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Abstract— Real-time optimization problems are ubiquitous
in control and estimation, and are typically parameterized
by incoming measurement data and/or operator commands.
This paper proposes solving parameterized constrained nonlin-
ear programs using a semismooth predictor-corrector (SSPC)
method. Nonlinear complementarity functions are used to
reformulate the first order necessary conditions of the opti-
mization problem into a parameterized non-smooth root-finding
problem. Starting from an approximate solution, a semismooth
Euler-Newton algorithm is proposed for tracking the trajectory
of the primal-dual solution as the parameter varies over time.
Active set changes are naturally handled by the SSPC method,
which only requires the solution of linear systems of equations.
The paper establishes conditions under which the solution
trajectories of the root-finding problem are well behaved and
provides sufficient conditions for ensuring boundedness of the
tracking error. Numerical case studies featuring the application
of the SSPC method to nonlinear model predictive control
are reported and demonstrate the advantages of the proposed
method.

I. INTRODUCTION

Real-time optimization has the potential to improve the

capabilities of many engineered systems. The associated real-

time optimization problems can be treated in the framework

of parameterized nonlinear programming (PNLP). An im-

portant example is the one arising from model predictive

control (MPC), where the control action is generated by

solving an optimal control problem (OCP) at each sampling

instant [1], [2]. In this context, the OCP typically depends on

time-varying parameters such as state measurements and/or

operator commands. As a result, the solution of the PNLP

needs to be computed as the parameters vary over time,

generating a so-called “solution trajectory”.

In MPC and real-time optimization subsequent problems

are typically related. Hence, provided the OCP is appropri-

ately designed, the similarities between OCPs at subsequent

sampling instances can be exploited to significantly reduce

the computational resources required to implement MPC.

In the literature, these methods are often referred to as

fast or suboptimal MPC methods, sensitivity methods, and
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continuation/homotopy methods. We will refer to all of these

as “solution tracking methods”.

Many of the concepts used to develop solution tracking

algorithms are based on continuation approaches for smooth

nonlinear equations [3]. An early continuation method

specifically for MPC is C/GMRES [4] which combines a

continuation approach with a Krylov solver and leads to an

efficient algorithm for unconstrained parameterized OCPs.

In [5], [6] the sensitivity theory for nonlinear programs

was used to develop solution tracking algorithms for fast

receding horizon estimation and the advanced step method

for MPC. A related algorithm, based on the neighboring ex-

tremal theory of optimal control, is the IPA-SQP method [7].

These methods consider inequality constraints but assume

that the optimal solution is continuously differentiable with

respect to the parameter and, as a result, tend to encounter

difficulties in the presence of active set changes.

In [8] the authors used the framework of parameterized

generalized equations to develop solution tracking algo-

rithms for inequality constrained problems without assum-

ing continuous differentiability of the solution trajectory.

The differentiability assumption was replaced by Robinson’s

strong regularity property [9]. The solution trajectories of

generalized equations under pointwise strong regularity as-

sumptions were studied in [10] and a sequential convex

programming approach was proposed in [11]. Sensitivity

and predictor corrector methods were developed in [12] and

[13], respectively, for tracking solution trajectories of PNLPs

when the strong regularity assumption does not hold. Due to

the weaker assumptions, both methods require the solution

of additional linear programs to compute search directions.

A solution tracking method for distributed problems was

proposed in [14] and [15] provides a survey of the topic.

In this paper we propose a solution tracking algorithm

based on nonsmooth calculus. The necessary conditions for

optimality of a parameterized NLP are converted to a system

of nonsmooth equations using nonlinear complementarity

functions [16], resulting in a parameterized nonsmooth root-

finding problem. We present an algorithm which tracks

solution trajectories of this root-finding problem using a

semismooth predictor-corrector (SSPC) method. We present
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sufficient conditions under which the solution trajectories

of the root-finding problem are well behaved and establish

tracking error estimates for the algorithm.

The SSPC methods has several advantages compared to

existing methods. SSPC makes the same strong regularity

assumptions as methods based on generalized equations [8],

[10], [11], [14]; the subproblems generated by these methods

are themselves optimization problems. In contrast, the sub-

problems generated by the SSPC algorithm are linear systems

of equations, similarly to smooth calculus based methods

[6], [7]. However, unlike smooth calculus based methods,

the nonsmoothness caused by active set changes is naturally

handled using generalized derivatives. As a result, SSPC is

applicable to the same class of problems as the generalized

equation methods but has lower complexity subproblems.

We make extensive use of Clarke’s generalized Jacobian

[17], the notion of semismoothness [18], and the semismooth

Newton’s method [18]. Two key papers regarding the ap-

plication of nonsmooth Newton’s methods to optimization

problems are [19] and [20]. A survey on the topic of

nonsmooth and smoothing Newton’s methods can be found

in [21].

