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REALIZATION OF TENSOR-PRODUCT AND OF

TENSOR-FACTORIZATION OF RATIONAL FUNCTIONS

DANIEL ALPAY AND IZCHAK LEWKOWICZ

Abstract. We here first study the state space realization of a tensor-product of a pair of
rational functions. At the expense of “inflating” the dimensions, we recover the classical
expressions for realization of a regular product of rational functions. Then, under an
additional assumption that the limit at infinity of a given rational function exists and
is equal to identity, an explicit formula for a tensor-factorization of this function, is
introduced.

1. Introduction

The problem of minimal factorization of matrix-valued rational functions of one complex
variable has along history; see for instance [1, 2, 6]. Less known seems to be the counter-
part of this problem when matrix product is replaced by tensor product. More precisely,
we study the following two problems: First, given two rational matrix-valued functions
R1 and R2 analytic at infinity, write a realization of the tensor product R1 ⊗R2 in terms
of realizations of R1 and R2. Next, given a matrix-valued rational function R analytic at
infinity, find its representations as R1 ⊗R2 where R1 and R2 are rational and analytic at
infinity.

To provide some motivation we note the following. Tensor products play an important role
in mathematics and quantum mechanics. In the latter case, a first example (see e.g. [4, p.
162]) is the product of two wave functions, each belonging to a given Hilbert space, which
belongs to the tensor product of the given Hilbert spaces; see e.g. [8, Proposition 6.2,
p. 111] for the latter. Another example is the case of quantum states (positive matrices
with trace equal to 1; see e.g. [9]). Given two states M1 ∈ CN1×N1 and M2 ∈ CN2×N2,
of possibly different sizes, the tensor product M1 ⊗ M2 is still a state. Note that if
M = M1 ⊗M2, one can recover M1 and M2 uniquely via the formula

(1.1) d∗1M1c1 =

N2∑

k=1

(d1 ⊗ fk)
∗M(c1 ⊗ fk), c1, d1 ∈ C

N1 ,

where f1, . . . , fN2 denotes an orthonormal basis for CN2 , and similarly for M2,

(1.2) d∗2M2c2 =

N1∑

k=1

(ek ⊗ d2)
∗M(ek ⊗ c2), c2, d2 ∈ C

N2,

where now e1, . . . , eN1 is an orthonormal basis for CN1 . See e.g. [9, eq. (9.2.1) p. 97].
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supported this research.
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2 D. ALPAY AND I. LEWKOWICZ

If one starts from an arbitrary state M ∈ CN1N2×N1N2 the matrices defined by (1.1) and
(1.2) will be states, called marginal states, but their tensor product need not be equal to
M .

One can consider similar problems in the setting of functions. We focus the discussion on
rational functions. If R(z) is a CN×N -valued rational function and if N = N1N2, formulas
(1.1) and (1.2) now define two rational functions RA and RB, respectively CN1×N1 and
C

N1×N1 -valued, via

d∗1RA(z)c1 =

N2∑

k=1

(d1 ⊗ fk)
∗R(z)(c1 ⊗ fk),

d∗2RB(z)c2 =

N2∑

k=1

(d2 ⊗ fk)
∗R(z)(c2 ⊗ fk),

(1.3)

If R = R1⊗R2 where R1 is C
N1×N1-valued and R2 is C

N2×N2-valued, then these equations
can be rewritten as

RA(z) = R1(z) · (TrR2(z))

RB(z) = R2(z) · (TrR1(z))
(1.4)

and so these equations basically solve the tensor factorization problem.

The purpose of this work is in a somewhat different direction; we would like to express
both tensor multiplication and tensor factorization of matrix-valued rational functions
using state space representations.

In the rest of this section we cite some known results. Let zl, zr (the subscript stands
for “left” and “right”) be a pair of complex variables, and let Fl(zl), Fr(zr) be a pair of
pl×ml, pr ×mr-valued rational functions, respectively. Assume that neither has poles at
infinity and denote by nl, nr the respective McMillan degrees. Thus, one can write the
rational functions and the respective realization as

(1.5)

Fl(zl) = Dl + Cl(zlInl
− Al)

−1Bl Fr(zr) = Dr + Cr(zrInr
−Ar)

−1Br

RFl
=

(

Al Bl

Cl Dl

)

RFr
=

(

Ar Br

Cr Dr

)

.

