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8 On functorial (co)localization of

algebras and modules over operads

Javier J. Gutiérrez, Oliver Röndigs, Markus Spitzweck, Paul Arne Østvær

Abstract

Motivated by calculations of motivic homotopy groups, we give widely attained

conditions under which operadic algebras and modules thereof are preserved under

(co)localization functors.
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1 Introduction

Operads are key mathematical devices for organizing hierarchies of higher homotopies in

a variety of settings. The earliest applications were concerned with iterated topological

loop spaces. More recent developments have involved derived categories, factorization

homology, knot theory, moduli spaces, representation theory, string theory, deformation

quantization, and many other topics. This paper is a sequel to our work on operads in

the context of the slice filtration in motivic homotopy theory [9].

The problem we address here is that of preservation of algebras over colored operads,

and also modules over such algebras, under Bousfield (co)localization functors. For

this we only require a few widely attained technical assumptions and notions on the

underlying model categories and the operads, e.g., that of strongly admissible operads

in a cofibrantly generated symmetric monoidal model category. We refer to [5], [18], and

[17] for related results on (co)localization of monadic algebras.

Our main motivation for studying the mentioned problem of preservation of algebras

is rooted in Morel’s π1-conjecture [14], [15]. For a field F , this conjecture states there

exists a short exact sequence of Nisnevich sheaves on the category of smooth F -schemes

of finite type

0 −→ KM
2 /24 −→ π1,01 −→ π1,0KQ −→ 0. (1)

Here, 1 is the motivic sphere spectrum, KM denotes Milnor K-theory, and KQ is the

hermitian K-theory spectrum. The solution of Morel’s π1-conjecture [15] involves an

explicit calculation in the slice spectral sequence of the motivic sphere spectrum. One of

the precursors for this calculation is the fact that the total slice functor takes E∞ motivic

spectra, in particular the algebraic cobordism spectrum, to graded E∞ MZ-algebras in a

functorial way. Here, MZ denotes the motivic Eilenberg-MacLane spectrum. Theorems

3.8 and 3.14 in this paper coupled with our construction of the slice filtration in [9, §6]

verify the mentioned multiplicative property (which in turn is used in the proof of [15,

Theorem 2.20]). We envision that future calculations with slice spectral sequences will

exploit multiplicative structures to a greater extent, and as such will be relying on the

results herein.

The paper starts with §2 on model structures on operads and algebras. Our main

results on preservation of algebras and modules under Bousfield (co)localization functors

are shown in §3 and §4. To make the paper reasonably self-contained we have included

two appendices fixing our conventions on model categories and colored operads. In

particular, we review tensor-closed sets of objects in a homotopy category, the Reedy

model structure, operadic algebras, and modules over such algebras.
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2 Model structures of operads and algebras

Let C be a cocomplete closed symmetric monoidal category with tensor product ⊗,

unit I, initial object 0, and internal hom functor Hom(−,−). For a set C we refer

to Appendix B for the definitions of C-colored collections and C-colored operads in C.

Recall that a C-colored collection K is pointed if it is equipped with unit maps I →

K(c; c) for every c ∈ C. Denote by CollC(C) and Coll•C(C) the categories of C-colored

collections and pointed C-colored collections, respectively. If K is a C-colored collection,

we can define a pointed C-colored collection F (K) by setting F (K)(c; c) := K(c; c)
∐

I

for every c in C, and F (K)(c1, . . . , cn; c) := K(c1, . . . , cn; c) if n 6= 1. This defines the

free-forgetful adjoint functor pair

F : CollC(C)
//
Coll•C(C) : U.oo

We denote by OperC(C) and Oper(C) the categories of C-colored operads and (one-

colored) operads in C, respectively.

Suppose C is a cofibrantly generated symmetric monoidal model category. Then

CollC(C) and Coll•C(C) have transferred model structures, where weak equivalences and

fibrations are defined colorwise. There is a free-forgetful adjoint pair

F : Coll•C(C)
//
OperC(C) : U.oo (2)

Under suitable conditions, the model structure on (pointed) C-colored collections can be

transferred along (2) to a cofibrantly generated model structure on OperC(C), in which a

map of C-colored operads is a fibration or a weak equivalence if its underlying (pointed)

C-colored collection is so. This holds for k-spaces, simplicial sets, and symmetric spectra;

see [2, Theorems 3.1, 3.2], [3, Theorem 2.1, Example 1.5.6] and [10, Corollary 4.1].