The contents of this paper are as follows. In Section II

we discuss the problem setting. In Section III we review

some concepts from nonsmooth analysis used in the paper.

In Section IV we reformulate the KKT conditions as a

nonsmooth root-finding problem and derive the predictor and

corrector steps used in SSPC. In Section V we assemble

the predictor and corrector steps into a solution tracking

algorithm. In Section VI we illustrate the utility of SSPC

on a numerical example and provide some comparisons with

sequential quadratic programming (SQP) methods. Finally,

Section VII contains some concluding remarks.

II. PROBLEM FORMULATION AND BACKGROUND ON

PARAMETERIZED NONLINEAR PROGRAMMING

In this paper we consider parameterized nonlinear pro-

grams of the form,

min.
z

f(z, p), (1a)

s.t. g(z, p) = 0, (1b)

c(z, p) ≤ 0, (1c)

where f : R
n × R

l → R, g : R
n × R

l → R
m, and c :

R
n × R

l → R
q are C2 in z and C1 in p. Given a finite

sequence of parameter values {pk}
M
k=0 and a pair (p0, x

∗

0)
which approximately minimizes (1), the objective is to track

a solution trajectory of (1), denoted by (pk, x
∗

k(pk)), as k →
M . We make the following assumption regarding the values

of the parameter:

Assumption 1: All p lie in some compact convex set P ⊂
R

l.

The KKT conditions for (1) are,

∇zL(z, λ, v, p) = 0, (2a)

g(z, p) = 0, (2b)

c(z, p) ≤ 0, v ≥ 0, (2c)

vT c(z, p) = 0, (2d)

where L(z, λ, v, p) = f(z, p) + g(z, p)Tλ+ c(z, p)T v is the

Lagrangian and λ ∈ R
m and v ∈ R

q are the dual variables.

Any primal-dual tuple x = (z, λ, v) which satisfies (2) is

called a KKT point. To ensure that the minimizers of (1)

are necessarily KKT points we will apply an appropriate

constraint qualification. Recall that the linear independence

constraint qualification (LICQ) is said to hold at a point (z̄, p̄)
if

rank

[

∇zg(z̄, p̄)
∇zc(z̄, p̄)i

]

= m+ |Ia(z̄, p̄)|, i ∈ Ia(z̄, p̄) (3)

where Ia(z, p) = {i ∈ 1 ... q | ci(z, p) = 0} denotes the

index set of active constraints. Further, if a KKT point (x̄, p̄)
satisfying the LICQ also satisfies

uT∇2
zL(x̄)u > 0, ∀u ∈ K+(z̄, v̄, p̄) \ {0}, (4)

where K+(x, v, p) = {u ∈ R
n | ∇zg(z̄, p̄) =

0, ∇zci(z̄, p̄)u ≤ 0, i ∈ I+a (z, v, p),∇zf(z̄, p̄)
Tu ≤ 0},

and I+a (z, v, p) = Ia(z, p) ∩ {i | vi > 0} then x̄ it is

said to satisfy the strong second order sufficient conditions

(SSOSC). As detailed in e.g., [22], any KKT point which

satisfies the SSOSC and the LICQ is a strict local minimizer

of (1).

Since we seek to track minimizers of (1) as the parameter

varies, it is desirable to ensure that there exists at least one

path1 and that any existing paths are “well behaved”. This

can be guaranteed by imposing regularity conditions on the

problem. To do so we define the solution mapping,

S : p→ S(p) = {x | (2) is satisfied}, (5)

which may be multivalued, and use the concept of strong

regularity [9] in a form which echoes [10]:

Definition 1: A set valued mapping F : RN ⇒ R
M with

(x̄, ȳ) ∈ gph F is said to be strongly regular at x̄ for ȳ if

there exists neighbourhoods U of x̄ and V of ȳ such that

the restricted inverse mapping F̃−1 : V → F−1(V ) ∩ U is

single valued and Lipschitz continuous on its domain.

In the context of parameterized optimization, a strongly

regular solution is one where a (local) primal-dual solution

of the optimization problem, x∗, is locally a Lipschitz

continuous function of the parameter, i.e., x∗ = x∗(p). The

following theorem gives necessary and sufficient conditions

for a solution to be strongly regular.

Theorem 1: A primal-dual solution x∗ of (1) is strongly

regular if and only if x∗ satisfies the LICQ and the SSOSC.

Proof: See e.g., [23, Prop 1.27 and 1.28] or [24,

Theorem 2G.8].

1There could be multiple paths since (1) is not necessarily convex.