Recall that whenever ml = pr the product Fl(zl)Fr(zr) is well-defined and its realization
is given by1 (see e.g. [3, Section 2.5])

(1.6) RFlFr
=

(
Al BlCr BlDr

0 Ar Br

Cl DlCr DlDr

)

=

(

A B

C D

)

=

(
Al 0 Bl

0 Inr 0
Cl 0 Dl

)(
Inl

0 0

0 Ar Br

0 Cr Dr

)

,

in the sense that

(1.7) F1(z1)F2(z2) = D1D2 +
(
C1 D1C2

)
((

z1In1 0
0 z2In2

)

−

(
A1 0
0 A2

))−1(
B1D2

B2

)

.

If zl = zr the sought realization in (1.6) is of McMillan degree

nl + nr .

1 Strictly speaking, in the references it was formulated for zl = zr = z i.e. for Fl(z)Fr(z)
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when minimal (roughly speaking when there is no pole-zero cancelation). We next
address ourselves to the tensor product2 of Fl(zl) and Fr(zr), resulting in Fl ⊗ Fr, a
plpr ×mlmr-valued rational function. Tensor product of rational functions is discussed
in [5, Section 5.2].

So far for known results. In the next section we focus on RFl⊗Fr
, the state space realization

of Fl⊗Fr. In Section 3 we set the framework for the main result, which is the factorization
result presented in Section 4.

2. Realization of a tensor-product of rational functions

We start with technicalities: We denote by boldface characters, “inflated version” of the
original ones, i.e.

(2.8)

Al := Al ⊗ Ipr Ar := Iml
⊗ Ar

Bl := Bl ⊗ Ipr Br := Iml
⊗ Br

Cl := Cl ⊗ Ipr Cr := Iml
⊗ Cr

Dl := Dl ⊗ Ipr Dr := Iml
⊗Dr

Fl(zl) := Cl (zlInlpr −Al)
−1

Bl +Dl Fr(zr) := Cr (zlImlnr
−Ar)

−1
Br +Dr .

We then show that at the expense of “inflating” the dimensions one can replace a tensor

product by a usual product.

Proposition 2.1. Let Fl(zr), Fr(zr) be a pair of pl×ml, pr ×mr-valued rational functions,

of McMillan degree nl, nr, respectively, whose realization is given in Eq. (1.5). Following
Eqs. (1.6) and (2.8), one has that,

(2.9) RFl⊗Fr
= RFlFr

.

In order to go into details we shall repeatedly use the fact, see e.g. [7, Lemma 4.2.10],
that for matrices T ∈ Cn×m, X ∈ Cm×l, Y ∈ Cl×p, Z ∈ Cp×q one has that

(2.10) TX ⊗ Y Z = (T ⊗ Y )(X ⊗ Z).

We now explicitly compute the tensor product of Fl(zl) and Fr(zr),

Fl⊗Fr = (Dl+Cl(zlInl
−Al)

−1Bl)⊗(Dr+Cr(zrInr−Ar)−1Br)

= Dl⊗Dr+Dl⊗(Cr(zrInr−Ar)−1Br)+(Cl(zlInl
−Al)

−1Bl)⊗Dr+(Cl(zlInl
−Al)

−1Bl)⊗(Cr(zrInr−Ar)−1Br)

We next separately examine each block

Dl⊗(Cr(zrInr−Ar)−1Br) = DlIml
⊗(Cr(zrInr−Ar)−1Br)

= (Dl⊗(Cr(zrInr−Ar)−1))(Iml
⊗Br)

= (DlIml
⊗(Cr(zrInr−Ar)−1))(Iml

⊗Br)
= (Dl⊗Cr)(Iml

⊗((zrInr−Ar)−1))(Iml
⊗Br)

= (Dl⊗Ipr )(Iml
⊗Cr)(Iml

⊗((zrInr−Ar)−1))(Iml
⊗Br)

= (Dl ⊗ Ipr)
︸ ︷︷ ︸

Dl

(Iml
⊗ Cr)

︸ ︷︷ ︸
Cr









zrImlnr−Iml
⊗ Ar

︸ ︷︷ ︸
Ar









−1

(Iml
⊗Br)

︸ ︷︷ ︸
Br

= DlCr(zrImlnr−Ar)
−1

Br

2In matrix theory circles known as the “Kronecker product ”, see e.g. [7, Section 4.2].
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(Cl(zlInl
−Al)

