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Abstract

We consider reinforcement learning (RL) in continuous time and study
the problem of achieving the best trade-off between exploration of a black
box environment and exploitation of current knowledge. We propose an
entropy-regularized reward function involving the differential entropy of
the distributions of actions, and motivate and devise an exploratory for-
mulation for the feature dynamics that captures repetitive learning under
exploration. The resulting optimization problem is a revitalization of the
classical relaxed stochastic control. We carry out a complete analysis of
the problem in the linear–quadratic (LQ) setting and deduce that the
optimal feedback control distribution for balancing exploitation and ex-
ploration is Gaussian. This in turn interprets and justifies the widely
adopted Gaussian exploration in RL, beyond its simplicity for sampling.
Moreover, the exploitation and exploration are captured, respectively and
mutual-exclusively, by the mean and variance of the Gaussian distribution.
We also find that a more random environment contains more learning op-
portunities in the sense that less exploration is needed. We characterize
the cost of exploration, which, for the LQ case, is shown to be propor-
tional to the entropy regularization weight and inversely proportional to
the discount rate. Finally, as the weight of exploration decays to zero,
we prove the convergence of the solution of the entropy-regularized LQ
problem to the one of the classical LQ problem.

Key words. Reinforcement learning, exploration, exploitation, en-
tropy regularization, stochastic control, relaxed control, linear–quadratic,
Gaussian distribution.
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1 Introduction

Reinforcement learning (RL) is currently one of the most active and fast devel-
oping subareas in machine learning. In recent years, it has been successfully ap-
plied to solve large scale real world, complex decision making problems, includ-
ing playing perfect-information board games such as Go (AlphaGo/AlphaGo
Zero, Silver et al. (2016), Silver et al. (2017)), achieving human-level perfor-
mance in video games (Mnih et al. (2015)), and driving autonomously (Levine et al.
(2016), Mirowski et al. (2016)). An RL agent does not pre-specify a structural
model or a family of models but, instead, gradually learns the best (or near-
best) strategies based on trial and error, through interactions with the random
(black box) environment and incorporation of the responses of these interac-
tions, in order to improve the overall performance. This is a case of “kill two
birds with one stone”: the agent’s actions (controls) serve both as a means to
explore (learn) and a way to exploit (optimize).

Since exploration is inherently costly in terms of resource, time and opportu-
nity, a natural and crucial question in RL is to address the dichotomy between
exploration of uncharted territory and exploitation of existing knowledge. Such
question exists in both the stateless RL settings (e.g. the multi-armed bandit
problem) and the more general multi-state RL settings (e.g. Sutton and Barto
(2018), Kaelbling et al. (1996)). Specifically, the agent must balance between
greedily exploiting what has been learned so far to choose actions that yield
near-term higher rewards, and continuously exploring the environment to ac-
quire more information to potentially achieve long-term benefits. Extensive
studies have been conducted to find strategies for the best trade-off betweeen
exploitation and exploration.1

However, most of the contributions to balancing exploitation and exploration
do not include exploration explicitly as a part of the optimization objective;
the attention has mainly focused on solving the classical optimization prob-
lem maximizing the accumulated rewards, while exploration is typically treated
separately as an ad-hoc chosen exogenous component, rather than being en-
dogenously derived as a part of the solution to the overall RL problem. The
recently proposed discrete time entropy-regularized (also termed as “entropy-
augmented” or “softmax”) RL formulation, on the other hand, explicitly incor-
porates exploration into the optimization objective as a regularization term,
with a trade-off weight imposed on the entropy of the exploration strategy
(Ziebart et al. (2008), Nachum et al. (2017), Fox et al. (2016)). An exploratory
distribution with a greater entropy signifies a higher level of exploration, re-
flecting a bigger weight on the exploration front. On the other hand, having
the minimal entropy, the extreme case of Dirac measure implies no exploration,

1For the multi-armed bandit problem, well known strategies include Gittins index ap-
proach (Gittins (1974)), Thompson sampling (Thompson (1933)), and upper confidence bound
algorithm (Auer et al. (2002)), whereas theoretical optimality is established, for example, in
Russo and Van Roy (2013, 2014). For general RL problems, various efficient exploration meth-
ods have been proposed that have been proved to induce low sample complexity, among other
advantages (see, for example, Brafman and Tennenholtz (2002), Strehl and Littman (2008),
Strehl et al. (2009)).
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reducing to the case of classical optimization with a complete knowledge about
the underlying model. Recent works have been devoted to the designing of var-
ious algorithms to solve the entropy regularized RL problem, where numerical
experiments have demonstrated remarkable robustness and multi-modal policy
learning (Haarnoja et al. (2017), Haarnoja et al. (2018)).

In this paper, we study the trade-off between exploration and exploitation for
RL in a continuous-time setting with both continuous control (action) and state
(feature) spaces.2 Such a continuous-time formulation is especially appealing if
the agent can interact with the environment at ultra-high frequency, examples
including high frequency stock trading, autonomous driving and snowboard rid-
ing. More importantly, once cast in continuous time, it is possible, thanks in no
small measure to the tools of stochastic calculus and differential equations, to
derive elegant and insightful results which, in turn, lead to theoretical under-
standing of some of the fundamental issues in RL, give guidance to algorithm
design and provide interpretability to the underlying learning technologies.

Our first main contribution is to propose an entropy-regularized reward func-
tion involving the differential entropy for exploratory probability distributions
over the continuous action space, and motivate and devise an “exploratory for-
mulation” for the state dynamics that captures repetitive learning under explo-
ration in the continuous time limit. Existing theoretical works on exploration
mainly concentrate on the analysis at the algorithmic level, including proving
convergence of the proposed exploration algorithms to the solutions of the classi-
cal optimization problems (see, for example, Singh et al. (2000), Jaakkola et al.
(1994)). However, they rarely look into the impact of the exploration on chang-
ing significantly the underlying dynamics (e.g. the transition probabilities in
the discrete time context). Indeed, exploration not only substantially enriches
the space of control strategies (from that of Dirac measures to that of all pos-
sible probability distributions) but also, as a result, enormously expands the
reachable space of states. This, in turn, sets out to change both the underlying
state transitions and the system dynamics.

We show that our exploratory formulation can account for the effects of
learning in both the rewards received and the state transitions observed from
the interactions with the environment. It, thus, unearths the important charac-
teristics of learning at a more refined and in-depth level, beyond merely devising
and analyzing learning algorithms. Intriguingly, the proposed formulation of the
state dynamics coincides with that in the relaxed control framework in classi-
cal control theory (see, for example, Fleming and Nisio (1984); El Karoui et al.
(1987); Zhou (1992); Kurtz and Stockbridge (1998, 2001)), which was motivated
by entirely different reasons. Specifically, relaxed controls were introduced to
mainly deal with the theoretical question of whether an optimal control exists.
The approach essentially entails randomization to convexify the universe of con-
trol strategies. To the best of our knowledge, the present paper is the first to

2The terms “feature” and “action” are typically used in the RL literature, whose counter-
parts in the control literature are “state” and “control”, respectively. Since this paper uses
the control approach to study RL problems, we will interchangeably use these terms whenever
there is no confusion.
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bring back the formulation of relaxed control, guided by a practical motivation:
exploration and learning.

We then carry out a complete analysis on the continuous-time entropy-
regularized RL problem, assuming that the original system dynamics is lin-
ear in both the control and the state, and that the original reward function is
quadratic in the two. This type of linear–quadratic (LQ) problems has occupied
the center stage for research in classical control theory for its elegant solutions
and its ability to approximate more general nonlinear problems. One of the
most important, conceptual contributions of this paper is to show that the op-
timal feedback control distribution for balancing exploitation and exploration
is Gaussian. Precisely speaking, if, at any given state, the agent sets out to en-
gage in exploration then she needs look no further than Gaussian distributions.
As is well known, a pure exploitation optimal distribution is Dirac, and a pure
exploration optimal distribution is uniform. Our results reveal that Gaussian is
the right choice if one seeks a balance between those two extremes. Moreover,
we find that the mean of this optimal exploratory distribution is a function
of the current state independent of the intended exploration level, whereas the
variance is a linear function of the entropy regularizing weight (also called the
“temperature parameter” or “exploration weight”) irrespective of the current
state. This result highlights a separation between exploitation and exploration:
the former is reflected in the mean and the latter in the variance of the optimal
Gaussian distribution.

There is yet another intriguing result. The higher impact actions have on
the volatility of the underlying dynamic system, the smaller the variance of the
optimal Gaussian distribution needs to be. Conceptually, this implies that a
more random environment in fact contains more learning opportunities and,
hence, is less costly for learning. This theoretical finding provides an interpre-
tation of the recent RL heuristics where injecting noises leads to better effect of
exploration; see, for example, Lillicrap et al. (2016); Plappert et al. (2018).

Another contribution of the paper is that we establish a direct connection
between the solvability of the exploratory LQ problem and that of the classical
LQ problem. We prove that as the exploration weight in the former decays to
zero, the optimal Gaussian control distribution and its value function converge
respectively to the optimal Dirac measure and the value function of the classical
LQ problem, a desirable result for practical learning purposes.

Finally, we observe that, beyond the LQ problems and under proper con-
ditions, the Gaussian distribution remains optimal for a much larger class of
control problems, namely, problems with drift and volatility linear in control
and reward functions linear or quadratic in control even if the dependence on
state is nonlinear. Such a family of problems can be seen as the local-linear-
quadratic approximation to more general stochastic control problems whose
state dynamics are linearized in the control variables and the reward functions
are locally approximated by quadratic control functions (Todorov and Li (2005),
Li and Todorov (2007)). Note also that although such iterative LQ approxi-
mation generally has different parameters at different local state-action pairs,
our result on the optimality of Gaussian distribution under the exploratory LQ
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framework still holds at any local point, and therefore justifies, from a stochastic
control perspective, why Gaussian distribution is commonly used in the RL prac-
tice for exploration (see, among others, Haarnoja et al. (2017), Haarnoja et al.
(2018), Nachum et al. (2018)), beyond its simplicity for sampling.