Corollary 1: For each strongly regular solution (p̄, x̄) of

(1) there exists a neighbourhood T of p̄ and a constant

Lp(p̄, x̄) such that x∗(p) is a function satisfying ||x∗(p) −
x̄|| ≤ Lp||p− p̄||, ∀p ∈ T .

Proof: See e.g., [24, Theorem 2B.1].

Our primary regularity assumption is stated below; it ex-

cludes phenomena like bifurcations or local minima becom-

ing stationary points as the parameter varies.

Assumption 2: (Pointwise strong regularity) The LICQ

and SSOSC hold at all KKT points in P .

Corollary 1 is used to establish boundedness of the so-

lution tracking error (Theorem 2). For general constrained

optimization problems, we cannot expect solution trajectories

to satisfy stronger smoothness properties than local Lipschitz

continuity. Indeed, constraint activation/deactivation typi-

cally destroys differentiability and non-convex problems may

have multiple local minima. Strong regularity also imparts

desirable properties to the solution mapping, in particular it

establishes that S(p) is comprised of finitely many isolated

Lipshitz continuous trajectories [10, Theorem 3.2].

Remark 1: The LICQ and SSOSC are standard assump-

tions in the convergence theory of sequential quadratic pro-

gramming type (SQP) algorithms [22], though convergence

can be established under weaker conditions [25]. Similarly,

the pointwise strong regularity condition is a common as-

sumption in literature on time varying optimization, e.g., [8],

[10], [11], [14]. Lipschitz continuity of the primal variable

and objective function can be established under weaker con-

ditions [26] which is exploited in e.g., [12], [13]. However,

the resulting degeneracy of the dual variables complicates

the algorithms, requiring the solution of quadratic and linear

programs to determine search directions. In contrast, the use

of generalized derivatives allows for methods that require

only the solution of linear systems of equations.

III. SOME CONCEPTS FROM NONSMOOTH ANALYSIS

In this section we briefly review some concepts from

non-smooth analysis that will be used later in the paper.

Consider a functionG : Rn → R
m which is locally Lipschitz

continuous on an open set U ⊂ R
n. Rademacher’s theorem

[27] states that D, the set of points where G is differentiable,

is dense. Clarke’s generalized Jacobian [17] is defined as

follows

∂G(x) = convh {J ∈ R
m×n| ∃{xk} ⊂ D :

{xk} → x, {∇G(xk)} → J}, (6)

where convh A denotes the convex hull of A. Note that the

generalized Jacobian is a set of matrices, ∇G(x) ∈ ∂G(x),
whereverG is differentiable and, wheneverG is continuously

differentiable, it reduces to ∂G(x) = {∇G(x)}. A key

notion in the analysis of nonsmooth Newton’s methods is

semismoothness [18]. The function G is said to be semis-

mooth at x if G is Lipschitz in a neighbourhood of x,

directionally differentiable in every direction and satisfies the

following2,

sup
J∈∂G(x+ξ)

||G(x + ξ)−G(x) − Jξ|| = o(||ξ||), (7)

if the right hand side is replaced by O(||ξ||2) then G is said

to be strongly semismooth at x.

IV. THE PREDICTOR AND CORRECTOR STEPS

The SSPC algorithm is based on mapping the KKT

necessary conditions to a nonsmooth system of equations

using what is known as a nonlinear complementarity (NCP)

function [16]. An NCP function ψ : R2 → R has the property

that

ψ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab = 0, (8)

which can be used to convert complementarity systems into

equations. A common example of an NCP function is the

minimum function ψ(a, b) = min(a, b) implemented in [20].

Following [20], we use an NCP function to map the KKT

conditions (2) to a system of nonsmooth equations. We define

the mapping

F (x, p) =















∇zL(z, λ, v, p)
g(z, p)

ψ(−c1(z, p), v1)
...

ψ(−cq(z, p), vq)















=





∇zL(z, λ, v, p)
g(z, p)

φ(−c(z, p), v)



 , (9)

where x = (z, λ, v) is the primal-dual tuple and φ collects

the last q components of F . Due to the properties of the

NCP function, the roots of F coincide with the KKT points

of (1). Solution trajectories x(p) ∈ S(p) of (1) can thus

be constructed by tracking solutions of F (x, p) = 0 as the

parameter varies. This mapping is semismooth [20], thus

this can be accomplished using a semismooth Euler-Newton

predictor-corrector algorithm. Since F is semismooth we can

approximate it to first order in a neighbourhood of any (x̄, p̄)
as,

F (x, p) ≈ F (x̄, p̄) + V (p− p̄) +B(x− x̄), (10)

where V ∈ ∂pF (x̄, p̄) and B ∈ ∂xF (x̄, p̄) in a process

analogous to Taylor expansion. From this approximation we

can derive Euler predictor and Newton corrector steps by

setting the approximation to zero. The resulting steps are,

Predictor: Fk−1 + Vk−1∆pk + B̂k−1(x
−

k − xk−1) = 0,
(11a)

