relief opera-
tions.

A RAP models consider assignment of resources to task from relief centres
without determining the sequence or flow of resources along arcs [6]. A RAP
problem in disaster management is usually formulated as a mixed-integer
linear programming (MILP) problem [4, 6, 9]. Most of the methodologies
in natural disaster response phase focus on developing a MILP model just
for one type of the resources (or just integer linear programming, ILP, when
all the variables are integers). A literature review reveals that RLP models
with different kinds of resources in disaster management have been discussed
quite rarely ([18, 17, 4].

In addition, in most cases it is assumed that one relief centre may supply
several demand points, while every demand point can receive supplies from
just one relief centre. There are two main advantages of this approach. First
of all, this rule makes decision maker’s tasks easier to implement. Second,
this approach may minimise the number of vehicles involved. The main
disadvantage of this model is that the total costs are higher than they may
be in the case when several relief centres are allowed to supply the same
demand point. Later in this paper we demonstrate that the removal of this
assumption leads to MILP problems that can be solved using standard linear
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programming tools, that are very advanced and efficient, while the obtained
solution is optimal for the original MILP problem.

Furthermore, finding the location of relief centres (e.g. medical centres,
distribution centres) are vital in disaster management [5]. This problem can
be addressed as a facility location problem (e.g. [2]) or a clustering problem
(e.g. [22, 3]). To find a solution for the location of relief centres normally a
MILP model is formulated for small cases, and using several heuristics ap-
proaches for solving the larger cases. Heuristic algorithms are producing a
non-optimal solution and the result of them are poor quality when bench-
marked with exact approach (e.g. Linear Programming) [5].

3 Linear Programming and Transportation prob-

lem

3.1 Linear Programming

A general linear programming problem or LPP can be formulated as follows:

minimise c
T
x (1)

subject to a
T
i x ≥ bi, i ∈ M1; (2)

a
T
i x ≤ bi, i ∈ M2; (3)

a
T
i x = bi, i ∈ M3; (4)

xj ≥ 0, j ∈ N1; (5)

xj ≤ 0, j ∈ N2, (6)

where

• x1, . . . , xn are the decision variables;

• c = (c1 . . . , cn) is the cost vector;

• function c
T
x in (1) is the objective (cost) function;

• the set of equalities and inequalities (2)-(6) are the constraints.
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Definition 3.1. A vector x satisfying all the constraints is called a feasible
solution. The set of all feasible solutions is called the feasible set.

Definition 3.2. A feasible solution x
∗ that minimises the objective function

is called an optimal feasible solution or just an optimal solution.

Definition 3.3. A liner programming problem is called feasible if there exists
at least one feasible solution. Otherwise, the problem is infeasible.

There are many efficient methods for solving linear programming prob-
lems: the simplex method, originally developed by Dantzig in 1947 [7], inte-
rior point methods [13, 21]. It has been demonstrated in 1972 by [15] that
the worst-case complexity of the simplex method as formulated by Dantzig
is exponential time. The worst-case complexity of interior point methods is
polynomial. Despite these results, the simplex method is remarkably efficient
and included in most linear programming packages.

In many practical problems it is beneficial (where it is possible) to re-
formulate an integer or mixed-integer linear programming problem as an
LPP and solve it then using linear programming techniques. This normally
involves a significant increase in the number of decision variables and/or
constraints.

3.2 Transportation Problems

Transportation problems form a special class of LPPs. In most operations
research textbooks, this problem is formulated in a way related to trans-
portation. It is possible, however, to apply the same type of approach to
other types of problems, including location analysis and allocation problems.
An excellent overview of such problems and also more advanced models can
be found in [8, 16].

Consider an example of transportation problem formulation. Goods are
produced at m factories (also called sources)

S1, . . . , Sm

and sold at n markets (also called destinations):

D1, . . . , Dn.

The supply available at source Si is si ≥ 0 units, the demand at destina-
tion Dj is dj ≥ 0 units and the transportation cost of one unit from Si
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to Dj is cij ≥ 0. We have to identify which sources should supply which
destinations to minimise total transportation costs.

