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ON OSCULATING FRAMING OF REAL ALGEBRAIC LINKS

GRIGORY MIKHALKIN AND STEPAN OREVKOV

ABSTRACT. For a real algebraic link in RP3, we prove that its encomplexed writhe
(an invariant introduced by Viro) is maximal for a given degree and genus if and
only if its self-linking number with respect to the framing by the osculating planes is
maximal for a given degree.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

By real algebraic curve in RP? we mean a complex curve in CP? invariant under
complex conjugation. We use the same notation for a real curve and the set of
its complex points and, if it is denoted by A, then RA stands for the set of real
points which is called a real algebraic link if it is non-empty and A is smooth. A
real algebraic link is called mazimally writhed or MW y-link if |wx(L)| (a variation
of Viro’s invariant [7]) attains the maximal possible value (d—1)(d—2)/2 — g where
d and g is the degree and genus of A respectively. We refer to [3] for a precise
definition of w.

In [3, Thm. 2] we proved that several topological and geometric invariants are
maximized on M Wy-links. In this paper we add one more item to this collection:
we show that the self-linking number of L with respect to the osculating framing
attains its maximal value (for links of a given degree) if and only if L is an MW)-
link. The proof is very similar to that of the main theorem of [3]. Let us give
precise definitions and statements.

Let L be an oriented link in a rational homology 3-sphere. A framing of L is
a continuous 1-dimensional subbundle of the normal bundle of L or, equivalently,
a continuous field (defined on L) of 2-dimensional planes tangent to L. Given a
framed oriented link L, its self-linking number is defined as follows. Let I’ be an
embedded annulus or Mobius band with core L, tangent to the framing. Then the
self-linking number is § Ik(L, OF) where the boundary OF of F is oriented so that
[OF)| = 2[L] in H{(F).

For an oriented link L in RP?, the osculating framing is the framing defined by
the field of osculating planes. We denote the self-linking number of L with respect
to this framing by osc(L). If L is a non-oriented link and O an orientation of L, we
use the notation osc(L, O) which is self-explained.

Recall that a smooth irreducible real algebraic curve A is called an M -curve if
RA has g + 1 connected components where g is the genus of A. In this case RA
divides A into two halves. The boundary orientation on RA induced by any of
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these halves is called a complex orientation. The main result of the paper is the
following.

Theorem 1. Let L = RA be an irreducible real algebraic link of degree d > 3 and
O be an orientation of L. Then:

(a) |osc(L,0)| < d(d—2)/2.
(b) |osc(L,O)| =d(d —2)/2 if and only if L is an MWy-link (by [3, Thm. 2],

in this case A is an M-curve of genus at most d — 3) and O is its complex
orientation.

Remark. In the space of real algebraic links of a given degree and genus we
can distinguish three kinds of “walls”. The walls of the first kind correspond to
curves with a double point with real local branches. When crossing such walls,
both invariants wy(L) and osc(L) are changed by +2. The walls of the second
kind correspond to curves with a real double point with complex conjugate local
branches. When crossing such walls, wy (L) does change but osc(L) does not. The
third kind of wall corresponds to curves which have a local branch parametrized by
t = (t,t2+0o(t?),t* +o(t*)) in some affine chart. When crossing such a wall, wy (L)
does not change but osc(L) does. So, in general, the invariants wy (L) and osc(L)
are more or less independent. Nevertheless, Theorem 1 implies that the chamber
where they have maximal value is bounded only by the walls of the first kind —
common for the both invariants.

2. A VARIANT OF KLEIN’S FORMULA FOR
THE NUMBER OF REAL INFLECTION POINTS

Let C' € IP? be a nodal real irreducible algebraic curve. It may have three types
of nodes: real nodes with real local branches of C', real nodes with imaginary local
branches of C', or non-real nodes (coming in conjugate pairs). Denote the number
of nodes of each type with h, e, and i respectively.

A real flex is a local real branch of C' with the order of tangency w to its tangent
line greater than 1 (i.e. the local intersection number is w+1 > 3). The multiplicity
of a real flex is w — 1. In an affine chart of P? a flex corresponds to a critical
point of the Gauss map. It is easy to see that the multiplicity of a flex equals to
the multiplicity of the corresponding critical point. Thus a multiple flex can be
thought of as w — 1 ordinary flexes collected at the same point. We denote with F
the number of flexes counted with multiplicities.