Corrector: F−

k + Êk(xk − x
−

k ) = 0, (11b)

the predictor solves (11a) for x−k and the corrector solves

(11b) for xk . The matrices used in (11) are defined as

follows: Vk−1 ∈ ∂pF (xk−1, pk−1), Êk ∈ ∂xF (x
−

k , pk)+Σk,

Bk−1 ∈ ∂xF (xk−1, pk−1)+Σk−1, ∆pk = pk−pk−1, F−

k =
F (x−k , pk), and Fk−1 = F (xk−1, pk−1). These expressions

include errors terms, Σk,Σkk − 1, which represent e.g.,

regularization.

2We refer readers unfamiliar with big and little O notation to [22, A.2],
or [23, A.2].



The generalized Jacobian of (9) is given by all matrices

of the form [23, Prop 3.26]:

∂xF (x, p) =





∇2
zL(x, p) ∇zg(z, p)

T ∇zc(z, p)
T

∇zg(z, p) 0 0
−C∇zc(z, p) 0 D



 ,

(12)

where C = diag(γ) is a diagonal matrix with elements

satisfying

γi ∈











[0, 1], if vi = −ci(z, p),

{1}, if vi > −ci(z, p),

{0}, if vi < −ci(z, p),

(13)

and D = diag(1−γ). All elements of ∂xF are guaranteed to

be non-singular in the vicinity of a strongly regular solution

(Proposition 1). The Jacobian ∂pF consists of all matrices

of the form

∂pF (x, p) =





∇pzL(x, p)
∇pg(z, p)
−C∇pc(z, p)



 , (14)

where C is the same matrix as in (12).

We add regularization to the algorithm in order to improve

numerical conditioning by using D̂ = D + δI , for some

δ ≥ 0, in place of D in (12). The regularization terms are

extremely important in practice because elements of ∂xF can

easily become ill-conditioned, causing the SSPC algorithm

to diverge. We have observed that even a small amount of

regularization, e.g., δ ≈ 10−6 to 10−12, reliably handles

this issue; likely because, near strongly regular solutions,

all elements of ∂xF are guaranteed to be invertible in exact

arithmetic.

Thanks to regularity assumptions made in Section II,

it is possible to establish error bounds for the predictor

and corrector steps which are summarized in the following

theorem:

Theorem 2: Suppose that xk−1 lies within a neighbour-

hood X̄k−1 of x∗k−1 ∈ S(pk−1). Define the errors ek = xk−
x∗k and e−k = x−k − x

∗

k. Then there exists a neighbourhood

T̄k−1 of pk−1, Zk of x∗k and positive constants α, β, σ, and

η such that

||e−k || ≤ α||ek−1||
2 + β||ek−1||||∆pk||+ σ||∆pk||

2, (15a)

||ek|| ≤ η||e
−

k ||
2, (15b)

provided pk ∈ T̄k−1, X̄k−1 is sufficiently small, and x−k ∈
Zk.

Proof: See appendix.

Theorem 2 demonstrates the existence of a region within

which the tracking error is guaranteed to remain bounded.

It generalizes the quadratic convergence estimates of the

classical Newton’s method to the setting of parameter de-

pendent semismooth problems. These contraction estimates

provide a theoretical foundation for the SSPC algorithm.

However, as is typical with Newton’s method, the results are

local and the proof provides no insight into how to estimate

the sizes of the various neighbourhoods; these concerns are

usually handled by adding safeguards. In the context of

SSPC safeguarding the method requires limiting ∆pk, which

may be difficult in many real-time applications. In the next

section, we suggest a constructive method for overcoming

this issue by interpolating between pk−1 and pk, similarly to

[12], and taking multiple steps along the resulting path.

V. A PATH-FOLLOWING ALGORITHM FOR REAL-TIME

OPTIMIZATION

In this section we present a solution tracking algorithm

for quickly computing solutions of PNLPs in real-time. We

assume that a measurement pk becomes available at each

sampling instance k, and that an approximate solution xk−1

of the PNLP for the parameter value pk−1 was computed at

the previous timestep. The objective is then to compute xk
satisfying ||F (xk, pk)|| ≤ ε as quickly as possible.

