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Optimal Sensor and Actuator Selection using Balanced Model Reduction
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Abstract—Optimal sensor and actuator selection is a central
challenge in high-dimensional estimation and control. Nearly all
subsequent control decisions are affected by these sensor/actuator
locations, and optimal placement amounts to an intractable
brute-force search among the combinatorial possibilities. In this
work, we exploit balanced model reduction and greedy optimiza-
tion to efficiently determine sensor and actuator selections that
optimize observability and controllability. In particular, we deter-
mine locations that optimize scalar measures of observability and
controllability via greedy matrix QR pivoting on the dominant
modes of the direct and adjoint balancing transformations.
Pivoting runtime scales linearly with the state dimension, making
this method tractable for high-dimensional systems. The results
are demonstrated on the linearized Ginzburg-Landau system, for
which our algorithm approximates known optimal placements
computed using costly gradient descent methods.

Index Terms—optimal control, balanced truncation, sensor
selection, actuator selection, observability, controllability.

I. INTRODUCTION

Optimizing the selection of sensors and actuators is one
of the foremost challenges in feedback control [1]. For high-
dimensional systems it is impractical to monitor or actuate ev-
ery state, hence a few sensors and actuators must be carefully
positioned for effective estimation and control. Determining
optimal selections with respect to a desired objective is an
NP-hard selection problem, and in general can only be solved
by enumerating all possible configurations. This combinatorial
growth in complexity is intractable; therefore, the placement
of sensors and actuators are typically chosen according to
heuristics and intuition. In this paper, we propose a greedy
algorithm for sensor and actuator selection based on jointly
maximizing observability and controllability in linear time-
invariant systems. Our approach (see Fig. 1) exploits low-rank
transformations that balance the observability and controlla-
bility gramians to bypass the combinatorial search, enabling
favorable scaling for high-dimensional systems.

To understand the challenges of sensor and actuator place-
ment for estimation and control, we will first consider optimal
sensor placement, which has mostly been used to reconstruct
static signals. The primary challenge of sensor selection is that
given n possible locations and a budget of r sensors, there
are combinatorially many, (f), configurations to evaluate in a
brute-force search. Fortunately, there are heuristics that employ
greedy selection of sensors based on maximizing mutual
information [2] and information theoretic criteria [3]. Another
popular approach relaxes sensor selection to a weighted convex
combination of possible sensors [4], [5], [6], typically solved
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Fig. 1: Schematic of balanced sensor and actuator selection
for the optimal control of a high-dimensional system.

using semidefinite programming. Both heuristic approaches
optimize submodular objective functions [7], which bound
the distance between heuristic and optimal placement. Some
objectives, such as those based on the quality of a Kalman
filter, are not submodular [8]. Alternatively, sparsity-promoting
optimization can be used to determine sensors and actua-
tors [9], [10], [11], although non-differentiability of sparsity
promoting terms motivates other optimization techniques [12].

Even such heuristics cannot accommodate the large dimen-
sion of many physical models, such as in fluid dynamics.
Fortunately, high-dimensional systems often evolve according
to relatively few intrinsic degrees of freedom. Thus, it is possi-
ble to leverage dimensionality reduction to strategically select
sensors. One approach to place point sensors [I3] computes
the empirical interpolation points via EIM [14] corresponding
to the proper orthogonal decomposition (POD) [15] of data,
to determine important locations in state space.

For systems with actuation, it is necessary to simultaneously
consider the placement of sensors and actuators, since the
most observable and most controllable subspaces are often
different. Sensors and actuators for optimal feedback control
are generally placed along the most observable and control-
lable directions, respectively [16], [17], [18], [19], [7], using
objective functions based on the associated observability or
controllability gramians. Standard metrics for evaluating a
certain sensor/actuator configuration include the Hs norm [20],
[16], a measure of the average impulse response, and the
H, norm to measure the worst case performance. A chief
drawback is the need to recompute the controller with each
new configuration of sensors and actuators given by either
the gradient minimization computation or brute-force searches.
Moreover, these methods do not exploit the state-of-the-art in
model reduction to optimize sensor and actuator placement.