A solitary real bitangent is a real line L C P? which is tangent to C' at a non-real
point (and thus also at the complex conjugate point). The multiplicity of L is the
sum of the orders w over all local branches of C'\ RP? tangent to L. We denote
with B the number of solitary real bitangents counted with multiplicities. Clearly,
B is an even number.

Lemma 2.1. (Klein’s formula [1] for nodal curves). For a nodal real irreducible
curve of degree d in P? we have

F+B=d(d—2)—2h—2i.

Proof. As in [6], we use additivity of the Euler characteristic x to derive Klein’s
formula. Let v : C — C be the normalization. The space of all real lines in P? is
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homeomorphic to RP?, and thus has the Euler characteristic 1. For a real line L
the set v~ (L) consists of d distinct points unless L is tangent to C. Each tangency
decreases the size of this set by w.

Consider the space X = {(p,L) | p € C, L > p}, where L C RP? is a real line.
From the observation above we deduce

X(X)+ B+ F + x(RC) = d.

Note that y(RC) = 0 and x(X) = x(v~*(C \ RC)) = x(C) — 2e, as each point
of RC lifts to a circle in X while x(S1) = 0. The lemma now follows from the
adjunction formula x(C) = 3d — d? + 2e + 2h + 2i.

Remark 2.2. Lemma 2.1 can be also obtained as an almost immediate consequence
from Schuh’s generalization [5] of another Klein’s formula

d— Y (m@)—r@)=d"- 3 (m'(@) -r(2))

z€CNRP2 z€CVNRP2Y

(see [6, Thm. 6.D] for a proof via Euler characteristics) combined with the class
formula d¥ = d(d — 1) — 2e — 2h — 2i. Here C is the dual curve, d¥ is its degree,
m(x) and r(z) (resp. m" (z) and r¥(x)) are the multiplicity and the number of real
local branches of C' (resp. of CV) at x.

3. PROOF OF THE MAIN THEOREM

Let L = RA be a smooth irreducible real algebraic link of degree d endowed with
an orientation O. Let U be the set of points p in RP?\ L such that the projection
of L from p is a nodal curve.

Fix a point p € U. Let C, = m,(A) where 7, : P3\ {p} — P? is the linear
projection from p. Consider the field of tangent planes to L passing through p,
(so-called blackboard framing). Let b,(L) be the self-linking number with respect
to it. We have

bp(L) = ZS<Q)7 thus |bp(L)| < h(Cyp) (1)

where ¢ runs the hyperbolic (i. e., with real local branches) double points of Cp,
h(Cp) is the number of them, and s(q) is the sign of the crossing at ¢ in the sense of
knot diagrams. The difference | osc(L)—b,(L)| is bounded by one half of the number
of those points where the osculating plane passes through p. This is the number of
real flexes of €}, which we denote by f(C},). We have f(C,) < d(d — 2) — 2h(C))
by Lemma 2.1. Thus

[osce(L)| < Josc(L) = bp(L)| + |bp(L)| < 5(Cp) + M(Cp) < 5d(d—2)  (2)

which is Part (a) of Theorem 1.

Now suppose that |osc(L)| = d(d — 2)/2. Then for any choice of p € U we have
the equality sign everywhere in (2), in particular, we have the equality sign in (1),
i.e., all crossings are of the same sign, say, positive:

s(q) = +1 for any hyperbolic crossing ¢ of C,,. (3)
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By Lemma 2.1, the equality sign in the last inequality of (2) implies that all
flexes of C, are ordinary for any choice of p € U. This implies that L has non-
zero torsion at each point. Indeed, otherwise there exists a real plane P which has
tangency with L of order greater than 3. It is easy to check that U has non-empty
intersection with any plane, thus we can choose a point p € & N P, and then C,
would have a k-flex with £ > 3. Moreover, the positivity of all crossings for any
generic projection implies that the torsion is everywhere positive (cf. the proof of
[2, Prop. 1]).

Similarly to [2, 3], we derive from these conditions that the real tangent surface
TL (the union of all real lines in RP? tangent to L) is a union of (non-smooth)
embedded tori. Indeed, suppose that two tangent lines cross. Let P be the plane
passing through them (any plane passing through them if they coincide) and let ¢
be the line passing through the two tangency points. Let p be a generic real point
on £. Then C), has two real local branches at the same point such that each of them
is either singular or tangent to the line m,(P). Since L has non-zero torsion, all
singular branches of C), are ordinary cusps. Then we can find a generic point close
to p such that the projection from it does not satisfy (3).