Since the parameter change ∆pk = pk − pk−1 may be

too large to ensure that the tracking bounds of Theorem 2

hold, we propose to generate a path connecting pk and pk−1

and take smaller steps along the path. Similarly to [12]

we construct a path depending on a homotopy parameter

t ∈ [0, 1] as P (t) = pk−1+t∆pk. We assume that a constant

κ is known such that if ||∆p|| ≤ κ then the conditions of

Theorem 2 can be satisfied if ε is chosen correctly. The

tolerance κ can be thought of as the maximum allowable

parameter variation. The SSPC algorithm then traverses the

path between pk−1 and pk, alternating between a predictor

step and corrector loop, using a uniform stepsize h such that

the inequality ||∆pk||h ≤ κ is satisfied. The SSPC algorithm

is summarized in Algorithm 1.

Algorithm 1 SSPC: Semismooth Predictor-Corrector

Input: δ0, ε, pk, pk−1, xk−1, κ
Output: xk

1: ∆pk = pk − pk−1, M ← max(1,ceil(||∆pk||/κ))
2: h← 1/M , x← xk, δ ← δ0
3: for i = 1 ... M do

4: p+ ← P (t+ h), p← P (t)
5: δ ← min(δ, ||F (x, p)||)
6: Compute B̂ ∈ ∂xF (x, p) + Σ(δ), V ∈ ∂pF (x, p)
7: x← x− B̂−1[hV∆pk + F (x, p)],
8: while ||F (x, p+)|| > ε do

9: δ ← min(δ, ||F (x, p+)||)
10: Compute E ∈ ∂xF (x, p

+) + Σ(δ)
11: x← x− E−1F (x, p+)
12: end while

13: t← t+ h
14: end for

15: return x

Note that the convergence properties of Algorithm 1 are

identical to those of a semismooth Newton’s method [18]

and follow directly from the pointwise strong regularity as-

sumption, the isolation of solution trajectories [10, Theorem

3.2], the convexity of P , and Theorem 2.

Remark 2: The uniform grid algorithm serves to illustrate

the concepts and performs well in our numerical studies



but requires that κ be treated as a tuning parameter. We

have observed that SSPC is quite robust to the choice of

κ. However, an algorithm with an adaptive step size, e.g.,

along the lines of [3, Chapter 6], is expected to be more

robust and/or efficient than Algorithm 1 and is a topic of

future work.

VI. NUMERICAL EXPERIMENTS

A. Spacecraft Attitude Control

In this section we illustrate the performance of SSPC

using a numerical example where we control the orientation

of a rigid satellite using nonlinear MPC (NMPC). The

attitude dynamics of a rigid spacecraft are given by the Euler

equations,

Jω̇ + ω×Jω = u, (16)

where ω ∈ R
3 is the vector of angular velocities expressed

in a body fixed frame, J = diag(918, 920, 1365), is the

inertia matrix and u ∈ R
3 are external control moments [28].

We choose a 3-2-1 Euler angle sequence as the orientation

representation, the kinematic equations are:

θ̇ = S(θ)w, S =





1 sin(θ1) tan(θ2) cos(θ1) tan(θ2)
0 cos(θ1) − sin(θ1)
0 sin(θ1) sec(θ2) cos(θ1) sec(θ2)



 .

(17)

The equations of motion can then be written as

ξ̇ = fc(ξ, u) =

[

J−1(−ω×Jω + u)
S(θ)ω

]

, (18)

where ξ = [ωT θT ]T is the state vector. We descritize the

equations of motion using explicit Euler integration, i.e.,

ξk+1 = fd(ξk, uk) = ξk + τfc(ξk, uk), where τ = 3[s] is

the sampling period. The objective is to stabilize the satellite

in a target orientation given by r, the reference vector. We

consider the following optimal control problem,

min.
ξ,u,s

J(ξ, u, s) = ||ξN − r||
2
P +

N−1
∑

i=0

ℓ(ξi, ui, si+1)

(19a)

s.t ξi+1 = fd(ξi, ui), i = 0, ... , N − 1, (19b)

cξ(ξi) ≤ si, i = 1, ... N, (19c)

cu(ξi) ≤ 0, i = 0, ... N − 1, (19d)

−si ≤ 0, i = 1, ... N, (19e)

where N is the prediction horizon, cξ(ξ) = [ξT − ξTub ξTlb −
ξT ]T , and cu(u) = [uT −uTub uTlb−u

T ]T , are the constraints

and ℓ(ξ, u) = ||ξ−r||2Q+||u||
2
R+γs is the cost function3. The

terminal penalty matrix, P , is chosen as the solution of the

discrete time algebraic Riccati equation with the dynamics

linearized about the origin. Linearly penalized slacks have

been incorporated into the OCP to ensure feasibility. We con-

sider two slew maneuvers, one with and one without active

3Q = 10diag([10, 10, 10, 1, 1, 1]), R = diag([0.1, 0.1, 0.1]), γ = 10.

state constraints. For both cases the reference trajectory is

given by

r(t) =

{

[0 0 0 15◦ 30◦ − 20◦]T , t < 120 s,

[0 0 0 0 0 0]T , t > 120 s,
(20)

and ξ(0) = 0. The constraints imposed during both cases are

summarized in Table I.