In general, (2) does not furnish a model structure on OperC(C), but rather the weaker

structure of a semi model structure. In a semi model category the axioms of a model

category hold with the exceptions of the lifting and factorization axioms, which hold only

for maps with cofibrant domains. The trivial fibrations have the right lifting property

with respect to cofibrant objects, since the initial object of a semi model category is

assumed to be cofibrant. For operads the following result is shown in [16, Theorem 3.2]

(cf. [7, Theorem 12.2A]). Our extension to colored operads follows similarly.

Theorem 2.1. If C is a cofibrantly generated symmetric monoidal model category, then

the model structure on Coll•C(C) transfers along the free-forgetful adjunction (2) to a

cofibrantly generated semi model structure on OperC(C), in which a map O → O′ is a
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fibration or a weak equivalence if O(c1, . . . , cn; c) → O′(c1, . . . , cn; c) is a fibration or a

weak equivalence in C, respectively, for every tuple of colors (c1, . . . , cn, c).

Throughout the paper we will implicitly assume that OperC(C) always admits a

cofibrantly generated transferred model structure, where the weak equivalences and

fibrations are defined at the level of the underlying collections.

Let CC denote the product category
∏

c∈C C. If O is a C-colored operad, denote

by AlgO(C) the category of O-algebras in C; see Appendix B. There is a free-forgetful

adjoint pair

FO : CC //
AlgO(C) : UO,oo (3)

where the left adjoint is the free O-algebra functor defined by

FO(A )(c) =
∐

n≥0


 ∐

c1,...,cn∈C

O(c1, . . . , cn; c)⊗Σn A (c1)⊗ · · · ⊗ A (cn)


 .

If it is clear from the context we shall write F and U instead of FO and UO, respectively.

Let C be a cofibrantly generated symmetric monoidal model category. Recall from [2]

that a C-colored operad O is admissible if the product model structure on CC transfers

to a cofibrantly generated model structure on AlgO(C) via (3). An O-algebra A is

underlying cofibrant if U(A ) is cofibrant in CC ; i.e., A (c) is cofibrant in C for all c ∈ C.

As indicated in [16, I.5], if C is a simplicial symmetric monoidal model category andO

is an admissible C-colored operad, then AlgO(C) is naturally a simplicial model category.

For a simplicial set K and an O-algebra A , the cotensor A K is the object (UOA )K

with O-algebra structure given by the composition O → End(A ) → End(A K) — for

the endomorphism colored operad — induced by the diagonal map K → K × · · · ×K.

For K fixed, the functor (−)K has a left adjoint defining the tensor. For A fixed, the

functor A (−) has a right adjoint defining the simplicial enrichment in AlgO(C).

Definition 2.2. Let C be a cofibrantly generated symmetric monoidal model category.

A C-colored operad O in C is strongly admissible if there is a weak equivalence ϕ : O′ →

O of admissible C-colored operads inducing a Quillen equivalence

ϕ! : AlgO′(C) //
AlgO(C) : ϕ

∗
oo

and O′ satisfies one of the conditions:

(i) It has an underlying cofibrant C-colored collection.
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(ii) It has an underlying cofibrant pointed C-colored collection, and C has an additional

cofibrantly generated symmetric monoidal model structure with the same weak

equivalences and cofibrant unit.

We call the triple (O,O′, ϕ) a strongly admissible pair.

Remark 2.3. By [13, Theorem 1] any combinatorial symmetric monoidal model category

satisfying the very strong unit axiom admits a combinatorial symmetric monoidal model

structure with the same weak equivalence and (possibly) more cofibrations making the

unit cofibrant. The very strong unit axiom says that tensoring any object with a cofi-

brant approximation of the unit is a weak equivalence. This holds in many examples,

e.g., when tensoring with cofibrant objects preserve weak equivalences [13, Corollary 9].

Remark 2.4. If C is a simplicial symmetric monoidal model category, then the unit of C

is cofibrant: For any monoidal Quillen adjunction i : sSets ⇄ C : r, i preserves the unit

and cofibrations. Thus if O is a C-colored operad in C with an underlying cofibrant

pointed C-colored collection, O has an underlying cofibrant C-colored collection.