The rest of the paper is organized as follows. In section 2, we motivate and
propose the relaxed stochastic control formulation involving an exploratory state
dynamics and an entropy-regularized reward function for our RL problem. We
then present the associated Hamilton-Jacobi-Bellman (HJB) equation and the
optimal control distribution for general entropy-regularized stochastic control
problems in section 3. In section 4, we study the special LQ problem in both the
state-independent and state-dependent reward cases, corresponding respectively
to the multi-armed bandit problem and the general RL problem in discrete time,
and derive the optimality of Gaussian exploration. We discuss the connections
between the exploratory LQ problem and the classical LQ problem in section
5, establish the solvability equivalence of the two and the convergence result
for vanishing exploration, and finally characterize the cost of exploration. We
conclude in section 6. Some technical contents and proofs are relegated to
Appendices.

2 An Entropy-Regularized Relaxed Stochastic
Control Problem

We introduce an entropy-regularized relaxed stochastic control problem and
provide its motivation in the context of RL.

Consider a filtered probability space (Ω,F ,P; {Ft}t≥0) in which we define
an {Ft}t≥0-adapted Brownian motion W = {Wt, t ≥ 0}. An “action space”
U is given, representing the constraint on an agent’s decisions (“controls” or
“actions”). An admissible (open-loop) control u = {ut, t ≥ 0} is an {Ft}t≥0-
adapted measurable process taking values in U .

The classical stochastic control problem is to control the state (or “feature”)
dynamics3

dxu
t = b(xu

t , ut)dt+ σ(xu
t , ut)dWt, t > 0; xu

0 = x ∈ R, (1)

where (and throughout this paper) x is a generic variable representing a current
state of the system dynamics. The aim of the control is to achieve the maximum
expected total discounted reward represented by the value function

V cl (x) := sup
u∈Acl(x)

E

[
∫ ∞

0

e−ρtr (xu
t , ut) dt

∣

∣

∣

∣

xu
0 = x

]

, (2)

where r is the reward function, ρ > 0 is the discount rate, and Acl(x) denotes
the set of all admissible controls which in general may depend on x.

3We assume that both the state and the control are scalar-valued, only for notational
simplicity. There is no essential difficulty to carry out our discussions with these being vector-
valued.
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In the classical setting, where the model is fully known (namely, when the
functions b, σ and r are fully specified) and the dynamic programming is ap-
plicable, the optimal control can be derived and represented as a deterministic
mapping from the current state to the action space U , u∗

t = u
∗(x∗

t ). The map-
ping u∗ is called an optimal feedback control (or “policy” or “law”); this feedback
control is derived at t = 0 and will be carried out through [0,∞).4

In contrast, in the RL setting, where the underlying model is not known
and therefore dynamic learning is needed, the agent employs exploration to in-
teract with and learn the unknown environment through trial and error. The
key idea is to model exploration by a distribution of controls π = {πt(u), t ≥ 0}
over the control space U from which each “trial” is sampled.5 We can therefore
extend the notion of controls to distributions.6 The agent executes a control
for N rounds over the same time horizon, while at each round, a classical con-
trol is sampled from the distribution π. The reward of such a policy becomes
accurate enough when N is large. This procedure, known as policy evalua-
tion, is considered as a fundamental element of most RL algorithms in practice
(Sutton and Barto (2018)). Hence, for evaluating such a policy distribution in
our continuous time setting, it is necessary to consider the limiting situation as
N → ∞.

In order to capture the essential idea for doing this, let us first examine the
special case when the reward depends only on the control, namely, r(xu

t , ut) =
r(ut). One then considers N identical independent copies of the control problem
in the following way: at round i, i = 1, 2, . . . , N, a control ui is sampled under
the (possibly random) control distribution π, and executed for its corresponding
copy of the control problem (1)–(2). Then, at each fixed time t, it follows, from
the law of large numbers (and under certain mild technical conditions), that
the average reward over [t, t+∆t], with ∆t small enough, should satisfy that as
N → ∞,

1

N

N
∑

i=1

e−ρtr(ui
t)∆t

a.s.−−−→ E

[

e−ρt

∫

U

r(u)πt(u)du∆t

]

.

For a general reward r(xu
t , ut) which depends on the state, we first need to

describe how exploration might alter the state dynamics (1) by defining appro-
priately its “exploratory” version. For this, we look at the effect of repetitive
learning under a given control distribution, say π, for N rounds. Let W i

t ,
i = 1, 2, . . . , N , be N independent sample paths of the Brownian motion Wt,

4In general, feedback controls are easier to implement as they respond directly to the
current states of the controlled dynamics.

5As will be evident below, rigorously speaking, πt(·) is a probability density function for
each t ≥ 0. With a slight abuse of terminology, we will not distinguish a density function

from its corresponding probability distribution or probability measure and thus will use these

terms interchangeably in this paper. Such nomenclature is common in the RL literature.
6A classical control u = {ut, t ≥ 0} can be regarded as a Dirac distribution (or “measure”)

π = {πt(u), t ≥ 0} where πt(·) = δut (·). In a similar fashion, a feedback policy ut = u(xu
t )

can be embedded as a Dirac measure πt(·) = δ
u(xu

t
)(·), parameterized by the current state

xu
t .
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and xi
t, i = 1, 2, . . . , N , be the copies of the state process respectively under the

controls ui, i = 1, 2, . . . , N , each sampled from π. Then, the increments of these
state process copies are, for i = 1, 2, . . . , N ,

∆xi
t ≡ xi

t+∆t − xi
t ≈ b(xi

t, u
i
t)∆t+ σ(xi

t, u
i
t)
(

W i
t+∆t −W i

t

)

, t ≥ 0. (3)

Each such process xi, i = 1, 2, . . . , N , can be viewed as an independent sample
from the exploratory state dynamics Xπ. The superscript π of Xπ indicates
that each xi is generated according to the classical dynamics (3), with the
corresponding ui sampled independently under this policy π.

It then follows from (3) and the law of large numbers that, as N → ∞,

1
N

∑N
i=1 ∆xi

t ≈ 1
N

∑N
i=1 b(x

i
t, u

i
t)∆t+ 1

N

∑N
i=1 σ(x

i
t, u

i
t)
(

W i
t+∆t −W i

t

)

a.s.−−−→ E
[∫

U b(Xπ
t , u)πt(u)du∆t

]

+ E
[∫

U σ(Xπ
t , u)πt(u)du

]

E [Wt+∆t −Wt]

= E
[∫

U
b(Xπ

t , u)πt(u)du∆t
]

.
(4)

In the above, we have implicitly applied the (reasonable) assumption that both
πt and Xπ

t are independent of the increments of the Brownian motion sample
paths, which are identically distributed over [t, t+∆t].

Similarly, as N → ∞,

1

N

N
∑

i=1

(

∆xi
t

)2 ≈ 1

N

N
∑

i=1

σ2(xi
t, u

i
t)∆t

a.s.−−−→ E

[
∫

U

σ2(Xπ
t , u)πt(u)du∆t

]

. (5)

As we see, not only ∆xi
t but also (∆xi

t)
2 are affected by repetitive learning

under the given policy π.
Finally, as the individual state xi

t is an independent sample from Xπ
t , we

have that ∆xi
t and (∆xi

t)
2, i = 1, 2, . . . , N , are the independent samples from

∆Xπ
t and (∆Xπ

t )
2, respectively. As a result, the law of large numbers gives that

as N → ∞,

1

N

N
∑

i=1

∆xi
t

a.s.−−−→ E [∆Xπ
t ] and

1

N

N
∑

i=1

(∆xi
t)

2 a.s.−−−→ E
[

(∆Xπ
t )

2
]

.

This interpretation, together with (4) and (5), motivates us to propose the
exploratory version of the state dynamics, namely,

dXπ
t = b̃(Xπ

t , πt)dt+ σ̃(Xπ
t , πt)dWt, t > 0; Xπ

0 = x ∈ R, (6)

where the coefficients b̃(·, ·) and σ̃(·, ·) are defined as

b̃(y, π) :=

∫

U

b (y, u)π(u)du, y ∈ R, π ∈ P (U) , (7)

and

σ̃(y, π) :=

√

∫

U

σ2 (y, u)π(u)du, y ∈ R, π ∈ P (U) , (8)

7



with P (U) being the set of density functions of probability measures on U that
are absolutely continuous with respect to the Lebesgue measure.

We will call (6) the exploratory formulation of the controlled state dynamics,
and b̃(·, ·) and σ̃(·, ·) in (7) and (8), respectively, the exploratory drift and the
exploratory volatility.7

In a similar fashion, as N → ∞,

1

N

N
∑

i=1

e−ρtr(xi
t, u

i
t)∆t

a.s.−−−→ E

[

e−ρt

∫

U

r(Xπ
t , u)πt(u)du∆t

]

. (10)

Hence, the reward function r in (2) needs to be modified to the exploratory
reward

r̃ (y, π) :=

∫

U

r (y, u)π(u)du, y ∈ R, π ∈ P (U) . (11)

If, on the other hand, the model is fully known, exploration would not be
needed at all and the control distributions would all degenerate to the Dirac
measures, and we would then be in the realm of the classical stochastic control.
Thus, in the RL context, we need to add a “regularization term” to account for
model uncertainty and to encourage exploration. We use Shanon’s differential
entropy to measure the level of exploration:

H(π) := −
∫

U

π(u) lnπ(u)du, π ∈ P (U) .

