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Abstract

We study the problem of when triangulated categories admit unique ∞-categorical en-
hancements. Our results use Lurie’s theory of prestable ∞-categories to give conceptual
proofs of, and in many cases strengthen, previous work on the subject by Lunts–Orlov
and Canonaco–Stellari. We also give a wide range of examples involving quasi-coherent
sheaves, categories of almost modules, and local cohomology to illustrate the theory
of prestable ∞-categories. Finally, we propose a theory of stable n-categories which
would interpolate between triangulated categories and stable ∞-categories.
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1 Introduction

This paper is a study of the question of when triangulated categories admit unique ∞-
categorical enhancements. Our emphasis is on exploring to what extent the proofs can be
made to rely only on universal properties. That this is possible is due to J. Lurie’s theory of
prestable ∞-categories. We should say at the outset that our results, while ∞-categorical in
nature, imply results about dg enhancements as well and recover most of the major results
of the papers of Lunts–Orlov [31] and Canonaco–Stellari [14]. (See Remark 13 for discussion
of the new paper [12] of Canonaco–Neeman–Stellari on this subject.) Moreover, there are
more ∞-categorical enhancements than dg enhancements in general, so in some sense what
is proved here is stronger.

Suppose that A is a Grothendieck abelian category. We can attach to A three differ-
ent triangulated categories, the unseparated derived category Ď(A), the separated derived

category D(A), and the completed derived category D̂(A).
The separated derived category is the familiar triangulated category attached to a

Grothendieck abelian category by inverting all quasi-isomorphisms in the homotopy cate-
gory K(Ch(A)) of chain complexes of objects of A. The unseparated derived category Ď(A)
was introduced by Krause [29] and also studied in [42, 30]. It is the homotopy category of
all complexes of injective objects of A and is often written K(Ch(InjA)). The third triangu-

lated category D̂(A) is less familiar. It is the homotopy category of the left completion of
the standard stable ∞-categorical model of D(A) with respect to the standard t-structure.

We do not know of a direct construction of D̂(A) that starts with the triangulated category
D(A).

Each of these flavors of the derived category of a Grothendieck abelian category A admits
an ∞-categorical enhancement, which we write as Ď(A), D(A), and D̂(A), respectively. In
this generality, the results are due to Lurie thanks to the dg nerve construction. See [34,
Section C.5.8] for Ď(A) and [33, Section 1.3.5] for D(A). For the completed derived category

D̂(A), we defined it via its enhancement, as in [34, Section C.5.9]. In spirit, the enhancement
for D(A) as a stable model category is classical and goes back to Joyal (in a 1984 letter to
Grothendieck) and Spaltenstein [54]; the enhancement of Ď(A) goes back effectively to [29].
Given the existence of these enhancements, we wonder about uniqueness.

All three triangulated categories admit natural t-structures and the categories of co-
connective objects1 are all equivalent: Ď(A)60 ≃ D(A)60 ≃ D̂(A)60. The difference be-

tween these derived categories then lies in the categories Ď(A)>0, D(A)>0, and D̂(A)>0 of
connective objects. Lurie has developed in [34, Appendix C] the theory of prestable ∞-
categories; these are ∞-categories C such that the homotopy category hC behaves like the
category of connective objects for a t-structure. These ∞-categories give a rich generaliza-
tion of the theory of abelian categories: the Grothendieck prestable ∞-categories admit a
Gabriel–Popescu theorem, which reduces much of their study to the ∞-categories of the
form D(R)>0 = ModR(Sp

cn) of R-modules in connective spectra where R is a connective

1Working homologically, an object X is coconnective if, with respect to the given t-structure, Hi(X) = 0
for i > 0; it is connective if Hi(X) = 0 for i < 0.
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E1-algebra.2 Moreover, there are several uniqueness theorems in [34]. For example, if
A is a Grothendieck abelian category, then D(A)>0 is the unique separated 0-complicial
Grothendieck prestable ∞-category with heart equivalent to A. In the end, our proofs boil
down to uniqueness statements such as these.

An ∞-categorical enhancement of a triangulated category T is a stable ∞-category3

C together with a triangulated equivalence hC ≃ T from the homotopy category of C,
with its canonical triangulated structure, to T. For remarks on the distinction between
∞-categorical enhancements and dg enhancements, see the discussion around Meta Theo-
rem 14, Section 7, and Section 8.4. The dg enhancements model Keller’s algebraic trian-
gulated categories [26], while stable ∞-categories provide models for Schwede’s topological
triangulated categories [51].

Our first theorem gives a partial positive answer to an open question of Canonaco and
Stellari; see [13, Question 4.6]. The following corollary partially answers [13, Question 4.7]
and generalizes several results of [31, 14].

Recall that a Grothendieck abelian category A is compactly generated, or locally
finitely presented, if for each X ∈ A there is a collection of compact (or locally finitely
presented) objects4 {Yi} ∈ Aω and a surjection ⊕Yi → X . A Grothendieck abelian category
A is locally coherent if it is compactly generated and Aω is abelian. The latter condition
is equivalent to A being compactly generated and Aω being closed under finite limits in A.

Theorem 1. If A is a locally coherent Grothendieck abelian category, then the unseparated
derived category Ď(A) admits a unique ∞-categorical enhancement.

If additionally A has enough compact projective objects and each object of Aω has
finite projective dimension, then Ď(A) ≃ D(A) (as is implicit in [29] and explicit in [34,
C.5.8.12]). Thus, in this special case, our result follows from Theorem 3 below, which is
the ∞-categorical analog of the compactly generated case of [14, Theorem A]. As far as
we are aware, all other cases are new. One example is Ď(QCoh(X)) where X = SpecR
for a noetherian but non-regular commutative ring R. This is the interesting case since
Ď(QCoh(X)) plays a role in the study of the singularities of X (see for example [29] and
Section 8.3).

Corollary 2. If A is a small abelian category, then Db(A) admits a unique ∞-categorical
enhancement.

The dg categorical version of this statement was a conjecture of Bondal–Larsen–Lunts [10]
in the special case when A ≃ Coh(X) for X a smooth projective variety over a field. Their
conjecture was proved in [31, Theorem 8.13] in fact for Db(Coh(X)) when X is quasi-
projective over a field k. It was then generalized in [14, Corollary 7.2] to Db(Coh(X))
when X is noetherian and has enough locally free sheaves. Our theorem applies equally
well to non-noetherian coherent examples, situations where there are not enough locally
free sheaves, and even to algebraic stacks. For example, it applies to coherent sheaves on

2Every dg algebra R has an underlying E1-algebra. The theory of E1-algebras is the natural theory of
associative algebras in homotopy theory. See [53] or [33] for details.

3It is important to take C to be stable or at least spectrally enriched: we can view any space X as an
∞-groupoid and the homotopy category will be the fundamental groupoid τ61X. If X is simply connected,
we have thus found an ∞-categorical enhancement for the terminal category, so such enhancements are far
from unique.

4An object X in a category C with filtered colimits is compact if HomC(X,−), viewed as a functor
C → Sets commutes with filtered colimits.
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all proper noetherian schemes over Z, where it is not currently known if there are enough
locally free sheaves.

Our next theorem is about uniqueness of stable ∞-categorical enhancements which we
assume additionally to be presentable (the ∞-categorical analog of well-generated).

Theorem 3. If A is Grothendieck abelian, then D(A) admits a unique presentable ∞-
categorical enhancement.

The differential graded analogue of this theorem was established when D(A) is compactly
generated by a set of compact objects of A♥ in [31, Theorem 7.5] and in full generality (and
without the presentability caveat) in [14].

Remark 4. When A is a Grothendieck abelian category, all ∞-categorical or dg enhance-
ments of D(A) which arise in practice are manifestly presentable. Thus, this additional
hypothesis is not a major drawback to the theorem. Nevertheless, we explain in Appendix A
how to follow the work of Canonaco and Stellari [14] to remove the presentability hypothesis.
As the purpose of this paper is largely to illustrate the use of prestable ∞-categories, we do
not view this additional generality as the main point. Many other statements are given in
this paper, for example Corollary 5 below, which follow from Theorem 3 and would follow,
possibly in an easier fashion, from the more general result in the appendix. We have found
it interesting to preserve the arguments flowing from Theorem 3.

Given a compactly generated triangulated category T, it turns out that every stable
∞-categorical enhancement of T is presentable. See Proposition 2.5, which is due to Lurie.

Corollary 5. If A is Grothendieck abelian and D(A) is compactly generated, then D(A)
admits a unique ∞-categorical enhancement.

Note that we do not assume that D(A) be compactly generated by objects of the heart
A.

Example 6. If X is a quasi-compact scheme with affine diagonal, then D(QCoh(X)) admits
a unique stable ∞-categorical enhancement. Indeed, in this case

D(QCoh(X)) ≃ Dqc(X)

by the argument of [9, Corollary 5.5] (which easily adapts from the separated to the affine
diagonal situation). But, Dqc(X) is always compactly generated by [11, Theorem 3.1.1] when
X is quasi-compact and quasi-separated. In fact, this example extends to many algebraic
stacks by work of Hall–Rydh and Hall–Neeman–Rydh. In [22], various conditions are given
which guarantee that Dqc(X) is compactly generated. In these cases, if X is quasi-compact
and has affine diagonal, then [21, Theorem 1.2] shows that D(QCoh(X)) → Dqc(X) is an
equivalence. For example, Dqc(X) is compactly generated when X is quasi-compact with
quasi-finite separated diagonal, in which case D(QCoh(X)) ≃ Dqc(X) so that Dqc(X) admits
a unique ∞-categorical enhancement by Corollary 5.

Remark 7. We can also prove uniqueness of ∞-categorical enhancements for the derived
categories D(ModaA) of almost module categories studied in [17, 18] even though they are
not generally compactly generated. See Example 8.5.

Our third main theorem is designed to give a criteria for unique enhancements of small
stable ∞-categories. We write Db(A) and Perf(X) for the natural ∞-categorical enhance-
ments of Db(A) and Perf(X) when A is a small abelian category and X is a scheme.
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Let Db(Z)>0 ⊆ Db(Z) be the full subcategory of connective objects. By definition,
this a prestable ∞-category. Additionally, we can recover Db(Z) by formally inverting the

suspension, or translation, functor Db(Z)>0
Σ
−→ Db(Z)>0. That is, there is an equivalence

colim
(
D

b(Z)>0
Σ
−→ D

b(Z)>0
Σ
−→ D

b(Z)>0 → · · ·
)
≃ D

b(Z).

In general, given a prestable ∞-category C>0 (which is by definition pointed and has finite
colimits), we can form its Spanier–Whitehead category

colim
(
C>0

Σ
−→ C>0

Σ
−→ C>0 → · · ·

)
= SW(C>0),

which is a stable ∞-category. Another example is if X is a quasi-compact and quasi-
separated scheme. In this case,

Perf(X)>0 = Perf(X) ∩Dqc(X)>0

is a prestable∞-category and its Spanier–Whitehead category is SW(Perf(X)>0) ≃ Perf(X)
since every perfect complex on a quasi-compact and quasi-separated scheme is bounded
below. Note however that Perf(X)>0 is not generally the connective part of a t-structure
on Perf(X).

Let C>0 be a prestable ∞-category. We let C
♥

>0 ⊆ C>0 be the full subcategory of 0-

truncated objects.5 In general, C♥

>0 is simply an additive category. It need not be abelian or
even have cokernels. We say that C>0 is 0-complicial if for every object X ∈ C>0 there is

an object Y ∈ C
♥
>0 and a map Y

u
−→ X such that the cofiber of u, computed in SW(C>0), is

in C>1 ≃ C>0[1] ⊆ SW(C>0). (Inside the large Spanier–Whitehead category SW(Ind(C)>0),
which has a t-structure with connective part Ind(C>0), the condition on the cofiber of u
is equivalent to saying that π0cofib(u) = 0 or equivalently that π0(u) is surjective.) For
example, if A is a small abelian category, then Db(A)>0 is 0-complicial. If X = SpecR is
an affine scheme, then Perf(X)>0 is 0-complicial.

Theorem 8. Let C>0 be a small prestable ∞-category. If C>0 is 0-complicial, then the
triangulated category hSW(C>0) admits a unique ∞-categorical enhancement.

In the case of Ext-finite triangulated categories over a field, Muro has existence and
uniqueness results for projective modules over certain so-called basic algebras in [38, 37].

Let X be a quasi-compact and quasi-separated scheme. We say that X is 0-complicial
if the small prestable ∞-category Perf(X)>0 = Perf(X) ∩Dqc(X)>0 is 0-complicial. Note

that Perf(X)>0 ∩Dqc(X)♥ ⊆ Perf(X)♥>0, but that in general we expect that this inclusion
is strict. If X is quasi-compact with affine diagonal and has enough locally free sheaves or
more generally enough perfect quasi-coherent sheaves (meaning that QCoh(X) is generated
by perfect quasi-coherent sheaves), then it is 0-complicial.

Corollary 9. If X is quasi-compact, quasi-separated, and 0-complicial, then Perf(X) admits
a unique ∞-categorical enhancement.

5Recall that in an ∞-category D, an object Y is 0-truncated if the mapping space MapC(X, Y ) is 0-
truncated for each X ∈ D. Equivalently, πiMapC(X, Y ) = 0 for all X and all i > 0. Finally, this condition
is equivalent to saying that MapC(X, Y ) is homotopy equivalent to a discrete topological space for all X.



6 1. Introduction

Lunts and Orlov proved in [31, Theorem 7.9] that if X is quasi-projective over a field,
then Perf(X) has a unique dg enhancement. In [14, Proposotion 6.10], Canonaco and Stellari
proved that Perf(X) has a unique dg enhancement whenever X is a noetherian concentrated
stack (i.e., Perf(X) ⊆ Dqc(X)ω) with quasi-finite affine diagonal and enough perfect quasi-
coherent sheaves. Our result for example removes the noetherianity hypotheses from these
theorems.

There is a related corollary, of which Corollary 9 is a special case when X additionally
has affine diagonal.