Let A be a monoid in a closed symmetric monoidal category C. Define the operad

OA by OA (n) = A if n = 1 and zero otherwise. The algebras over OA in C are precisely

the A -modules. A map of monoids A → B induces a map of operads OA → OB.

Definition 2.5. Let C be a cofibrantly generated symmetric monoidal model category.

A monoid A in C is strongly admissible if there is another monoid A ′ and a weak

equivalence ϕ : A ′ → A such that (OA ,OA ′ , ϕ) is a strongly admissible pair.

The constant simplicial object functor sends an object X to the simplicial object X•

with Xn = X for all n. If C is symmetric monoidal, this is a symmetric monoidal functor

for the objectwise tensor product on sC. Thus, if O is a C-colored operad in C, we can

view it as a C-colored operad in the category of simplicial objects sC by applying the

constant functor levelwise.

Lemma 2.6. Suppose O is an admissible C-colored operad in a simplicial symmetric

monoidal model category C. For every simplicial object A• in AlgO(C) there is a natural

isomorphism

|U(A•)|CC
∼= U(|A•|AlgO(C)),

where U and |−| denote the corresponding forgetful and realization functor, respectively.

Proof. In any simplicial model category there are adjoint functors | − |C : sC → C and

SingC : C → sC, where SingC(X) is the simplicial object with SingC(X)n = X∆[n]. Since
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AlgO(C) is also a simplicial model category, we have the adjunction

| − |AlgO(C) : sAlgO(C)
//
AlgO(C) : SingAlgO(C).oo

By Lemma A.3 (ii) |−|C is a symmetric monoidal functor. Hence there exists an induced

adjunction between O-algebras in sC and C. But the O-algebras in sC — viewing O as

a constant simplicial object in sC — are precisely sAlgO(C). We claim the two adjoint

pairs are isomorphic. Indeed, if A is an O-algebra, A ∆[n] is (UOA )∆[n] with O-algebra

structure given by the composite End(A ) → End(A ∆[n]), as explained in [16, I.5]. It

follows easily that the right adjoints coincide.

Proposition 2.7. Suppose O is an admissible C-colored operad in a cofibrantly gener-

ated symmetric monoidal model category C.

(i) If O has an underlying cofibrant C-colored collection, then every cofibrant O-algebra

is underlying cofibrant.

(ii) If O has an underlying cofibrant pointed C-colored collection and C has a second

symmetric monoidal model structure with the same weak equivalences and cofibrant

unit, then every cofibrant O-algebra is underlying cofibrant in this model structure.

Proof. The proof for operads in [2, Corollary 5.5] extends to colored operads. (The proof

of [3, Theorem 4.1] gives closely related steps.) Alternatively, use the colored operads

version of [16, Proposition 4.8].

We refer to Appendix A.1 for the Reedy model structure on simplicial categories.

Lemma 2.8. Suppose O is a C-colored operad with an underlying cofibrant collection in

a cofibrantly generated symmetric monoidal model category C. Then O — viewed as an

operad in sC via the constant functor — has an underlying cofibrant C-colored collection

in sC.

Proof. Suppose G is a discrete group and CG is the category of objects in C with right

G-actions. Then the Reedy model structure on s(CG) — for the transferred model

structure on CG — coincides with the model structure on (sC)G transferred from the

Reedy model structure on sC. Thus the corresponding model structures on sCollC(C) and

CollC(sC) coincide. Recall that ∆
op has cofibrant constants [11, Corollary 15.10.5]. Thus

cofibrancy of the underlying C-colored collection of O in CollC(C) implies the underlying

C-colored collection of O — viewed as a constant simplicial object — is Reedy cofibrant

in sCollC(C) [11, Theorem 15.10.8(1)], and hence it is cofibrant in CollC(sC).
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Lemma 2.9. Suppose O is an admissible C-colored operad in a symmetric monoidal

model category C. Then sAlgO(C) has a model structure transferred from (sC)C —

equipped with the colorwise Reedy model structure — which coincides with its Reedy

model structure.