Let K4,..., K, be the connected components of L, and let TK; be the con-
nected component of T'L that contains K; (the union of real lines tangent to K;).
The same arguments as in [3, Lemma 4.12] show that, for some positive integers
ai,...,an, there exist real lines ¢;, ¢;, i = 1,...,n, such that (for suitable choice of
the orientations) the linking numbers of their real loci [; = R¢; and I} = R, with
the components of L are:

Moreover, each T K; splits RP? into two solid tori U; and V; such that I; C U, l; C
Vi, the homology classes [l;] and [l}]y generate Hy(U;) and Hy(V;) respectively,
and we have [K;|y = a;[l;]v and [K;]v = (a; + 2)[l}]y. It follows that

20sc(K;) = a;(a; +2) (5)

(the linking number of K; with its small shift disjoint from T'L). Indeed, if K; is
parametrized by ¢ — r(t) and the torsion is non-zero, then T'K; has a cuspidal edge
along K; and a small shift of K; in the direction of the vector field # is disjoint from
TK; (see Figure 1). A priori this argument proves (5) up to sign only. However
the positivity of the torsion implies that osc(K;) is positive.

FIGURE 1

If L is connected (i. e., n = 1), it remains to note that then the condition
20sc(K1) = d(d — 2) implies (a1 + 2)a; = d(d — 2), hence a3 = d — 2. Thus
L satisfies Condition (v) of [3, Thm. 1] which concludes the proof that L is an
MW -knot.
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If L is not necessarily connected, we argue as follows. By Murasugi’s result [4,
Prop. 7.5] (see also [3, Prop. 1.2]), the number of crossings of any projection of K;
is at least (a; +2)(a; — 1)/2. Hence, for h = h(C,), we have

2h > i(ai—i—Q)(ai— D)+ k(K K. (6)

i=1 i#]

On the other hand, if we choose p on a line passing through a pair of complex
conjugate points, then C), has at least one elliptic double point (i. e., a real double
point with complex conjugate local branches), whence by the genus formula we
obtain

h<(d-1)(d-2)/2-g-1<(d-1)(d-2)/2-n (7)

(the second inequality in (7) is the Harnack’s bound). Hence

d(d —2) =2o0sc(L) =2 i osc(K;) + > 1k(K;, K;)
i=1 i#j

<Yt 2 -S4 —1) by (3) and (6

:2h—|—2n—|—iai§(d—1)(d—2)+iai. by (7)

=1

Thus > a; > d— 2 and we conclude that L is an MW)-link. This fact follows from
[3, Prop. 1.1] (which implies that ps(L) = > a;) combined with [3, Thm. 2] (which
claims, in particular, that L is an MW)-link as soon as ps(L) > d — 2). Here we
denote with ps(L) the plane section number of L. It is a topological invariant of
a link in RP® defined in [3] as the minimal number of intersection points with a
generic plane where the minimum is taken over the isotopy class of the link.

Let us show that O is a complex orientation of L. It is easy to see that the
plane section number is at most d — 2 for any algebraic link of degree d. Indeed, it
is enough to consider a small shift of a non-osculating tangent plane in a suitable
direction. Thus the inequality in ps(L) = > a; > d — 2 is in fact an equality. It
follows that the equality is attained in all the inequalities used in the proof, in
particular, we have | 1k(K;, K;)| = lk(K;, K;) for i # j. Since all components of an
MW jy-link endowed with a complex orientation are positively linked (see [3]), we
are done. This completes the proof of the “only if” part of (b).

To prove the “if” part of (b), we notice that by [3, Thm. 3 and §4.4], any
MWy-link L of degree d and genus g is a union of g + 1 knots Ko U ---U K, and
k(K;, Kj) = a;aj, i # j, for some positive integers ao, ...,a, with ag + -+ + a4 =
d — 2. Furthermore, the torsion of L is everywhere positive and each knot Kj; is
arranged on its tangent surface TK; as described above, thus (5) holds for each 1,
and we obtain

20sc(L) = Zosc(Ki) + Zlk(Ki, K;) = Zai(ai +2)+ Zaiaj
i=0

i i=0 i

B (Zai>2+22aiZ(d—2>2+2(d—2) =d(d—2).
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