Corollary 10. If A is a Grothendieck abelian category such that D(A) is compactly gen-
erated and D(A)>0 ∩ D(A)ω is 0-complicial, then D(A)ω admits a unique ∞-categorical
enhancement.

We also have the following corollary, a special case of which appears as Proposition 4.1
and is needed to establish Theorems 1 and 3. If A is an abelian category, let D−(A) and
D+(A) denote the bounded below and bounded above derived categories of A, respectively.

Corollary 11. If A is a small abelian category, then D−(A) and D+(A) admit unique
∞-categorical enhancements.

As far as we can see, there are no antecedents to this result in the literature. Corollary 11
gives an answer to a variant of [13, Question 4.7]. They ask if D(QCoh(X))κ admits a
unique dg enhancement when X is an algebraic stack and κ is sufficiently large. Let A

be a Grothendieck abelian category. For κ sufficiently large, Aκ is an abelian category
and Krause showed in the main theorem of [30] that D(Aκ) ≃ D(A)κ. It follows from the
corollary that D(A)κ,−, the category of bounded below objects of D(A)κ, admits a unique
∞-categorical enhancement, and similarly for the bounded above derived category.

Remark 12. The theorems and corollaries above apply to triangulated categories such
as D(QCohZ(X)) or PerfZ(X), where QCohZ(X) is the Grothendieck abelian category of
quasi-coherent sheaves supported (set theoretically) on a closed subscheme Z of X with
quasi-compact complement. They also apply to the twisted versions Dqc(X,α) where
α ∈ H2

ét(X,Gm) is a (possibly non-torsion) cohomological Brauer class. We leave these
extensions to the interested reader.

Remark 13. Since the first draft of this paper appeared, Canonaco, Neeman, and Stellari
have made a big advance, settling many of the open problems of this paper in [12]. Besides
giving new proofs of Corollaries 2 and 11, they prove that D(A) admits a unique dg enhance-
ment for A any abelian category (strengthening our Theorem 3), they prove that Ď(A) and
D̂(A) admits unique dg enhancements for any Grothendieck abelian category (strengthen-
ing our Theorem 1), and they prove that Dqc(X) and Perf(X) admit unique dg enhance-
ments for any quasi-compact and quasi-separated scheme X (strengthening our Corollary 9).
Forthcoming work of Jack Hall explains how to identify left complete t-structure from the
triangulated category, so it is possible to give a proof of unique presentable ∞-categorical
enhancements of D̂(A) in the spirit of this paper. The argument of [12] for unique models
for Perf(X) and Dqc(X) is new and involves a local-global argument which would be nice
to return to in our setting.

In general, it can happen that a triangulated category admits multiple dg enhancements
but a unique stable∞-categorical enhancement (we give an example due to Dugger and Ship-
ley [15] in Example 8.42). This does not occur in the situations above because the presence
of a 0-complicial t-structure guarantees the existence of a canonical Z-linear enrichment.
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Meta Theorem 14. In all of the cases above, the triangulated categories admit unique dg
enhancements.

In Section 8.4 we conjecture the existence of a theory of stable n-categories and exact
functors for each 1 6 n 6∞ and we give a conjecture on a stable n-categorical analogue of
Theorem 3. The n = 1 theory is that of triangulated categories and exact functors and the
n =∞ theory is that of stable∞-categories and exact functors. A typical stable n-category
is the n-homotopy category hn−1C where C is a stable ∞-category (where our previous
notation hC agrees with h0C). One problem is to define intrinsic to n-categories what a
stable n-category should be via a list of axioms similar to those for a triangulated category.

We postpone further discussion to Section 8, where we give historical remarks, exam-
ples, questions, and propose several more conjectures. Between now and then, we give
background on stable and prestable ∞-categories in Sections 2 and 3. Section 4 gives a
uniqueness statement for ∞-categorical enhancements of bounded above derived categories
which we will use to start our arguments. In Section 5 we give a detection lemma saying
certain properties of ∞-categorical enhancements can be detected on the homotopy cate-
gory. Section 6 contains the proofs of Theorems 1, 3, and 8. In Section 7 we say something
about Meta Theorem 14 and we end with Appendix A which removes presentability from
the statement of Theorem 3.

Conventions. Throughout, we use homological indexing conventions. We also work ev-
erywhere with∞-categories. An∞-category C is canonically enriched in spaces: if X,Y ∈ C,
we write MapC(X,Y ) for the mapping space from X to Y . If C is stable, then there is a
canonical enrichment in spectra. We write MapC(X,Y ) for the mapping spectrum. These
are related by Ω∞MapC(X,Y ) ≃MapC(X,Y ). Thus, πiMapC(X,Y ) ∼= πiMapC(X,Y ) for
i > 0. We write hC for the homotopy category of an∞-category. We have π0MapC(X,Y ) ∼=
HomhC(X,Y ). We will typically use script letters such as C, Dqc(X), or Perf(X) to denote
∞-categories and roman letters such as T or Perf(X) to denote triangulated categories. One
exception is that we typically write A for an abelian category.
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ness of enhancements at Neeman’s birthday conference in Bielefeld in the summer of 2017.
Rizzardo spoke about joint work [46] with Michel van den Bergh producing an example of
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Canonaco and Paolo Stellari for pointing out a gap in our original “proof” of Theorem 8
and for extensive feedback on the new proof. This work was supported by NSF Grant
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2 ∞-categorical enhancements

A stable ∞-category is a pointed ∞-category C with finite limits and finite colimits and
such that a commutative square

W //

��

X

��

Y // Z

is a pushout if and only if it is a pullback.
If C is stable, then the homotopy category hC is canonically triangulated ([33, 1.1.2.14]).

Note however that being stable is a property of an∞-category as opposed to extra structure.
We will use stable∞-categories in this paper as the natural models of triangulated categories.
Other possible models are stable simplicial model categories and dg categories; both are
captured by using stable∞-categories (see [32, Appendix A.2] for simplicial model categories
and [33, Section 1.3.1] for dg categories). We will assume familiarity with Lurie’s work on
higher categories, especially [32, 33, 34].

Definition 2.1. Let T be a triangulated category. We say that T admits an∞-categorical
enhancement if there is a stable∞-category C and a triangulated equivalence hC ≃ T. If C
is unique up to equivalence of∞-categories, we say that T admits a unique∞-categorical
enhancement.

Variant 2.2. We say that T admits a presentable ∞-categorical enhancement if
there is a stable presentable ∞-category C and a triangulated equivalence hC ≃ T. If
C is unique up to equivalence of ∞-categories, in the sense that if D is a second stable
presentable ∞-category such that hD ≃ T, then C ≃ D, then we say that T admits a
unique presentable ∞-categorical enhancement.

Basically all triangulated categories with small coproducts that appear in algebra, homo-
topy theory, and algebraic geometry admit presentable ∞-categorical models. This paper
is about uniqueness.

Definition 2.3. Let T be a triangulated category which admits small coproducts. A set
of objects {Xi} in T generates T if the following condition holds: if Y ∈ T satisfies
HomT(Xi, Y [n]) = 0 for all Xi and n ∈ Z, then Y ≃ 0.

Definition 2.4. Let T be a triangulated category with all small coproducts. An object
X ∈ T is compact (or ω-compact) if for all coproducts

∐
i∈I Yi the natural map

∐

i∈I

HomT(X,Yi)→ HomT(X,
∐

i∈I

Yi)

is a bijection. We let Tω ⊆ T be the full subcategory of compact objects, which inherits a
triangulated structure from T. A triangulated category T is compactly generated if it is
locally small, has all small coproducts, and is generated by Tω.

Proposition 2.5 (Lurie). Suppose that T is compactly generated and admits an∞-categorical
model C. Then, C is presentable.

Proof. See [33, 1.4.4.2 and 1.4.4.3].
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Warning 2.6. Neeman has a notion of well generated∞-category and it would be good to
know that if T is well generated and admits an∞-categorical model C, then C is presentable.
However, the key implication in [33, 1.4.4.2] is specific to the compact case. We are not sure
whether or not this is true and we will have to take care to figure out what is happening in
our cases of interest.

Now, we recall some facts about t-structures.

Definition 2.7. Let T be a triangulated category. A t-structure on T is a pair of full
subcategories (T>0,T60) such that

(i) T>0[1] ⊆ T>0, T60[−1] ⊆ T60;

(ii) if X ∈ T>0 and Y ∈ T60, then HomT(X,Y [−1]) = 0;

(iii) every object X fits into an exact triangle τ>0X → X → τ6−1X where τ>0X ∈ T>0

and τ6−1X [1] ∈ T60.

There is an entirely parallel notion for stable ∞-categories.

Definition 2.8. Let C be a stable ∞-category. A t-structure on C is a pair of full subcate-
gories (C>0,C60) such that

(i) C>0[1] ⊆ C>0, C60[−1] ⊆ C60;

(ii) if X ∈ C>0 and Y ∈ C60, then MapC(X,Y [−1]) = 0;

(iii) every object X fits into an exact triangle τ>0X → X → τ6−1X where τ>0X ∈ C>0

and τ6−1X [1] ∈ C60.

Remark 2.9. (a) Condition (ii) of Definition 2.8 is equivalent to

(ii’) if X ∈ C>0 and Y ∈ C60, then HomhC(X,Y [−1]) = 0.

(b) The truncations τ>nX and τ6nX are functorial: τ>n is the right adjoint to the in-
clusion of C>n in C, and τ6n is the left adjoint to the inclusion of C6n in C. The
nth homotopy object πnX of X is an object of the abelian category C♥ = C>0 ∩ C60,
defined as τ>nτ6nX [−n]. Given a fiber sequence X → Y → Z, one obtains a natural
long exact sequences

· · · → πnX → πnY → πnZ → πn−1X → · · ·

in C♥.

Lemma 2.10. Let C be a stable ∞-category. The data of a t-structure on C is equivalent
to the data of a t-structure on the triangulated category hC.

Proof. Given a t-structure (C>0,C60), then the pair hC>0 ⊆ hC and hC60 ⊆ hC of full
subcategories defines a t-structure on hC (see also Remark 2.9). Let h : C → hC be the
natural functor. Similarly, given a t-structure (T>0,T60) on hC, let C>0 be the full subcat-
egory of those objects X ∈ C such that the image of X in the homotopy category is in the
subcategory T>0 and similarly for C60. It is easy to check that these define a t-structure
on C.
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The point of Lemma 2.10 for us will be that t-structures go along for the ride when
considering enhancements.

We are now interested in a flurry of special properties of t-structures.

Definition 2.11. Let (T>0,T60) be a t-structure on a triangulated category T and let
(C>0,C60) be a t-structure on a stable ∞-category C. Set T>n = T>0[n], T6n = T60[n],
C>n = C>0[n], and C6n = C60[n].

(a) The t-structure on T is left separated if

∩n∈ZT>n = 0.

It is right separated if
∩n∈ZT6n = 0.

(b) The t-structure on C is left separated if

∩n∈ZC>n = 0.

It is right separated if
∩n∈ZC6n = 0.

(c) The t-structure on C is left complete if the natural map

C→ lim
(
· · · → C62

τ61
−−→ C61

τ60
−−→ C60

)
(1)

is an equivalence. It is right complete if the natural map

C→ lim
(
· · · → C>−2

τ>−1
−−−→ C>−1

τ>0
−−→ C>0

)

is an equivalence.

(d) Suppose that C is presentable. We say that the t-structure is accessible if C>0 is
presentable. This happens if and only if C60 is presentable. See [33, 1.4.4.13].

(e) Suppose that C has filtered colimits. We say that the t-structure is compatible with
filtered colimits if C60 is closed under filtered colimits in C.

(f) Suppose that C has countable products. We say that C is compatible with count-
able products if C>0 is closed under countable products in C.

(g) Suppose that T admits all small coproducts. We say that the t-structure (T>0,T60)
is compatible with filtered homotopy colimits if T60 is closed under filtered
homotopy colimits in T.

Warning 2.12. It is common to say that a t-structure is separated if it is both left and right
separated. We will never do this. Instead, the notion of being separated (and complete) is
reserved for prestable ∞-categories and will be introduced in Section 3.

Example 2.13. (i) The ∞-category Sp of spectra with its Postnikov t-structure is left
and right complete, accessible, and compatible with filtered colimits. See [33, 1.4.3.6].
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(ii) The derived ∞-category D(A) of any associative ring (or connective E1-ring spec-
trum) together with its Postnikov (or standard) t-structure is left and right complete,
accessible, and compatible with filtered colimits. See [33, 7.1.1.13].

(iii) If A is a Grothendieck abelian category, then the derived ∞-category D(A) is left
and right separated, right complete, accessible, and compatible with filtered colimits
(see [33, 1.3.5.21]). It is not typically left complete: see Example 2.18, due to Neeman,
below.

(iv) If X is a quasi-compact scheme with affine diagonal, then D(QCoh(X)), the derived
∞-category of quasi-coherent sheaves on X is left and right complete, accessible, and
compatible with filtered colimits. Indeed, everything except for left completeness
follows from point (iii). But, in this case, D(QCoh(X)) ≃ Dqc(X) (the Bökstedt–
Neeman proof [9] in the quasi-compact and separated case immediately applies to
the case of a quasi-compact scheme with affine diagonal) and Dqc(X) is always left
complete as it is a limit of left complete t-structure along t-exact functors.

(v) Consider D(Z) and fix a prime number p. The kernel of the localization D(Z) →
D(Z[ 1p ]) will be written D(Torsp); it is the derived category of the Grothendieck
abelian category of p-primary torsion abelian groups. With the Postnikov t-structure
(induced from D(Z)), it is left and right complete, accessible, and compatible with
filtered colimits. However, there is an equivalence

D(Torsp) ≃ D(Z)p̂

where the latter is the ∞-category of derived p-complete complexes of abelian groups.
There is a different t-structure on derived p-complete abelian groups, induced from
the fully faithful inclusion into D(Z). It is left and right separated and even right
complete by Proposition 2.16 below. It is accessible, but not compatible with filtered
colimits. Indeed, colimn Z/p

n is the completion of Qp/Zp which is Zp[1], so we see
that the coconnective objects are not closed under filtered colimits in D(Z)p̂.