Proof. We show that the Reedy model structure on sAlgO(C) is the transferred model

structure from (sC)C . Since the weak equivalences are defined objectwise in the Reedy

model structure, the weak equivalences in sAlgO(C) are precisely the maps that become

weak equivalences in (sC)C . A map in sAlgO(C) is a Reedy fibration if certain maps

involving matching objects and fiber products are fibrations in AlgO(C). But since the

fibrations in AlgO(C) are the underlying fibrations and the matching objects and fiber

products commute with taking the underlying collection, the result follows.

Corollary 2.10. Suppose O is an admissible C-colored operad in a cofibrantly generated

symmetric monoidal model category C.

(i) If O has an underlying cofibrant C-colored collection, then any Reedy cofibrant

object in sAlgO(C) is Reedy cofibrant as an object in sC.

(ii) Suppose O has an underlying cofibrant pointed C-colored collection and C has a

second symmetric monoidal model structure with the same weak equivalences and

cofibrant unit. Then any Reedy cofibrant object in sAlgO(C) is cofibrant in sC

equipped with the Reedy model structure induced by this model structure on C.

Proof. The category of O-algebras in sC has a model structure transferred from (sC)C

by assumption and Lemma 2.9. Moreover, sC is a symmetric monoidal model category

by Lemma A.3 (i). Also every object in sC is small relative to the whole category.

To prove part (i) note that the constant operad on O in sC has an underlying

cofibrant collection by Lemma 2.8. Thus we can apply Proposition 2.7(i) to sC with the

Reedy model structure. Since a Reedy cofibrant object of sAlg(O) is cofibrant for the

transferred model structure, by Lemma 2.9, this gives the result.

Part (ii) is proved similarly by reference to [16, Proposition 4.8]. (By assumption the

constant operad on O in sC has an underlying cofibrant collection in sC for the Reedy

model structure induced by the second model structure on C.)
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3 (Co)localization of algebras over colored operads

3.1 Colocalization of algebras

In this section we show that tensor-closed K-colocalization functors preserve algebras

over cofibrant C-colored operads. More precisely, we prove that if O is a cofibrant C-

colored operad and f is an LF (K)-colocalization in the category of O-algebras AlgO(C),

then U(f) is a K-colocalization in C, where U denotes the forgetful functor.

If K is a set of isomorphism classes of objects of Ho(C), and C is a set of colors,

denote by KC the set of objects in Ho(C)C defined as KC =
∏

c∈C K. Note that an

object in CC is KC -colocal if and only if it is colorwise K-colocal.

Lemma 3.1. Suppose O is a strongly admissible C-colored colored operad in a cofibrantly

generated simplicial symmetric monoidal model category C. For a simplicial object A•

in AlgO(C), the canonical map

hocolim∆opU(A•) −→ U(hocolim∆opA•)

is a weak equivalence, where U denotes the corresponding forgetful functor.

Proof. Since C is a simplicial symmetric monoidal model category, Remark 2.4 shows we

may assume O is strongly monoidal and satisfies Definition 2.2(i). We may also assume

that O has an underlying cofibrant collection, due to the Quillen equivalence between

AlgO(C) and AlgO′(C) in the definition of a strongly admissible operad.

By homotopy invariance of the homotopy colimit, we may further assume that A• is

Reedy cofibrant. By Lemma A.4, sC is cofibrantly generated. Thus by Corollary 2.10(i)

U(A•) is Reedy cofibrant as well. By Lemma A.1, |A•|Alg(O) computes the homotopy

colimit of A•, and |U(A•)|CC computes the homotopy colimit of U(A•). Corollary 2.6

gives an isomorphism |U(A•)|CC
∼= U(|A•|Alg(O)), which finishes the proof.

Let C be a symmetric monoidal model category andO a C-colored operad in C. Given

any O-algebra A in AlgO(C) we define the standard simplicial object associated to A

by setting An = (FU)n+1A with the usual structure maps. Here, F and U denote the

free functor and the forgetful functor, respectively. There is a canonical augmentation

A• → A obtained by viewing A as a constant simplicial object.

Lemma 3.2. Suppose O is a strongly admissible colored operad in a cofibrantly gen-

erated simplicial symmetric monoidal model category C. For every O-algebra A , the

augmentation map induces a canonical weak equivalence hocolim∆opA• → A .
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Proof. This follows from Lemma 3.1 since U(A•) → U(A ) is a split augmented simplicial

object.

Remark 3.3. In Lemma 3.2 one should be mindful of forming the “correct” derived

simplicial object, i.e., in degree n it is weakly equivalent to (FQU)n+1A , where Q is a

cofibrant replacement functor in CC .