Let xij be the number of units to be sent from Si to Dj. Then the
corresponding optimisation problem can be formulated as follows:

min

m
∑

i=1

n
∑

j=1

cijxij (7)

subject to

n
∑

j=1

xij ≤ si, i = 1, . . . , m;
m
∑

i=1

xij ≥ dj , j = 1, . . . , n; (8)

xij ≥ 0, i, j = 1, . . . , n. (9)

It is well known that if all supplies and demands are integers, then there
exists an optimal solution xij , which is integer. This is important for many
applications where the units (for example, computers, cars, people) can not
be split. In general, integer and mixed-integer programming problems are
much harder to solve than linear programming problems. It is also well known
that the simplex method applied to a transportation problem, terminates at
an optimal solution that is also integer.

There are other types of LPPs whose optimal solutions, reached by ap-
plying the simplex method, are integers. In the next section we provide a
brief description of the simplex method and identify a broad class of lin-
ear problems where an integer optimal solution can be obtained by applying
standard linear programming techniques.

4 The simplex method and its application to

integer problems whose constraint matrices

are totally unimodular

The simplex method is a powerful linear programming algorithms. The al-
gorithm starts at a feasible vertex of the constraint polyhedron. Then it
move to an adjacent vertex, where the objective function value is at least as
good as it is at the original vertex. Since the number of vertices is finite,
this method will terminate in a finite number of steps. If all the vertices of
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the constrain polyhedron have integer coordinates, then an optimal solution
(can be more than one) is integer.

Consider a system of linear inequalities

Ax ≤ b, (10)

where A is an m× n matrix, x ∈ Rn and b ∈ Rm. It is well-known that all
possible solutions to a system of linear inequalities form a polyhedron. This
polyhedron is an empty set if the system does not a solution.

A comprehensive overview on integer programming can be found in [24].
Theorem 19.3 of this book (p. 268) covers the conditions when the vertices
of the feasible sets are integers and therefore an optimal solution found at a
vertex is integer. In this paper, we only use conditions (i), (iii) and (iv) of
the theorem (originally proved in [11] and [10]). A simplified version of this
theorem, formulated for this study, is as follows.

Theorem 4.1. Let A be a matrix with entries {0, 1,−1}. Then the following
are equivalent:

1. matrix A is totally unimodular, that is each square submatrix of A has
determinant 0, 1 or −1;

2. for all integral vectors a, b, c and d the polyhedron

{x|c ≤ x ≤ d, a ≤ Ax ≤ b}

has only integral vertices;

3. each collection of columns of A can be split into two parts so that the
sum of the columns in one part minus the sum of the columns in the
other part is a vector with entries {0, 1,−1};

The first condition of Theorem 4.1 is usually used as a definition for
totally unimodular matrices. The class of totally unimodular matrices is
closed under a number of operations. We need the following ones:

• transposition;

• multiplication a row (column) by −1.
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Also, matrix A is totally unimodular if and only if matrix [IA] (where I is
an identity matrix of the corresponding dimension) is totally unimodular.

In the next section we formulate three types of integer problems appear-
ing in disaster management. Then we demonstrate that the corresponding
system matrices are totally unimodular and therefore their optimal solutions
(reached at vertices) are integers and hence can be obtained by applying the
simplex method.

5 Mathematical Modelling

5.1 Expendable resources

The problem of allocating expendable resources can be formulated as a Trans-
portation Problems. It is enough to think about incident points as “Mar-
kets’’ (each market demand corresponds to the corresponding incident point
demand), while the relief centres are “Factories’’ (each factory capacity cor-
responds to the processing centre capacity). The transportation costs are
“processing and transportation time’’.

The feasible set of this problem is as follows (without sign constraints and
integer requirement):



















−In −In −In . . . −In
en 0n 0n . . . 0n
0n en 0n . . . 0n
0n 0n en . . . 0n
...

...
...

. . .
...

0n 0n 0n . . . en



















X ≤ b, (11)

where

• b ∈ R
(n+m) represents the corresponding demands and supplies and

therefore b is integral;

• X ∈ Rmn is the vector of decision variables;

• Inis an identity matrix of size m;

• en(1, 1, . . . , 1) ∈ R
n;
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• 0n ∈ Rn(0, 0, . . . , 0);

• the system matrix A ∈ R(n+m)×(mn).