−1Bl)⊗Dr = (Cl(zlInl
−Al)

−1Bl)⊗IprDr

= (Cl⊗Ipr )(((zlInl
−Al)

−1Bl)⊗Dr)
= (Cl⊗Ipr )(((zlInl

−Al)
−1Bl)⊗IprDr)

= (Cl⊗Ipr )(((zlInl
−Al)

−1)⊗Ipr)(Bl⊗Dr)

= (Cl⊗Ipr )(((zlInl
−Al)

−1)⊗Ipr)(Bl⊗Ipr )(Iml
⊗Dr)

= (Cl ⊗ Ipr)
︸ ︷︷ ︸

Cl











(zlInlpr
−Al ⊗ Ipr
︸ ︷︷ ︸

Al











−1

(Bl ⊗ Ipr)
︸ ︷︷ ︸

Bl

(Iml
⊗Dr)

︸ ︷︷ ︸
Dr

= Cl((zlInlpr
−Al)

−1
BlDr

(Cl(zlInl
−Al)

−1Bl)⊗(Cr(zrInr−Ar)−1Br) = (Cl(zlInl
−Al)

−1BlIml)⊗(IprCr(zrInr−Ar)−1Br)
= (Cl⊗Ipr )((zlInl

−Al)
−1Bl)⊗(Cr(zrInr−Ar)−1)(Iml

⊗Br)
= (Cl⊗Ipr )((zlInl

−Al)
−1BlIml)⊗(IprCr(zrInr−Ar)−1)(Iml

⊗Br)
= (Cl⊗Ipr )((zlInl

−Al)
−1

⊗Ipr)(Bl⊗Cr)(Iml
⊗((zrInr−Ar)−1))(Iml

⊗Br)
= (Cl⊗Ipr )((zlInlpr

−Al⊗Ipr)
−1

(Bl⊗Ipr )(Iml
⊗Cr)((zrImlnr−Iml

⊗Ar)
−1
(Iml

⊗Br)
= Cl((zlInlpr

−Al)
−1

BlCr((zrImlnr−Ar)
−1

Br

Thus, one can write

Fl ⊗ Fr = Dl⊗Dr
︸ ︷︷ ︸

D

+ (Cl DlCr )

(
((zlInlpr

−Al)
−1

(zlInlpr
−Al)

−1
BlCr(zrImlnr−Ar)

−1

0 (zrImlnr−Ar)
−1

)(
BlDr

Br

)

= D + (Cl DlCr )
( (

zlInlpr
0

0 zrImlnr

)

−
(
Al BlCr

0 Ar

) )−1 (
BlDr

Br

)

.

Note that in particular

Dl ⊗Dr = (DlIml
)⊗ (IprDr) = (Dl ⊗ Ipr)

︸ ︷︷ ︸

Dl

(Iml
⊗Dr)

︸ ︷︷ ︸

Dr

= DlDr = D.

The realization of Fl(zl)⊗ Fr(zr) can be compactly written as

(2.11) RFl⊗Fr
=

(
Al BlCr BlDr

0 Ar Br

Cl DlCr DlDr

)

=

(

Ao Bo

Co D

)

= R,

which is indeed in form of (1.6), (2.8). If zl = zr and there is no pole-zero cancelation,
the sought realization in (2.11) is of McMillan degree

nlpr +mlnr .

Note now that in a way similar to (1.6), one can factorize the realization in (2.11) as
follows,

(2.12) R =

(
Al BlCr BlDr

0 Ar Br

Cl DlCr D

)

=

(
Al 0 Bl

0 Imlnr 0

Cl 0 Dl

)(
Inlpr

0 0

0 Ar Br

0 Cr Dr

)

.

We conclude this section by pointing out that Proposition 2.1 can be easily extended to
more elaborate cases like

Fa(za)⊗ Fb(zb)⊗ Fc(zc) · · ·
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3. Realization of the inverse of a tensor product of rational functions

For future reference, in this section we examine the realization of the inverse of rational
functions of the form Fl(zl)⊗ Fr(zr) studied in the previous section.

