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ON OSCULATING FRAMING OF REAL ALGEBRAIC LINKS

Grigory Mikhalkin and Stepan Orevkov

Abstract. For a real algebraic link in RP
3, we prove that its encomplexed writhe

(an invariant introduced by Viro) is maximal for a given degree and genus if and

only if its self-linking number with respect to the framing by the osculating planes is
maximal for a given degree.

1. Introduction and statement of the main result

By real algebraic curve in RP
3 we mean a complex curve in CP

3 invariant under
complex conjugation. We use the same notation for a real curve and the set of
its complex points and, if it is denoted by A, then RA stands for the set of real
points which is called a real algebraic link if it is non-empty and A is smooth. A
real algebraic link is called maximally writhed or MWλ-link if |wλ(L)| (a variation
of Viro’s invariant [7]) attains the maximal possible value (d−1)(d−2)/2−g where
d and g is the degree and genus of A respectively. We refer to [3] for a precise
definition of wλ.

In [3, Thm. 2] we proved that several topological and geometric invariants are
maximized on MWλ-links. In this paper we add one more item to this collection:
we show that the self-linking number of L with respect to the osculating framing
attains its maximal value (for links of a given degree) if and only if L is an MWλ-
link. The proof is very similar to that of the main theorem of [3]. Let us give
precise definitions and statements.

Let L be an oriented link in a rational homology 3-sphere. A framing of L is
a continuous 1-dimensional subbundle of the normal bundle of L or, equivalently,
a continuous field (defined on L) of 2-dimensional planes tangent to L. Given a
framed oriented link L, its self-linking number is defined as follows. Let F be an
embedded annulus or Möbius band with core L, tangent to the framing. Then the
self-linking number is 1

2
lk(L, ∂F ) where the boundary ∂F of F is oriented so that

[∂F ] = 2[L] in H1(F ).

For an oriented link L in RP
3, the osculating framing is the framing defined by

the field of osculating planes. We denote the self-linking number of L with respect
to this framing by osc(L). If L is a non-oriented link and O an orientation of L, we
use the notation osc(L,O) which is self-explained.

Recall that a smooth irreducible real algebraic curve A is called an M -curve if
RA has g + 1 connected components where g is the genus of A. In this case RA
divides A into two halves. The boundary orientation on RA induced by any of
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these halves is called a complex orientation. The main result of the paper is the
following.

Theorem 1. Let L = RA be an irreducible real algebraic link of degree d ≥ 3 and

O be an orientation of L. Then:

(a) | osc(L,O)| ≤ d(d− 2)/2.

(b) | osc(L,O)| = d(d− 2)/2 if and only if L is an MWλ-link (by [3, Thm. 2],
in this case A is an M -curve of genus at most d − 3) and O is its complex

orientation.

Remark. In the space of real algebraic links of a given degree and genus we
can distinguish three kinds of “walls”. The walls of the first kind correspond to
curves with a double point with real local branches. When crossing such walls,
both invariants wλ(L) and osc(L) are changed by ±2. The walls of the second
kind correspond to curves with a real double point with complex conjugate local
branches. When crossing such walls, wλ(L) does change but osc(L) does not. The
third kind of wall corresponds to curves which have a local branch parametrized by
t 7→ (t, t3+o(t3), t4+o(t4)) in some affine chart. When crossing such a wall, wλ(L)
does not change but osc(L) does. So, in general, the invariants wλ(L) and osc(L)
are more or less independent. Nevertheless, Theorem 1 implies that the chamber
where they have maximal value is bounded only by the walls of the first kind –
common for the both invariants.

2. A variant of Klein’s formula for

the number of real inflection points

Let C ∈ P2 be a nodal real irreducible algebraic curve. It may have three types
of nodes: real nodes with real local branches of C, real nodes with imaginary local
branches of C, or non-real nodes (coming in conjugate pairs). Denote the number
of nodes of each type with h, e, and i respectively.

A real flex is a local real branch of C with the order of tangency ω to its tangent
line greater than 1 (i.e. the local intersection number is ω+1 ≥ 3). The multiplicity
of a real flex is ω − 1. In an affine chart of P2 a flex corresponds to a critical
point of the Gauss map. It is easy to see that the multiplicity of a flex equals to
the multiplicity of the corresponding critical point. Thus a multiple flex can be
thought of as ω − 1 ordinary flexes collected at the same point. We denote with F
the number of flexes counted with multiplicities.

A solitary real bitangent is a real line L ⊂ P2 which is tangent to C at a non-real
point (and thus also at the complex conjugate point). The multiplicity of L is the
sum of the orders ω over all local branches of C \ RP

2 tangent to L. We denote
with B the number of solitary real bitangents counted with multiplicities. Clearly,
B is an even number.