Contribution. This work develops a scalable sensor and actu-
ator selection algorithm based on balanced truncation [21], in
which modes are hierarchically ordered by their observability
and controllability. We use empirical interpolation of the low-
rank balanced representation to find maximally observable and
controllable states. The resulting locations correspond to near-
optimal point sensor and actuator configurations. The quality
of our optimized configurations are evaluated using the Hs
norm of the resulting system, which is an average measure of
its output energy. The closed loop Hy norm is more relevant
than open loop metrics for control performance, given a spe-
cific Hy cost function. Our approach, when used to optimize
the open loop Hs norm, is agnostic to the specific choice of
controller weight matrices, and instead maximizes the input—
output energy of the reduced order model. We also show that
it is possible to apply our framework to closed loop systems,
demonstrating near optimal sensor and actuator selection in
comparison with more expensive iterative closed loop Hs
optimization. The runtime scales linearly with the number of
state variables, after a one-time offline computation of the
balancing transformation, which is less expensive than iterative
alternatives. The resulting sensor and actuator configurations
reproduce known optimal locations at a fraction of the cost
associated with competing gradient descent methods.

II. PROBLEM SETUP

Consider the following linear time-invariant system with a
given state-space realization

x = Ax+ Bu
y = Cx,

x € R", ueR?
y €R?,

(la)
(1b)

with large state dimension, i.e., » > 1. It is assumed that
the system is stable, and B and C are linear actuation and
measurement operators that make the system observable and
controllable. Our objective is to choose a minimal subset of
these sensors and actuators to obtain a system that is most
jointly controllable and observable. For illustration we begin
with B = C = I which correspond to pointwise sensing and
actuation, but in general the subset selection can be adapted
for arbitrary B and C. This subset selection corresponds to
multiplying inputs and outputs by the selection matrices

(2a)
(2b)

e, ]

egr] .

SC = [e’h €y,

Sp = [es, e

Here e; are the canonical basis vectors for R™ with a unit
entry at the selected index j and zeros elsewhere, where
~¥={7,...,7} C{l,...,p} denotes the index set of sensor
locations with card(y) = r. Similarly, actuator selection
indices are given by 3 = {31, ..., 3, }. The new measurement
and actuation operators are C = S¢C and B = BSp
respectively. In the special case B = C = 1, the new operators
C = Scl and B, = ISp select subsets of state inputs and
outputs, and the output would consist of r components of x

y=Cx=[zy ¥y ... 2|7, 3)

Problem statement: What are the best r-subsets of a given
set of p sensors and q actuators, where r K n?

To answer this question, we first quantify the degree of
observability and controllability for a given set of sensors and
actuators, i.e. for a given choice of C and B. Optimizing
over these directly involves a combinatorial search, and thus a
heuristic approach is necessary for high-dimensional systems.

A. Observability and controllability

The degrees of observability and controllability for the state-
space system (1) are quantified by the observability gramian
W, and controllability gramian W,

W, = / eAtC* Cerldt, W, = / ATBB*eA dt,
0 0
“)
which may be visualized as controllable and observable ellip-
soids (Fig. 2). These depend on the actuation and measurement
operators, which consist of all states reachable from a bounded

initial state
Ee={W | |x]2 < 1}, )

and all states that may be observed
€, = {Wo/*x | [Ix]|2 < 1}. (©)

Because the gramians depend on B and C, they are often used
to evaluate the observability/controllability of a given sensor
and actuator placement. One important evaluation metric is
the Hs norm of a system. It measures the average output gain
over all frequencies of the input, or the output energy. For the
state-space system (1) with transfer function G(s) = C(sl —
A)~!B, it is given by

1 o0
IGII5 = @/0 tr(G(jw)* G (jw))dw. (7)

By the Plancherel theorem, it is also defined in the time
domain by the impulse response y;;(t) = C;eA'B; - the
output in component ¢ given an impulse in input 7,