TABLE I

THE CONSTRAINTS USED IN THE SKEW MANEUVER SIMULATIONS.

Case 1 Case 2

ξub 360[1 1 1 1 1 1]T [1.15 1.15 1.15 30 30 0]T

ξlb −360[1 1 1 1 1 1]T −[1.15 1.15 1.15 0 0 20]T

uub [2 2 2]T [2 2 2]T

ulb −[2 2 2]T −[2 2 2]T

Closed-loop simulation results of Cases 1 and 2 with

N = 15 can be found in Figures 1 and 2, respectively. A

zoomed in view illustrating state constraint activation can

be found in Figure 3. The NMPC controller successfully

drives the spacecraft orientation to the desired setpoints

while enforcing state and control constraints. Note that Case

2 was designed to be challenging numerically due to the

presence of (i) multiple state constraint (de)activations, and

(ii) infeasibility at certain steps (which is handled by the

slack variables, but still causes ill-conditioning).
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Fig. 1. Case 1: The response of the closed-loop system to the slew-
maneuver command.

B. Comparisons with Sequential Quadratic Programming

To illustrate the utility of SSPC we perform numerical

comparisons against the sequential quadratic programming
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Fig. 2. Case 2: The response of the closed-loop system to the slew-
maneuver command.
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Fig. 3. A comparison between the closed-loop responses of case 1 (left)
and case 2 (right) illustrating, orientation constraint activation (top) and
angular velocity constraint activation (bottom).

(SQP) method. When warmstarted, the SQP method is

equivalent to applying the Josephy-Newton method to the

generalized equation reformulation of (2) [13], [23] and is

thus a reasonable initial benchmark4. All necessary deriva-

tives were computed automatically using CASADI [29]. The

SSPC method was implemented in native MATLAB code.

The linear systems for the predictor and corrector were

condensed, first by eliminating the ξ variables using the

equality constraints see e.g., [30], then by using the Schur

complement method with the matrix D in (12) used as the

pivot. The resulting condensed linear systems are sometimes

referred to as the normal equations form of the originals, see

e.g., [22, Section 14.2].

We implemented a standard SQP algorithm, [23, Algo-

rithm 4.13] using the augmented Lagrangian Hessian matrix

Hi = ∇
2
zL(xi, pk) + ρ∇zg(zi, pk)

T∇zg(zi, pk) to maintain

convexity of the QPs. A fixed penalty parameter ρ = 1000
was used throughout. We use three different state of the art

QP solvers: i) ECOS, an interior point based SOCP solver

specifically designed for embedded use [31], ii) qpOASES,

an active set based strategy widely used for MPC [32],

and iii) the MATLAB 2017b builtin quadprog using the

interiorpoint-convex algorithm. At each timestep

the SQP algorithm was initialized using the solution from

the previous sampling instance.

We compare seven different configuration: (1) SSPC1,

Algorithm 1 with κ = 1, (2) SSPC2, Algorithm 1 with

κ = 0.5, (3) SSPC3, Algorithm 1 with κ = 0.1, (4) ECOSC,

SQP with the QP solved by ECOS in condensed form [30],

(5) ECOSF, SQP with the QP solved by ECOS (6) QPRC,

SQP with the QP solved by quadprog in condensed form

[30], (7) QPOC, SQP with the QP solved by qpOASES in

condensed form [30]. All simulations were performed on a

2015 Macbook Pro with a 2.8GHz i7 processor and 16 GB of

RAM running MATLAB 2017b. Execution times were mea-

sured using tic and toc and averaged over 10 executions

to compensate for variance caused by the operating system.

All solvers were stopped when ||F (x, pk)|| ≤ 10−5.

Remark 3: Note that the value of κ used in SSPC1 was

specifically chosen to yield h = 1, SSPC1 should therefore

be interpreted as SSPC with the interpolation step removed.