Lemma 3.4. Let O be a strongly admissible C-colored operad in a cofibrantly generated

simplicial symmetric monoidal model category C, and K a tensor-closed set of isomor-

phism classes of objects of Ho(C). Suppose O(c1, . . . , cn; c) ⊗
L − preserves K-colocal

objects for all (c1, . . . , cn, c), n ≥ 0. If X in CC is colorwise K-colocal, then LF (X) is

underlying colorwise K-colocal.

Proof. Since O is strongly admissible and C is a simplicial symmetric monoidal model

category, we may assume that O has an underlying cofibrant collection. We note that

O(c; c) ⊗X is cofibrant in C for every c ∈ C and cofibrant X in C. Moreover, we have

F (X)(c) =
∐

n≥0

( ∐

d∈Cn

O(d1, . . . , dn; c) ⊗Σn X(d1)⊗ · · · ⊗X(dn)

)
.

The result follows now from the fact that K is tensor-closed, K-colocal objects are closed

under coproducts, and F (X)(c) is a homotopy quotient of K-colocal objects for every

c ∈ C, hence K-colocal.

Remark 3.5. If O(c1, . . . , cn; c) is K-colocal, then O(c1, . . . , cn; c)⊗− preserves K-colocal

objects for all (c1, . . . , cn, c), n ≥ 0, since K is tensor-closed. The converse holds provided

the unit I is K-colocal.

Lemma 3.6. Under the same assumptions as in Lemma 3.4, let D : I → AlgO(C) be

a diagram of underlying colorwise K-colocal algebras. Then hocolimID is underlying

colorwise K-colocal.

Proof. We may assume O has an underlying cofibrant collection because C is a simplicial

symmetric monoidal model category. Also assume without loss of generality that D

takes values in cofibrant objects. For every i ∈ I, let D(i)• → D(i) be the augmented

standard simplicial object associated to D(i). Note that by Proposition 2.7(i) and

the explicit formula for the free functor F , U(FU)nD(i) is cofibrant for every i ∈ I

and n ≥ 0. For Xn = hocolimID(−)n we have Xn ≃ LF (hocolimIU(FU)nD(−)).

By Lemma 3.4, each U(FU)nD(i) is colorwise K-colocal and thus Xn is underlying

colorwise K-colocal. Lemma 3.2 implies that hocolimID ≃ hocolim∆opX•. Finally,

hocolim∆opU(X•) ≃ U(hocolim∆opX•) follows from Lemma 3.1.
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Proposition 3.7. With the same assumptions as in Lemma 3.4 the following holds.

(i) If A is an underlying colorwise K-colocal O-algebra, then A is LF (KC)-colocal.

(ii) If AlgO(C) has a good LF (KC)-colocalization, then every LF (KC)-colocal object is

underlying colorwise K-colocal.

Proof. Again we may assume that O has an underlying cofibrant collection since C is a

simplicial symmetric monoidal model category.

To prove part (i) we may assume A is cofibrant. Let A• → A be the associated

augmented standard simplicial object. As in the proof of Lemma 3.6 it follows that

An has the correct homotopy type for every n, i.e., each An is weakly equivalent to

((LF )U)n+1(A ). By Lemma 3.2, hocolimA• → A is a weak equivalence. Each An is

F (KC)-colocal by Lemmas 3.4 and A.7(ii). Thus A is F (KC)-colocal.

For part (ii), note that if X in CC is colorwise K-colocal, then LF (X) is underlying

colorwise K-colocal by Lemma 3.4. We conclude from Lemma 3.6 since by assumption

the F (KC)-colocal objects are generated under homotopy colimits by F (KC ).

Theorem 3.8. Let O be a strongly admissible C-colored operad in a cofibrantly gen-

erated simplicial symmetric monoidal model category C. Let K be a tensor-closed set

of isomorphism classes of objects of Ho(C). Suppose AlgO(C) has a good LF (KC)-

colocalization and O(c1, . . . , cn; c) ⊗ − preserves K-colocal objects for all (c1, . . . , cn, c),

n ≥ 0. If A ′ → A is an LF (KC)-colocalization of A in AlgO(C), then U(A ′) → U(A )

is a KC-colocalization in CC .