Lemma 2.1. (Klein’s formula [1] for nodal curves). For a nodal real irreducible

curve of degree d in P
2 we have

F +B = d(d− 2)− 2h− 2i.

Proof. As in [6], we use additivity of the Euler characteristic χ to derive Klein’s

formula. Let ν : C̃ → C be the normalization. The space of all real lines in P2 is
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homeomorphic to RP
2, and thus has the Euler characteristic 1. For a real line L

the set ν−1(L) consists of d distinct points unless L is tangent to C. Each tangency
decreases the size of this set by ω.

Consider the space X = {(p, L) | p ∈ C, L ∋ p}, where L ⊂ RP
2 is a real line.

From the observation above we deduce

χ(X) +B + F + χ(RC̃) = d.

Note that χ(RC̃) = 0 and χ(X) = χ(ν−1(C \ RC)) = χ(C̃) − 2e, as each point
of RC lifts to a circle in X while χ(S1) = 0. The lemma now follows from the

adjunction formula χ(C̃) = 3d− d2 + 2e+ 2h+ 2i.

Remark 2.2. Lemma 2.1 can be also obtained as an almost immediate consequence
from Schuh’s generalization [5] of another Klein’s formula

d−
∑

x∈C∩RP
2

(m(x)− r(x)) = d∨ −
∑

x∈C∨∩RP
2∨

(m∨(x)− r∨(x))

(see [6, Thm. 6.D] for a proof via Euler characteristics) combined with the class
formula d∨ = d(d− 1) − 2e− 2h− 2i. Here C∨ is the dual curve, d∨ is its degree,
m(x) and r(x) (resp. m∨(x) and r∨(x)) are the multiplicity and the number of real
local branches of C (resp. of C∨) at x.

3. Proof of the main theorem

Let L = RA be a smooth irreducible real algebraic link of degree d endowed with
an orientation O. Let U be the set of points p in RP

3 \ L such that the projection
of L from p is a nodal curve.

Fix a point p ∈ U . Let Cp = πp(A) where πp : P3 \ {p} → P2 is the linear
projection from p. Consider the field of tangent planes to L passing through p,
(so-called blackboard framing). Let bp(L) be the self-linking number with respect
to it. We have

bp(L) =
∑

q

s(q), thus |bp(L)| ≤ h(Cp) (1)

where q runs the hyperbolic (i. e., with real local branches) double points of Cp,
h(Cp) is the number of them, and s(q) is the sign of the crossing at q in the sense of
knot diagrams. The difference | osc(L)−bp(L)| is bounded by one half of the number
of those points where the osculating plane passes through p. This is the number of
real flexes of Cp which we denote by f(Cp). We have f(Cp) ≤ d(d − 2) − 2h(Cp)
by Lemma 2.1. Thus

| osc(L)| ≤ | osc(L)− bp(L)|+ |bp(L)| ≤
1

2
f(Cp) + h(Cp) ≤

1

2
d(d− 2) (2)

which is Part (a) of Theorem 1.
Now suppose that | osc(L)| = d(d− 2)/2. Then for any choice of p ∈ U we have

the equality sign everywhere in (2), in particular, we have the equality sign in (1),
i.e., all crossings are of the same sign, say, positive:

s(q) = +1 for any hyperbolic crossing q of Cp. (3)
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By Lemma 2.1, the equality sign in the last inequality of (2) implies that all
flexes of Cp are ordinary for any choice of p ∈ U . This implies that L has non-
zero torsion at each point. Indeed, otherwise there exists a real plane P which has
tangency with L of order greater than 3. It is easy to check that U has non-empty
intersection with any plane, thus we can choose a point p ∈ U ∩ P , and then Cp

would have a k-flex with k > 3. Moreover, the positivity of all crossings for any
generic projection implies that the torsion is everywhere positive (cf. the proof of
[2, Prop. 1]).

Similarly to [2, 3], we derive from these conditions that the real tangent surface
TL (the union of all real lines in RP

3 tangent to L) is a union of (non-smooth)
embedded tori. Indeed, suppose that two tangent lines cross. Let P be the plane
passing through them (any plane passing through them if they coincide) and let ℓ
be the line passing through the two tangency points. Let p be a generic real point
on ℓ. Then Cp has two real local branches at the same point such that each of them
is either singular or tangent to the line πp(P ). Since L has non-zero torsion, all
singular branches of Cp are ordinary cusps. Then we can find a generic point close
to p such that the projection from it does not satisfy (3).