We therefore introduce the following entropy-regularized relaxed stochastic
control problem

V (x) := sup
π∈A(x)

E

[∫ ∞

0

e
−ρt

(∫

U

r (Xπ
t , u) πt (u) du− λ

∫

U

πt(u) ln πt(u)du

)

dt

∣

∣

∣

∣

X
π
0 = x

]

(12)

where λ > 0 is an exogenous exploration weight parameter capturing the trade-
off between exploitation (the original reward function) and exploration (the

7The exploratory formulation (6), inspired by repetitive learning, is consistent with
the notion of relaxed control in the control literature (see, for example, Fleming and Nisio
(1984); El Karoui et al. (1987); Zhou (1992); Kurtz and Stockbridge (1998, 2001)). Indeed,
let f : R 7→ R be a bounded and twice continuously differentiable function, and consider the
infinitesimal generator associated to the classical controlled process (1),

L[f ](x, u) :=
1

2
σ2(x, u)f ′′(x) + b(x, u)f ′(x), x ∈ R, u ∈ U.

In the classical relaxed control framework, the controlled dynamics is replaced by the six-tuple
(Ω,F ,F = {Ft}t≥0,P,X

π, π), such that Xπ
0 = x and

f(Xπ
t )− f(x) −

∫ t

0

∫

U

L[f ](Xπ
t , u)πt(u)duds, t ≥ 0, is a P−martingale. (9)

It is easy to verify that our proposed exploratory formulation (6) agrees with the above
martingale formulation. However, even though the mathematical formulations are equivalent,
the motivations of the two are entirely different. Relaxed control was introduced to mainly deal
with the existence of optimal controls, whereas the exploratory formulation here is motivated
by learning and exploration in RL.
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entropy), A(x) is the set of the admissible control distributions (which may in
general depend on x), and V is the value function.8

The precise definition of A(x) depends on the specific dynamic model under
consideration and the specific problems one wants to solve, which may vary
from case to case. Here, we first provide some of the “minimal” requirements
for A(x). Denote by B(U) the Borel algebra on U . An admissible control
distribution is a measure-valued (or precisely a density-function-valued) process
π = {πt, t ≥ 0} satisfying at least the following properties:

(i) for each t ≥ 0, πt ∈ P(U) a.s.;
(ii) for each A ∈ B(U), {

∫

A
πt(u)du, t ≥ 0} is Ft-progressively measurable;

(iii) the stochastic differential equation (SDE) (6) has a unique strong solu-
tion Xπ = {Xπ

t , t ≥ 0} if π is applied;
(iv) the expectation on the right hand side of (12) is finite.

Naturally, there could be additional requirements depending on specific prob-
lems. For the linear–quadratic control case, which will be the main focus of the
paper, we define A(x) precisely in section 4.

Finally, analogous to the classical control formulation, A(x) contains open-
loop control distributions that are measure-valued stochastic processes. We will
also consider feedback control distributions. Specifically, a deterministic map-
ping π(·; ·) is called a feedback control (distribution) if i) π(·;x) is a density
function for each x ∈ R; ii) the following SDE (which is the system dynamics
after the feedback law π(·; ·) is applied)

dXt = b̃(Xt,π(·;Xt))dt + σ̃(Xπ
t , π(·;Xt))dWt, t > 0; X0 = x ∈ R (13)

has a unique strong solution {Xt; t ≥ 0}; and iii) the open-loop control π = {πt,
t ≥ 0} ∈ A(x) where πt := π(·;Xt). In this case, the open-loop control π is said
to be generated from the feedback control law π(·; ·) with respect to x.

3 HJB Equation and Optimal Control Distribu-
tions

We present the general procedure for solving the optimization problem (12).
The arguments are informal and a rigorous analysis will be carried out in the
next section.

To this end, applying the classical Bellman’s principle of optimality, we have

V (x) = sup
π∈A(x)

E

[
∫ s

0

e−ρt (r̃ (Xπ
t , πt) + λH (πt)) dt+ e−ρsV (Xπ

s )

∣

∣

∣

∣

Xπ
0 = x

]

, s > 0.

Proceeding with standard arguments, we deduce that V satisfies the Hamilton-
Jacobi-Bellmam (HJB) equation

ρv(x) = max
π∈P(U)

(

r̃(x, π) − λ

∫

U

π(u) ln π(u)du+
1

2
σ̃2(x, π)v′′(x)

8In the RL community, λ is also known as the temperature parameter, which we will be
using occasionally.
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+b̃(x, π)v′(x)
)

, x ∈ R, (14)

or

ρv(x) = max
π∈P(U)

∫

U

(

r(x, u) − λ lnπ(u) +
1

2
σ2(x, u)v′′ (x) + b (x, u) v′(x)

)

π(u)du,

(15)
where v denotes the generic unknown function of the equation. Recalling that
π ∈ P (U) if and only if

∫

U

π(u)du = 1 and π(u) ≥ 0 a.e. on U, (16)

we can solve the (constrained) maximization problem on the right hand side of
(15) to get a feedback control:

π
∗(u;x) =

exp
(

1
λ

(

r(x, u) + 1
2σ

2 (x, u) v′′(x) + b (x, u) v′(x)
))

∫

U
exp

(

1
λ

(

r(x, u) + 1
2σ

2 (x, u) v′′(x) + b (x, u) v′(x)
))

du
. (17)

For each given initial state x ∈ R, this feedback control in turn generates an
optimal open-loop control

π∗
t := π

∗(u;X∗
t ) =

exp
(

1
λ

(

r(X∗
t , u) +

1
2σ

2(X∗
t , u)v

′′(X∗
t ) + b(X∗

t , u)v
′(X∗

t )
))

∫

U
exp

(

1
λ

(

r(X∗
t , u) +

1
2σ

2(X∗
t , u)v

′′(X∗
t ) + b(X∗

t , u)v
′(X∗

t )
))

du
,

(18)
where {X∗

t , t ≥ 0} solves (6) when the feedback control law π
∗(·; ·) is applied

and assuming that {π∗
t , t ≥ 0} ∈ A(x).9

Formula (17) above elicits qualitative understanding about optimal explo-
rations. We further investigate this in the next section.

4 The Linear–Quadratic Case

We now focus on the family of entropy-regularized (relaxed) stochastic control
problems with linear state dynamics and quadratic rewards, in which

b(x, u) = Ax+Bu and σ(x, u) = Cx+Du, x, u ∈ R, (19)

where A,B,C,D ∈ R, and

r(x, u) = −
(

M

2
x2 +Rxu+

N

2
u2 + Px+Qu

)

, x, u ∈ R (20)

where M ≥ 0, N > 0, R, P,Q ∈ R.

9We stress that the procedure described in this section, while standard, is informal. A
rigorous treatment requires a precise definition of A(x) and a verification that indeed {π∗

t , t ≥
0} ∈ A(x). This will be carried out in the study of the linear–quadratic case in the following
sections.
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In the classical control literature, this type of linear–quadratic (LQ) control
problems is one of the most important, not only because it admits elegant and
simple solutions but also because more complex, nonlinear problems can be
approximated by LQ problems. As is standard with LQ control, we assume
that the control set is unconstrained, namely, U = R.

Fix an initial state x ∈ R. For each open-loop control π ∈ A(x), denote its
mean and variance processes µt, σ

2
t , t ≥ 0, by

µt :=

∫

R

uπt(u)du and σ2
t :=

∫

R

u2πt(u)du − µ2
t . (21)

Then, the state SDE (6) becomes

dXπ
t = (AXπ

t +Bµt) dt+
√

C2(Xπ
t )

2 + 2CDXπ
t µt +D2(µ2

t + σ2
t ) dWt

= (AXπ
t +Bµt) dt+

√

(CXπ
t +Dµt)

2
+D2σ2

t dWt, t > 0; Xπ
0 = x.

(22)
Further, denote

L(Xπ
t , πt) :=

∫

R

r(Xπ
t , u)πt(u)du− λ

∫

R

πt(u) lnπt(u)du.

Next, we specify the associated set of admissible controls A(x): π ∈ A(x), if

(i) for each t ≥ 0, πt ∈ P(R) a.s.;
(ii) for each A ∈ B(R), {

∫

A πt(u)du, t ≥ 0} is Ft-progressively measurable;

(iii) for each t ≥ 0, E
[

∫ t

0

(

µ2
s + σ2

s

)

ds
]

< ∞;

(iv) with {Xπ
t , t ≥ 0} solving (22), lim infT→∞ e−ρT

E
[

(Xπ
T )

2 ]
= 0;

(v) with {Xπ
t , t ≥ 0} solving (22), E

[∫∞

0
e−ρt |L(Xπ

t , πt)| dt
]

< ∞.

In the above, condition (iii) is to ensure that for any π ∈ A(x), both the
drift and volatility terms of (22) satisfy a global Lipschitz condition and a type
of linear growth condition in the state variable and, hence, the SDE (22) admits
a unique strong solution Xπ. Condition (iv) renders dynamic programming and
verification technique applicable for the model, as will be evident in the sequel.
Finally, the reward is finite under condition (v).

We are now ready to introduce the entropy-regularized relaxed stochastic
LQ problem

V (x) = sup
π∈A(x)

E

[
∫ ∞

0

e−ρt

(
∫

R

r(Xπ
t , u)πt(u)du− λ

∫

R

πt(u) lnπt(u)du

)

dt
∣

∣

∣
Xπ

0 = x

]

(23)
with r as in (20) and Xπ as in (22).