We first recall, see e.g. [3, Theorem 2.4], in the realization of the inverse a rational
function: Namely if

RF =

(

A B

C D

)

,

is a realization of a square matrix-valued rational function F (z), then whenever D is
non-singular, (F (z))−1 is well-defined almost everywhere, and a corresponding realization
is given by,

(3.13) RF−1 =

(

A× B×

C× D×

)

=

(

A− BD−1C −BD−1

D−1C D−1

)

.

Next, whenever the above Fl(z) and Fr(z) are so that

ml = pr and pl = mr

the product Fl(z)Fr(z) is square, and whenever DlDr is non-singular3, (Fl(z)Fr(z))
−1

is well-defined almost everywhere, and by combining (1.6) together with (3.13) a corre-
sponding realization is given by

(3.14) R(FlFr)−1 =

(
A×

l 0 B×

l

B×

r C×

l A×

r B×

r D−1

l

D−1

r C×

l C×

r D−1

r D−1

l

)

=

(
Inl

0 0

0 A×

r B×

r

0 C×

r D−1
r

)(
A×

l
0 B×

l

0 Inr 0

C×

l
0 D−1

l

)

.

Similarly, whenever

mlmr = plpr,

the rational function Fl(z)⊗Fr(z) is square and if Dl ⊗Dr = DlDr = D is non-singular,
then Dl, Dr are square, i.e.

ml = pl mr = pr

and non-singular, see e.g. [7, Theorem 4.2.15]. Thus, we shall denote hereafter by ml×ml,
mr ×mr the dimensions of Fl, Fr, respectively.

Under these conditions, the mlmr ×mlmr-valued rational function, (Fl(z)⊗ Fr(z))
−1 is

almost everywhere defined. (2.11), we next compute the realization of (Fl ⊗ Fr)
−1,

R(Fl⊗Fr)−1 =

(
(Al⊗Ipr )−(Bl⊗Dr)(Dl⊗Dr)

−1(Cl⊗Ipr ) Bl⊗Cr−(Bl⊗Dr)(Dl⊗Dr)
−1(Dl⊗Cr) −(Bl⊗Dr)(Dl⊗Dr)

−1

−(Iml
⊗Br)(Dl⊗Dr)

−1(Cl⊗Ipr ) (Iml
⊗Ar)−(Iml

⊗Br)(Dl⊗Dr)
−1(Dl⊗Cr) −(Iml

⊗Br)(Dl⊗Dr)
−1

(Dl⊗Dr)
−1(Cl⊗Ipr ) (Dl⊗Dr)

−1(Dl⊗Cr) (Dl⊗Dr)
−1

)

.

3this implies that ml = pr ≥ rank(DlDr) = pl = mr.
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Taking into account the fact that Dl and Dr are square and non-singular, the realization
R(Fl⊗Fr)−1 takes the form

R(Fl⊗Fr)−1 =

( (
Al −BlD

−1

l Cl

)
⊗ Ipr

0
(
−BlD

−1

l

)
⊗ Ipr(

D−1

l Cl

)
⊗
(
−BrD

−1

r

)
Iml

⊗
(
Ar −BrD

−1

r Cr

)
D−1

l ⊗
(
−BrD

−1

r

)

D−1

l Cl ⊗D−1

r Iml
⊗D−1

r Cr (Dl ⊗Dr)
−1

)

=

(
A×

l ⊗Ipr
0 B×

l ⊗ Ipr

C×

l ⊗B×

r Iml
⊗A×

r D−1

l ⊗B×

r

C×

l ⊗D−1

r Iml
⊗ C×

r (Dl ⊗Dr)
−1

)

=

(
A×

l ⊗ Ipr
0

(
B×

l ⊗ Ipr

)

(Inl
⊗B×

r )
(
C×

l ⊗ Ipr

)
Iml

⊗A×

r (Iml
⊗B×

r )
(
D−1

l ⊗ Inr

)

(
Inl

⊗D−1

r

) (
C×

l
⊗ Ipr

)
Imlpr

⊗ (Iml
⊗ C×

r )
(
Iml

⊗D−1

r

) (
D−1

l
⊗ Ipr

)

)

=

(
A

×

l
0 B

×

l

B
×

r C
×

l
A

×

r B
×

r Dl
−1

D
−1

r
C

×

l
C

×

r
D

−1

r
D

−1

l

)

=

(

Ao
×

Bo
×

Co
×

D
×

)

= R×,

where the boldface entries are given by

(3.15)

A×

l
:= A×

l ⊗ Ipr A×

r
:= Iml

⊗ A×

r

B×

l
:= B×

l ⊗ Ipr B×

r
:= Iml

⊗B×

r

C×

l
:= C×

l ⊗ Ipr C×

r
:= Iml

⊗ C×

r

D−1

l
= D−1

l ⊗ Ipr Dr
−1 = Iml

⊗D−1
r .