Traces of the KKT residual ||F (xk, pk)|| are shown in

Figures 1 and 2. All solvers were able to keep the KKT

residual within the specified tolerance except for ECOSF

which has some minor difficulties during Case 2. Execution

time histories for both cases are shown in Figure 4. Overall

SSPC1 appeared to performed best followed by SSPC2,

SSPC3, and ECOSF. The results of additional numerical

trials are reported in Tables II and III. SSPC outperformed

all other methods on Case 1. In Case 2 SSPC1 and SSPC2

outperformed the other methods on average for N = 10 and

N = 15. At the longest horizon length considered, N = 25,

ECOSF becomes the most effective method, demonstrat-

ing that ECOS scales more efficiently than SSPC, likely

4Various state of the art QP solvers are also readily available ensuring
that SSPC is benchmarked against efficient implementations.



due to the sophisticated sparse linear algebra it employs

[31]. SSPC1, which uses h = 1, encountered numerical

difficulties, caused by Jacobian ill-conditioning, for Case

2, N = 25. SSPC2 and SSPC3 did not encounter these

difficulties, demonstrating the usefulness of the interpolation

procedure for improving robustness while only mildly de-

grading performance.

Overall, SSPC performed well compared to several state

of the art methods. Notably, despite being implemented in

native MATLAB code, SSPC was competitive with SQP

algorithms that use ECOS and qpOASES, both of which are

implemented in C/C++. During our investigations, we found

that both SQP and SSPC were perfectly reliable if only con-

trol constraints were considered. In this scenario the LICQ

can be guaranteed to hold a-priori, provided the bounds are

non-degenerate. We observed occasional robustness prob-

lems with SSPC when state constraints were allowed to

activate. Specifically, if enough constraints activated at the

same time then elements of ∂xF would become effectively

singular despite regularization5. We suspect this is due to

the LICQ not holding, invalidating the strong regularity

assumption used to guarantee invertability of the elements

of ∂xF . Future work will focus on relaxing the LICQ

assumption and investigating techniques to constructively

guarantee invertability of the iteration matrices in order to

improve robustness.
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Fig. 4. Execution time comparisons between the seven algorithms consid-
ered for case 1 (top) and case 2 (bottom).

VII. CONCLUSIONS

In this paper we presented a semismooth predictor-

corrector (SSPC) method for tracking solutions of parameter-

ized constrained nonlinear programs. The method is simple,

easy to code, has nice theoretical properties, and was shown

to be competitive with an SQP algorithm which uses state

of the art QP solver implementations.

5In these cases SQP also encountered some difficulties but eventually
recovered.

TABLE II

NUMERICAL COMPARISONS FOR CASE 1. ALL ELEMENTS IN A COLUMN

ARE NORMALIZED BY THE FIRST ENTRY.

Max Average

N 10 15 25 10 15 25

Norm [ms] 4.80 8.81 24.38 1.51 2.64 6.93

SSPC1 1.35 0.67 0.74 1.04 0.96 1.07

SSPC2 1 1 1 1 1 1

SSPC3 2.89 3.38 2.90 1.03 1.21 1.13

ECOSC 3.36 4.67 2.56 4.26 4.97 4.58

ECOSF 1.39 1.01 1.53 2.43 2.22 1.45

QPRC 8.03 4.28 1.29 9.88 6.04 2.58

QPOC 6.31 10.10 16.88 10.65 20.38 30.41

TABLE III

NUMERICAL COMPARISONS FOR CASE 2. ALL ELEMENTS IN A COLUMN

ARE NORMALIZED BY THE FIRST ENTRY.

Max Average

N 10 15 25 10 15 25

Norm [ms] 9.75 33.35 67.29 1.78 4.22 15.85

SSPC1 0.94 0.66 5.77 1.00 0.97 15.58

SSPC3 1 1 1 1 1 1

SSPC5 2.0 0.93 1.39 1.05 0.98 1.02

ECOSC 3.0 1.91 2.57 5.29 4.18 3.44

ECOSF 1.25 0.91 0.71 2.30 1.88 0.87

QPRC 4.18 2.47 3.82 8.80 7.92 6.54

QPOC 5.71 4.97 10.28 12.78 16.67 18.11

Future work includes the following: Improving robustness

of the method by relaxing the LICQ assumption, developing

an efficient and robust adaptive algorithm for choosing the

step sizes, investigating the use of SSPC for suboptimal

MPC, and evaluation of the method on rapid prototyping

hardware.

APPENDIX

In this appendix we derive bounds on the tracking error of

the predictor and corrector steps (Theorem 2). The following

proposition summarizes the properties of F which will be

used in the subsequent analysis.

Proposition 1: The mapping F : R
n+m+q × P →

R
n+m+q has the following properties.

1) F is locally Lipschitz continuous

2) F is strongly semismooth

3) F is CD regular [20] in the vicinity of any (p̄, x̄) ∈
gph S, meaning that there exists a neighbourhood X
of x̄ within which all V ∈ ∂xF (x, p̄) are nonsingular.

Proof: Result 1: This follows from the continuous

differentiability of all the functions in (1) and the Lipschitz

continuity of the min function. Result 2: [20, Theorem 3.2].