Theorem 5.1. The system matrix A from (11) is totally unimodular.

Proof: Consider matrix B obtained from AT by multiplying the first n
columns of AT by −1. Matrix A is totally modular if and only if matrix B
is totally unimodular.

Assign the first n columns of B to part I and the remaining columns
to part II and assume that one or more columns may be removed from the
total collection of columns. The sum of the columns in part I is an (mn)-
dimensional vector S1 whose components are 0 or 1. The sum of the columns
in part I is an (mn)-dimensional vector S2 whose components are 0 or 1.
Therefore the components of S1−S2 are 0, 1 or −1 and hence, by Theorem 4.1,
we conclude that matrices B and A are totally unimodular and all the vertices
of the feasible set have integer coordinates.

�

We can also conclude that an optimal integer solution to this problem
can be found by applying the simplex method.

5.2 Non-expendable resources

In the case of non-expendable resources, the problem can also be formu-
lated as an integer programming problem, where some of the summation
constraints from a classical transportation problem are replaced with max-
imisation. This problem is not a classical transportation problem, but it can
be formulated as an LPP. It can be demonstrated that the applications of
the simplex method also leads to an integer optimal solution.

A mixed-integer formulation for the case of non-consumable resources is
as follows

min

m
∑

i=1

n
∑

j=1

cijxij (12)

subject to
m
∑

i=1

xij ≥ dj, j = 1, . . . , n; (13)

max
j=1,...,n

xij ≤ si, i = 1, . . . , m; (14)
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xij ≥ 0, i = 1, . . . , n, j = 1, . . . , m, (15)

xij are integers, i = 1, . . . , m, j = 1, . . . , n, (16)

where di, i = 1, . . . , m are incident point demands and sj , j = 1, . . . , n
are relief centre capacities. A relaxation of this problem, obtained by re-
moving the last constraint (16), can be formulated as an LPP by replacing
constraints (14) with equivalent systems of linear inequalities:

xij ≤ sj , j = 1, . . . , n, i = 1, . . . , m. (17)

The feasible set of this problem can be formulated as follows (without
sign constraints and integer requirement):

[

−In −In −In . . . −In
Imn

]

X ≤ b, (18)

where

• b ∈ R(n(m+1)) represents the corresponding demands and supplies and
therefore b is integral;

• X ∈ Rmn is the vector of decision variables;

• In is an identity matrix of size n;

• Imn is an identity matrix of size mn;

• the system matrix A ∈ Rn(m+1)×(mn).

Theorem 5.2. The system matrix A from (18) is totally unimodular.

Proof: A is totally unimodular if and only if matrix

B =
[

In In In . . . In
]

(19)

is totally unimodular. Matrix B is totally unimodular if and only if In is
totally unimodular. Indeed, one can assign any collection of columns of
In to part I and the remaining columns to part II. The difference of the
corresponding columns sums contains 1 and −1 as the components.

�

Therefore, similar to the case of expendable resources, we can reduce an
integer linear programming problem to an LPP whose vertices are integral.
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5.3 Relief centre location

In this application, the distance matrix between all the incident points is
given. The goal is to select k points in such a way that, after assigning all
the remaining points to the nearest selected point (cluster centre), the total
sum of distances between the points and centres is minimal. Each cluster
centre is a relief centre, whose optimal location (selection among the incident
points) is the objective. In this application, we assume that the demand of
the incident points can be covered regardless of the allocation, since the
main objective is to minimise the total distance. This kind of clustering is
called k-medoid, was first proposed in [14].

Assume that there are n demand points in total and the distance matrix

D = {dij}, i = 1, . . . , n, j = 1, . . . , n.