One can conclude that
R(Fl⊗Fr)−1 = R(FlFr)−1 ,

and in a way similar to (2.12), one can factorize the above realization as follows,

(3.16) R× =

(
A

×

l
0 B

×

l

B
×

r C
×

l
A

×

r B
×

r D
−1

l

D
−1

r
C

×

l
C

×

r
D

−1

r
Dl

−1

)

=

(
Inlpr

0 0

0 A
×

r B
×

r

0 C
×

r D
−1
r

)(
A

×

l
0 B

×

l

0 Imlnr 0

C
×

l
0 D

−1

l

)

.

4. Tensor-factorization of rational functions

We now address a more challenging question: Given F(z) and (F(z))−1 (assuming that
detF(z) 6≡ 0), under what conditions and how, can it be “tensor-factorized” to some Fl(z)
and Fr(z), namely the following relation holds,

(4.1) F(z) = Fl(z)⊗ Fr(z).

Note that here, we confine the discussion to a single complex variable, i.e. zl = zr = z.

Note also that if (4.1) holds, this is true up to complex scaling i.e.,

Fl(z)⊗ Fr(z) = c(z)Fl(z)⊗ 1
c(z)

Fr(z) 0 6= c(z) ∈ C.

We shall use this degree of freedom in the sequel.

We next recall in the following fact from matrix theory.

Let Πα, Πβ be a pair of supporting projections of the space C(α+β)×(α+β), i.e.

(4.2)
Π2

α = Πα

Π2
β = Πβ

ΠαΠβ = 0α+β = ΠβΠα

Πα +Πβ = Iα+β .



TENSOR PRODUCT OF RATIONAL FUNCTIONS 7

Such a pair of projections can be obtained by partitioning an arbitrary non-singular
T ∈ C(α+β)×(α+β) as follows.

(4.3)
T−1

(
Iα 0
0 0β

)
T := Πα

T−1
( 0α 0

0 Iβ

)
T = Πβ .

By using an isometry-like relation, we next offer a simple way to “deflate” matrix dimen-
sions.

Observation 4.1. Given M ∈ Cs×q, denote

Ml := M ⊗ Ip Mr := Im ⊗M.

For arbitrary u ∈ C
p, v ∈ C

m normalized so that u∗u = 1, v∗v = 1, one has that

(Is ⊗ u∗)Ml (Iq ⊗ u) = M and (v∗ ⊗ Is)Mr (v ⊗ Iq) = M.

Indeed, by twice applying (2.10) one obtains,

(Is ⊗ u∗) (M ⊗ Ip)
︸ ︷︷ ︸

Ml

(Iq ⊗ u) = (IsMIq)⊗ (u∗Ipu)
︸ ︷︷ ︸

=1

= M

(v∗ ⊗ Is) (Im ⊗M)
︸ ︷︷ ︸

Mr

(v ⊗ Iq) = (v∗Imv)
︸ ︷︷ ︸

=1

⊗ (IsMIq) = M.

We next apply the last observation to the variables here.

Corollary 4.2. For u ∈ C
pr , v ∈ C

ml, normalized so that u∗u = 1 and v∗v = 1, the

boldface characters in (2.8) satisfy

Al = (Inl
× u∗)Al(Inl

⊗ u) Ar = (v∗ ⊗ Inl
)Ar(v ⊗ Inr

)
Bl = (Inl

× u∗)Bl(Iml
⊗ u) Br = (v∗ ⊗ Inl

)Br(v ⊗ Imr
)

Cl = (Ipl × u∗)Cl(Inl
⊗ u) Cr = (v∗ ⊗ Ipl)Cr(v ⊗ Inr

)
Dl = (Ipl × u∗)Dl(Iml

⊗ u) Dr = (v∗ ⊗ Ipl)Dr(v ⊗ Imr
).