162 = / tr(CeATBB A ' C*)dt = tr(CW,C*) (8a)
0

= / tr(B*eA 'C*CeA'B)dt = tr(B*W,B) (8b)
0

which explicitly relate each gramian to both B and C. A
related alternative to the average output energy metric is given
by the volumetric measure, the log determinant, denoted

log |[CW.C*|, log|B*W,B], 9)

which are the logarithms of the geometric mean of the axes
of the ellipsoid skewed by B or C, by comparison the trace is
the arithmetic mean. This metric is introduced by Summers et
al [7] to place actuators using a greedy optimization scheme
for the submodular objective function

B, = argmaxlog |CW_.C*|. (10)
B

For H, optimal control it is desirable to minimize the average
gain from stochastic disturbance w to control output Z(s) =



G(s)i(s), namely, minimizing ||G||o. Several strategies seek
to build the controller and choose actuators simultaneously,
using expensive gradient optimization schemes. The drawback
of such closed loop metrics is having to recompute the
gramians - an O(n?®) operation - for every iteration that selects
the next best actuator. This cubic scaling may be intractable
for high-dimensional systems with large n.

There are cases where optimizing sensors and actuators us-
ing the closed loop Hs norm is more relevant for control [20],
[16]. By contrast, our approach reverses the strategy by
instead starting from a maximally actuated and sensed optimal
controller, then seeks a subset of these sensors/actuators to
preserve (maximize) the geometric control measure, namely

Scy = argmaxlog [ScCW . C*S¢|, (11a)
Sc

Sp, = argmaxlog |S5B*W,BS3|. (11b)
S

Now, the gramians no longer depend on the optimization
variable and need only be computed once, and both objectives
are still fundamentally linked to the H5 norm of the system.
Critically, we will extract the dominant controllable and ob-
servable subspaces from a balanced coordinate transformation
of the gramians.

III. BALANCED MODEL REDUCTION

Many systems of interest are exceedingly high dimensional,
making them difficult to characterize and limiting controller
robustness due to significant computational time-delays. How-
ever, even if the ambient dimension is large, there may
still be a few dominant coherent structures that characterize
the system. Thus, significant effort has gone into obtaining
efficient reduced-order models that capture the most relevant
mechanisms for use in real-time feedback control [1].

The goal of balanced model reduction is to find a trans-
formation T from state-space (leavinf inputs and outputs

A ‘ B ¢ TAT-! | TB h that th
C ‘ 0 (0] CT71 ‘ 0 , Suc al c

transformed coordinates a = T~ 'x are hierarchically ordered
by their joint observability and controllability. This permits an
r-dimensional representation made possible by truncating the
n — r least observable and controllable states.

unchanged), {

The seminal work of Moore in 1981 [21] showed it is
possible to compute this coordinate system ¥ where the con-
trollability and observability gramians are equal and diagonal,
denoted by the balanced model

a=®*AW¥a+ d*Bu
y = CWa.

acR" ueR?

y € R? (12)

Here T-! £ W are direct modes and T £ ®*, the adjoint
modes. The balanced state a is then truncated, keeping only
the first 7 < n most jointly controllable and observable states
in a,, so that x ~ W, a,. This results in the balanced trunca-
G — PrAY, \ ¢'B
16 =1"¢cg, |0

depend on the particular choice of coordinate system, they will
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Fig. 2: (top) Illustration of the balancing transformation for
gramians. The reachable set £. with unit control input is shown
in blue. The corresponding observable set is shown in red.
Under the balancing transformation W, the gramians are equal,
shown in purple. (bottom) Sensor and actuator selection based
on balancing transformation.

transform under a change of coordinates. The controllability
and observability gramians for the balanced truncated system
are

W,.=®"W. &, W,=T"W,U. (13)

The coordinate transformation W that makes the controllability
and observability gramians equal and diagonal,

W.=W,=%, (14)

is given by the matrix of eigenvectors of the product of the
gramians W_.W,, in the original coordinates:

WW, =®WW, ¥ =32 — WW,¥ =IX2 (15

The resulting balanced system is quantifiably close to the

original system in the H,, norm in terms of the Hankel

singular values or diagonal entries of 3
IG—Grllse<2 > o (16)