It is easy to see that this matrix is symmetric and its main diagonal consists
of zeros. The goal is to select k points as relief centres. The decision variables
are binary:

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n

and yi ∈ {0, 1}, i = 1, . . . , n. Variable yi is 1 if incident point i is treated as
a relief centre, otherwise, this variable is zero. Variable xij is 1 if incident
point i was assigned to point j. The corresponding optimisation problem is
as follows:

min
n

∑

i=1

n
∑

j=1

dijxij (20)

subject to
n

∑

i=1

xij = 1, j = 1, . . . , n; (21)

xij ≤ yi, i, j = 1, . . . , n; (22)
n

∑

i=1

yi = k; (23)

xij , yi ∈ {0, 1}, i, j = 1, . . . , n. (24)

Constraints (21) ensure that each incident point is assigned to a single re-
lief centre. Constraints (22) ensure that an incident point i can only be
assigned to an incident point j if this point is also a relief centre. Finally,
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constraint (23) ensures that exactly k points are selected as relief centres. It
is clear that problem (20)-(24) is an integer programming problem and, in
general, it is not easy to solve this problem.

Theorem 5.3. All the vertices of the feasible set in k-medoid method have
integer coordinates.

Proof: The set of constraints contains (n + 1) equalities and n2 + n in-
equalities (not counting sign constraints and integer requirements). Use these
qualities to reduce the number of variables and obtain a simpler constraint
matrix A. Then the feasible set is as follows (without sign constraints and
integer requirement):









. . . en en . . . en
I(n−1)n . . . −en 0n . . . 0n

. . . 0n −en . . . 0n
−In −In . . . −In . . . 0n 0n . . . −en









X ≤ b, (25)

where

• b ∈ R(n2
−1) contains integral numbers only (1, −1, 0 or k);

• X ∈ Rn2
−1 is the vector of decision variables;

• en = (1, 1, . . . , 1)T ∈ Rn;

• In is an identity matrix of size n;

• I(n−1)n is an identity matrix of size (n− 1)n;

• the system matrix A ∈ Rn2
×(n2

−1).

Matrix A contains n blocks of rows (n rows in each block). Add the first
(n − 1) blocks to the final block of rows (keeping the same order of rows
in each block). By doing this, the obtained right hand side vector remains
integer, while the last block of rows consists of zeros. If the problem is feasible
(that is k ≥ 1), the final block of rows can be removed. Then the remaining
system matrix is

B =
[

In(n−1)C
]

, (26)
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where

C =









en en en . . . en en
−en 0n 0n . . . 0n 0n
0n −en 0n . . . 0n 0n
0n 0n 0n . . . −en 0n









,

where

en = (1, 1, . . . , 1)T ∈ Rn, 0n = (0, 0, . . . , 0)T ∈ Rn, C ∈ Rn(n−1)×n−1.

To complete the proof, it is enough to show that matrix C is totally unimod-
ular. Indeed, for any collection of m columns in C (m ≤ n), the columns
can be split into two parts: it is enough to assign any (m − 1)/2 columns
(when m is odd) or m/2 columns (when m is even) to one of the parts and
the remaining columns in the other part. Then the sum of the columns in
part I minus the sum of the columns in part II contains 1, −1 or 0.

Combine these results with Theorem 4.1. This completes the proof.
�

Therefore, it is enough to apply the simplex method to solve this problem
and obtain an integer optimal solution.

Note that Theorem 5.3 is an important result, since it allows one to avoid
integer solvers when applying k-medoid method. This results is of interest
of cluster analysis and allocation and therefore has many other potential
applications.

To our best knowledge, there is no result in the literature confirming
that all the vertices of the linear relaxations of k-medoid formulations are
integers. One relevant study [1] conducts a comprehensive numerical study
on k-means and k-medoid, where most experimental results confirm that
the relaxation produce integer (or nearly integer) results: “LP relaxation
remains integral with high probability’’. In the same paper, the authors talk
about “generically unique solutions’’, since “no constraint is parallel to the
objective function ’’. Our approach can deal with the problems where there
are such constraints and therefore our approach is more general. Moreover,
the current paper provides an analytical proof that the vertices are integral
and therefore the classical implementation of the simplex method always
terminates at an integer solution and hence the corresponding problems can
be solved efficiently.

A comprehensive survey of modern location science [16] considers similar
problems (p-median). The authors suggest to solve these problems using a
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heuristic method. This also confirms that our result is new, since the authors
of this recent and comprehensive publication are not aware about the fact
that the simplex method obtains an integer solution which is optimal.