Example 2.14. If (T>0,T60) is a left separated t-structure on T and if X ∈ T is such
that τ6nX ≃ 0 for all n, then X ≃ 0. Indeed, in this case, τ>n+1X ≃ X for all n, so that
X ∈ ∩n∈ZT>n = 0.

Lemma 2.15. If C is left or right complete, then it is left or right separated, respectively.

Proof. Assume that C is left complete. Let X ∈ ∩n∈ZC>n. Then, τ6nX ≃ 0 for all n. Thus,
X is zero in the limit (1). Hence, C is left separated. The proof in the right separated case
is the same.

There is an important partial converse due to Lurie.

Proposition 2.16. Let C be a stable ∞-category with a t-structure (C>0,C60).

(1) Suppose that C admits countable coproducts and that C60 is closed under countable
coproducts in C. If the t-structure is right separated, then it is right complete.

(2) Suppose that C admits countable products and that the t-structure is compatible with
countable products. If the t-structure is left separated, then it is left complete.



12 3. Prestable ∞-categories

Proof. Part (2) is [33, 1.2.1.19]. Part (1) follows from (2) by taking opposite categories and
using that if (C>0,C60) is a t-structure on C, then (Cop

60,C
op
>0) is a t-structure on Cop.

Warning 2.17. It is tempting to guess that if C is left separated, then the natural map
X → limn τ6nX is an equivalence for all X . This is certainly the case if X is left complete.
However, in general this is false. Suppose that C>0 is not closed under countable products
in C. Let {Xi} for i > 0 be a sequence of objects of C>0 such that Xi ∈ C6i and

∏∞

i=0 Xi

is not in C>0. Consider the natural map

∞⊕

i=0

Xi → lim
n

τ6n

∞⊕

i=0

Xi ≃ lim
n

n⊕

i=0

Xi ≃

∞∏

i=0

Xi.

The direct sum is evidently in C>0 but the product is not in C>0, by hypothesis, so the map
is not an equivalence. For additional discussion, see Section 8.1.

Example 2.18. Neeman has shown in [41] that examples of this sort abound. In partic-
ular, D(A) where A is the Grothendieck abelian category of representations of Ga over a
characteristic p field is not left complete.

We will need to have a general condition for accessibility of a t-structure.

Lemma 2.19. Let C be a stable presentable ∞-category with a t-structure (C>0,C60). Sup-
pose that there is a set of objects {Xi}i∈I of C>0 such that C>0 is the smallest subcategory
of C containing the {Xi}i∈I and closed under colimits and extensions in C. Then, C>0 is
presentable.

Proof. See [34, 1.4.4.11].

3 Prestable ∞-categories

Let T be a triangulated category with a t-structure (T>0,T60). A prestable ∞-category is
to T>0 as a stable ∞-category is to T. Such objects have not been studied in the world of
dg categories, but the homotopy categories have received some small amount of attention
in [27, 28] under the name of suspended categories or aisles. Most work, as in [2, 23], has
focused on the classification of aisles inside a fixed triangulated category, rather than the
categorical properties of the aisles themselves.

The primary feature of prestable∞-categories is that the residue of the t-structure is not
extra structure but rather an inherent feature. In particular, every prestable ∞-category
D has a heart D♥, which is equivalent to the nerve of an additive category sitting fully
faithfully inside D. In many cases of interest, such as when D is the connective part of
some t-structure, D♥ is abelian. The point for us is that often there are unique prestable
∞-categories having certain properties and with a certain heart.

The definitions below are due to Lurie [34].

Definition 3.1. An ∞-category C is prestable if

(a) C is pointed and has finite colimits,

(b) the suspension functor Σ = [1] : C→ C is fully faithful;

(c) if u : X → Y [1] is a map in C, then u admits a fiber.
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Remark 3.2. (1) Lurie shows that C is prestable if and only if it admits a fully faith-
ful functor C → D such that D is stable and the essential image of C is closed
under finite colimits and extensions in D. In fact, we can take D ≃ SW(C) =

colim
(
C>0

Σ
−→ C>0

Σ
−→ C>0 → · · ·

)
.

(2) Let C be a prestable∞-category and let C6n ⊆ C be the full subcategory of n-truncated
objects. Then, C♥ = C60 is equivalent to (the nerve of) an additive category.

(3) A prestable ∞-category has finite limits if and only if it is the connective part of a t-
structure on some stable ∞-category D. In this case, C♥ = D♥ is an abelian category
by [5, 1.3.6]. Again, we can take D ≃ SW(C).

(4) When C is a prestable∞-category with finite limits, we can construct the ∞-category

Sp(C) = lim
(
· · · → C

Ω
−→ C

Ω
−→ C

)

of spectrum objects in C. In this case, there is a fully faithful inclusion C → Sp(C)
which is the connective part of a t-structure on Sp(C).

Example 3.3. (a) If C is a stable ∞-category with a t-structure (C>0,C60), then C>0 is
a prestable ∞-category. We will mostly study a special case, namely D(A)>0 when A

is a Grothendieck abelian category.

(b) If R is a commutative ring, then Perf(R)>0 = Perf(R) ∩ D(R)>0 is closed under
extensions and finite colimits in Perf(R). It follows that Perf(R)>0 is prestable. It is
typically not the connective part of a t-structure on Perf(R). In fact, this holds if and
only if R satisfies some strong regularity conditions.

(c) The∞-category Spω>0 of compact connective spectra is a prestable∞-category. Again,
this is not the connective part of a t-structure on compact spectra Spω.

(d) Let A be a small additive category. We let PΣ(A) = Funπ(Aop, S), the ∞-category of
finite product preserving functors from Aop to the∞-category of spaces. This is equiv-
alent to Funπ(Aop, Sp>0) and also to D(ModA)>0, where ModA = Funπ(Aop,ModZ)
is the Grothendieck abelian category of additive functors from Aop to the category of
abelian groups. In this case, the ∞-category Sp(PΣ(A)) of spectrum objects in PΣ(A)
is equivalent to Funπ(Aop, Sp) ≃ D(ModA).

Definition 3.4. Let C be a prestable ∞-category which admits finite limits.

(i) We say that C is separated if for an object X the condition τ6nX ≃ 0 for all n > 0
implies X ≃ 0.

(ii) We say that C is complete if the natural map

C→ lim
(
· · · → C62

τ61
−−→ C61

τ60
−−→ C60

)

is an equivalence.

(iii) We say that C is Grothendieck prestable if it is presentable and filtered colimits
are left exact.
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Remark 3.5. (i) If C is a stable ∞-category with a t-structure (C>0,C60), then C is left
separated if and only if the prestable ∞-category C>0 is separated.

(ii) Similarly, C is left complete if and only if C>0 is complete. This follows for example
from [33, 1.2.1.17].

(iii) Finally, a prestable ∞-category C is Grothendieck prestable if and only if there is
a stable presentable ∞-category D with an accessible t-structure (D>0,D60) that is
compatible with filtered colimits and such that D>0 ≃ C. See [34, C.1.4.1].

As in the case of stable ∞-categories, complete implies separated. There is another
crucial sequence of definitions, again all due to Lurie [34].

Definition 3.6. Let C be a Grothendieck prestable ∞-category.

(a) Say that C is n-complicial if for every object Y ∈ C there is an object X ∈ C6n and
a map X → Y inducing a surjection π0X → π0Y in C♥.

(b) Say that C is weakly n-complicial if the above condition holds for every Y such that
Y ∈ C6m for some m (i.e., it holds for the bounded above Y ).

(c) Say that C is anticomplete if the natural map FunL(C,D)→ FunL(C, D̂) is an equiv-

alence for every Grothendieck prestable ∞-category D, where D̂ = limn D6n is the
completion of D and where FunL(−,−) denotes the ∞-category of colimit preserving
functors.

Example 3.7. (i) If R is a dg algebra with Hi(R) = 0 for i < 0, then D(R)>0 is n-
complicial if and only if Hi(R) = 0 for i > n. See [34, C.5.5.15].

(ii) If A is a Grothendieck abelian category, then D(A)>0 is 0-complicial. For the simple
argument, see [34, C.5.3.2].

(iii) If X is a quasi-compact scheme with affine diagonal, then Dqc(X)>0 is 0-complicial.
Indeed, in this case, Dqc(X)>0 ≃ D(QCoh(X))>0 by [9], so we conclude by (ii).

4 Bounded above enhancements

To begin, we rephrase a result of Lurie in the present context. We write D+(A) for the
homologically bounded above derived category when A has enough injectives and D−(A)
for the homologically bounded below derived category when A has enough projectives.

Proposition 4.1. Let A be an abelian category with enough injectives. The bounded above
derived category D+(A) admits a unique ∞-categorical enhancement.

Proof. This is basically the content of [33, 1.3.3.7] (see also [33, 1.3.2.8]). Let D+(A) be the
bounded above derived ∞-category constructed as in [33, 1.3.2.7] using the dg nerve. This
is an ∞-categorical model for D+(A), so an enhancement exists. Now, suppose that C is
a general enhancement. As in Lemma 2.10, the t-structure on D+(A) lifts to a t-structure
on C with heart C♥ ≃ A. It follows from [33, 1.3.3.7] that there exists a unique (up to
homotopy) t-exact functor D+(A) → C inducing an equivalence on hearts. Moreover, if
X ∈ A is some object and Y ∈ A is injective, then

ExtiC(X,Y ) ∼= ExtiA(X,Y ) = 0
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for i > 0 since hC ≃ D+(A). To be entirely precise, we have a diagram

D+(A) //

��

C

��

D+(A) // hC,

where the top map is induced by the universal property of D+(A), the vertical maps are the
truncations,6 and the bottom map is the fixed equivalence from the hypothesis that C is an
enhancement of D+(A). We are not asserting that this square is commutative. However, it
is commutative when restricted to hearts. Since all of the functors involved commute with
the translation functors [1], it follows that we can compute HomhC(X,Y [n]) as claimed.
Therefore, D+(A) → C is fully faithful by [33, 1.3.3.7]. The essential image is C+ ⊆ C, the
full subcategory of bounded above objects in the t-structure. However, every object of C
is bounded above as this may be checked on the homotopy category. This completes the
proof.

Variant 4.2. There is an entirely similar fact about abelian categories with enough projec-
tives and bounded below derived categories. Note that Corollary 11 removes the assumption
of having enough injectives or projectives from these statements for small abelian categories.

Remark 4.3. Lurie’s proof of the crucial fact [33, 1.3.3.7] used in the proof of Proposition 4.1
is rather different from the approach used by Lunts–Orlov and Canonaco–Stellari and works
by identifying a universal property for D−(A)60 (see [33, 1.3.3.8]). In particular, by using
it below in the proofs of Theorems 6.4 and 6.2, we are not simply reformulating the proofs
of [31, 14].

5 A detection lemma

Several theorems below rely on the ability to detect certain properties of a t-structure on
the homotopy category. We compile these in the following, basically trivial, lemma.

Lemma 5.1. Let C be a stable ∞-category with a t-structure (C>0,C60).

(a) The t-structure (C>0,C60) is left or right separated if and only if the same is true of
the t-structure (hC>0, hC60) on hC.

(b) The t-structure is compatible with countable products if and only if hC>0 is closed
under countable products in hC.

(c) Suppose now that C♥ has enough injectives and that D+(C♥)→ C+ is an equivalence.
The t-structure on C is compatible with filtered colimits if and only if the same is true
of D+(C♥).

6The nerve construction gives a fully faithful functor from 1-categories into ∞-categories. We therefore
view any category as an ∞-category. Taking the homotopy category is the left adjoint of this inclusion, and
C → hC is the unit map of the adjunction.
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Proof. Point (a) is clear. For point (b), let X be an object of C and {Yi} be a collection of
objects of C. Note that

HomhC(X,
∏

i

Yi) ∼= π0MapC(X,
∏

i

Yi)

∼= π0

∏

i

MapC(X,Yi)

∼=
∏

i

π0MapC(X,Yi)

∼=
∏

i

HomhC(X,Yi),

which shows that C→ hC preserves products. (The same argument shows that it preserves
coproducts, which we will use below.) Now, given a product

∏
i Yi of objects Yi in C>0, the

product
∏

i Yi is in C>0 if and only if its image in hC is in hC>0. This proves (b).
To prove (c), it is enough to prove that in general a t-structure on C is compatible with

filtered colimits if and only if the t-structure on C+ is. Suppose that the t-structure on C+

is compatible with filtered colimits. The inclusion C+ →֒ C preserves all coproducts that
exist in C+. It follows that filtered colimits of bounded above objects are bounded above
(since these may be computed as a cofiber of a map between coproducts of bounded above
objects), so that C is compatible with filtered colimits. The other direction is clear.

6 Proofs

We will repeatedly use the next lemma. Recall that if C is a pointed ∞-category with
finite limits, the ∞-category of spectrum objects Sp(C) is given as the limit of the diagram

· · · → C
Ω
−→ C

Ω
−→ C.

Lemma 6.1. Let C and D be stable ∞-categories with right complete t-structures. If C>0 ≃
D>0, then C ≃ D.

Proof. In this case, right completeness implies that C ≃ Sp(C>0) and similarly for D.

We use Proposition 4.1 and Lemma 6.1 to prove Theorem 3.

Theorem 6.2. Let A be Grothendieck abelian. Then, the triangulated category

D(A)

admits a unique presentable ∞-categorical enhancement.