In the following two subsections, we derive explicit solutions for both cases
of state-independent and state-dependent rewards.
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4.1 The case of state-independent reward

We start with the technically less challenging case r(x, u) = −
(

N
2 u

2 +Qu
)

,
namely, the reward is state (feature) independent. In this case, the system
dynamics becomes irrelevant. However, the problem is still interesting in its
own right as it corresponds to the state-independent RL problem, which is
known as the continuous-armed bandit problem in the continuous time setting
(Mandelbaum (1987); Kaspi and Mandelbaum (1998)).

Following the derivation in the previous section, the optimal feedback control
in (17) reduces to

π
∗ (u;x) =

exp
(

1
λ

((

−N
2 u

2 +Qu
)

+ 1
2 (Cx+Du)2v′′(x) + (Ax +Bu)v′(x)

))

∫

R
exp

(

1
λ

((

−N
2 u

2 +Qu
)

+ 1
2 (Cx+Du)2v′′(x) + (Ax+Bu)v′(x)

))

du

=

exp

(

−
(

u− CDxv′′(x)+Bv′(x)−Q
N−D2v′′(x)

)2

/ 2λ
N−D2v′′(x)

)

∫

R
exp

(

−
(

u− CDxv′′(x)+Bv′(x)−Q
N−D2v′′(x)

)2

/ 2λ
N−D2v′′(x)

)

du

. (24)

Therefore, the optimal feedback control distribution appears to be Gaussian.
More specifically, at any present state x, the agent should embark on exploration
according to the Gaussian distribution with mean and variance given, respec-

tively, by CDxv′′(x)+Bv′(x)−Q
N−D2v′′(x) and λ

N−D2v′′(x) . Note that in deriving the above,

we have used that N −D2v′′(x) > 0, x ∈ R, a condition that will be justified
and discussed later on.

Remark 1 If we examine the derivation of (24) more closely, we easily see
that the optimality of the Gaussian distribution still holds as long as the state
dynamics is linear in control and the reward is quadratic in control, whereas the
dependence of both on the state can be generally nonlinear.

Substituting (24) back to (14), the HJB equation becomes, after straightfor-
ward calculations,

ρv(x) =
(CDxv′′(x)+Bv′(x)−Q)2

2(N−D2v′′(x)) + λ
2

(

ln
(

2πeλ
N−D2v′′(x)

)

− 1
)

+ 1
2C

2x2v′′(x) +Axv′(x).

(25)

In general, this nonlinear equation has multiple smooth solutions, even among
quadratic polynomials that satisfy N − D2v′′(x) > 0. One such solution is a
constant, given by

v (x) = v :=
Q2

2ρN
+

λ

2ρ

(

ln
2πeλ

N
− 1

)

, (26)

with the corresponding optimal feedback control distribution (24) being

π
∗ (u;x) =

e−(u+
Q

N )2/ 2λ
N

∫

R
e−(u+

Q

N )2/ 2λ
N du

. (27)

12



It turns out the right hand side of the above is independent of the current
state x. So the optimal feedback control distribution is the same across different
states. Note that the classical LQ problem with the state-independent reward
function r(x, u) = −

(

N
2 u

2 +Qu
)

clearly has the optimal control u∗ = −Q
N ,

which is also state-independent and is nothing else than the mean of the optimal
Gaussian feedback control π∗.

The following result establishes that the constant v is indeed the value func-
tion V and that the feedback control π∗ defined by (27) is optimal. Henceforth,
we denote, for notational convenience, by N (·|µ, σ2) the density function of a
Gaussian random variable with mean µ and variance σ2.

Theorem 2 If r(x, u) = −
(

N
2 u

2 +Qu
)

, then the value function in (23) is
given by

V (x) =
Q2

2ρN
+

λ

2ρ

(

ln
2πeλ

N
− 1

)

, x ∈ R,

and the optimal feedback control distribution is Gaussian, with

π
∗(u;x) = N

(

u
∣

∣− Q

N
,
λ

N

)

.

Moreover, the associated optimal state process, {X∗
t , t ≥ 0}, under π∗(·; ·) is the

unique solution of the SDE

dX∗
t =

(

AX∗
t − BQ

N

)

dt+

√

(

CX∗
t − DQ

N

)2

+
λD2

N
dWt, X∗

0 = x. (28)

Proof. Let v(x) ≡ v be the constant solution to the HJB equation (25) defined

by (26). Then the corresponding feedback optimizer π∗(u;x) = N
(

u
∣

∣− Q
N , λ

N

)

follows immediately from (24). Let π∗ = {π∗
t , t ≥ 0} be the open-loop control

generated from π
∗(·; ·). It is straightforward to verify that π∗ ∈ A(x).10

Now, for any π ∈ A(x) and T ≥ 0, it follows from the HJB equation (14)
that

e−ρT v = v −
∫ T

0

e−ρtρvdt

≤ v + E

[

∫ T

0

e−ρt

(
∫

R

(

N

2
u2 +Qu

)

πt(u)du + λ

∫

R

πt(u) lnπt(u)du

)

dt

]

.

Since π ∈ A(x), the dominated convergence theorem yields that, as T → ∞,

v ≥ E

[
∫ ∞

0

e−ρt

(
∫

R

−
(

N

2
u2 +Qu

)

πt(u)du− λ

∫

R

πt(u) lnπt(u)du

)

dt

]

10Since the state process is irrelevant in the current case, it is not necessary to verify the
admissibility condition (iv).
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and, thus, v ≥ V (x), for ∀x ∈ R. On the other hand, π∗ has been derived as
the maximizer for the right hand side of (14); hence

ρv =

∫

R

−
(

N

2
u2 +Qu

)

π∗
t (u)du− λ

∫

R

π∗
t (u) lnπ

∗
t (u)du.

Replacing the inequalities by equalities in the above argument and sending T
to infinity, we conclude that

V (x) = v =
Q2

2ρN
+

λ

2ρ

(

ln
2πeλ

N
− 1

)

,

for x ∈ R.
Finally, the exploratory dynamics equation (28) follows readily from substi-

tuting µ∗
t = −Q

N and (σ∗
t )

2 = λ
N , t ≥ 0, into (22).

It is possible to obtain explicit solutions to (28) for most cases, which may
be useful in designing exploration algorithms based on the theoretical results
derived in this paper. We relegate this discussion about solving (28) explicitly
to Appendix A.

The above solution suggests that when the reward is independent of the
state, so is the optimal feedback control distribution with density N (· |− Q

N , λ
N ).

This is intuitive since objective (12) in this case does not explicitly distinguish
between states.11

A remarkable feature of the derived optimal distribution N (· | − Q
N , λ

N ) is
that its mean coincides with the optimal control of the original, non-exploratory
LQ problem, whereas the variance is determined by the temperature parameter
λ. In the context of continuous-armed bandit problem, this result stipulates
that the mean is concentrated on the current incumbent of the best arm and
the variance is determined by the temperature parameter. The more weight
put on the level of exploration, the more spread out the exploration becomes
around the current best arm. This type of exploration/exploitation strategies
is clearly intuitive and, in turn, gives a guidance on how to actually choose
the temperature parameter in practice: it is nothing else than the variance of

11Similar observation can be made for the (state-independent) pure entropy maximization
formulation, where the goal is to solve

sup
π∈A(x)

E

[

−

∫ ∞

0
e−ρt

(
∫

U

πt(u) lnπt(u)du

)

dt
∣

∣

∣
Xπ

0 = x

]

. (29)

This problem becomes relevant when λ → ∞ in the entropy-regularized objective (23), cor-
responding to the extreme case of pure exploration without considering exploitation (i.e.,
without maximizing any reward). To solve problem (29), we can pointwisely maximize its
integrand, leading to the state-independent optimization problem

sup
π∈P(U)

(

−

∫

U

π(u) lnπ(u)du

)

. (30)

It is then straightforward that the optimal control distribution π∗ is, for all t ≥ 0, the
uniform distribution. This is in accordance with the traditional static setting where uniform
distribution achieves maximum entropy (Shannon (2001)).
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the exploration the agent wishes to engage in (up to a scaling factor being the
quadratic coefficient of the control in the reward function).

However, we shall see in the next section that when the reward depends on
the local state, the optimal feedback control distribution genuinely depends on
the state.

4.2 The case of state-dependent reward

We now consider the general case with the reward depending on both the control
and the state, namely,

r(x, u) = −
(

M

2
x2 +Rxu+

N

2
u2 + Px+Qu

)

, x, u ∈ R.

We will be working with the following assumption.

Assumption 3 The discount rate satisfies ρ > 2A+C2+max
(

D2R2−2NR(B+CD)
N , 0

)

.

This assumption requires a sufficiently large discount rate, or (implicitly) a
sufficiently short planning horizon. Such an assumption is standard in infinite
horizon problems with running rewards.