We now return to the problem of “tensor-factorization” in (4.1). We note that in place
of R in (2.11) and R× in (3.16), the realization arrays associated with F and F−1, are
known only up to a coordinate transformation, i.e. there exists, a non-singular matrix
T ∈ C

(nlpr+mlnr)×(nlpr+mlnr) namely in (4.2) and (4.3)

α = nlpr and β = mlnr ,

so that the actual realization array is given by

(4.4)
(
T 0
0 Iplmr

)−1
R
(
T 0
0 Iplmr

)
=

(

T−1
AoT T−1

Bo

CoT D

)

=

(

A B

C D

)

,

and

(4.5)
(
T 0
0 Iplmr

)−1
R×

(
T 0
0 Iplmr

)
=

(

T−1
Ao

×T T−1
Bo

×

C
×

o
T D

−1

)

=

(

A
×

B
×

C
×

D
−1

)

.

As in reality, the specific coordinate transformation, T in (4.4) and (4.5) is unknown one
can conclude that to extract Fl(z) and Fr(z) from (4.1) along with the realization arrays
in (4.4), (4.5), additional conditions are needed.
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Theorem 4.3. Let F(z) be a given square matrix-valued rational function. Assume that

lim
z −→ ∞

F(z) = I.

Let

(

A B

C I

)

, see (4.4), and

(

A
×

B
×

C
× I

)

. see (4.5), be realizations of F(z) and of

(F(z))−1
, respectively.

Substituting in (4.2), α = nlmr and β = mlnr, assume also that there exists a pair of

supporting projection to Cnlmr+mlnr denoted by Πnlmr
and Πmlnr

so that

(4.6) AΠnlmr
= Πnlmr

AΠnlmr
A×Πmlnr

= Πmlnr
A×Πmlnr

.

Following the definition of the projections Πnlmr
and Πmlnr

, see (4.3) and (4.6), along
with Corollary 4.2, for arbitrary u ∈ C

mr , v ∈ C
ml , normalized so that u∗u = 1 and

v∗v = 1, we find it convenient to introduce the following related projections4,

(4.7) Π̂nlmr
= T−1

(
Inl

⊗uu∗ 0
0 0mlnr

)

T Π̂mlnr
= T−1

(
0nlmr 0

0 vv∗⊗Iml

)

T

Then, using (2.11) and (4.4), one can take in (4.1) F = Fl ⊗ Fr where,

Fl(z) = (Iml
⊗ u∗)CΠ̂nlmr

(zInlmr+mlnr
−A)−1 Π̂nlmr

B(Iml
⊗ u) + Iml

Fr(z) = (v∗ ⊗ Imr
)CΠ̂mlnr

(zInlmr+mlnr
−A)−1 Π̂mlnr

B(v ⊗ Imr
) + Imr

Proof : First, recall (see Section 3) that the assumption that Dl ⊗ Dr = DlDr = D

is square non-singular, it implies that both Dl and Dr are square non-singular. We shall
thus denote the dimensions of Fl and Fr, by ml ×ml and mr ×mr, respectively.

The assumption here that D = Imlmr
implies (see e.e. [7, Theorem 4.2.12]) that

Dl = cIml
Dr = 1

c
Imr

for some non− zero c ∈ C.

As already mentioned after (4.1), to simplify the exposition we shall take c = 1.

Next, let T in (4.3), (4.4), (4.5) be the same so that the supporting projections are Πnlmr

and Πmlnr
. Next note that substituting (2.11), (3.16), (4.4) and (4.5) in condition (4.6)

yields,

AΠnlmr
= T−1

(
Al 0
0 0mlnr

)

T Πmlnr
A = T−1

(
0nlmr 0

0 Ar

)

T

A×Πmlnr
= T−1

(
0nlmr 0

0 A
×

r

)

T Πnlmr
A× = T−1

(
A

×

l
0

0 0mlnr

)

T

and thus in the sequel we shall use the two upper relations, i.e.

Πnlmr
AΠnlmr

= T−1
(

Al 0
0 0mlnr

)

T Πmlnr
AΠmlnr

= T−1
(

0nlmr 0

0 Ar

)

T.