Proof. That D(A) admits a presentable ∞-categorical model D(A) is [33, 1.3.5.21]. Lurie
proves that the t-structure is accessible, right complete, left separated, and compatible with
filtered colimits. Let C be a stable presentable enhancement of D(A). Then, C admits a
t-structure, which is right complete by Proposition 2.16 and Lemma 5.1, and we find that
the full subcategory C+ ⊆ C of bounded above objects is equivalent to

D+(A)

using Proposition 4.1. In particular, C60 is presentable. It follows from [33, 1.4.4.13] that
C>0 is presentable (this is where we use presentability of C). Moreover, by Lemma 5.1, the
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t-structure on C is compatible with filtered colimits since this is true for D(A). It follows
that C>0 is Grothendieck prestable. It is 0-complicial since this may be checked on the
homotopy category. Finally, it is also left separated by Lemma 5.1 again. But, by [34,
C.5.4.5], D(A)>0 is the unique 0-complicial separated Grothendieck prestable ∞-category
with heart A. So, we have D(A)>0 ≃ C>0 which finishes the proof by Lemma 6.1.

A weaker version of this theorem appears as [34, C.5.4.11]. We just check that on
any presentable enhancement of C, the induced t-structure shares the nice ∞-categorical
properties of the t-structure on D(A).

Corollary 6.3. If A is Grothendieck abelian and D(A) is compactly generated, then D(A)
admits a unique ∞-categorical enhancement.

Proof. In this case, any ∞-categorical enhancement is presentable by Proposition 2.5, so
the statement follows from Theorem 6.2.

Now, we prove Theorem 1 and Corollary 2

Theorem 6.4. If A is a locally coherent Grothendieck abelian category, then the unseparated
derived category Ď(A) admits a unique ∞-categorical enhancement.

Proof. Lurie proves that there is an ∞-categorical enhancement in [34, Section C.5.8], but
see also [29, 30]. Suppose that C is an enhancement of Ď(A). Since Ď(A) is compactly gener-
ated, C is presentable by Proposition 2.5. Using Proposition 4.1 we see that C+ ≃ Ď+(A) and
in particular C60 is presentable by [33, 1.4.4.13]. Thus, C>0 is presentable. By Lemma 5.1,
the t-structure is compatible with filtered colimits. Thus, C>0 is Grothendieck prestable.
Lurie proved in [34, C.5.5.20] that there is a unique anticomplete 0-complicial Grothendieck
prestable ∞-category Ď(A)>0 with heart A. Thus, to finish the proof, by Lemma 6.1, it
is enough to prove that C>0 is anticomplete and 0-complicial. That C>0 is 0-complicial fol-
lows immediately since we can detect this on the homotopy category. For anticompleteness,
we argue as follows. Since Aω is abelian, there is a natural equivalence Ď(A)ω ≃ Db(Aω)
by [34, C.6.7.3]. As hCω ≃ hĎ(A)ω, it follows that Cω admits a bounded t-structure and
that Ind(Cω

>0) ≃ C>0. Since Ind-completions of bounded t-structures have anticomplete
Grothendieck connective parts, by [34, C.5.5.5], we see that C>0 is anticomplete, as de-
sired.

Corollary 6.5. If A is a small abelian category, then Db(A) admits a unique∞-categorical
enhancement.

Proof. To see that there is an ∞-categorical model, take Ď(Ind(A))ω , which has homotopy
category Db(A) by [30, Theorem 4.9]. Let C be a stable ∞-categorical enhancement of
Db(A). Then, C admits a bounded t-structure. Thus, Ind(C) is a compactly generated stable
presentable ∞-category with a t-structure (Ind(C>0), Ind(C60)) (see [3, Proposition 2.13]
or [34, C.2.4.3]). Necessarily, Ind(C>0) is anticomplete by [34, C.5.5.5]. We claim that
Ind(C>0) is also 0-complicial and that Ind(C>0)

♥ ≃ Ind(A), which is enough to show that
Ind(C>0) ≃ Ď(Ind(A))>0 by [34, C.5.5.19] (recalling that Ď(Ind(A))>0 is shown in [34,
C.5.8.8] to be the unique anticomplete 0-complicial Grothendieck prestable∞-category with
heart Ind(A)). Given the claim, Lemma 6.1 implies that Ind(C) ≃ Ď(Ind(A)) and hence that
C ≃ Ind(D)ω ≃ Ď(Ind(A))ω ≃ Db(A). Thus, let X in Ind(C>0) be an object. As Ind(C>0)
is compactly generated, there is a set of objects {Yi} of C>0 and morphism ⊕Yi → X
inducing a surjection on π0. For each Yi we can choose Zi ∈ C♥ ≃ A and a map Zi → Yi
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inducing a surjection on π0 (this can be checked in Db(A) where it is clear by using brutal
truncations). Thus, take the composition ⊕Zi → ⊕Yi → X . This proves that Ind(C>0)
is 0-complicial. The proof of [3, Proposition 2.13] proves that the t-structure on Ind(C)
has connective part Ind(C>0) and coconnective part Ind(C60). It follows that the heart
of Ind(C>0) is Ind(C♥) ≃ Ind(A), as desired. Here is another argument. We have a fully
faithful colimit preserving exact functor F : Ind(A)→ Ind(C>0)

♥ and moreover every object
of Ind(C>0)

♥ receives a surjective map from an object in the essential image by the 0-
compliciality argument above. Let U denote the right adjoint to F (which exists by the
adjoint functor theorem) and let Y ∈ Ind(C>0)

♥. It is enough to prove that UFY → Y is
an isomorphism. The fact that there exists a surjection FX → Y for some X in Ind(A)
implies that UFY → Y is surjective. Let K be the kernel, so we have an exact sequence

0→ K → FUY → Y → 0

in Ind(C>0)
♥. Applying U and using that it is left exact, we get an exact sequence

0→ UK → UFUY → UY.

Since UFUY ∼= UY , we see that UK ≃ 0. Let FZ → K be a surjection. It factors through
maps FZ → FUK → K. Since UK = 0, we see that the surjection factors through 0 so
that K ≃ 0. This is what we wanted to show.

Finally, we prove Theorem 8 and its corollaries. Let C be a prestable∞-category. Recall
that we say that C is 0-complicial if every for every object X ∈ C there is an object Y ∈ C♥

and a map Y
u
−→ X such that the cofiber of u, computed in SW(C), is in C>1 ≃ C[1] ⊆ SW(C).

Theorem 6.6. Let C be a small idempotent complete prestable ∞-category. If C is 0-
complicial, then the triangulated category hSW(C) admits a unique ∞-categorical enhance-
ment.

Proof. Let E be a stable ∞-category with an equivalence hE ≃ hSW(C) and let D ⊆ E be
the full subcategory of objects which correspond to the objects of C under the equivalence.
Then, E ≃ SW(D). The equivalence hE ≃ hSW(C) induces an equivalence F : hC ≃ hD. It
will be enough to prove that Ind(C) ≃ Ind(D). In that case, C ≃ Ind(C)ω ≃ Ind(D)ω ≃ D

and hence SW(C) ≃ SW(D) ≃ E.
Let C♥ be the full subcategory of 0-truncated objects of C and similarly for D. We

evidently have an equivalence F♥ : C♥ ≃ D♥ induced by F . We claim that C♥ is a set of
generators for Ind(C), which also implies that Ind(C) is 0-complicial. Fix Z ∈ Ind(C). We
have to prove that there is a set {Xi} of objects of C♥ together with a map

⊕
Xi → Z which

induces a surjection on π0 in Ind(C)♥. Since Ind(C) is the ind-completion of a small prestable
∞-category, there is a map

⊕
Yi → Z inducing a surjection on π0 for some collection of

objects {Yi} ⊆ C. Now, since C is 0-complicial, for each Yi there is a map Xi → Yi which is
a surjection on π0 and where Xi ∈ C♥. The composition

⊕
Xi →

⊕
Yi → Z is the desired

map. The same argument works to show that D♥ forms a set of generators for Ind(D) and
that D is 0-complicial.

Since C♥ ≃ D♥, the ∞-categorical Gabriel–Popescu theorem [34, C.2.1.6] implies that
both Ind(C) and Ind(D) are left exact localizations of PΣ(C

♥) ≃ Funπ(C♥,op, S), the ∞-
category of finite product preserving functors from C♥,op to the ∞-category of spaces (see
also Example 3.3(d)). Let

LC : PΣ(C
♥) ⇄ Ind(C) : U
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and
LD : PΣ(C

♥) ⇄ Ind(D) : V

by the two adjunctions. Let KC be the kernel of LC. Let u : W → Z be a morphism in
PΣ(C

♥). Then, LC(u) is an equivalence if and only if LC(cofib(u)) ≃ 0 (see [34, C.2.3.2]).
Let SC be the class of morphisms u of PΣ(C

♥) such that LC(u) is an equivalence. Define
KD and SD similarly. We will be done if we show that SC = SD since in that case Ind(C)
and Ind(D) are the same localization of PΣ(C

♥).
The class SC is the strongly saturated class of morphisms generated (in the sense of [32,

5.5.4.7]) by the unit maps Z → UFCZ as Z ranges over the objects of PΣ(C
♥). Thus, to

see that SC = SD, it is enough to prove that Z → UFCZ is in SD for all Z ∈ PΣ(C
♥). The

opposite inclusion will follow by symmetry.
For Y ∈ C♥, the object UY [n] = U(Y [n]) : C♥,op → Sp>0 of PΣ(C

op) is the functor

X 7→ τ>0MapC(X,Y [n]).

Here we use that any prestable ∞-category is naturally enriched in spectra to obtain
MapC(X,Y [n]) and then we take the connective cover. Note that UY [n] is in PΣ(C

♥)[n,n]
while UY [n] is in PΣ(C

♥)[0,n]. The unit map

UY [n]→ ULC(UY [n]) ≃ UY [n]

induces an isomorphism on degree n homotopy objects:

πnUY [n](X) ∼= πnMapC(X,Y [n]) ∼= π0MapC(X [n], Y [n]) ∼= πnUY [n](X).

By construction, LCUY [n] → LCUY [n] is an equivalence and hence UY [n] → UY [n] is in SC

for each n > 0 and Y ∈ C♥. In the n = 1 case, the cofiber of UY [1] → UY [1] is π0UY [1] in
PΣ(C

op) and is given by
X 7→ HomhC(X,Y [1]).

In particular, π0UY [1] is in KC. Observe that the cofiber of VY [1] → VY [1] is in KD and is
equivalent to

X 7→ HomhD(X,Y [1]).

By using F , we see that HomhC(−, Y [1]) ≃ HomhD(−, Y [1]) as functors on C♥,op. It follows
that π0UY [1] is in KD. This implies that UY [1] → UY [1] is in SD. Continuing in this way,
we see that for each n > 0 the functor

X 7→ HomhC(X,Y [n])

is in KC and in KD. This implies that each UY [n]→ UY [n] is in SD for n > 0 and Y ∈ C♥:
indeed the cofiber is a finite iterated extension of the functors

X 7→ HomhC(X,Y [n])

for n > 0.
To summarize the argument of the previous section, we saw that for each Y ∈ C♥ and

each n > 1, the functor X 7→ HomhC(X,Y [n]) is an object of KC. In fact, it is in the heart
K

♥

C
. Then, we argued that it is also in K

♥

D
using F . Finally, the cofiber C of UY [n]→ UY [n]

has

πiC ∼=

{
HomhC(−, Y [n− i]) for 0 6 i < n,

0 otherwise.
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Thus, the cofiber is in KD.
To complete the proof, we show now that for a general object Z ∈ PΣ(C

♥), the unit map
uZ : Z → ULCZ is in SD. Let R be the full subcategory of PΣ(C

♥) on objects Z such that
uZ[n] is in SD for all n > 0. Since U and LC commute with finite limits, R is closed under

taking certain fibers. Specifically, suppose that W
f
−→ X [1] is a map where W and X are in

PΣ(C
♥). If W and X are in R, then so is the fiber Z of f . Indeed, in this case, the fiber of

f [n] is equivalent to Z[n] for n > 0 so the unit map of Z[n] is an equivalence for all n > 0.
This implies that R is closed under extensions: given a cofiber sequence X → Z → W
where W and X are in R, we find that Z is the fiber of a map W → X [1]. Moreover, by
construction, PΣ(C

♥) → Ind(C) preserves compact objects and hence the right adjoint U
commutes with filtered colimits (see for example [32, 5.5.7.2]). It follows that R is closed
under filtered colimits in PΣ(C

♥).
We know by the arguments above that UY [n] ∈ R for all n > 0 and all Y ∈ C♥.

By closure under filtered colimits, this implies that UY [n] ∈ R for Y ∈ Ind(C♥) and all
n > 0. Now, note that PΣ(C

♥) is 0-complicial and separated and has heart given by
ModC = Funπ(C♥,op,ModZ), the abelian category of product preserving functors C♥,op →
Z. Hence, PΣ(C

♥) ≃ D(ModC)>0. Since ModC has enough projective objects (given by
the representable functors UY ), every object Z ∈ PΣ(C

♥) admits an increasing exhaustive
filtration F⋆Z where FiZ = 0 for i < 0 and grFi Z ∈ Ind(C♥)[i] for i > 0. We could even take
a filtration with graded pieces shifted projective, but we do not need this here. (See also
[32, 5.5.8.14].) Write grFi Z ≃ UYi

[i] for some Yi ∈ Ind(C♥). By closure under extensions,
inducting on i > 0, we see that each FiZ is in R for finite i. Finally, by closure under filtered
colimits, colimi FiZ ≃ Z is in R. This completes the proof.

If A is a small abelian category, then Db(A)>0 is 0-complicial, so Corollary 6.5 also
follows from Theorem 6.6. Corollary 9 follows immediately from Theorem 6.6.

Corollary 6.7. If X is quasi-compact, quasi-separated, and 0-complicial, then Perf(X)
admits a unique ∞-categorical enhancement.

To find X which is not separated but where Perf(X)>0 is 0-complicial, consider the case
of a regular but not separated scheme as in the next example.

Example 6.8. Let X = Ã2 denote the affine plane with the origin doubled. The scheme X
is quasi-compact and quasi-separated but is not semi-separated. It certainly does not have
enough locally free sheaves. In fact, the category of locally free sheaves on X is equivalent
to the category of locally free sheaves on A2 via pullback along the collapse map X → A2.
On the other hand, X is smooth, so that Perf(X) ≃ Db(Coh(X)). It follows that X is 0-
complicial. In this case, uniqueness of enhancements of Perf(X) follows from Corollary 6.5.