Following an analogous argument as for (24), we deduce that a candidate
optimal feedback control is given by

π
∗(u;x) = N

(

u
∣

∣

∣

CDxv′′(x) + Bv′(x) −Rx−Q

N −D2v′′(x)
,

λ

N −D2v′′(x)

)

. (31)

In turn, denoting by µ∗(x) and (σ∗(x))2 the mean and variance of π∗(·;x)
given above, the HJB equation (14) becomes

ρv(x) =
∫

R
−
(

M
2 x2 +Rxu+ N

2 u
2 + Px+Qu

)

N
(

u
∣

∣µ∗(x), (σ∗(x))2
)

du

+λ ln
(√

2πeσ∗(x)
)

+ v′(x)
∫

R
(Ax+Bu)N

(

u
∣

∣µ∗(x), (σ∗(x))2
)

du

+ 1
2v

′′(x)
∫

R
(Cx+Du)2N

(

u
∣

∣µ∗(x), (σ∗(x))2
)

du

= −M
2 x2 − N

2

(

(

CDxv′′(x)+Bv′(x)−Rx−Q
N−D2v′′(x)

)2

+ λ
N−D2v′′(x)

)

−(Rx+Q)CDxv′′(x)+Bv′(x)−Rx−Q
N−D2v′′(x) − Px+ λ ln

√

2πeλ
N−D2v′′(x)

+Axv′(x) +Bv′(x)CDxv′′(x)+Bv′(x)−Rx−Q
N−D2v′′(x) + 1

2C
2x2v′′(x)

+ 1
2D

2

(

(

CDxv′′(x)+Bv′(x)−Rx−Q
N−D2v′′(x)

)2

+ λ
N−D2v′′(x)

)

v′′(x)

+CDxv′′(x)CDxv′′(x)+Bv′(x)−Rx−Q
N−D2v′′(x) .

Reorganizing, thus, the above reduces to

ρv(x) =
(CDxv′′(x)+Bv′(x)−Rx−Q)2

2(N−D2v′′(x)) + λ
2

(

ln
(

2πeλ
N−D2v′′(x)

)

− 1
)

+ 1
2 (C

2v′′(x) −M)x2 + (Av′(x)− P )x.

(32)
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Under Assumption 3 and the additional condition R2 < MN (which holds
automatically if R = 0, M > 0 and N > 0, a standard case in the classical LQ
problems), one smooth solution to the HJB equation (32) is given by

v(x) =
1

2
k2x

2 + k1x+ k0,

where12

k2 := 1
2
(ρ−(2A+C2))N+2(B+CD)R−D2M

(B+CD)2+(ρ−(2A+C2))D2

− 1
2

√
((ρ−(2A+C2))N+2(B+CD)R−D2M)2−4((B+CD)2+(ρ−(2A+C2))D2)(R2−MN)

(B+CD)2+(ρ−(2A+C2))D2 ,

(36)

k1 :=
P (N − k2D

2)−QR

k2B(B + CD) + (A− ρ)(N − k2D2)−BR
, (37)

and

k0 :=
(k1B −Q)2

2ρ(N − k2D2)
+

λ

2ρ

(

ln

(

2πeλ

N − k2D2

)

− 1

)

. (38)

For this particular solution, given by v(x) above, we can verify that k2 < 0,
due to Assumption 3 and R2 < MN . Hence, v is concave, a property that is
essential in proving that it is actually the value function.13 On the other hand,
N −D2v′′(x) = N − k2D

2 > 0, ensuring that k0 is well defined.

Next, we state one of the main results of this paper.

Theorem 4 Suppose the reward function is given by

r(x, u) = −
(

M

2
x2 +Rxu +

N

2
u2 + Px+Qu

)

,

with M ≥ 0, N > 0, R,Q, P ∈ R and R2 < MN . Furthermore, suppose that
Assumption 3 holds. Then, the value function in (23) is given by

V (x) =
1

2
k2x

2 + k1x+ k0, x ∈ R, (39)

12In general, there are multiple solutions to (32). Indeed, applying, for example, a generic
quadratic function ansatz v(x) = 1

2
a2x

2 + a1x + a0, x ∈ R, in (32) yields the system of
algebraic equations

ρa2 =
(a2(B + CD)−R)2

N − a2D2
+ a2(2A+ C2) −M, (33)

ρa1 =
(a1B −Q)(a2(B + CD)−R)

N − a2D2
+ a1A− P, (34)

ρa0 =
(a1B −Q)2

2(N − a2D2)
+

λ

2

(

ln

(

2πeλ

N − a2D2

)

− 1

)

. (35)

This system has two sets of solutions (as the quadratic equation (33) has, in general, two
roots), leading to two quadratic solutions to the HJB equation (32). The one given through
(36)–(38) is one of the two solutions.

13Under Assumption 3 and R2 < MN , the HJB equation has an additional quadratic
solution, which however is convex.
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where k2, k1 and k0 are as in (36), (37) and (38), respectively. Moreover, the
optimal feedback control is Gaussian, with its density function given by

π
∗(u;x) = N

(

u

∣

∣

∣

∣

(k2(B + CD)−R)x+ k1B −Q

N − k2D2
,

λ

N − k2D2

)

. (40)

Finally, the associated optimal state process {X∗
t , t ≥ 0} under π

∗(·; ·) is the
unique solution of the SDE

dX
∗
t =

((

A+
B(k2(B + CD)−R)

N − k2D2

)

X
∗
t +

B(k1B −Q)

N − k2D2

)

dt

+

√

((

C +
D(k2(B + CD) −R)

N − k2D2

)

X∗
t +

D(k1B −Q)

N − k2D2

)2

+
λD2

N − k2D2
dWt, X

∗
0 = x.

(41)

A proof of this theorem follows essentially the same idea as that of Theorem
2, but it is more technically involved, mainly for verifying the admissibility of
the candidate optimal control. To ease the presentation, we defer it to Appendix
B.

Remark 5 As in the state-independent case (see Appendix A), the solution to
the SDE (41) can be expressed through the Doss-Saussman transformation if
D 6= 0.

Specifically, if C + D(k2(B+CD)−R)
N−k2D2 6= 0, then

X∗
t = F (Wt, Yt), t ≥ 0,

where the function F is given by

F (z, y) =

√

D̃

|C̃1|
sinh

(

|C̃1|z + sinh(−1)

(

|C̃1|
√

D̃

(

y +
C̃2

C̃1

)))

− C̃2

C̃1

,

and the process Yt, t ≥ 0, is the unique pathwise solution to the random ODE

dYt

dt
=

ÃF (Wt, Yt) + B̃ − C̃1

2

(

C̃1F (Wt, Yt) + C̃2

)

∂
∂yF (z, y)

∣

∣

z=Wt,y=Yt

, Y0 = x,

with Ã := A+ B(k2(B+CD)−R)
N−k2D2 , B̃ := B(k1B−Q)

N−k2D2 , C̃1 := C + D(k2(B+CD)−R)
N−k2D2 ,

C̃2 := D(k1B−Q)
N−k2D2 and D̃ := λD2

N−k2D2 .

If C+D(k2(B+CD)−R)
N−k2D2 = 0 and Ã 6= 0, then it follows from direct computation

that

X∗
t = xeÃt − B̃

Ã
(1 − eÃt) +

√

C̃1
2
+ D̃

∫ t

0

eÃ(t−s)dWs, t ≥ 0.

We leave the detailed derivations to the interested readers.

17



The above results demonstrate that, for the general state and control de-
pendent reward case, the optimal actions over R also depend on the current
state x, which are selected according to a state-dependent Gaussian distribu-
tion (40) with a state-independent variance λ

N−k2D2 . Note that if D 6= 0, then
λ

N−k2D2 < λ
N (since k2 < 0). Therefore, the exploration variance in the general

state-dependent case is strictly smaller than λ
N , the one in the state-independent

case. Recall that D is the coefficient of the control in the diffusion term of the
state dynamics, generally representing the level of randomness of the environ-
ment.14 Therefore, volatility impacting actions reduce the need for exploration.
Moreover, the greater D is, the smaller the exploration variance becomes, indi-
cating that even less exploration is required. As a result, the need for exploration
is further reduced if an action has a greater impact on the volatility of the system
dynamics. This hints that a more volatile environment renders more learning
opportunities.

On the other hand, the mean of the Gaussian distribution does not explicitly
depend on λ. The implication is that the agent should concentrate on the most
promising region in the action space while randomly selecting actions to interact
with the unknown environment. It is intriguing that the entropy-regularized RL
formulation separates the exploitation from exploration, respectively through
the mean and variance of the resulting optimal Gaussian distribution.

Remark 6 It should be noted that it is the optimal feedback control distribu-
tion, not the open-loop control generated from the feedback control, that has the
Gaussian distribution. More precisely, π∗(·;x) defined by (40) is Gaussian for
each and every x, but the measure-valued process with the density function

π∗
t (u) := N

(

u

∣

∣

∣

∣

(k2(B + CD)−R)X∗
t + k1B −Q

N − k2D2
,

λ

N − k2D2

)

, t ≥ 0,

(42)
where {X∗

t , t ≥ 0} is the solution of the exploratory dynamics under the feedback
control π∗(·; ·) with any fixed initial state, say, X∗

0 = x0, is in general not
Gaussian for any t > 0. The reason is that for each t > 0, the right hand side of
(42) is a composition of the Gaussian density function and a random variable
X∗

t whose distribution is unknown. We stress that the Gaussian property for
feedback control is more important and relevant in the RL context, as it stipulates
that at any given state, if one undertakes exploration then she should follow
Gaussian. The open-loop control {π∗

t , t ≥ 0}, generated from the Gaussian
feedback control, is just what the agent would end up if she follows Gaussian
exploration at every state.

Finally, as noted earlier (see Remark 1), the optimality of the Gaussian
distribution is still valid for problems with dynamics

dxt = (A(xt) +B(xt)ut) dt+ (C(xt) +D(xt)ut) dWt,

14For example, in the Black–Scholes market, D is the volatility parameter of the underlying
stock.
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and reward function in the form r(x, u) = r2(x)u
2 + r1(x)u + r0(x), where the

functions A,B,C,D, r2, r1 and r0 are possibly nonlinear (pending some addi-
tional assumptions for the verification arguments to hold).