Let K1, . . . , Kn be the connected components of L, and let TKi be the con-
nected component of TL that contains Ki (the union of real lines tangent to Ki).
The same arguments as in [3, Lemma 4.12] show that, for some positive integers
a1, . . . , an, there exist real lines ℓi, ℓ

′
i, i = 1, . . . , n, such that (for suitable choice of

the orientations) the linking numbers of their real loci li = Rℓi and l′i = Rℓ′i with
the components of L are:

2 lk(li, Ki) = ai + 2, 2 lk(l′i, Ki) = ai. (4)

Moreover, each TKi splits RP
3 into two solid tori Ui and Vi such that li ⊂ Ui, l

′
i ⊂

Vi, the homology classes [li]U and [l′i]V generate H1(Ui) and H1(Vi) respectively,
and we have [Ki]U = ai[li]U and [Ki]V = (ai + 2)[l′i]V . It follows that

2 osc(Ki) = ai(ai + 2) (5)

(the linking number of Ki with its small shift disjoint from TL). Indeed, if Ki is
parametrized by t 7→ r(t) and the torsion is non-zero, then TKi has a cuspidal edge
along Ki and a small shift of Ki in the direction of the vector field r̈ is disjoint from
TKi (see Figure 1). A priori this argument proves (5) up to sign only. However
the positivity of the torsion implies that osc(Ki) is positive.

r

..

Figure 1

If L is connected (i. e., n = 1), it remains to note that then the condition
2 osc(K1) = d(d − 2) implies (a1 + 2)a1 = d(d − 2), hence a1 = d − 2. Thus
L satisfies Condition (v) of [3, Thm. 1] which concludes the proof that L is an
MW -knot.
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If L is not necessarily connected, we argue as follows. By Murasugi’s result [4,
Prop. 7.5] (see also [3, Prop. 1.2]), the number of crossings of any projection of Ki

is at least (ai + 2)(ai − 1)/2. Hence, for h = h(Cp), we have

2h ≥
n
∑

i=1

(ai + 2)(ai − 1) +
∑

i6=j

| lk(Ki, Kj)|. (6)

On the other hand, if we choose p on a line passing through a pair of complex
conjugate points, then Cp has at least one elliptic double point (i. e., a real double
point with complex conjugate local branches), whence by the genus formula we
obtain

h ≤ (d− 1)(d− 2)/2− g − 1 ≤ (d− 1)(d− 2)/2− n (7)

(the second inequality in (7) is the Harnack’s bound). Hence

d(d− 2) = 2 osc(L) = 2

n
∑

i=1

osc(Ki) +
∑

i6=j

lk(Ki, Kj)

≤

n
∑

i=1

ai(ai + 2) + 2h−

n
∑

i=1

(ai + 2)(ai − 1) by (5) and (6)

= 2h+ 2n+

n
∑

i=1

ai ≤ (d− 1)(d− 2) +

n
∑

i=1

ai. by (7)

Thus
∑

ai ≥ d− 2 and we conclude that L is an MWλ-link. This fact follows from
[3, Prop. 1.1] (which implies that ps(L) =

∑

ai) combined with [3, Thm. 2] (which
claims, in particular, that L is an MWλ-link as soon as ps(L) ≥ d − 2). Here we
denote with ps(L) the plane section number of L. It is a topological invariant of
a link in RP

3 defined in [3] as the minimal number of intersection points with a
generic plane where the minimum is taken over the isotopy class of the link.

Let us show that O is a complex orientation of L. It is easy to see that the
plane section number is at most d− 2 for any algebraic link of degree d. Indeed, it
is enough to consider a small shift of a non-osculating tangent plane in a suitable
direction. Thus the inequality in ps(L) =

∑

ai ≥ d − 2 is in fact an equality. It
follows that the equality is attained in all the inequalities used in the proof, in
particular, we have | lk(Ki, Kj)| = lk(Ki, Kj) for i 6= j. Since all components of an
MWλ-link endowed with a complex orientation are positively linked (see [3]), we
are done. This completes the proof of the “only if ” part of (b).

To prove the “if ” part of (b), we notice that by [3, Thm. 3 and §4.4], any
MWλ-link L of degree d and genus g is a union of g + 1 knots K0 ∪ · · · ∪Kg and
lk(Ki, Kj) = aiaj , i 6= j, for some positive integers a0, . . . , ag with a0 + · · ·+ ag =
d − 2. Furthermore, the torsion of L is everywhere positive and each knot Ki is
arranged on its tangent surface TKi as described above, thus (5) holds for each i,
and we obtain

2 osc(L) =

g
∑

i=0

osc(Ki) +
∑

i6=j

lk(Ki, Kj) =

g
∑

i=0

ai(ai + 2) +
∑

i6=j

aiaj

=
(

∑

ai

)2

+ 2
∑

ai = (d− 2)2 + 2(d− 2) = d(d− 2).
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