Proof. By Proposition 3.7(ii) the object U(A ′) is KC -colocal, and by Lemma A.7(ii)

the map U(A ′) → U(A ) is a KC -colocal equivalence.

Remark 3.9. Theorem 3.8 implies Proposition 3.7(i) provided AlgO(C) acquires a good

LF (KC)-colocalization. If CC has a good KC -colocalization, the theorem states that

for a cofibrant replacement A ′ → A in AlgO(C)
LF (KC) the map U(A ′) → U(A ) is a

cofibrant replacement in (CC)K
C

.

Proposition 3.10. If either of the model structures AlgO(C)
LF (KC ) or AlgO(C

K) exists,

then so does the other and they coincide.

Proof. It suffices to check that the fibrations and weak equivalences coincide. For the

fibrations, note that the model structures on the algebras are transferred from C and CK,

for the same classes of fibrations. For the weak equivalences we use Lemma A.7(ii).
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Remark 3.11. The model structure AlgO(C)
LF (KC) exists if AlgO(C) is right proper, e.g.,

when C is right proper. We also remark that AlgO(C
K) exists if the colocalized model

structure CK can be transferred.

3.2 Localization of algebras

In this section we show that tensor-closed S-localization functors preserve algebras over

cofibrant C-colored operads. More precisely, we prove that if O is a cofibrant C-colored

operad and f an LF (S)-localization in AlgO(C), then U(f) is an S-localization in C.

If S is a set of homotopy classes of maps in C and C is a set of colors, we denote by

SC the set
∏

c∈C S. Note that a map in CC is an SC-local equivalence if and only if it

is colorwise an S-local equivalence.

Lemma 3.12. Let O be a strongly admissible C-colored operad in a cofibrantly generated

simplicial symmetric monoidal model category C. Suppose S is set of homotopy classes

of maps such that S-equivalences are tensor-closed. If g is colorwise an S-equivalence,

then F (g) is underlying colorwise an S-equivalence.

Proof. Let g : A → B be a map in C. Then UF (g) is the map

∐
n≥0

(
∐

c1,...,cn∈C
O(c1, . . . , cn; c)⊗Σn A (c1)⊗ · · · ⊗ A (cn)

)

��

∐
n≥0

(
∐

c1,...,cn∈C
O(c1, . . . , cn; c) ⊗Σn B(c1)⊗ · · · ⊗ B(cn)

)
.

By assumption, the map A (c1) ⊗ · · · ⊗ A (cn) → B(c1) ⊗ · · · ⊗ B(cn) is an S-local

equivalence for every n-tuple (c1, . . . , cn), and tensoring with O(c1, . . . , cn) preserves

this property. The result follows by using that S-local equivalences are closed under

homotopy colimits and coproducts.

Remark 3.13. The assumptions of the theorem are automatically satisfied if, for instance,

the functor X ⊗L − preserve S-local equivalences for all X in C.

Theorem 3.14. Let O, C, C, and S be as above and suppose in addition that AlgO(C)

has a good LF (SC)-localization. If A → A ′ is an LF (SC)-localization in AlgO(C), then

U(A ) → U(A ′) is an SC-localization in CC .

11



Proof. By Lemma A.7(i) it follows that U(A ′) is SC-local. It remains to show the map

U(A ) → U(A ′) is an SC-local equivalence. Consider the diagram

FUA

��

FUFUA

��

oo · · ·oo (FU)nA

��

oo · · ·oo

F (ÛA ) FUF (ÛA )oo · · ·oo (FU)n−1F (ÛA )oo · · · ,oo

where UA → ÛA is a fibrant replacement of UA in the localized model category

(CC)SC . The leftmost vertical map is an F (SC)-local equivalence by Lemma A.7(i).

By [8, Theorem 5.7] the map UA → ÛA coincides with U(A → B) for some map of

O-algebras A → B. Lemma 3.12 shows UFUA → UFUB is an SC-local equivalence,

hence FUFUA → FUFUB is an F (SC)-local equivalence. Iterating this argument, it

follows that

An = (FU)nA −→ (FU)n−1F (ÛA ) = (FU)nB = Bn

is an F (SC)-local equivalence. Taking homotopy colimits in the previous diagrams yields

the commutative square

A

��

hocolim∆opA•
oo

��

B hocolim∆opB•.oo

The right vertical map is an F (SC)-local equivalence (a homotopy colimit of F (SC)-

local equivalences). The horizontal maps are weak equivalences by Lemma 3.2. Hence

A → B is an F (SC)-local equivalence. By repeating the same construction with A ′

instead of A , we obtain a commutative diagram

A //

��

A ′

��

B // B′,

where all four maps are F (SC)-local equivalences and A ′, B and B′ are F (SC)-local.