6 Numerical Experiments

To demonstrate the applicability of these RLP models, a hypothetical disas-
ter relief problems have been solved using CPLEX Solver 12.7 on a 3.4 GHz
processor with 4 GB of RAM.

The results obtained for expendable and non-expendable resource alloca-
tion were comparable for both implementations: through the simplex method
(LP) and branch and bounds (ILP). Namely, the computational time and
the optimal value of the cost function were almost the same. This confirms
that the branch and bound method terminates after just very few branching
stages.

In the case of the relief centre location experiments, the situation is differ-
ent, since the corresponding optimisation problems are more complex. Ta-
ble 1 contains the results of the numerical experiments. In this table we
compare the computational time for the simplex method and IP implemen-
tations, the optimal cost value is the same for both implementation and
therefore only one column is provided. k represents the number of clusters.
These results indicate that the computational time is significantly lower for
the simplex method. On the top of this, the simplex method reached inte-
ger solutions in all the experiments. All these confirm that it is much more
efficient to use the classical simplex method in k-medoid models.

Comment 6.1. It is important to note that most commercial packages im-
plement a number of heuristic techniques in order to accelerate the simplex
method. Some of these approaches lead to solutions that are not vertices
of the feasible set and therefore are not necessarily integers. We have ob-
served this results in MATLAB when datasets contain more than 100 points.
CPLEX implementations of the simplex method are more stable than those
implemented in MATLAB and therefore CPLEX was chosen for our numer-
ical experiments.
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Table 1: Relief centre allocation experiments
Number of data points k Cost function value Time (simple) Time (IP)

20 10 512.3478602 0.297 0.562
20 5 311.3343592 0.39 0.391
40 10 679.4089905 0.063 0.078
40 5 425.939219 0.063 0.067
60 10 848.5919719 0.14 0.235
60 5 490.5917792 0.187 0.191
80 10 961.283263 0.235 0.359
80 5 565.3424002 0.25 0.351
100 10 1109.977437 0.406 0.594
100 5 640.0424524 0.438 0.532
120 10 1173.702679 0.594 0.797
120 5 676.7603006 0.64 0.718
140 10 1241.879626 0.765 1.078
140 5 715.5979726 0.86 1
160 10 1297.640491 1.016 1.453
160 5 770.3419758 1.109 1.36
180 10 1346.426155 1.328 1.828
180 5 801.1360661 1.219 1.765
200 10 1425.259571 1.687 2.344
200 5 860.7051955 1.453 2.438
400 10 1954.177312 8.844 11.672
400 5 1170.263786 7.922 11.172
600 10 2379.228282 25.609 32.281
600 5 1406.255502 20.422 33.812
800 10 2729.268892 48.281 104.875
800 5 1617.268652 43.688 72.808
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7 Discussion and future research directions

In this paper we study two groups of disaster management problems: re-
source allocation (expendable and non-expendable) and relief centre loca-
tion. We demonstrate that these problems can be formulated as integer
linear programming problems, whose optimal solution can be found by ap-
plying the simplex method to the corresponding linear relaxations. There
are two main advantage of this approach. Firstly, most optimisation pack-
ages include the simplex method. In particular, small-medium size linear
problems can be solved with Excel, while mixed-integer solvers (for example
Branch and Bound) may not be available. Secondly, our approach allows one
to reduce the computational time. This is especially prominent in the case
of the relief centre location problems, where the corresponding problems are
binary.

k-medoid method is a very popular clustering technique that is also com-
monly used in other application. Therefore, another important contribution
of this paper is the demonstration that this problem can be solved without
application of an integer solver, that is all the computations can be done
by applying the classical simplex method, available in most linear packages.
This result is achieved by demonstrating that the constraint matrices of the
corresponding integer linear programming problems are totally unimodular.

One of our future research direction is to include capacity constraints for
the relief centre location problem. Another research direction is to study a
modified problem where none of the demand points can be supplied from
more than one relief centre. Another future research direction is to extend
the results to the case of p-median problems.
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