1=r+1

In practice, computing the gramians W, and W, and the
eigendecomposition of the product W . W, in (15) may be
prohibitively expensive for high-dimensional systems. Instead,
the balancing transformation may be approximated with data
from impulse responses of the direct and adjoint systems,
utilizing the singular value decomposition for efficient ex-
traction of the relevant subspaces. The method of empirical
gramians is quite efficient and is widely used [21], [22], [23],
[24]. Moore’s approach computes the entire n X n balancing
transformation, which is not suitable for exceedingly high-
dimensional systems. In 2002, Willcox and Peraire [23] gen-
eralized the method to high-dimensional systems, introducing
a variant based on the rank-r decompositions of W, and W,
obtained from snapshots of direct and adjoint simulations. It is
then possible to compute the eigendecomposition of W, W,



using efficient eigenvalue solvers. This approach requires as
many adjoint impulse-response simulations as the number of
output equations, which may be prohibitively large for full-
state measurements. In 2005, Rowley [24] addressed this issue
by introducing output projection, which limits the number of
adjoint simulations to the number of relevant POD modes in
the data. It is particularly advantageous to use these data-
driven methods or low-rank alternating direction methods [25]
to approximate the gramians when there are fewer than full
measurements and actuation of the state.

IV. SENSOR & ACTUATOR OPTIMIZATION VIA QR PIVOTING

We now describe an efficient matrix pivoting algorithm
to optimize the log determinant over the choices of sensors
and actuators. The representation of the gramians in balanced
truncation coordinates plays a crucial role.

A. Matrix volume objective

Recall the goal of optimizing a set of r sensors and actuators
out of a fixed set p and ¢ possible choices. The budget r
determines the balancing rank truncation, which necessarily
must be less than both p and ¢. Our sensor-actuator selection
can be regarding as interpolating this rank-r representation,
that is, choosing locations or interpolation points that are
heavily weighted in the dominant r balanced modes.

Summers et al [7] show that it suffices to only consider
controllable or observable subspaces for selecting sensors and
actuators using the log determinant objective. Thus, we can
substitute rank-r balanced approximation of the gramians, W,
and W, into the log determinant objective

C, ~ argmaxlog |[ScC¥, X, ¥ CTS|
S¢
= argmax [ScC¥,|? - |%,]
Sc

= argmax |[ScCP..|. a7
Sc
This result follows from the monotonicity of logarithms
and the product property of determinants, then omitting the
term that is independent of the sensors, det 3. Likewise,
in the actuator case, the objective argmaxg, log IBTW,B|
simplifies
B, = argmax |2"BSp|. (18)
Se
Consider for now the case of sensor placement. The absolute
determinant is a measure of matrix volume, and S¢ is a
row selection matrix. The transformed objectives may be
viewed as a submatrix volume maximization problem, which
involves choosing the optimal r-row selection of CW,. with the
largest possible determinant. Finding this optimum is an NP-
hard, intractable combinatorial search over all possible r-row
submatrices of CW,. However, it can be optimized greedily
and efficiently via one-time matrix QR factorization requiring
O(pr?) and O(qr?) operations, as described next.

B. OR pivoting algorithm

The QR factorization with column pivoting is a greedy
submatrix volume optimization scheme that we will use to
construct C and B, given ¥, and ®,.. The pivoted QR factors
any input matrix V. € R"*P into a unitary matrix Q, and
upper-triangular matrix R, and column permutation matrix P
so that the permuted matrix VP is better conditioned than V

VP = QR. (19)

However, we seek a well-conditioned row permutation of
CWU,.. Consider the input V = (C¥,)* to the QR factoriza-
tion, and the leading r X r square submatrices of the permuted
input on both sides of (24),V pand T

Vel +]=[QI[T| *].

Each iteration of pivoting works by applying orthogonal pro-
jections to successive columns of V to introduce subdiagonal
zeros in R. For our purposes, P plays the crucial role: at
each step P stores the column “pivot” index of the column
selected at each iteration to guarantee the following diagonally
dominant structure in R

(20)

k
[Ral* = Rl 1<i<k<p

j=i

2y

Observe that the quantity of interest, the determinant of
the row-selected submatrix V p corresponding to the subset
selection of measurements, now satisfies
T
Ve|=Q|T| = H Tl (22)
i=1
since Q is unitary and T is upper-triangular. Because the
determinant is the product of these diagonal entries, it can
be seen that diagonal dominance guaranteed by the pivoting

implicitly optimizes the desired submatrix determinant. Thus
S¢ is constructed from the first 7 columns of P transposed

Sc 2 (P_;)T, where j: 1 —r. (23)

Actuator selection proceeds similarly to construct a submatrix
of r columns of B*®,. with maximal determinant, using one
additional QR factorization

(®;B)P = QR. (24)
The solution Sp is precisely the leading 7 columns of P,
Sp £ P_;, and we denote by

C=ScC, B=BSp (25)

the new measurement and actuation operators obtained in this
manner.