Corollary 10 also follows directly from Theorem 6.6.

Corollary 6.9. If A is a Grothendieck abelian category such that D(A) is compactly gen-
erated and D(A)>0 ∩ D(A)ω is 0-complicial, then D(A)ω admits a unique ∞-categorical
enhancement.

Finally, we prove Corollary 11.

Corollary 6.10. If A is a small abelian category, then D−(A) and D+(A) admit unique
∞-categorical enhancements.
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Proof. If A is a small abelian category, then D−(A)>0 is 0-complicial by using brutal trun-
cations. Since D−(A) ≃ SW(D−(A)>0), it follows from Theorem 6.6 that D−(A) admits a
unique ∞-categorical enhancement. As D+(A) ≃ (D−(Aop))

op
, we see that D+(A) admits

a unique ∞-categorical enhancement.

7 Discussion of the meta theorem

We briefly discuss Meta Theorem 14. In general, one wants to simply say the words “all of
our proofs now work k-linearly for any commutative connective E∞-algebra k”. Applying
this to the case where k = Z, we would obtain the previous results on the uniqueness of dg
enhancements, since pretriangulated dg categories over Z are equivalent to Z-linear stable
∞-categories.

However, we need to be more careful. Indeed, the heart of any stable∞-category with a
t-structure or any prestable ∞-category is automatically an additive category and is hence
Z-linear. Our proofs in many places construct functors from this 1-categorical information.
If we want to check that those functors are themselves Z-linear, we need to do a little more
work.

Theorem 7.1. If C is an anticomplete or separated 0-complicial Grothendieck prestable
∞-category, then the stable ∞-category Sp(C) admits a canonical Z-linear structure.

Theorem 7.1 implies Meta Theorem 14 because it shows that that a Z-linear structure on
a stable presentable ∞-category with a separated or anticomplete 0-complicial t-structure
is not extra structure. It also applies to the results in the cases of the small categories, as
in Corollary 2 or 9, since the proofs pass through anticomplete 0-complicial or separated
0-complicial Grothendieck prestable ∞-categories.

Proof of Theorem 7.1. We will first give the proof in the separated case. There is an ad-
junction

D(−)>0 : Grothlex0 ⇆ Grothlex,sep∞ : (−)♥,

where the right adjoint is fully faithful and has essential image the full subcategory of
Grothlex∞ on the separated 0-complicial Grothendieck prestable∞-categories (see [34, C.5.4.5]).

The category Grothlex0 is a symmetric monoidal category with unit ModZ. To see this,
one uses [34, C.5.4.16], which implies that if A and B are Grothendieck abelian categories,
then so is A⊗B, where the tensor product is computed in PrL, the∞-category of presentable
∞-categories and left adjoint functors. This gives a symmetric monoidal structure on Groth0
and it can be restricted to the subcategory Grothlex0 by the argument of [34, C.4.4.2]. With
respect to the symmetric monoidal structures, (−)♥ is symmetric monoidal and the left
adjoint D(−)>0 is then naturally oplax symmetric monoidal. This presents some problems
and means that we cannot use the most naive argument to give the proof of Theorem 7.1.

The fact that D(−)>0 is oplax symmetric monoidal implies that D(Z)>0 is not a com-

mutative algebra object in Grothlex,sep∞ but rather an E∞-coalgebra object. This may seem
a little strange, but consider the fact that the natural multiplication map

D(Z⊗S Z)>0 ≃ D(Z)>0 ⊗D(Z)>0 → D(Z)>0

is not in Grothlex,sep∞ as it is not left exact. Indeed, it takes Z in the heart of the left hand
side to THH(Z) ≃ Z⊗Z⊗SZZ on the right hand side. Since THH(Z) has non-zero homotopy
groups in arbitrarily high degrees by [8], it is not in the heart.
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The fact that the left adjoint is oplax implies that for any Grothendieck abelian category
A, the Grothendieck prestable∞-category D(A)>0 is a comodule for D(Z)>0 in Grothlex,sep∞ .
To see this, note that there is a natural equivalence

A ≃
(
D(Z)⊗n

>0 ⊗D(A)>0

)♥

and hence by adjunction a natural left exact left adjoint functor

D(A)>0 → D(Z)⊗n
>0 ⊗D(A)>0

for all n. It is not hard to see that these functors assemble into the structure of a D(Z)>0-
comodule on D(A)>0. We will prove that the comodule structure is naturally right adjoint
to a module structure in Groth∞.

Consider for simplicity for a moment the case of D(R)>0 where R is some ring. Then,
the functor D(R)>0 → D(Z)>0 ⊗D(R)>0 ≃ D(Z⊗S R)>0 is the left exact functor given by
restriction of scalars along the map Z⊗SR→ R. In particular, it admits a left adjoint itself

D(Z)>0 ⊗D(R)>0 → D(R)>0.

This left adjoint is typically not left exact. It is easy to see using the functoriality of adjoints
that this makes D(R)>0 into a D(Z)>0-module in Groth∞ and hence by taking spectrum
objects we obtain a canonical D(Z) action on D(R). (Note that technically we should also
discuss the left adjoints to the maps D(R)>0 → D(Z)⊗n

>0 ⊗D(R)>0. The argument is the
same as the n = 1 case here and in the next paragraph, so we omit it.)

Now, suppose that C is a general separated 0-complicial Grothendieck prestable ∞-
category. The important thing is to check that H : C → D(Z)>0 ⊗ C preserves all limits so
that it admits a left adjoint. Choose a generator X ∈ C♥ and let R = HomC(X,X). By the
∞-categorical Gabriel–Popescu theorem [34, C.2.1.6], we have that the natural fully faithful
functor V = MapC(X,−) : D(R)>0 admits a left exact left adjoint E : D(R)>0 → C. We
claim that the following diagram

D(R)>0
G

//

E

��

D(Z)>0 ⊗D(R)>0 ≃ D(Z⊗S R)>0

F

��

C
H

// D(Z)>0 ⊗ C

is right adjointable. In other words, if we let V be the fully faithful right adjoint to E and
U be right adjoint to F , then there is an equivalence of functors G ◦ V ≃ U ◦H . Note that
U ≃MapD(Z)>0⊗C>0

(Z⊗X,−) is fully faithful. Pick Y ∈ C. There are natural equivalences

UHY ≃ UHEV Y ≃ UFGV Y

≃ GV Y,

which is what we wanted to show.
In particular, the adjointability of the diagram together with the conservativity of U

implies that H preserves limits, as desired. It follows that C is a canonically a D(Z)>0-
module in Groth∞ and hence that Sp(C) is canonically a D(Z)-module in PrLst, the ∞-
category of stable presentable ∞-categories and left adjoint functors.

The proof is the same in the anticomplete case, but where we use [34, C.5.8.12, C.5.8.13]
to write a general anticomplete 0-complicial Grothendieck prestable ∞-category as a left
exact localization of a separated 0-complicial Grothendieck prestable ∞-category.
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8 (Counter)examples, questions, and conjectures

We discuss a wide range of ideas in this section. Section 8.1 discusses the question of when
D(A) is left complete and of when D̂(A) admits a unique enhancement. Section 8.2 is
about what is not known for derived categories of quasi-coherent sheaves. In Section 8.3,
we relate our work to singularity categories. Section 8.4 is about the conjectural theory of
stable n-categories. In the spirit of all papers on triangulated categories and dg categories,
Section 8.5 discusses a foolishly optimistic conjecture. Finally, the brief Section 8.6 is about
some categorical questions which would make all of our proofs easier and strengthen our
results.

We include several updates due to the work [12] of Canonaco, Stellari, and Neeman.

8.1 Completeness and products

Question 8.1. Let A be a Grothendieck abelian category. Is it true that every (possibly

presentable) enhancement C of D̂(A) is equivalent to D̂(A)?

Remark 8.2. This has now been proved by Canonaco, Stellari, and Neeman in [12, Theo-
rem A].

Lurie effectively proved that when countable products are exact in A, then D(A) ≃ D̂(A),
so in that case a positive answer in the presentable case is given by Theorem 3 and in general
by Theorem A.1.

Definition 8.3. Let A be a Grothendieck abelian category.

(a) We say that A is AB4* if products in A are right exact.

(b) We say that A is AB4*(ω) if countable products in A are right exact.

(c) We say that A is AB4*n if the derived functors
∏i

I vanish for i > n and all indexing
sets I.

(d) We say that A is AB4*n(ω) if the derived product functors
∏i

I vanish for i > n and
all countable indexing sets I.

Condition AB4* is satisfied for example by ModA where A is any associative ring. It is
definitely not true in general, as examples below illustrate.

Lemma 8.4. If A is a Grothendieck abelian category that satisfies AB4*(ω), then D(A) is
left complete.

Proof. It suffices by Proposition 2.16 to check D(A)>0 is closed under countable products
in D(A). Let {X(i)} be a countable collection of objects in D(A)>0, which we represent as
X(i)• for some fibrant complexes in A. The product is represented by

∏
iX(i)•. We have

to prove that Hi(
∏

iX(i)•) = 0 for i < 0. But, by AB4*(ω), the homology of a product is
the product of the homologies, so this is clear.

Example 8.5. Categories of almost modules are AB4*. If A is an associative ring with a
2-sided ideal I such that I2 = I, then the almost category ModaA satisfies AB4* by work of
Roos. It follows that D(Moda

A) is left complete. Additionally, D(Moda
A) admits a unique

presentable ∞-categorical enhancement by Theorem 3.
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Proposition 8.6. In the situation of Example 8.5, D(Moda
A) admits a unique∞-categorical

enhancement.

This case is interesting because typically ModaA is typically not compactly generated
and in fact does not even admit any non-zero projective objects! See [47, Theorem 4.1] and
Lemma 8.8 below.

Proof. We can see from Lemma 5.1 that if C is a model for D(ModaA), then the t-structure
on C is compatible with countable products. It is also left separated so it is in fact left
complete. However, using Proposition 4.1, we find that C60 ≃ D(ModaA)60. Completeness
of C and D(ModaA) now implies that C ≃ D(ModaA).

Remark 8.7. What we see more generally is that if D(A), then Theorem 3 can be strength-
ened to say that there is a unique ∞-categorical enhancement of D(A).

Lemma 8.8. Suppose that R is a local ring and I ⊆ R a proper flat ideal I such that I2 = I.
Then, the only compact object of ModaR is the zero object. Similarly, the only compact object
of D(Moda

R) is the zero object.

Proof. Since j∗ : ModR → ModaR preserves filtered colimits, the left adjoint j! preserves
compact objects. But, by definition, j!M is an R-module such that Ij!M = j!M . Since
j!M is compact, we see that it is finitely presented. But, I is contained in the Jacobson
radical of R, so Ij!M = j!M implies that j!M = 0. The proof in the derived category case
is the same, using that I is flat and that the bottom homotopy group of a perfect complex
of R-modules is finitely presented.

The axiom AB4* is not satisfied in general. The original example is due to Grothendieck [20].

Example 8.9. Let X be a topological space and let Shv(X) be the abelian category of
sheaves of abelian groups on X . Then, Shv(X) is Grothendieck abelian, but it typically does
not satisfy AB4* or even AB4*(ω). The reason is that products are computed on stalks,
but the restriction functors do not generally preserve products. Write PShv(X) for the
category Fun(Op(X)op,ModZ) of presheaves of abelian groups. Then, Shv(X) is a left exact
localization of PShv(X). In particular, the inclusion functor preserves arbitrary products.
But, it is not right exact in general. Thus, consider a collection {0→ Fi → Gi → Hi → 0}i∈I

of exact sequences of sheaves of abelian groups. We can compute the product sequence

0→
∏

i

Fi →
∏

i

Gi →
∏

i

Hi,

which is exact on the left since products are always left exact. Each
∏

i F is the sheaf with
values (

∏
i Fi)(U) ∼=

∏
i Fi(U), where the latter term is computed as the product in abelian

groups. The question is whether or not the sequence above is exact on the right, or simply
whether in this case

∏
i Gi →

∏
i Hi is surjective as a map of sheaves. Note however, that

the maps Gi(U) → Hi(U) are typically not surjective for any given U . Let X be a space
and x ∈ X a point with a strictly decreasing family of open neighborhoods · · · ⊂ U2 ⊂ U1

with intersection {x}. Write j(k) for the inclusion of Uk in X and i for the inclusion of {x}
in X . Consider the natural transformations j(k)!ZUk

→ i∗Zx, where ZUk
is the constant

sheaf associated to Z on Uk and Zx is the constant sheaf Z on {x}. Each of these maps
is surjective. Now, consider the map

∏
k j(k)!ZUk

→
∏

k i∗Zx. The right hand term is
evidently non-zero. But, the product on the left is actually the zero sheaf if {x} is not open!
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Similarly, the Grothendieck abelian category of quasi-coherent sheaves on a scheme X
is typically not AB4*(ω). Indeed, Roos has shown that if U = SpecR − {m} where R is
a noetherian local ring of Krull dimension d and m is the maximal ideal, then products in
QCoh(U) are not exact if d > 2. A more precise statement can be made.

Example 8.10. Roos showed in [47, Theorem 1.5] that if U = SpecR−{m} is the punctured
spectrum of a local ring as above, then QCoh(U) is AB4*(d−1) and this is the best possible,
meaning that QCoh(U) is not AB4*n for any n < d− 1.

Example 8.11. For a specific example, let R = k[x, y](0,0) with m = (x, y) and d = 2. Let
X = SpecR and U = X − {m}. Consider the countable product

∏
N
OU in D(QCoh(U)).

Since j∗ preserves products, we have that

j∗
∏

N

j∗OU ≃ j∗j∗
∏

N

OU ≃
∏

N

OU .

We can compute the homology groups of
∏

N
j∗OU as

Hi

(
∏

N

j∗OU

)
∼=
∏

N

R−ij∗OU
∼=

{∏
N
R if i = 0,∏

N
H−i−1

m
(R) if i 6= 0.