5 The Cost and Effect of Exploration

Motivated by the necessity of exploration facing the typically unknown environ-
ment in an RL setting, we have formulated and analyzed a new class of stochastic
control problems that combine entropy-regularized criteria and relaxed controls.
We have also derived closed-form solutions and presented verification results for
the important class of LQ problems. A natural question arises, namely, how to
quantify the cost and effect of the exploration. This can be done by comparing
our results to the ones for the classical stochastic LQ problems, which have
neither entropy regularization nor control relaxation.

We carry out this comparison analysis next.

5.1 The classical LQ problem

We first briefly recall the classical stochastic LQ control problem in an infinite
horizon with discounted reward. Let {Wt, t ≥ 0} be a standard Brownian
motion defined on the filtered probability space (Ω,F , {Ft}t≥0,P) that satisfies
the usual conditions. The controlled state process {xu

t , t ≥ 0} solves

dxu
t = (Axu

t +But) dt+ (Cxu
t +Dut) dWt , t ≥ 0, xu

0 = x, (43)

with given constants A,B,C and D, and the process {ut, t ≥ 0} being a (clas-
sical, non-relaxed) control.

The value function is defined as in (2),

V cl(x) := sup
u∈Acl(x)

E

[
∫ ∞

0

e−ρtr(xu
t , ut) dt

∣

∣

∣

∣

xu
0 = x

]

, (44)

for x ∈ R, where the reward function r(·, ·) is given by (20). Here, the admissible
set Acl(x) is defined as follows: u ∈ Acl(x) if

(i) {ut, t ≥ 0} is Ft-progressively measurable;

(ii) for each t ≥ 0, E
[

∫ t

0
(us)

2 ds
]

< ∞;

(iii) with {xu
t , t ≥ 0} solving (43), lim infT→∞ e−ρT

E
[

(xu
T )

2
]

= 0;

(iv) with {xu
t , t ≥ 0} solving (43), E

[ ∫∞

0 e−ρt|r(xu
t , ut)| dt

]

< ∞.

The associated HJB equation is

ρw(x) = max
u∈R

(

r(x, u) +
1

2
(Cx +Du)2w′′(x) + (Ax+Bu)w

′
(x)

)

= max
u∈R

(

−1

2

(

N −D2w′′(x)
)

u2 +
(

CDxw′′(x) +Bw′(x)−Rx−Q
)

u

)
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+
1

2
(C2w′′(x)−M)x2 + (Aw′(x)− P )x

=
(CDxw′′(x) +Bw′(x) −Rx−Q)2

2(N −D2w′′(x))
+

1

2
(C2w

′′
(x)−M)x2 + (Aw′(x)− P )x,

(45)
with the maximizer being, provided that N −D2w′′(x) > 0,

u
∗(x) =

CDxw′′(x) +Bw′(x)−Rx−Q

N −D2w′′(x)
, x ∈ R. (46)

The standard verification argument then deduces that u is the optimal feedback
control.

In the next section, we will establish a solvability equivalence between the
entropy-regularized relaxed LQ problem and the classical one.

5.2 Solvability equivalence of classical and exploratory
problems

Given a reward function r(·, ·) and a classical controlled process (1), the re-
laxed formulation (6) under the entropy-regularized objective is, naturally, a
technically more challenging problem, compared to its classical counterpart.

In this section, we show that there is actually a solvability equivalence be-
tween the exploratory and the classical stochastic LQ problems, in the sense
that the value function and optimal control of one problem lead directly to
those of the other. Such equivalence enables us to readily establish the conver-
gence result as the exploration weight λ decays to zero. Furthermore, it makes
it possible to quantify the exploration cost, which we introduce in the sequel.

Theorem 7 The following two statements (a) and (b) are equivalent.

(a) The function v(x) = 1
2α2x

2 + α1x + α0 +
λ
2ρ

(

ln
(

2πeλ
N−α2D2

)

− 1
)

, x ∈ R,

with α0, α1 ∈ R and α2 < 0, is the value function of the exploratory
problem (23) and the corresponding optimal feedback control is

π
∗(u;x) = N

(

u

∣

∣

∣

∣

(α2(B + CD)−R)x+ α1B −Q

N − α2D2
,

λ

N − α2D2

)

.

(b) The function w(x) = 1
2α2x

2+α1x+α0, x ∈ R, with α0, α1 ∈ R and α2 < 0,
is the value function of the classical problem (44) and the corresponding
optimal feedback control is

u
∗(x) =

(α2(B + CD)−R)x+ α1B −Q

N − α2D2
.

Proof. See Appendix C.

The above equivalence between statements (a) and (b) yields that if one
problem is solvable, so is the other; and conversely, if one is not solvable, neither
is the other.
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5.3 Cost of exploration

We define the exploration cost for a general RL problem to be the difference be-
tween the discounted accumulated rewards following the corresponding optimal
open-loop controls under the classical objective (2) and the exploratory objec-
tive (12), net of the value of the entropy. Note that the solvability equivalence
established in the previous subsection is important for this definition, not least
because the cost is well defined only if both the classical and the exploratory
problems are solvable.

Specifically, let the classical maximization problem (2) with the state dy-
namics (1) have the value function V cl(·) and optimal strategy {u∗

t , t ≥ 0}, and
the corresponding exploratory problem have the value function V (·) and optimal
control distribution {π∗

t , t ≥ 0}. Then, we define the exploration cost as

Cu∗,π∗

(x) := V cl(x)−
(

V (x) + λE

[
∫ ∞

0

e−ρt

(
∫

U

π∗
t (u) lnπ

∗
t (u)du

)

dt

∣

∣

∣

∣

Xπ∗

0 = x

])

,

(47)
for x ∈ R.

The term in the parenthesis represents the total discounted rewards incurred
by π∗ after taking out the contribution of the entropy term to the value function
V (·) of the exploratory problem. The exploration cost hence measures the best
outcome due to the explicit inclusion of exploratory strategies in the entropy-
regularized objective, relative to the benchmark V cl(·) which is the best possible
objective value should the model be a priori fully known.

We next compute the exploration cost for the LQ case. As we show, this
cost is surprisingly simple: it depends only on two “agent-specific” parameters:
the temperature parameter λ and the discounting parameter ρ.

Theorem 8 Assume that statement (a) (or equivalently, (b)) of Theorem 7
holds. Then, the exploration cost for the stochastic LQ problem is

Cu∗,π∗

(x) =
λ

2ρ
, for x ∈ R. (48)

Proof. Let {π∗
t , t ≥ 0} be the open-loop control generated by the feedback

control π∗ given in statement (a) with respect to the initial state x, namely,

π∗
t (u) = N

(

u
∣

∣

∣

(α2(B + CD)−R)X∗
t + α1B −Q

N − α2D2
,

λ

N − α2D2

)

where {X∗
t , t ≥ 0} is the associated state process of the exploratory problem,

starting from the state x, when π
∗ is applied. Then, it is straightforward to

calculate
∫

R

π∗
t (u) lnπ

∗
t (u)du = −1

2
ln

(

2πeλ

N − α2D2

)

.

The desired result now follows immediately from the general definition in (47)
and the expressions of V (·) in (a) and V cl(·) in (b).
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In other words, the exploration cost for stochastic LQ problems can be com-
pletely pre-determined by the learning agent through choosing her individual
parameters λ and ρ, since the cost relies neither on the specific (unknown) linear
state dynamics, nor on the quadratic reward structure.

Moreover, the exploration cost (48) depends on λ and ρ in a rather intuitive
way: it increases as λ increases, due to more emphasis placed on exploration,
or as ρ decreases, indicating an effectively longer horizon for exploration.15

5.4 Vanishing exploration

Herein, the exploration weight λ has been taken as an exogenous parameter
reflecting the level of exploration desired by the learning agent. The smaller
this parameter is, the more emphasis is placed on exploitation. When this
parameter is sufficiently close to zero, the exploratory formulation is sufficiently
close to the problem without exploration. Naturally, a desirable result is that if
the exploration weight λ goes to zero, then the entropy-regularized LQ problem
would converge to its classical counterpart. The following result makes this
precise.

Theorem 9 Assume that statement (a) (or equivalently, (b)) of Theorem 7
holds. Then, for each x ∈ R,

lim
λ→0

π
∗(·;x) = δ

u
∗(x)(·) weakly.

Moreover, for each x ∈ R,

lim
λ→0

|V (x)− V cl(x)| = 0.

Proof. The weak convergence of the feedback controls is due to the explicit
forms of π∗ and u

∗ in statements (a) and (b), and the fact that α1, α2 are
independent of λ. The pointwise convergence of the value functions follows
easily from the forms of V (·) and V cl(·), together with the fact that

lim
λ→0

λ

2ρ

(

ln

(

2πeλ

N − α2D2

)

− 1

)

= 0.

15The connection between a discounting parameter and an effective length of time horizon
is well known in the discrete time discounted reward formulation E[

∑

t≥0 γ
tRt] for classical

Markov Decision Processes (MDP) (see, among others, Derman (1970)). This infinite horizon
discounted problem can be viewed as an undiscounted, finite horizon problem with a random
termination time T that is geometrically distributed with parameter 1−γ. Hence, an effectively
longer horizon with mean 1

1−γ
is applied to the optimization problem as γ increases. Since

a smaller ρ in the continuous time objective (2) or (12) corresponds to a larger γ in the
discrete time objective, we can see the similar effect of a decreasing ρ on the effective horizon
of continuous time problems.
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6 Conclusions

This paper approaches RL from a stochastic control perspective. Indeed, control
and RL both deal with the problem of managing dynamic and stochastic systems
by making the best use of available information. However, as a recent survey
paper Recht (2018) points out, “...That the RL and control communities remain
practically disjoint has led to the co-development of vastly different approaches
to the same problems....” It is our view that communication and exchange of
ideas between the two fields are of paramount importance to the progress of
both fields, for an old idea from one field may well be a fresh one to the other.
The continuous-time relaxed stochastic control formulation employed in this
paper exemplifies such a vision.