The QR pivoting routine is a standard tool in scientific
computing for matrix decomposition and linear least-squares
problems. We use a block accelerated implementation of
classical Businger-Golub pivoting [26] in MATLAB. Recently
QR pivoting was used for interpolating nonlinear terms in
EIMs [14], which would otherwise require the evaluation of
high-dimensional inner products. In this setting, the interpo-
lation point selection operator is analogous to our selection



operator S¢ used with pointwise measurements (C = ).
The algorithm can be analyzed in terms of the error between
the full state and the interpolant approximation at QR pivot
interpolation points. The interpolation points can now be
written

y = Cx ~ C\Ilrar, (26)

where W, are the POD modes of the reduced model, and
a, are the modal coefficients. Recovering the state using the
interpolant in the POD basis is accomplished with standard
least-squares approximation

x=¥.(C¥,) 'y =¥, (C¥,) 'Cx. (27)

This can be expressed as a projection Pc £ ¥,.(C®,)"1C
of the true state x into the observable subspace. As we shall
see, the upper bound on the approximation error

[x — ¥, (C®,) *Cx|; (28)

is given by ||(C®,.)" || = 1/|T},|. The connection between
the latter and maximizing the submatrix determinant can be
made explicit in terms of the Hankel singular values of G.

V. ANALYSIS

The best approximation to the state in the span of the direct
modes is given by x, £ W¥,®*x in the ideal measurement
scenario y = x, i.e. C = I. Here the approximation is bounded
by the well-known balanced truncation error

Ix = Xulla < 20041+ + o), (29)

where o}, are the Hankel singular values, the diagonal entries
of the balanced gramian ¥ (14). The analysis of empirical QR
interpolation in the balanced modes begins with an established
result for measurements selected using QR, which states that
[(C®,.)~"|]2 at most grows as /pO(2").

Lemma 1 (Drmac & Gugercin [14]): The spectral norm of
(SU)~! where S is computed from the QR factorization (23)
of the full-rank matrix U € RP*" is bounded above

Vp—T+1VA+6r—1
Umin(U) 3 '

1(SU) 72 < (30)

We generalize this result to the setting of arbitrary linear mea-
surements and actuation, by analyzing the residual between the
state and its interpolation in balanced coordinates. Note that
the residual between the state and its projection into balanced
modes v = x — x, satisfies

Pev =Pox — ¥, (CP,) " 1C¥, &' x, = Pox — x,.
The interpolation error from QR pivot selection satisfies
[x = Poxl2 = (v +x4) = (Pov +x4)[2 = (T = Po)v]2
< Pellzlbx = %42
< 2 2l(CT) Izl Cllzllx — x4 l2.
Substituting (29),(30) above yields the following result.

Theorem 2: The approximation error from interpolating QR-
selected observations (23) in balanced truncated modes is

controlled by the discarded Hankel singular values and the
norms of the given measurements and direct modes

[Cll2[[ |2 -
—-P < ——=/pO(2" E i 31
||X Cx||2 = Umin(cqu) \/23 ( )z:T+1o— ( )
The term ||C||s = ||C||2 results from information loss when

C # . An analogous result is obtained for actuator selection
by considering the dual problem of estimating the adjoint state
from actuation matrix B - which is now the measurement
operator of the adjoint system. The resulting projection op-
erator, P £ &,.(B*®,) 'B*, now projects on the span of
the adjoint modes ®,.. Making appropriate substitutions of Pp
in the above results yields the following.