Hence the left vertical map and the bottom horizontal map are weak equivalences. If

we apply the forgetful functor we get a commutative diagram

U(A ) //

��

U(A ′)

��

U(B) = Û(A ) // B′ = Û(A ′),
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where the left vertical map is an SC-local equivalence and the right vertical and bottom

horizontal maps are weak equivalences. It follows that U(A ) → U(A ′) is an SC-local

equivalence.

Proposition 3.15. If either of the model structures AlgO(C)LF (SC) or AlgO(CS) exists,

then so does the other and they coincide.

Proof. It suffices to check that the trivial fibrations and fibrant objects coincide. For the

trivial fibrations, note that the model structures on the algebras are transferred from C

and CS for the same trivial fibrations. For the fibrant objects we use Lemma A.7(i).

Remark 3.16. The model structure AlgO(C)LF (SC) exists if AlgO(C) is left proper. We

also remark that AlgO(CS) exists if the localized model structure CS can be transferred.

4 (Co)localization of modules over algebras

In the following we shall run similar arguments for modules over a given monoid instead

of algebras over a colored operad, culminating in analogous statements of Theorem 3.8

and Theorem 3.14. When colocalizing (resp. localizing) a module over a monoid A

with respect to a tensor-closed set of objects K (resp. of morphisms S) for which A is

K-colocal (resp. S-local), one can simply apply Theorem 3.8 or Theorem 3.14 because

there exists an operad whose algebras are exactly the modules over the given monoid.

That is, let O be the operad with O(1) = A and O(i) = ∅ for i 6= 1. Then the categories

of O-algebras and A -modules are equivalent. Furthermore, O is strongly admissible if

A is. But in practice, e.g., for the motivic slice filtration, one wants to colocalize or

localize a module with respect to a colocalization or localization functor other than the

one for which the monoid is colocal or local.

4.1 Colocalization of modules

We first address colocalization of modules over monoids, and second colocalization of

modules over arbitrary operads. In the latter case we employ enveloping algebras and

restrict to monoids.

Lemma 4.1. Let A be a strongly admissible monoid in a symmetric monoidal model

category C. Then the forgetful functor U : Mod(A ) → C preserves homotopy colimits,

where Mod(A ) denotes the category of A -modules.
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Proof. Since A is strongly admissible, we may assume its underlying object is cofibrant

(case (i) in Definition 2.2), or its unit map is a cofibration in C (case (ii)). In the

first case, U is a left Quillen functor since its right adjoint given by the internal hom

Hom(A ,−) preserves fibrations and trivial fibrations, so the result follows. In the second

case, the same argument shows that U is a left Quillen functor for the model structure

on C furnished by the strong admissibility of A .

Proposition 4.2. With A and C as in Lemma 4.1, let K be a set of isomorphism

classes of objects for Ho(C). Suppose A ⊗LK is underlying K-colocal. If M ∈ Mod(A )

is underlying K-colocal, then it is also A ⊗L K-colocal. If, in addition, Mod(A ) has

a good A ⊗L K-colocalization, then every A ⊗L K-colocal A -module is underlying K-

colocal.

Proof. We may assume M is cofibrant. It follows, using the left Quillen functor U in

the proof of Lemma 4.1, that M is underlying cofibrant (in case I), or cofibrant in C for

the second model structure (in case II). Letting Mn = A ⊗(n+1) ⊗ M , the augmented

simplicial A -module M• → M splits after forgetting the A -module structure. By

Lemma 4.1 the natural A -module map hocolimM• → M is a weak equivalence. Each

Mn is A ⊗LK-colocal by Lemma A.7(ii) and the assumption that A ⊗LK is underlying

K-colocal, since K-colocal object are generated by taking the closure of K under weak

equivalences and homotopy colimits. It follows that M is A ⊗L K-colocal.