The main contributions of this paper are conceptual rather than algorithmic:
casting the RL problem in a continuous-time setting and with the aid of stochas-
tic control and stochastic calculus, we interpret and explain why the Gaussian
distribution is best for exploration in RL. This finding is independent of the
specific parameters of the underlying dynamics and reward function structure,
as long as the dependence on actions is linear in the former and quadratic in
the latter. The same can be said about other main results of the paper, such
as the separation between exploration and exploitation in the mean and vari-
ance of the resulting Gaussian distribution, and the cost of exploration. The
explicit forms of the derived optimal Gaussian distributions do indeed depend
on the model specifications which are unknown in the RL context. With re-
gards to implementing RL algorithms based on our results for LQ problems, we
can either do it in continuous time and space directly following, for example,
Doya (2000), or modify the problem into an MDP one by discretizing the time,
and then learn the parameters of the optimal Gaussian distribution following
standard RL procedures (e.g. the so-called Q-learning). For that, our results
may again be useful: they suggest that we only need to learn among the class
of simpler Gaussian policies, i.e., π = N (· |θ1x + θ2, φ) (cf. (40)), rather than
generic (nonlinear) parametrized Gaussian policy πθ,φ = N (· |θ(x), φ(x)). We
expect that this simpler functional form can considerably increase the learning
speed.

Appendix A: Explicit Solutions to (28)

For a range of parameters, we derive explicit solutions to SDE (28) satisfied by
the optimal state process {X∗

t , t ≥ 0}.
If D = 0, the SDE (28) reduces to

dX∗
t =

(

AX∗
t − BQ

N

)

dt+ |C| |X∗
t | dWt, X∗

0 = x.

If x ≥ 0 and BQ ≤ 0, the above equation has a nonnegative solution given by

X∗
t = xe

(

A−C2

2

)

t+|C|Wt − BQ

N

∫ t

0

e

(

A−C2

2

)

(t−s)+|C|(Wt−Ws)ds.
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If x ≤ 0 and BQ ≥ 0, it has a nonpositive solution

X∗
t = xe

(

A−C2

2

)

t−|C|Wt − BQ

N

∫ t

0

e

(

A−C2

2

)

(t−s)−|C|(Wt−Ws)ds.

These two cases cover the special case when Q = 0 which is standard in the LQ
control formulation. We are unsure if there is an explicit solution when neither
of these assumptions is satisfied (e.g. when x ≥ 0 and BQ > 0).

If C = 0, the SDE (28) becomes

dX∗
t =

(

AX∗
t − BQ

N

)

dt+
|D|
N

√

Q2 + λN dWt,

and its unique solution is given by

X∗
t = xeAt − BQ

AN
(1− eAt) +

|D|
N

√

Q2 + λN

∫ t

0

eA(t−s)dWs, t ≥ 0,

if A 6= 0, and

X∗
t = x− BQ

N
t+

|D|
N

√

Q2 + λNWt, t ≥ 0,

if A = 0.
If C 6= 0 and D 6= 0, then the diffusion coefficient of SDE (28) is C2 in the

unknown, with the first and second order derivatives being bounded. Hence,
(28) can be solved explicitly using the Doss-Saussman transformation (see, for
example, Karatzas and Shreve (1991), pp 295-297). This transformation uses
the ansatz

X∗
t (ω) = F (Wt(ω), Yt(ω)), t ≥ 0, ω ∈ Ω (49)

for some deterministic function F and an adapted process Yt, t ≥ 0, solving a
random ODE. Applying Itô’s formula to (49) and using the dynamics in (28),
we deduce that F solves, for each fixed y, the ODE

∂F

∂z
=

√

(

CF (z, y)− DQ

N

)2

+
λD2

N
, F (0, y) = y. (50)

Moreover, Yt, t ≥ 0, is the unique pathwise solution to the random ODE

d

dt
Yt(ω) = G(Wt(ω), Yt(ω)), Y0(ω) = x, (51)

where

G(z, y) =
AF (z, y)− BQ

N − C
2

(

CF (z, y)− DQ
N

)

∂
∂yF (z, y)

.

It is easy to verify that both equations (50) and (51) have a unique solution.
Solving (50), we obtain

F (z, y) =

√

λ

N

∣

∣

∣

∣

D

C

∣

∣

∣

∣

sinh

(

|C|z + sinh(−1)

(

√

N

λ

∣

∣

∣

∣

C

D

∣

∣

∣

∣

(

y − DQ

CN

)

))

+
DQ

CN
.

This, in turn, leads to the explicit expression of the function G(z, y).
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Appendix B: Proof of Theorem 4

Recall that the function v, where v(x) = 1
2k2x

2 + k1x + k0, x ∈ R, where
k2, k1 and k0 are defined by (36), (37) and (38), respectively, satisfies the HJB
equation (14).

Throughout this proof we fix the initial state x ∈ R. Let π ∈ A(x) andXπ be
the associated state process solving (22) with π being used. Let T > 0 be arbi-

trary. Define the stopping times τπn := {t ≥ 0 :
∫ t

0
(e−ρtv′(Xπ

t )σ̃(X
π
t , πt))

2
dt ≥

n}, for n ≥ 1. Then, Itô’s formula yields

e−ρ(T∧τπ
n )v(Xπ

T∧τπ
n
) = v(x) +

∫ T∧τπ
n

0

e−ρt
(

− ρv(Xπ
t ) +

1

2
v′′(Xπ

t )σ̃
2(Xπ

t , πt)

+v′(Xπ
t )b̃(X

π
t , πt)

)

dt+

∫ T∧τπ
n

0

e−ρtv′(Xπ
t )σ̃(X

π
t , πt) dWt.

Taking expectations, using that v solves the HJB equation (14) and that π is in
general suboptimal yield

E

[

e−ρ(T∧τπ
n )v(Xπ

T∧τπ
n
)
]

= v(x)+E

[

∫ T∧τπ
n

0

e−ρt

(

−ρv(Xπ
t ) +

1

2
v′′(Xπ

t )σ̃
2(Xπ

t , πt) + v′(Xπ
t )b̃(X

π
t , πt)

)

dt

]

≤ v(x) − E

[

∫ T∧τπ
n

0

e−ρt

(

r̃(Xπ
t , πt)− λ

∫

R

πt(u) lnπt(u)du

)

dt

]

.

Classical results yield E
[

sup0≤t≤T |Xπ
t |2
]

≤ K(1+x2)eKT , for some constant
K > 0 independent of n (but dependent on T and the model coefficients).
Sending n → ∞, we deduce that

E
[

e−ρT v(Xπ
T )
]

≤ v(x) − E

[

∫ T

0

e−ρt

(

r̃(Xπ
t , πt)− λ

∫

R

πt(u) lnπt(u)du

)

dt

]

,

where we have used the dominated convergence theorem and that π ∈ A(x).
Next, we recall the admissible condition lim infT→∞ e−ρT

E
[

(Xπ
T )

2
]

= 0.

This, together with the fact that k2 < 0, lead to lim supT→∞ E
[

e−ρT v(Xπ
T )
]

=
0. Applying the dominated convergence theorem once more yields

v(x) ≥ E

[
∫ ∞

0

e−ρt

(

r̃(Xπ
t , πt)− λ

∫

R

πt(u) lnπt(u)du

)

dt

]

,

for each x ∈ R and π ∈ A(x). Hence, v(x) ≥ V (x), for all x ∈ R.
On the other hand, we deduce that the right hand side of (14) is maximized

at

π
∗(u;x) = N

(

u
∣

∣

∣

CDxv′′(x) +Bv′(x)−Rx−Q

N −D2v′′(x)
,

λ

N −D2v′′(x)

)

.
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Let π∗ = {π∗
t , t ≥ 0} be the open-loop control distribution generated from the

above feedback law along with the corresponding state process {X∗
t , t ≥ 0} with

X∗
0 = x, and assume for now that π∗ ∈ A(x). Then

E
[

e−ρT v(X∗
T )
]

= v(x)− E

[

∫ T

0

e−ρt

(

r̃(X∗
t , π

∗
t )− λ

∫

R

π∗
t (u) lnπ

∗
t (u)du

)

dt

]

.

Noting that lim infT→∞ E
[

e−ρT v(X∗
T )
]

≤ lim supT→∞ E
[

e−ρT v(X∗
T )
]

= 0, and
applying the dominated convergence theorem yield

v(x) ≤ E

[
∫ ∞

0

e−ρt

(

r̃(X∗
t , π

∗
t )− λ

∫

R

π∗
t (u) lnπ

∗
t (u)du

)

dt

]

,

for any x ∈ R. This proves that v is indeed the value function, namely v ≡ V .
It remains to show that π∗ ∈ A(x). First, we verify that

lim inf
T→∞

e−ρT
E
[

(X∗
T )

2
]

= 0, (52)

where {X∗
t , t ≥ 0} solves the SDE (41). To this end, Itô’s formula yields, for

any T ≥ 0,

(X∗
T )

2 = x2 +

∫ T

0

(

2
(

ÃX∗
t + B̃

)

X∗
t + (C̃1X

∗
t + C̃2)

2 +D2
)

dt

+

∫ T

0

2X∗
t

√

(

C̃1X∗
t + C̃2

)2

+ D̃2 dWt. (53)

Following similar arguments as in the proof of Lemma 10 in Appendix C, we

can show that E[(X∗
T )

2] contains the terms e(2Ã+C̃1

2
)T and eÃT .