Corollary 1: The approximation error from interpolating
QR-selected observations (25) of the adjoint state in balanced
truncated modes is controlled by the discarded Hankel singular
values and the norms of the given actuators and adjoint modes

@ 2]Bll2 "o
_— 2 .
o (®7B) Vo) Y o

1=r+1

|z — Ppz|2 < (32)

We now relate the approximation error bounds using QR pivot
sensors and actuators to the log determinant objectives.

Theorem 3: Given direct modes ¥,., QR pivot sensors C

guarantee the following lower bound for the log determinant
901211111(ch)

(p—r+1)4r+6r—1

rlog ) —G—Z log o; < log \CWCCT\
i=1

Proof: Noting the relationship between the singular values of
a matrix and its QR factorization, we can express |CW,| in
terms of the diagonal entries of its R factor

=1

1C®, | =[] oi(CY,) = [[|T0] = T, 33)
=1

due to nondecreasing o;(C®,.) for increasing i. By squaring
the inequality and multiplying by |3,.| we obtain

%, < |CY, - |%,|/CY, 2, ¥ CT| = |CW.CT|,

where taking logarithms yields

rlogT? + Z logo; < log|CW.CT].
i=1
Because ||(C®,)"!|| = 1/|T,.|, the upper bound (30) in
Lemma 2 is the inverse lower bound for |7;..|, which can now
be substituted above to obtain the final result.

An analogous lower bound can be obtained for the objective
using QR pivot actuators by appropriately substituting B, R
and adjoint modes @, in the above proof.

Corollary 2: Given adjoint modes ®,, B satisfies the
following lower bound for the log determinant
905 (21B)
g—r+1)(4r+6r—1

log ( ] +Z log o; < log |BTWOB|
i=1
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Fig. 3: QR pivot sensors (red) greedily maximize the log
determinant objective and Hs norms (trace) over all possible
selections of 7 sensors out of 25 (blue).

VI. RESULTS

We evaluate the selection algorithm in two settings. The first
compares QR pivot selections with all possible sensor subset
selections in a random state-space model of tractable size. Next
we consider an application to closed-loop flow control using
LQG control to stabilize unstable Ginzburg-Landau dynamics.
The LQG controller with full actuation and sensing is also
tractable, and we approximate the Hs optimal placements
computed using gradient descent [16] with our QR scheme.

A. Discrete random state space

Our first example investigates sensor and actuator selection
for random state-space systems with randomized A,B, C.
First, we compare the results of QR sensor placement against
a brute-force search across all possible sensor selections for
a system with n = 25 states and r = 7 randomized
measurements. The log determinant objective (11) is evaluated
for all possible choices of 7 sensors, since the system is
small enough to explicitly compute the full gramian for all
() = 480,700 choices of C. These results are binned in
Fig. 3, and compared with the value resulting from our method
(red line). The input to the QR scheme, the balancing modes,
are computed only once from the full system. The sensors
resulting from our method are observed to be near optimal
for the log determinant, exceeding 99.99% of all others, and
also good substitutes for Hs optimal sensors. On average, our
method surpasses 99.8% of possible outcomes with a standard
deviation of 0.85%, over a randomly generated ensemble of
500 model realizations. Therefore, QR sensors are closer to
optimal than the analysis suggests.

We now investigate performance on a larger random state-
space model with n = 100 states, and likewise initialize
the model with randomized actuation and sensing such that
p = q = 100. Figure 4 shows the log determinant objective
that is being optimized for various sensor and actuator config-
urations. The log determinant of the gramian volume is plotted
for the truncated model with QR-optimized sensor and actuator
configurations (red circles) and with random configurations
(blue violin plots). The truncation level r for the balanced
truncation is chosen to match the sensor and actuator budget
on the z-axis. The QR-optimized configurations dramatically
outperform random configurations. As more modes are re-
tained, the chosen sensors and actuators better characterize

{O—
—— Mean,random @
30| @ QRpivots e
@
20 o
o
10 @ —
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-10
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Fig. 4: Sensor and actuator placement in a random state-
space system. The log determinant objective is plotted for QR-
optimized sensor-actuator selections (red) and an ensemble of
200 random sensor-actuator selections (blue violin plots). The
truncation level r (also the sensor/actuator budget) varies on
the horizontal axis.

the input—-output dynamics, and their performance gap over
random placement increases over all random ensembles, giving
empirical validation of our approach.