The local cohomology group Hn
m
(R) in this case is K/R if n = 2 and zero otherwise. In

particular, we see that

H−1

(
∏

N

j∗OU

)
∼=
∏

N

K/R.

Each element of K/R is killed by some power of m. However, this is not true of
∏

N
K/R.

Thus, the localization j∗
∏

N
K/R is non-zero. Since D(QCoh(X)) → D(QCoh(U)) is t-

exact we see that H−1 (
∏

N
OU ) is non-zero in D(QCoh(U)) and that the t-structure on

D(QCoh(U)) is not compatible with countable products. Similarly, QCoh(U) is AB4*1(ω),
but not AB4*0(ω).

Remark 8.12. Kanda has recently shown in [25] that for a noetherian scheme X with an
ample family of line bundles, X satisfies AB4* if and only if X is affine.

We see however that any such punctured spectrum X is quasi-compact and separated.
In particular, we have that

D(QCoh(X)) ≃ D̂(QCoh(X)) ≃ Dqc(X),

so that D(QCoh(X)) is left complete. In particular, we see that separated plus left complete
does not imply AB4*.

Question 8.13. Let X be a quasi-compact and quasi-separated scheme. Does QCoh(X)
satisfy AB4*n for some finite n?

Proposition 8.14. Suppose that A is AB4*n(ω) for some n. Then, D(A) is left complete.

Akhil Mathew pointed out a gap in our original proof, which we have fixed. Since then,
Jack Hall pointed out that the new reasoning is quite similar to the argument in the proof
of [55, Tag 07K7].

Note that [41, Remark 1.2] implies that the abelian category A = QCoh(BGa) is not
AB4*n(ω) for any finite n. See also Example 2.18.

https://stacks.math.columbia.edu/tag/07K7
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Proof. We begin by proving the following in D(A): if {X(i)} is a countable collection of
objects of D(A)>0, then

∏
i X(i) is (−n)-connective. If this is the case, then a countable

cofiltered limit of connective objects will be (−n− 1)-connective.
To compute the product, we first find a fibrant replacement F (i)∗ for each X(i). Typ-

ically, F (i)∗ is typically neither bounded above or below, but it is some chain complex of
injective objects of A. The product

∏
iX(i) is ‘computed’ by the chain complex

∏
i F (i)∗

by using the injective model category structure on D(A)I .
There is a tiny subtlety here: in general it is difficult to control the fibrant objects

of functor categories in the injective model category structure. But, since I is discrete,
the fibrant objects of the injective model category structure on D(A)I are those which are
pointwise fibrant in D(A).

Now, let σ60 denote the bad truncation at 0, so that there is a natural map σ60F (i)∗ →
F (i)∗ for each i. Since σ60F (i)∗ is a bounded above complex of injectives, it is fibrant.
Moreover, the map σ60F (i)∗ → F (i)∗ is a 0-equivalence.

To prove that
∏

i X(i) is (−n)-connective, it is now enough to prove that σ60(
∏

i F (i)∗)
is (−n)-connective.

However, σ60(
∏

i F (i)∗) =
∏

i(σ60F (i)∗). This is an isomorphism of chain complexes of
injective objects of A. By our hypothesis on the X(i), σ60F (i)∗ is an injective resolution
of its top homology (which sits in degree 0). It follows that the homology of

∏
i(σ60F (i)∗)

computes the right derived functors of the functor “product over I” of {H0(σ60F (i)∗)} and in
particular, since we assume AB4*n(ω), it follows that Hm(

∏
i(σ60F (i)∗)) = 0 for m < −n.

But, this means that Hm(σ60(
∏

i F (i)∗)) = 0 for m < −n, which is what we wanted to
show.

Now we show that Postnikov towers converge. Fix X ∈ D(A)>0 and consider for each
m > 0 the fiber sequence τ>m+1X → X → τ6mX . Taking the limit over m we get a fiber
sequence

lim
m

τ>m+1X → X → lim τ6mX.

To show that the Postnikov tower converges, it is enough to prove that

lim
m

τ>m+1X ≃ 0.

We can start this limit at any point we want and thus assume it is a limit of r-connective
objects for r any given integer. Thus, the limit is (r − n)-connective for any r by the
argument above, and hence the limit vanishes since D(A) is left separated. The same
argument will show that every tower is a Postnikov tower. Consider a tower {X(m)} where
X(m) ∈ D(A)[0,m] and X(m)→ X(m−1) induces an equivalence τ6m−1X(m) ≃ X(m−1).
Fix r ∈ N. Then, we have fiber sequences τ>r+1X(m)→ X(m)→ X(r) and

lim
m

τ>r+1X(m)→ lim
m

X(m)→ X(r)

is a fiber sequence. We see from the argument above that the leftmost term is (r + 1− n)-
connective. Hence, πi limmX(m) ∼= πiX(r) for i < r − n. Thus, τ6r−n−1 limm X(m) ≃
τ6r−n−1X(r) ≃ X(r − n − 1). Since r was again chosen to be arbitrary, we see that the
Postnikov tower associated to limn τ6nX(m) is again the tower {X(m)}.

Akhil Mathew asked the following question.

Question 8.15. Suppose that C>0 is a Grothendieck prestable ∞-category which is m-

complicial for some finite m and such that C
♥

>0 satisfies AB4*n(ω) for some n. Is C>0

complete? Proposition 8.14 says that the answer is ‘yes’ for m = 0.
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8.2 Quasi-coherent sheaves

Let X be a quasi-compact and quasi-separated scheme. Then, Dqc(X) is a compactly gen-
erated stable presentable ∞-category with an accessible, left and right complete t-structure
which is additionally compatible with filtered colimits. The heart is QCoh(X), but in gen-
eral the natural map D(QCoh(X)) → Dqc(X) is not an equivalence or even fully faithful
when applied to bounded objects. See [1, Exposé II, Appendice I] for a counterexample of
Verdier.

So, one open problem is whether or not Dqc(X) admits a unique ∞-categorical enhance-
ment. Because of compact generation, any such will be presentable.

Question 8.16. Let X be a quasi-compact and quasi-separated scheme.

(i) Does D(QCoh(X)) admit a unique ∞-categorical model?

(ii) Does D̂(QCoh(X)) admit a unique ∞-categorical model?

(iii) Does D̂(QCoh(X)) admit a unique presentable ∞-categorical model?

(iv) Is the natural map D(QCoh(X))→ D̂(QCoh(X)) an equivalence?

(v) Does Dqc(X) admit a unique ∞-categorical model?

(vi) Does Perf(X) admit a unique ∞-categorical model?

Remark 8.17. We asked in Question 8.13 if QCoh(X) satisfies AB4*n(ω) for some n when

X is quasi-compact and quasi-separated. If so, D(QCoh(X)) ≃ D̂(QCoh(X)).

The answer to these questions is “yes” if X has affine diagonal, in which case D(QCoh(X)) ≃

D̂(QCoh(X)) ≃ Dqc(X). When X is instead a stack, then there are known cases where

D(QCoh(X)) differs from D̂(QCoh(X)). Indeed, it is noted in [21, Remark C.4] that if
X is quasi-compact with affine diagonal, then D+(QCoh(X)) → D+

qc(X) is fully faithful

and extends to an equivalence D̂(QCoh(X)) ≃ Dqc(X). This applies in particular to BGa;
Neeman proved in [41] that D(QCoh(BGa)) is not left complete. So, in this particular case,

D(QCoh(BGa))→ D̂(QCoh(BGa)) is not an equivalence.
Several more cases of Question 8.16 have now been settled in [12] by Canonaco, Neeman,

and Stellari. Positive answers to (i), (ii), and (iii) follow from [12, Theorem A] together
with the Meta-Theorem. Additionally, Canonaco, Neeman, and Stellari prove that there
are unique dg enhancements of Perf(X) and Dqc(X) (settling the dg analogue of (v) and
(vi)). As far as we can see the case of unique ∞-categorical enhancements in (v) and (vi)
remains open because Dqc(X) need not be 0-complicial in general (see Example 8.22) and
so the Meta-Theorem does not apply.

In the remainder of this section, we will explore one possible route to prove that Dqc(X)
admits a unique ∞-categorical enhancement.

Let Perf(X)>0 = Perf(X) ∩ Dqc(X)>0. Unless X satisfies some kind of regularity hy-
potheses, Perf(X)>0 will not be part of a t-structure on Perf(X). By [6, Lemma 2.7],

Ind(Perf(X)>0) ≃ D(X)>0.

Now, consider Questions 8.16(v) and (vi). One might be tempted to argue as we did for
Theorem 8 to prove (vi) and then deduce (v) from this via the following straightforward
argument.
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Lemma 8.18. Let X be a quasi-compact and quasi-separated scheme. If Perf(X) admits a
unique ∞-categorical enhancement, so does Dqc(X).

Proof. Suppose that C is an ∞-categorical model for Dqc(X). Then, C is presentable, com-
pactly generated, and Cω is an ∞-categorical model for Perf(X). Hence, by hypothesis,
Cω ≃ Perf(X), whence C ≃ Ind(Cω) ≃ Ind(Perf(X)) ≃ Dqc(X), as desired.

Unfortunately, proving that Perf(X) admits a unique ∞-categorical model is out of our
reach at the moment since we do not know if Perf(X)>0 is 0-complicial in general, so we

cannot appeal to Theorem 8. Note that there are a priori more objects of Perf(X)♥>0 than of

Perf(X)>0∩Dqc(X)♥. In particular, even if X does not have enough perfect quasi-coherent
sheaves, it might still be 0-complicial. We hope to return to this and the next question and
conjecture in future work.

Question 8.19. For which quasi-compact and quasi-separated schemes X is Perf(X)>0

0-complicial?

Conjecture 8.20. Let X be quasi-compact and quasi-separated. Then, Perf(X)>0 is n-
complicial for some n.

The idea would be to use [56, Proposition B.11], which says that there exists an integer
n such that Hi(X,F) = 0 for i > n and all quasi-coherent sheaves F on X . We prove in the
following remark that if X is quasi-compact and quasi-separated, then Dqc(X)>0 is typically
not 0-complicial.

Remark 8.21. Let Grothlex,sep∞ denote the∞-category of separated Grothendieck prestable
∞-categories and left exact left adjoint functors. We also have Grothlex0 , the category of
Grothendieck abelian categories and left exact colimit preserving functors between them.
Finally, we have Grothlex,comp

∞ , the ∞-category of complete Grothendieck prestable ∞-
categories and left exact left adjoint functors. There is a tripod of fully faithful left adjoint
functors

Grothlex0

D̂(−)>0

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

D(−)>0

xxqq
qq
qq
qq
qq

Grothlex,sep∞ Grothlex,comp
∞ .

The essential image of Grothlex0 in Grothlex,sep∞ is the full subcategory of 0-complicial sepa-
rated Grothendieck prestable∞-categories. The essential image of Grothlex0 in Grothlex,comp

∞

is the full subcategory of weakly 0-complicial complete Grothendieck prestable∞-categories.
Finally, the right adjoints are given by taking hearts. For details, see [34, C.5.4.5, C.5.9.3].

The failure of the displayed left adjoint functors to preserve limits is behind the prolif-
eration of derived categories attached to a single scheme X . Starting with QCoh(X), we

can go to the left or right to obtain D(QCoh(X))>0 and D̂(QCoh(X))>0. We know that
Dqc(X)>0 is complete and separated. If it is weakly 0-complicial, then this implies that it

is equivalent to D̂(QCoh(X))>0. If it is 0-complicial, then it is also weakly 0-complicial and

it is equivalent to D(QCoh(X))>0 and to D̂(QCoh(X))>0. Thus, we see that Dqc(X)>0 is
0-complicial if and only if

D(QCoh(X))>0 ≃ D̂(QCoh(X))>0 ≃ Dqc(X)>0.

The next example, of Verdier, shows that this does not always happen.
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Example 8.22. Let Z be the Verdier example [1, Exposé II, Appendix I] of a quasi-compact
quasi-separated scheme obtained by gluing two copies of a specific affine scheme X = SpecR
together along a specific quasi-compact open. Then, D(QCoh(Z))>0 is not equivalent to
Dqc(Z)>0. So, we see that Dqc(Z)>0 is not 0-complicial.

8.3 The singularity category

Here we discuss the connection between the unseparated and separated derived categories
and singularity categories.

Consider a general Grothendieck abelian category. There is a localization sequence

K(AcInjA)
I
−→ Ď(A)

Q
−→ D(A),

where K(AcInjA) is obtained as the dg nerve of the full dg subcategory of InjA on those
unbounded complexes of injectives which are additionally acyclic (quasi-isomorphic to zero).
In particular, I and Q admit right adjoints Iρ and Qρ, respectively. See [29, Proposition 3.6];
this also follows from the localization theory of [34, Section C.5.2].

When A is locally noetherian and D(A) is compactly generated, Krause shows in [29,
Theorem 1.1] that I and Q admit additional left adjoints Iλ and Qλ, forming a récollement

K(AcInjA) Ď(A) D(A).

In particular, since Q preserves colimits, we see that Qλ preserves compact objects, that
K(AcInjA) is compactly generated, and that there is an exact sequence

D(A)ω → Ď(A)ω → K(AcInjA)
ω

of small idempotent complete stable ∞-categories. In this setting, Ď(A)ω ≃ Db(Aω).

Example 8.23. If X is a noetherian scheme with affine diagonal, then this gives the familiar
exact sequence

Perf(X)→ Db(Coh(X))→ Dsing(X),

where Dsing(X) denotes the natural ∞-categorical enhancement of the singularity cate-
gory of X .

We have seen in this paper that Perf(X) and Db(X) both admit unique∞-categorical en-
hancements when X is noetherian with affine diagonal. It is natural to ask about Dsing(X).

Example 8.24. The work of Schlichting [48] and Dugger–Shipley [16] (in the p > 3 case)
and Muro–Raptis [39] (in the p = 2, 3 case) shows that Dsing(Z/p

2) ≃ Dsing(Fp[ǫ]/(ǫ
2))

while Dsing(Z/p
2) is not equivalent to Dsing(Fp[ǫ]/(ǫ

2)). Thus, we see that even in the best
possible case, where Perf(X) and Db(X) admit unique ∞-categorical enhancements, the
singularity category can admit non-unique enhancements.