If 2Ã+ C̃1
2 ≤ Ã, then Ã ≤ 0, in which case (52) easily follows. Therefore,

to show (52), it remains to consider the case in which the term e(2Ã+C̃1

2
)T

dominates eÃT , as T → ∞. In turn, using that k2 solves the equation (33), we
obtain

2Ã+ C̃1
2−ρ = 2A+

2B(k2(B + CD)−R)

N − k2D2
+

(

C +
D(k2(B + CD) −R)

N − k2D2

)2

−ρ

= 2A+ C2 − ρ+
2(B + CD)(k2(B + CD)−R)

N − k2D2
+

D2(k2(B + CD)−R)2

(N − k2D2)2

= 2A+C2 − ρ+
k2(2N − k2D

2)(B + CD)2

N − k2D2
− 2NR(B + CD)−D2R2

N − k2D2
. (54)

Notice that the first fraction is nonpositive due to k2 < 0, while the second
fraction is bounded for any k2 < 0. Using Assumption 3 on the range of ρ, we
then easily deduce (52).
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Next, we establish the admissibility constraint

E

[
∫ ∞

0

e−ρt |L(X∗
t , π

∗
t )| dt

]

< ∞.

The definition of L and the form of r(x, u) yield

E

[
∫ ∞

0

e−ρt |L(X∗
t , π

∗
t )| dt

]

= E

[
∫ ∞

0

e−ρt

∣

∣

∣

∣

∫

R

r(X∗
t , u)π

∗
t (u)du− λ

∫

R

π∗
t (u) lnπ

∗
t (u)du

∣

∣

∣

∣

dt

]

= E

[

∫ ∞

0

e−ρt
∣

∣

∣

∫

R

−
(

M

2
(X∗

t )
2
+RX∗

t u+
N

2
u2 + PX∗

t +Qu

)

π∗
t (u)du

+
λ

2
ln

(

2πeλ

N − k2D2

)

∣

∣

∣
dt
]

,

where we have applied similar computations as in the proof of Theorem 8. Recall
that

π∗
t (u) = N

(

u

∣

∣

∣

∣

(k2(B + CD)−R)X∗
t + k1B −Q

N − k2D2
,

λ

N − k2D2

)

, t ≥ 0.

It is then clear that it suffices to prove E
[∫∞

0 e−ρt(X∗
t )

2dt
]

< ∞, which follows

easily since, as shown in (54), ρ > 2Ã+C̃1
2
under Assumption 3. The remaining

admissibility conditions for π∗ can be easily verified.

Appendix C: Proof of Theorem 7

We first note that when (a) holds, the function v solves the HJB equation (32)
of the exploratory LQ problem. Similarly for the classical LQ problem when
(b) holds.

Next, we prove the equivalence between (a) and (b). First, a comparison
between the two HJB equations (32) and (45) yields that if v in (a) solves the
former, then w in (b) solves the latter, and vice versa.

Throughout this proof, we let x be fixed, being the initial state of both the
exploratory problem in statement (a) and the classical problem in statement
(b). Let π∗ = {π∗

t , t ≥ 0} and u∗ = {u∗
t , t ≥ 0} be respectively the open-loop

controls generated by the feedback controls π∗ and u
∗ of the two problems, and

X∗ = {X∗
t , t ≥ 0} and x∗ = {x∗

t , t ≥ 0} be respectively the corresponding state
processes, both starting from x. It remains to show the equivalence between the
admissibility of π∗ for the exploratory problem and that of u∗ for the classical
problem. To this end, we first compute E[(X∗

T )
2] and E[(x∗

T )
2].

To ease the presentation, we rewrite the exploratory dynamics of X∗ under
π∗ as

dX∗
t =

(

AX∗
t +B

(α2(B + CD)−R)X∗
t + α1B −Q

N − α2D2

)

dt
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+

√

(

CX∗
t +D

(α2(B + CD)−R)X∗
t + α1B −Q

N − α2D2

)2

+
λD2

N − α2D2
dWt

= (A1X
∗
t +A2) dt+

√

(B1X∗
t +B2)

2
+ C1 dWt,

where A1 := A+ B(α2(B+CD)−R)
N−α2D2 , A2 := B(α1B−Q)

N−α2D2 , B1 := C + D(α2(B+CD)−R)
N−α2D2 ,

B2 := D(α1B−Q)
N−α2D2 and C1 := λD2

N−α2D2 .

Similarly, the classical dynamics of x∗ under u∗ solves

dx∗
t = (A1x

∗
t +A2) dt+ (B1x

∗
t +B2) dWt.

The desired equivalence of the admissibility then follows from the following
lemma.

Lemma 10 We have that (i) lim infT→∞ e−ρT
E
[(

X∗
T

)2]
= 0 if and only if

lim infT→∞ e−ρT
E
[(

x∗
T

)2]
= 0; (ii) E

[

∫∞

0
e−ρt

(

X∗
t

)2
dt
]

< ∞ if and only if

E

[

∫∞

0
e−ρt

(

x∗
t

)2
dt
]

< ∞.

Proof. Denote n(t) := E [X∗
t ], for t ≥ 0. Then, a standard argument involving

a series of stopping times and the dominated convergence theorem yields the
ODE

dn(t)

dt
= A1n(t) +A2, n(0) = x,

whose solution is n(t) =
(

x+ A2

A1

)

eA1t − A2

A1
, if A1 6= 0, and n(t) = x + A2t, if

A1 = 0. Similarly, the function m(t) := E
[

(X∗
t )

2
]

, t ≥ 0, solves the ODE

dm(t)

dt
= (2A1 +B2

1)m(t) + 2(A2 +B1B2)n(t) +B2
2 + C1, m(0) = x2.

We can also show that n(t) = E
[

x∗
t

]

, and deduce that m̂(t) := E
[

(x∗
t )

2
]

,
t ≥ 0, satisfies

dm̂(t)

dt
= (2A1 +B2

1)m̂(t) + 2(A2 +B1B2)n(t) + B2
2 , m̂(0) = x2.

Next, we find explicit solutions to the above ODEs corresponding to various
conditions on the parameters.

(a) If A1 = B2
1 = 0, then direct computation gives n(t) = x+A2t, and

m(t) = x2 +A2(x+A2t)t+ (B2
2 + C1)t,

m̂(t) = x2 +A2(x+A2t)t+B2
2t.

(b) If A1 = 0 and B2
1 6= 0, we have n(t) = x+A2t, and

m(t) =

(

x2 +
2(A2 +B1B2)

(

A2 +B2
1(x+B2

2 + C1)
)

B4
1

)

eB
2

1
t

28



−2(A2 +B1B2)
(

A2 +B2
1(x+B2

2 + C1)
)

B4
1

,

m̂(t) =

(

x2 +
2(A2 +B1B2)

(

A2 +B2
1(x+B2

2)
)

B4
1

)

eB
2

1
t

−2(A2 +B1B2)
(

A2 +B2
1(x+B2

2)
)

B4
1

.

(c) If A1 6= 0 and A1 + B2
1 = 0, then n(t) =

(

x+ A2

A1

)

eA1t − A2

A1
. Further

calculations yield

m(t) =

(

x2 +
A1(B

2
2 + C1)− 2A2(A2 +B1B2)

A2
1

)

eA1t

+
2(A2 +B1B2)(A1x+A2)

A1
teA1t − A1(B

2
2 + C1)− 2A2(A2 +B1B2)

A2
1

,

m̂(t) =

(

x2 +
A1B

2
2 − 2A2(A2 +B1B2)

A2
1

)

eA1t

+
2(A2 +B1B2)(A1x+A2)

A1
teA1t − A1B

2
2 − 2A2(A2 +B1B2)

A2
1

.

(d) If A1 6= 0 and 2A1 +B2
1 = 0, we have n(t) =

(

x+ A2

A1

)

eA1t − A2

A1

, and

m(t) =
2(A2 +B1B2)(A1x+A2)

A2
1

eA1t

+
A1(B

2
2 + C1)− 2A2(A2 +B1B2)

A2
1

t+ x2 − 2(A2 +B1B2)(A1x+A2)

A2
1

,

m̂(t) =
2(A2 +B1B2)(A1x+A2)

A2
1

eA1t

+
A1B

2
2 − 2A2(A2 +B1B2)

A2
1

t+ x2 − 2(A2 +B1B2)(A1x+A2)

A2
1

.

(e) If A1 6= 0, A1 + B2
1 6= 0 and 2A1 + B2

1 6= 0, then we arrive at n(t) =
(

x+ A2

A1

)

eA1t − A2

A1

, and

m(t) =
(

x2 +
2(A2 +B1B2)(A1x+A2)

A1(A1 +B2
1)

+
A1(B

2
2 + C1)− 2A2(A2 +B1B2)

A1(2A1 +B2
1)

)

e(2A1+B2

1
)t

−2(A2 +B1B2)(A1x+A2)

A1(A1 +B2
1)

eA1t − A1(B
2
2 + C1)− 2A2(A2 +B1B2)

A1(2A1 +B2
1)

,

m̂(t) =

(

x2 +
2(A2 +B1B2)(A1x+A2)

A1(A1 +B2
1)

+
A1B

2
2 − 2A2(A2 +B1B2)

A1(2A1 +B2
1)

)

e(2A1+B2

1
)t
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−2(A2 +B1B2)(A1x+A2)

A1(A1 +B2
1)

eA1t − A1B
2
2 − 2A2(A2 +B1B2)

A1(2A1 +B2
1)

.

It is easy to see that for all cases (a)–(e), the assertions in the Lemma follow
and we conclude.
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