Result 3: CD regularity is implied by strong regularity [20,

Theorem 4.2]. The remaining claims follow from the CD

regularity of F and [18, Proposition 3.1].

A. Proof of Theorem 2

Consider a point xk−1 ∈ Xk−1, where Xk−1 is a neigh-

bourhood of x∗k−1 ∈ S(pk−1) within which all Bk−1 ∈
∂xF (x, pk−1) are nonsingular. This neighbourhood must

exist by Proposition 1. Now consider the predictor equation,

x−k = xk−1 − B̂
−1
k−1[Vk−1∆pk + Fk−1].



Performing some algebraic manipulations we obtain

−B̂k−1e
−

k = [B̂k−1(x
∗

k − xk−1) + Vk−1∆pk + Fk−1]

= [Bk−1(x
∗

k − xk−1) + Vk−1∆pk + Fk−1 +Σk−1(x
∗

k − xk−1)].

Due to the strong semismoothness of F (Proposition 1) we

have that there exits a neighbourhood Yk−1 of (xk−1, pk−1)
such that

F (x, p) = Fk−1 +
[

Bk−1 Vk−1

]

[

x− xk−1

p− pk−1

]

+ r, (21)

wherein the residual satisfies ||r|| ≤ γ(||x− xk−1||
2 + ||p−

pk−1||
2), ∀(x, p) ∈ Yk−1. Applying (21) with x = x∗k and

p = pk yields

−e−k = B−1
k−1[r +Σk−1(x

∗

k − xk−1)],

where we have also used that F (x∗k, pk) = 0. Taking norms

we obtain that, if (x∗k, pk) ∈ Yk−1, then

||e−k ||

||B̂k−1||
≤ γ||x∗k − xk−1||

2 + γ||∆pk||
2

+ ||Σk−1|| ||x
∗

k − xk−1||. (22)

To proceed, we consider the term

||x∗k − xk−1|| ≤ ||x
∗

k − x
∗

k−1||+ ||x
∗

k−1 − xk−1|| (23a)

≤ Lp||∆pk||+ ||ek−1||, (23b)

in (23b) we have used Corollary 1 to conclude that x∗(p) is

Lipschitz continuous on a set Tk−1, containing pk−1, with

constant Lp. Define the set Uk−1 = X̄k−1 × T̄k−1 such that

Uk−1 ⊆ Yk−1, X̄k−1 ⊆ Xk−1, and T̄k−1 ⊆ Tk−1. This

is always possible due to (23b). Applying (23b) to (22) we

obtain that

||e−k ||

||B̂k−1||
≤ γ(Lp||∆pk||+ ||ek−1||)

2 + γ||∆pk||
2

+ ||Σk−1|| (Lp||∆pk||+ ||ek−1||).

The error induced by the Jacobian inexactness Σk−1 can

be bounded due to the fact that, by construction (Step 5 in

Algorithm 1), ||Ek−1|| ≤ c||Fk−1|| for some c > 0. Thus

we have

||Ek−1|| ≤ c||Fk−1|| ≤ cLF ||ek−1||, (24)

for all (x, p) ∈ Uk−1 where we have used the Lipschitz

continuity of F , with constant LF , on the set Uk−1. Applying

this result allows us to conclude that

||e−k ||

||B̂−1
k−1||

≤ γ(Lp||∆pk||+ ||ek−1||)
2 + γ||∆pk||

2

+ cLF ||ek−1||(Lp||∆pk||+ ||ek−1||),

provided pk ∈ T̄k−1 and xk−1 ∈ X̄k−1. Expanding and

collecting terms we obtain that

||e−k || ≤ α||∆pk||
2 + β||ek−1|| ||∆pk||+ σ||ek−1||

2,

where α = γ(1 + L2
p)||B̂

−1
k−1||, β = Lp(2 + cLF )||B̂

−1
k−1||,

and σ=(1 + cLF )||B̂
−1
k−1||.

Now consider the corrector equation

xk = x−k − (Êk)
−1F−

k−1,

performing some algebraic manipulation and exploiting the

strong semimsoothness of F we obtain that

ek = −(Êk)
−1[Ek(x

∗

k − x
−) + F−

k − Σke
−

k ],

ek = −(Êk)
−1[r−k − Σke

−

k ],

where ||r−k || ≤ ζ||e
−

k ||
2 holds in a neighbourhood Zk of x∗k.

Taking norms and using (24) to bound the inexactness in the

Jacobian we have that

||ek|| ≤ ηk||e
−

k ||
2, ∀x−k ∈ Zk

where η = ||(Êk)
−1||(ζ + cL−

F ). �
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