Remark 8.25. The Schlichting and Dugger–Shipley work also implies that the large tri-
angulated category K(AcInjA) admits multiple non-equivalent presentable ∞-categorical
enhancements, when A = ModZ/p2 . Indeed, it is equivalent to the homotopy category of
K(AcInjB), where B = ModFp[ǫ]/(ǫ)2 , but K(AcInjB) is not equivalent to K(AcInjA).
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Remark 8.26. Passing to the singularity category (either its big or small version) destroys
the presence of t-structures, which is why our methods (or those of [31, 14]) do not apply.
As an example, let R = Fp[Cp], the group ring of the cyclic group of order p over Fp. The
singularity category Dsing(R) is generated by the image of the trivial Cp-module Fp. The

endomorphism ring of Fp in Dsing(R) computes the Tate-cohomology Ĥ∗(Cp,Fp), which is
2-periodic. In particular, there cannot be a left and right separated t-structure on Dsing(R).

8.4 Stable n-categories

In this section we attempt to outline a story which will eventually clarify the power of
triangulated categories at determining the underlying stable ∞-category, despite losing a
great deal of information. Most of this section is speculative. But, Raptis has recently made
some progress in the directions outlined here (and much more) in [45].

If n > 1, an n-category for us is an ∞-category C such that MapC(X,Y ) is (n − 1)-
truncated for all objects X,Y ∈ C. Recall that this means that πiMapC(X,Y ) = 0 for all
i > n (and every choice of basepoint). We let Catn−1 ⊆ Cat∞ be the full subcategory
on the n-categories. In general, Catn−1 is itself a large n-category. In particular, Cat0
is equivalent to the category of small categories and functors between them. By Gepner–
Haugseng [19], we can also view Catn−1 as an (n, 2)-category as Catn−1 is enriched over
itself: given n-categories C and D, the functor∞-category Fun(C,D) is an n-category by [32,
2.3.4.8].

Remark 8.27. The indexing comes from higher topos theory. Given an ∞-topos C, the
full subcategory C60 of 0-truncated objects is a topos. More generally, the full subcategory
C6n−1 is an n-topos.

The inclusion Catn−1 ⊆ Cat∞ admits a left adjoint hn−1. Write hn−1C for the n-
homotopy category of an ∞-category C. The n-category hn−1C has the same objects as
C, but Maphn−1C

(X,Y ) ≃ τ6n−1MapC(X,Y ). For details, see [32, Section 2.3.4].

Conjecture 8.28. For 1 6 n 6∞, there exists a good theory of stable n-categories and
exact functors between them. This theory should fit into the following picture.

(i) Stable n-categories and exact functors form an (n, 2)-category Catexn−1 which is equipped
with a forgetful functor un−1 : Cat

ex
n−1 → Catn−1. In particular, given stable n-

categories C and D, there should be an n-category Funex(C,D) of exact functors.

(ii) For n > k, there is a k-homotopy category functor hk−1 : Cat
ex
n−1 → Catexk−1 which fits

into a commutative square

Catexn−1

hk−1
//

un−1

��

Catexk−1

uk−1

��

Catn−1

hk−1
// Catk−1

of n-categories.

(iii) The (∞, 2)-category Catex∞ is equivalent to the usual∞-category of stable∞-categories,
exact functors, and natural transformations.
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(iv) The (1, 2)-category Catex0 is equivalent to the category of triangulated categories, exact
functors, and natural transformations.

Remark 8.29. In particular, if C is a stable ∞-category, then hn−1C is a stable n-category.
As a special case, h0C is the usual triangulated homotopy category of C.

Remark 8.30. Given a stable ∞-category C, the suspension functor Σ: C → C induces
an automorphism Σ: hn−1C → hn−1C of each associated stable n-category. Thus, a stable
n-category should in particular be an n-category equipped with a fixed automorphism and
exact functors should preserve these.

Remark 8.31. Fix k > 1 an integer and p a prime. Motivated on the work of Barthel–
Schlank–Stapleton [4] on the asymptotic algebraicity of chromatic homotopy theory and
of Patchkoria [43] on exotic equivalences, Piotr Pstrągowski [44] has recently proved the
remarkable theorem that if E is a p-local Landweber exact homology theory of height n such
that p > n2 + n+ 1+ k

2 , then the stable k-homotopy categories hk−1SpE and hk−1D(E∗E)
are equivalent, where SpE denotes the E-local stable homotopy category and D(E∗E) is the
derived ∞-category of E∗E-comodules.

We make no attempt here to prove this conjecture. However, we note that it explains
certain phenomena.

Example 8.32. Consider the Schlichting and Dugger–Shipley examples as in 8.24. The
proof given in Dugger–Shipley that Dsing(Z/p

2) is not equivalent to Dsing(Fp[ǫ]/(ǫ
2)) works

as follows. The class of Fp itself (where either p = 0 or ǫ = 0) generates the singularity
category. Write A for the endomorphism ring spectrum of Fp in Dsing(Z/p

2) and write Aǫ

for the endomorphism ring of Fp in Dsing(Fp[ǫ]/(ǫ
2)). The homotopy rings π∗A and π∗Aǫ

are isomorphic, but the connective covers τ>0A and τ>0Aǫ are not equivalent (so that A
and Aǫ are not equivalent). Let B = τ62τ>0A and Bǫ = τ62τ>0Aǫ. Dugger and Shipley
show in fact that B is not equivalent to Bǫ. What this means is that the stable 3-categories
h2Dsing(Z/p

2) and h2Dsing(Fp[ǫ]/(ǫ
2)) are not equivalent.

Schlichting proved that the algebraic K-theory of A and Aǫ differ. This motivates
the following conjecture, which Schlichting effectively established for the n = 1 case of
triangulated categories.

Conjecture 8.33. There is no natural number n such that for all small stable ∞-categories
C and D, if hn−1C ≃ hn−1D as stable n-categories, then K(C) ≃ K(D), where K denotes
now nonconnective algebraic K-theory as in [7].

Remark 8.34. This conjecture is true. The following argument was explained to me by
Niko Naumann and Irakli Patchkoria. Fix some k, n, and p such that p > n2 + n + 1 + k

2 .
Then, hk−1SpE ≃ hk−1D(E∗E) where E is a p-local Landweber exact homology theory of
height n. We have LK(n)K(compact objects in SpE) is non-zero because we can apply the
E-homology functor

compact objects in SpE → compact E-modules

to get K(compact objects in SpE) → K(compact E-modules) ≃ K(E) and then compose
with the trace K(E)→ THH(E) and then cap off the circle to get THH(E)→ E. Here, we
use that LK(n)E is non-zero. On the other hand, LK(n)K(E∗E) = 0 for n > 1 by Mitchell’s
theorem [35].
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The next conjecture is true for n = 1 and i = 0. We are not sure at the moment what
happens for n = 1 in negative degrees.

Conjecture 8.35. Let C and D be small stable ∞-categories. If hn−1C ≃ hn−1D as stable
n-categories, then Ki(C) ∼= Ki(D) for i 6 n − 1. In fact, in this case, we guess that
τ6n−1K(C) ≃ τ6n−1K(D) as spectra.

Remark 8.36. This conjecture is also true. See [45, Theorem 6.11] of Raptis.

Now, we turn to stable n-categories and uniqueness of enhancements. Assuming the
theory exists, we can make sense of a t-structure on a stable n-category. In the case of
hn−1C where C is a stable ∞-category, giving a t-structure on C is equivalent to giving one
on hn−1C. For n = 1, this was Lemma 2.10. Given a t-structure on hn−1C, the heart is still
an abelian category. The next definition is due to Lurie [34, Section C.5.4].

Definition 8.37. A Grothendieck abelian n-category is an n-category equivalent to τ6n−1C

for a Grothendieck prestable∞-category C. We let Grothn−1 ⊆ PrL be the full subcategory
of presentable ∞-categories on the Grothendieck abelian n-categories.

Example 8.38. The full subcategory D(Z)[0,n−1] ⊆ D(Z) of complexes X with Hi(X) = 0
for i /∈ [0, n− 1] is a Grothendieck abelian n-category.

The next proposition relates n-complicial Grothendieck prestable∞-categories to Grothendieck
abelian n-categories and stable n-categories.

Proposition 8.39. Suppose that A and B are n-complicial separated Grothendieck prestable
∞-categories. Assuming Conjecture 8.28, the following conditions are equivalent:

(a) the stable ∞-categories Sp(A) and Sp(B) are equivalent;

(b) the abelian n-categories A6n−1 and B6n−1 are equivalent;

(c) the stable n-categories hn−1Sp(A) and hn−1Sp(B) are equivalent.

Proof. The equivalence of (a) and (b) is proved in [34, C.5.4.5]. Clearly, (a) implies (c). So,
assume (c). Then,

A6n−1 ≃ (hn−1Sp(A))[0,n−1] ≃ (hn−1Sp(B))[0,n−1] ≃ B6n−1,

which is exactly (b). Here, (hn−1Sp(A))[0,n−1] refers to the objects in the given range in the
t-structure on the stable n-category hn−1Sp(A).

The n = 0 case of the next conjecture is exactly our Theorem 3.

Conjecture 8.40. Let A be an n-complicial separated Grothendieck prestable ∞-category.
Suppose that C is a stable presentable∞-category together with an exact equivalence hn−1C ≃
hn−1Sp(A) of stable n-categories. Then, C ≃ Sp(A).

Remark 8.41. One can sketch a proof along the lines of our proof of Theorem 3. However,
it obviously depends on the notion of an exact functor of stable n-categories, so it will not
be rigorous at the moment.

In terms of the dg enhancement of this kind of question, we simply give the following
example.
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Example 8.42. Dugger and Shipley [15] give dg algebras A and B over Z with π∗A ∼=
π∗B ∼= ΛF2(g2), where |g2| = 2. They are equivalent as S-algebras but not as as Z-algebras.
In fact, they are not even Morita equivalent over Z. Thus, D(A) ≃ D(B) admits two distinct
dg categorical enhancements. Moreover, those enhancements are separated and 2-complicial.
Hence, we see that the Grothendieck abelian 3-categoriesD(A)[0,2] and D(B)[0,2] are different
as D(Z)[0,2]-linear 3-categories; equivalently, the stable 3-categories h2D(A) and h2D(B) are
not equivalent as h2D(Z)-linear stable 3-categories.

8.5 Enhancements and t-structures

Known examples of triangulated categories not admitting enhancements or admitting multi-
ple enhancements do not admit obvious finitely-complicial t-structures. Situations in which
there is a bounded t-structure seem to be much closer to algebra and we conjecture that
they exhibit a strong rigidity property with respect to their enhancements.

We give two wildly optimistic conjectures in this section.

Conjecture 8.43. Let C be a stable presentable∞-category with an accessible right complete
t-structure which is compatible with filtered colimits and is additionally n-complicial for some
n. Then, the homotopy category hC admits a unique ∞-categorical enhancement.

The reason it is not too crazy to ask for the conjecture to be true is because of the
work [49, 52, 50] of Schwede–Shipley and Schwede on the homotopy category of spectra. For
example, Schwede proves that the homotopy category hSp admits a unique stable model
category enhancement. The argument is basically to study Toda brackets, which can be
constructed using only the triangulated structure, and to appeal to the fact that the stable
homotopy ring (at each prime) can be generated by Toda brackets of certain low-degree
classes in a sense made precise in [49].7

We thank S. Schwede for bringing to our attention the following evidence for Conjec-
ture 8.43.

Example 8.44. The unpublished thesis of K. Hutschenreuter [24] establishes the conjecture
for C ≃ D(τ6nS(p)) for n > p2(2p− 2)− 1 when p is an odd prime and for n > 0 when p = 2.

Example 8.45. Consider R = τ62S, which is an E∞-ring spectrum with non-zero homotopy
groups π0R ∼= Z and π1R ∼= π2R ∼= Z/2. In fact, π∗R ∼= Z[η]/(2η, η3), where |η| = 1. As
can be found in [36, p. 177], we have a Toda bracket η2 ∈ 〈2, η, 2〉. In particular D(R)
is not equivalent to D(π∗R). The Toda brackets somehow help us capture certain higher
homotopical bits of information in the homotopy category.

The condition that C be n-complicial for some n is critical.

Example 8.46. Fix a prime p > 5 and consider a Brown–Peterson ring spectrum BP〈1〉,
which is a certain connective E1-ring spectrum with π∗BP〈1〉 ∼= Z(p)[v1] where |v1| = 2p−
2. Patchkoria has proven in [43, Theorem 1.1.3] that there is a triangulated equivalence
hD(BP〈1〉) ≃ hD(π∗BP〈1〉), where π∗BP〈1〉 is viewed as a formal E1-ring spectrum. This
equivalence cannot come from an equivalence of the underlying stable ∞-categories, so we
have another example of triangulated categories with multiple ∞-categorical enhancements.

7The argument of [50] can be re-written to prove that hSp admits a unique ∞-categorical enhancement
in the sense of this paper. Note also that the argument involving Toda brackets takes place entirely within
the prestable ∞-category Sp>0 of connective spectra.
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Both sides admit an accessible right and left-complete t-structure each of which is compatible
with filtered colimits; in each case the heart is ModZ(p)

. However, since BP〈1〉 is not bounded
above, the t-structure on D(BP〈1〉) is not n-complicial for any n by [34, C.5.5.15].

We can use this example to prove the following theorem.

Theorem 8.47. There exists a small triangulated category T with a bounded t-structure
which admits multiple non-equivalent enhancements.