4note that Π̂nlmr
Πnlmr

= Π̂nlmr
Πnlmr

= Π̂nlmr
and Π̂mlnr

Πmlnr
= Πmlnr

Π̂mlnr
= Π̂mlnr

.
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We are now ready to recover Fl(z),

Fl(z) = Cl (zInl
− Al)

−1
Bl + Iml

= (Iml
⊗ u∗)Cl(Inl

⊗ u)
︸ ︷︷ ︸

Cl

(Inl
⊗ u∗) (zInlmr

−Al)
−1 (Inl

⊗ u)
︸ ︷︷ ︸

(zInl
−Al)

−1

(Inl
⊗ u∗)Bl(Iml

⊗ u)
︸ ︷︷ ︸

Bl

+Iml

= (Iml
⊗ u∗)Cl(Inl

⊗ uu∗) (zInlmr
−Al)

−1 (Inl
⊗ uu∗)Bl(Iml

⊗ u) + Iml

= (Iml
⊗ u∗)Co

(
Inlmr

0mlnr×nlmr

)

(Inl
⊗ uu∗) ( Inlmr 0nlmr×mlnr ) (zInlmr+mlnr

−Ao)
−1

×
(

Inlmr

0

)

(Inl
⊗ uu∗)Bl(Iml

⊗ u) + Iml

= (Iml
⊗ u∗)Co

(
Inl

⊗uu∗ 0
0 0mlnr

)

(zInlmr+mlnr
−Ao)

−1
(

Inl
⊗uu∗ 0
0 0mlnr

)

Bo(Iml
⊗ u) + Iml

= (Iml
⊗ u∗)CoT

︸︷︷︸

C

T−1
(

Inl
⊗uu∗ 0
0 0mlnr

)

T
︸ ︷︷ ︸

Π̂nlmr

T−1 (zInlmr+mlnr
−Ao)

−1
T

︸ ︷︷ ︸

(zInlmr+mlnr−A)
−1

T−1
(

Inl
⊗uu∗ 0
0 0mlnr

)

T
︸ ︷︷ ︸

Π̂nlmr

×T−1Bo
︸ ︷︷ ︸

B

(Iml
⊗ u) + Iml

= (Iml
⊗ u∗)CΠ̂nlmr

(zInlmr+mlnr
−A)−1 Π̂nlmr

B(Iml
⊗ u) + Iml

.

Similarly, for Fr(z)

Fr(z) = Cr(zInr
− Ar)

−1Br + Imr

= (v∗ ⊗ Imr
)Cr(v ⊗ Inr

)
︸ ︷︷ ︸

Cr

(v∗ ⊗ Inl
)(zInr

−Ar)
−1(v ⊗ Inr

)
︸ ︷︷ ︸

(zInr−Ar)−1

(v∗ ⊗ Inl
)Br(v ⊗ Imr

)
︸ ︷︷ ︸

Br

+Imr

= (v∗ ⊗ Imr
)Cr(vv

∗ ⊗ Iml
)(zInr

−Ar)
−1(vv∗ ⊗ Iml

)Br(v ⊗ Imr
) + Imr

= (v∗ ⊗ Imr
)Co

(
0nlmr×mlnr

Imlnr

)

(vv∗ ⊗ Iml
) ( 0mlnr×nlmr Imlnr ) (zInlmr+mlnr

−Ao)
−1

×
(

0

Imlnr

)

(vv∗ ⊗ Iml
) ( 0 Imlnr )Bo(v ⊗ Imr

) + Imr

= (v∗ ⊗ Imr
)CoT
︸︷︷︸

C

T−1
(

0nlmr 0

0 vv∗⊗Iml

)

T
︸ ︷︷ ︸

Π̂mlnr

T−1 (zInlmr+mlnr
−Ao)

−1
T

︸ ︷︷ ︸

(zInlmr+mlnr−A)
−1

T−1
(

0nlmr 0

0 vv∗⊗Iml

)

T
︸ ︷︷ ︸

Π̂mlnr

×T−1Bo
︸ ︷︷ ︸

B

(v ⊗ Imr
) + Imr

= (v∗ ⊗ Imr
)CΠ̂mlnr

(zInlmr+mlnr
−A)−1 Π̂mlnr

B(v ⊗ Imr
) + Imr

.
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Remark 4.4. At first sight, the assumptions in Theorem 4.3 seem very restrictive. For
persective recall that to factorize a given rational function F (z) to F (z) = Fl(z)Fr(z),
the assumptions are virtually the same5, see [3, Section 2.5]).
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[7] R.A. Horn and C.R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge,

1994. Corrected reprint of the 1991 original.
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