Because the system is randomly generated and the dynamics
do not evolve according to broad, non-localized features
in state-space, many sensors and actuators are required to
characterize the system. In particular, this is reflected in the
slow decay of Hankel singular values. By contrast, the next
example is generated by a physical fluid flow model, and has
coherent structure that allow for a more physical interpretation
of sensor and actuator placements with enhanced sparsity.

B. Linearized Ginzburg-Landau with stochastic disturbances

We consider the closed-loop linearized Ginzburg-Landau
model evolving velocity perturbations in a flow, given a
controller with full actuation and sensing, which is often not
feasible in practice. The equations modeling the plant dynam-
ics are unstable because the system matrix has eigenvalues in
the right half plane. The dynamical system matrix A is formed
from Hermite pseudospectral discretization of the linearized
Ginzburg-Landau operator

0
5. (34)

0

A

AS v +u(€)+ﬁag
The spatial grid £ € R™ is discretized at the n = 100 roots
of Hermite polynomials, and v, 3, and p(§) are advection,
diffusion and wave amplification parameters. Each ith sensor
&s (row of Cs) and actuator at £, (column of B,) are weighted
by Gaussian kernels and the trapezoidal integration weights M

2

_e—e2]” A _(E=fa)
e V2o M, B, 2e¢ Vi

[I>

Cs, (35)
The linear quadratic Gaussian (LQG) controller stabilizes
the dynamics by minimizing the H> optimal cost function
J(x,u) = xTQx+u’Ru, where Q and R are user-specified
weight matrices. The output u of the LQG controller, given

by
x| [A-BF-LC, L][x
el i T
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Fig. 5: Sensor (x) and actuator (o) placement for linearized
Ginzburg-Landau. Each row corresponds to the optimized
placement for budgets of 1-5 sensors and actuators. Placements
based on QR pivoting of balanced truncated modes (a) closely
approximate the Hs norms of the placements determined using
gradient descent (c). The QR method can be modified to place
sensors and actuators to avoid collocation (b).

stabilizes the dynamics given white noise stochastic distur-
bance d and noise n at all sensors and actuators, with
covariances V = 4 - 10731 and W = 1. Since every state
is observed and actuated, each spatial gridpoint corresponds
to one &, and &,. The idea is to preserve as much of this
“ideal” controller as possible using a subset of the original
sensors and actuators

x = Ax + BySpu + W'/2d
y = ScCox + V'/?n,

(37a)
(37b)

which is similar to our original problem formulation. Hence
we can perform balanced model reduction on either impulse
responses or the controller directly, and then QR pivoting to
optimize placements. In this formulation, u is the output and
y is the input, which encapsulates the notion of maximizing
the gain from feedback to u to stabilize the dynamics, which
translates to the observabillity of (36). Thus we compute
gramians and adjoint, direct modes of the LQG matrices
A2A-B,F-LC;,B2L,C%4 —F.

We compare our approach to established gradient descent
techniques for computing the Hs optimal controller and
sensor-actuator placements simultaneously. The particular al-
gorithm for comparison is the optimal placement for this
model determined using the gradient descent scheme of Chen
and Rowley [16].

Their Hy norm optimization scheme permits placement of
sensors and actuators at locations that may not be grid points.

(a)Hopt w =101 w = 10" w=10%

(b) QR

Fig. 6: LQG gain (dB) for a system with 5 sensors and
actuators. Each block shows the gain from a signal exp(iwt)
in sensor k£ (column) to actuator j (row), ordered upstream to
downstream.

The major drawback is that each Newton iteration requires
solving 2r n X n Lyapunov equations until convergence,
although recent work simplifies this to 2 equations per iter-
ation [27]. Furthermore, the procedure requires an ensemble
of random initial conditions to avoid converging to a local
minimum. In [16], the optimal placement is computed using
conjugate gradient optimization for the same spatial discretiza-
tion n = 100, which becomes computationally expensive as
the grid resolution increases. In this case, gradient descent
is more costly than balancing the fully actuated and observed
system, which comes at a one-time cost of solving 2 Lyapunov
equations for the gramians, and 2 Riccati equations for the
LQG gain matrices (O(n®) each). Therefore, our algorithm
is sensible when the grid discretization is sufficiently fine.
Furthermore, our solution is a good starting point for the
convergence of the gradient descent scheme, thus eliminating
the need for optimization over a large ensemble of randomized
starting points. QR pivoting runtime scales as O(nr?) and the
deviation of the resulting placement from the Hy optimum
(fig. 5) decreases with increasing 7.