Proof. Fix p > 5 and BP〈1〉 as above. Let Db(BP〈1〉) ⊆ D(BP〈1〉)ω be the full subcategory
of v1-torsion objects and similarly for Db(π∗BP〈1〉). Equivalently, these are the subcate-
gories consisting of bounded objects with finitely presented homotopy groups. We have an
equivalence hDb(BP〈1〉) ≃ hDb(π∗BP〈1〉), but this cannot lift to an equivalence of stable
∞-categories. Indeed, BP〈1〉/vk1 does not admit the structure of an Eilenberg–Mac Lane
spectrum for k > 2. See for example [15, Remark 5.4] which shows that the reduction of
BP〈1〉/vk1 modulo p does not admit the structure of a Z-algebra in spectra.

The t-structures in Theorem 8.47 are not n-complicial for any n. This suggests the
following conjecture.

Conjecture 8.48. Let T be a small triangulated category with a bounded t-structure which
is n-complicial for some n. Then, T admits a unique ∞-categorical which is unique.

We do not conjecture that all such admit unique dg enhancements. Indeed, this can
already be seen to be false by looking at examples cooked up from different dg Z-algebra
structures on the same E1-ring spectrum.

Example 8.49. Consider the dg Z-algebras A and B of Example 8.42. These are both
noetherian E1-rings and we can thus consider Db(A), the full subcategory of D(A) on
the bounded objects X with πnX finitely generated over π0A for all n. Make a similar
definition for Db(B). The equivalence D(A) ≃ D(B) preserves the triangulated subcategories
Db(A) = hDb(A) and Db(B) = hDb(B). But, Db(A) is not equivalent to Db(B).

8.6 Category theory questions

As far as we know, the next question could have a positive answer in all cases. If so, it
would allow us to remove presentability from Theorem 1 in a more simple way than we do
in Appendix A.

Question 8.50. Let C and D be stable ∞-categories with a triangulated equivalence
Ho(C) ≃ Ho(D). If C is presentable, is D presentable? What if C admits additionally
an accessible t-structure which is compatible with filtered colimits?

Here is a related question.

Question 8.51. Suppose that C and D are small stable ∞-categories with hC ≃ hD. Is it
true that hInd(C) ≃ hInd(D)? Certainly this is the case if in fact C ≃ D.
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A Appendix: removing presentability

Theorem 3 is the ∞-categorical analogue of a theorem of Canonaco and Stellari in the case
of dg enhancements. Their theorem notably does not include a presentability hypothesis.
We indicate how to use their approach, which itself builds on the work of Lunts–Orlov [31],
to remove the presentability qualification in Theorem 3.

True to the spirit of this paper, we use prestable∞-categories in the proof. This replaces
the use of the brutal truncations in Sections 3 and 4 of [14] and makes it somewhat easier
to establish the existence of the comparison functor F ′ in the proof.

Theorem A.1. If A is a Grothendieck abelian category, then D(A) admits a unique ∞-
categorical enhancement.

Proof. Let C be an ∞-categorical enhancement of D(A) and let F : hC ≃ D(A) be a fixed
equivalence. Then, the Postnikov t-structure on D(A) induces a t-structure on C which
is right separated and compatible with countable coproducts. In particular, it is right
complete by Proposition 2.16. It follows, by Lemma 6.1, that to prove C ≃ D(A) it is
enough to prove that C>0 ≃ D(A)>0. Choose a generator X of the abelian category A and
let R = HomA(X,X) be the ring of endomorphisms of X . Since D(A)>0 is 0-complicial, it
follows by the∞-categorical Gabriel–Popescu theorem [34, C.2.1.6] that the natural functor
D(A)>0 → D(R)>0 is fully faithful and admits a left exact left adjoint. Let K be the
kernel of this functor. By [34, C.2.3.8], K is itself a Grothendieck prestable ∞-category and
K♥ ⊆ModR is a full Serre subcategory. Since D(A)>0 is separated, by [34, C.5.2.4] we see
that K is the full subcategory of D(R)>0 consisting of those objects Y such that πiY ∈ K♥

for all i.
Let A0 ⊆ A be the full subcategory consisting of finite direct sums of the object X .

Then, A0 is an additive ∞-category and PΣ(A0) ≃ D(R)>0. Here, PΣ(A0) ⊆ P(A0), called
the nonabelian derived category, is the full subcategory of functors A

op
0 → S which

preserve finite products. In particular, by [32, 5.5.8.15], to give a colimit preserving functor
PΣ(A0)→ C>0 is the same as giving a finite coproduct preserving functor A0 → C>0. Such
a functor is canonically induced by F . Thus, we have a diagram of left adjoint functors

D(R)>0

P ′

$$❍
❍❍

❍❍
❍❍

❍❍

L

yyss
ss
ss
ss
ss

D(A)>0 C>0.

We first show that P ′ factors through L, or in other words that there exists a functor
F ′ : D(A)>0 → C>0 and an equivalence of functors P ′ ≃ F ′ ◦ L. If such a factorization
exists, it is unique since L is a localization.

To prove the existence of the factorization, it is enough to prove that if Y ∈ K, then
P ′(Y ) ≃ 0. If Y is bounded, then this follows immediately from the fact that P ′ and
L are compatible with the equivalence F♥ : C♥ ≃ A. In fact, more generally, we see by
Proposition 4.1 that C− ≃ D−(A) and that this identification is compatible with P ′ and
L. Because filtered colimits in C>0 are left exact using Lemma 5.1, a careful reading of the
proofs of [34, C.2.5.2 and C.3.2.1] implies that the statement of [34, C.2.5.2] applies to C>0

even though we do not yet know that it is Grothendieck prestable (but we do know that it
is prestable and has all limits and colimits). In particular, P ′ is left exact. Suppose now
that Y is a general object of K. Then, πiY ∈ K♥ for each i and hence each truncation
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τ6nY is also in K. By the observation about bounded objects made above, we know that
P ′(τ6nY ) ≃ 0 for all n. In particular, since P ′ is left exact, P ′(τ>n+1Y ) ≃ P ′(Y ) for all
n. Hence, P ′(Y ) is ∞-connective and therefore P ′(Y ) ≃ 0 as C is left separated. Thus, the
factorization exists as claimed, using [34, C.2.3.10] (which extends to the case where the
target category is merely cocomplete prestable and not necessarily Grothendieck prestable).

We have shown the existence of a left exact functor F ′ : D(A)>0 → C>0 which preserves
colimits. Let U be the right adjoint of L. We now want to prove that F ′ is fully faithful.
It is enough to prove that MapD(A)(X,Y ) → MapC(F

′X,F ′Y ) is an equivalence for all
Y ∈ D(A)>0. For this, it is enough to show that HomD(A)(X,Y ) → HomhC(F

′X,F ′Y ) is
an isomorphism for all Y ∈ D(A)>0.

Write P = F ◦ hL : D(R)>0 → hC>0. We obtain a diagram

HomhC(PR,PUY )← HomD(R)(R,UY ) ∼= HomD(A)(X,Y )→ HomhC(P
′R,P ′UY );

by adjunction the left arrow is an isomorphism. Fully faithfulness now follows from Lemma A.2
below. We then have that F ′ : D(A) → C is fully faithful. Since every object of hC is of
the form FY for some Y ∈ D(A) and since FY ≃ PUY ≃ P ′UY ≃ F ′Y (also by the
next lemma), we see that F ′ is essentially surjective. Thus, F ′ is an equivalence and we are
done.

The next lemma is our version of [14, Proposition 3.5], which is itself a generaliza-
tion of [31, Proposition 3.4]. Our proof closely follows the arguments of Lunts–Orlov and
Canonaco–Stellari with easy adjustments for the ∞-categorical and prestable setting.

Lemma A.2. Let C>0 be a prestable∞-category with all limits and colimits and let P0, P1 : D(R)>0 ⇒

hC>0 be two coproduct preserving exact functors. Let A0 = Modproj,ωR ⊆ D(R)>0 be the full
subcategory of finitely generated projective left A-modules. Suppose that there is a natural
isomorphism θ0 : P0|A0

∼= P1|A0 of the functors P0 and P1 restricted to A0. For each object
Y ∈ D(R)>0, there is an isomorphism σY : P0Y → P1Y such that for each f : R → Y , the
diagram

P0R
P0(f)

//

θ0

��

P0Y

σY

��

P1R
P1(f)

// P1Y

commutes in hC>0.

Since C>0 is a full subcategory of the stable∞-category SW(C>0), the homotopy category
hC>0 is a full subcategory of the triangulated category hSW(C>0). Moreover, hC>0 is closed
under cones, coproducts, and positive shifts in hSW(C>0). We will use these facts implicitly
in the proof.

Proof. We use the nonabelian derived category PΣ(A0) which appeared in the proofs of
Theorem 8 and Theorem A.1. Each object Y of PΣ(A0) can be represented by a simplicial
object Y• : ∆

op → Ind(A0), where Ind(A0) is an additive category with filtered colimits, but
typically not all colimits. We can also assume that each Yn is a projective object of ModR.
Filtering by skeletons, we see that Y admits a filtration F⋆Y where FiY ≃ 0 for i < 0 and
grFi Y ∈ModprojR [i] for i > 0.
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The natural isomorphism θ0 extends to P0 and P1 when restricted to Ind(A0). Fix n > 0.
There are natural isomorphisms θn of P0 and P1 when restricted to Ind(A0)[n] ⊆ PΣ(A0).
We also have natural isomorphisms θi[1] ≃ θi+1 for i > 0.

We will prove inductively that there exist isomorphisms σi : P0(FiY ) → P1(FiY ) and
σY : P0(Y )→ P1(Y ) such that the diagrams of exact sequences

P0(Fi−1Y ) //

σi−1

��

P0(FiY )

σi

��

// P0(gr
F
i Y )

θi

��

P1(Fi−1Y ) // P1(FiY ) // P1(gr
F
i Y )

(2)

and ⊕
i P0(FiY ) //

⊕
i
σi

��

⊕
i P0(FiY )

⊕
i
σi

��

// P0(Y )

σY

��⊕
i P1(FiY ) //

⊕
i P1(FiY ) // P1(Y )

commute in hC>0.
Suppose we have inductively chosen isomorphisms σn : P0(FiY )→ P1(FiY ) for 0 6 i 6 n

in hC>0 such that for each 0 6 i < n the diagram

P0(FiY ) //

σi

��

P0(Fi+1Y )

σi+1

��

// P0(gr
F
i+1Y )

θi+1

��

P1(FiY ) // P1(Fi+1Y ) // P1(gr
F
i+1Y )

commutes. (The i = 0 case follows because θ0[1] ≃ θ1.) We claim that the diagram

P0(FnY ) //

σn

��

P0(Fn+1Y ) //

��

P0(gr
F
n+1Y )

θn+1

��

// P0(FnY )[1]

σn[1]

��

P1(FnY ) // P1(Fn+1Y ) // P1(gr
F
n+1Y ) // P1(FnY )[1]

(3)

commutes without the dotted arrow. The left square trivially commutes, since both com-
positions are zero. Note that by the projectivity of grFn+1Y [−n− 1], the right hand square
itself factors naturally into two further squares

P0(gr
F
n+1Y )

θn+1

��

// P0(gr
F
nY [1]) //

θn+1

��

P0(FnY )[1]

σn[1]

��

P1(gr
F
n+1Y ) // P1(gr

F
nY [1]) // P1(FnY ).

Here, the left hand square again commutes since θn+1 is a natural transformation and the
right hand square commutes by our inductive hypothesis and the fact that θn+1 ≃ θn[1].

Applying the triangulated category axiom TR3 (see [40] or [33]), we see that a dotted
map σn+1 exists making diagram (3) commute. Thus, by induction, we can choose the σn for
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all n. Recall that the colimit colimn FnY can be computed as the cofiber of an appropriate
map

⊕
FnY →

⊕
FnY . Thus, consider the diagram

⊕
P0(FnY ) //

⊕σn

��

⊕
P0(FnY )

⊕σn

��

// P0(Y ) //

��

⊕
P1(FnY )[1]

⊕σn[1]

��⊕
P1(FnY ) //

⊕
P1(FnY ) // P1(Y ) //

⊕
P1(FnY )[1]

(where we use that P0 and P1 commute with coproducts). This time, the right hand square
commutes for trivial reasons. To see that the left hand square commutes, it is enough to
check that it commutes when restricted to each term P0(FnY ) of the source. This follows
by induction on FiY for 0 6 i 6 n from the arguments in the second part of the proof. It
follows that a dotted arrow exists, which is again an isomorphism since the other two arrows
are (using the octahedral axiom TR4).

Now, fix R
f
−→ Y . Then, by the projectivity of F , f factors through F0Y . In particular,

the diagram

P0(R)
P0(f)

//

θ0

��

P0(F0Y )

θ0=σ0

��

P1(R)
P1(f)

// P1(F0Y )

commutes since θ0 is a natural transformation. By the commutativity of (2), we see that

P0(R)
P0(f)

//

θ0

��

P0(FiY )

σi

��

P1(R)
P1(f)

// P1(FiY )

commutes for all i. Since f factors as well through
⊕

i FiY → Y , the diagram

P0(R)
P0(f)

//

θ0

��

⊕
i P0(FiY )

⊕
σi

��

// P0(Y )

σY

��

P1(R)
P1(f)

//
⊕

i P1(FiY ) // P1(Y )

commutes. This is what we wanted to show.

References

[1] Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol.
225, Springer-Verlag, Berlin-New York, 1971, Séminaire de Géométrie Algébrique du Bois-
Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la
collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P.
Serre. MR 0354655 8.2, 8.22

[2] Leovigildo Alonso Tarrío, Ana Jeremías López, and Manuel Saorín, Compactly generated t-
structures on the derived category of a Noetherian ring, J. Algebra 324 (2010), no. 3, 313–346.
MR 2651339 3



39 REFERENCES

[3] Benjamin Antieau, David Gepner, and Jeremiah Heller, K-theoretic obstructions to bounded

t-structures, ArXiv preprint arXiv:1610.07207 (2016), To appear in Inventiones math. 6

[4] Tobias Barthel, Tomer Schlank, and Nathaniel Stapleton, Chromatic homotopy theory is

asymptotically algebraic, ArXiv preprint arXiv:1711.00844 (2017). 8.31
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