Figure 5 plots sensor and actuator configurations from the
QR algorithm and Hy gradient optimization, which are com-
pared with the H, optimal placements in [16]. The resulting
placements for the cases » = 1 to r = 5 sensors and actuators
are plotted vertically, and the horizontal axis is the spatial
domain ¢ € [—12, 12] with a shaded wave amplification region
in which fluid perturbations are amplified. For each value of r,
we apply QR pivoting to the rank r truncated balanced modes.
QR pivoting collocates sensors and actuators, indicating that
A is approximately symmetric and hence the direct and adjoint
modes (pictured in Fig. 1) are identical up to a scaling factor.
In practice, sensors are often slightly downstream to account
for time delays, so we enforce via the pivoting procedure that
sensors are not placed at previously chosen actuators. The Hy
norms of the resulting placement on the y-axis indicate that
the QR selections closely approximate the optimal placements.
The Hy optimal placement [16, Fig. 4] of five sensors and
actuators, with Hy norm 27.4, agrees exactly with the Hy
optimum and is closely approximated by the QR pivoted
placement (27.8).

Figure 6 compares controller performance between QR
pivoting and the Hs optimum via the LQG gain of a given
signal from each sensor to each actuator. The LQG gains



are identical to those produced by the H, optimal method
of Chen and Rowley [16, Fig. 5]. The diffusive nature of the
dynamics favors nearly collocating the sensors and actuators,
since the high-frequency oscillations mostly propagate to the
nearest actuator. This confirms that our framework is useful for
optimizing sensors and actuators. Balanced truncation applied
to the closed loop system is critical to achieving this, since
the open loop dynamics are unstable and it is shown in [16]
that the dominant eigenmodes of the dynamics lead to vastly
suboptimal placements.

VII. DISCUSSION AND OUTLOOK

In this work we develop scalable sensor and actuator
selection whose runtime scales linearly with the number of
state variables, after a one-time offline computation of the
balanced modes. Our approach relies on balanced model
reduction [21], [23], [24], which hierarchically orders modes
by their observability and controllability. We extend EIMs to
interpolate the low-rank balancing modes of the system and
determine maximally observable and controllable locations
(sensor & actuators) in state space. The performance of this
algorithm is demonstrated on random state-space systems,
and optimal Hs control of the linearized Ginzburg-Landau
model. Our optimized placements vastly exceed the perfor-
mance of random placements, and closely approximate Ho
optimal placements computed by costly gradient minimization
schemes, but achieved at a fraction of the runtime.

Sensors and actuators are critical for feedback control of
large high-dimensional complex systems. This work advocates
sensor and actuator selection using QR pivots of the direct
and adjoint modes of a system’s balancing transformation. The
resulting placement is empirically shown to preserve the dy-
namics of the full system. The method has deep connections to
system observability, controllability, modal sampling methods
and classical experimental design criteria. Furthermore, QR
pivoting is more computationally efficient than leading greedy
and convex optimization methods, and thus critically enlarges
the search space of possible selections. This is particularly
valuable in spatiotemporal models where high-resolution grids
generate a large number of states, and balanced modes and QR
method exploit the spatial structures.

This work opens a variety of future directions in pivoting
sensor and actuator optimization. Rapid advances in data
collection yield extremely large search spaces, for which the
computation of balanced modes and QR pivoting may be
accelerated using randomized linear algebra. Our method relies
on a known model of the dynamics, but it would also be
interesting to generalize the method to data-driven system
identification models. In addition, point sensors and actua-
tors are simplifications of constrained or nonlinear sensing
and actuation that may occur in practice. Nonlinear sensing
constraints remain an open challenge.
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