For the second assertion, we use Lemma 4.1, the fact that A ⊗LK-colocal A -modules

are generated under homotopy colimits by A ⊗L K, and the assumption that A ⊗L K

is underlying K-colocal.

Remark 4.3. Note that since we are dealing with monoids instead of arbitrary operads,

we do not assume in Proposition 4.2 that the set K is tensor-closed (cf. Proposition 3.7).

Theorem 4.4. With A , C, and K as in Proposition 4.2, suppose that A ⊗L K is

underlying K-colocal and Mod(A ) has a good A ⊗L K-colocalization. If M ′ → M is a

A ⊗L K-colocalization of M ∈ Mod(A ), then UM ′ → UM is a K-colocalization in C.

Proof. Proposition 4.2 implies that M ′ is underlying K-colocal. Using Lemma A.7(ii)

we conclude that M ′ → M is an underlying K-colocal equivalence.

Next we discuss E∞ operads, i.e., parameter spaces for multiplication maps that

are associative and commutative up to all higher homotopies, and their algebras. For

an operad O in C and an O-algebra A we denote by EnvO(A ) the enveloping algebra

of A . This is a monoid with the property that Mod(A ) ≃ Mod(EnvO(A )). For an

14



operad O with underlying cofibrant collection, AlgO(C) has a left semi model structure

[16, Theorem 4.7] provided the domains of the generating cofibrations of C are small

relative to the whole category.

Theorem 4.5. Let C be a cofibrantly generated symmetric monoidal model category

with a set K of isomorphism classes of objects for Ho(C). Suppose C is left proper, its

generating cofibrations can be chosen in such a way that their domains are cofibrant and

small relative to the whole category, and its unit is cofibrant. Let O be a pointed E∞

operad in C. Suppose A ∈ AlgO(C) is cofibrant, the objects of A ⊗L K are underlying

K-colocal, and Mod(A ) has a good EnvO(A ) ⊗L K-colocalization. If M ′ → M is an

EnvO(A )⊗LK-colocalization of M ∈ Mod(A ), then UM ′ → UM is a K-colocalization

in C.

Proof. The enveloping algebra EnvO(A ) is underlying cofibrant in C [16, Corollary 6.6]

(the cofibrancy assumption on the unit is missing in loc. cit.). By [16, Lemma 8.6], the

adjoint EnvO(A ) → A in Mod(A ) of the unit map for A is a weak equivalence (here

we use that O is an E∞ operad). Hence the A -module EnvO(A ) ⊗L K is underlying

K-colocal. Thus EnvO(A ) satisfies the assumptions of Theorem 4.4, and the result

follows.

Remark 4.6. In the above theorem we could also assume that O is cofibrant as an operad

(the operads in C form a left semi model category over CΣ,• — for notation, see [16, §3]

— by [16, Theorem 3.2]), and A is underlying cofibrant [16, Corollaries 6.3, 8.7].

It is desirable to have a parallel theory for modules over operad algebras (in the

one-colored case). Since we have the equivalence Mod(A ) ≃ Mod(EnvO(A )) and the

enveloping algebra is always a monoid, we can restrict to the latter case. A key point

is to show that EnvO(A ) is underlying K-colocal under suitable assumptions, making

our proof of Theorem 4.5 for E∞ operads go through. For this we employ the simplicial

resolution A• → A . It is easily seen that EnvO(An) is underlying K-colocal for each

n ≥ 0, so the result follows provided EnvO(A ) is weakly equivalent to the homotopy

colimit over ∆op of the diagram EnvO(A•).

For a symmetric monoidal category C, we denote by Pairs(C) the category of pairs

(O,A ), where O ∈ Oper(C) and A ∈ AlgO(C). Next we review some facts about the

colored operads O and P whose algebras are Oper(C) and Pairs(C), respectively. The

set of colors for O is N, while for P it is N ∪ {a}. The operad O is a special case of a

colored operad defined in [10, §3] whose algebras are itself colored operads for a fixed

set of colors C. We take C to be a one point set and let O = SC
C in the notation of

15



[10]. The colored operad O is the image in C of an N-colored operad in sets denoted SC ,

which we now describe (an explicit description of O can be found in [3, 1.5.6]).

Let SC(n1, . . . , nk;n) denote the set of isomorphism classes of certain trees. We

consider planar connected directed trees such that each vertex has exactly one outgoing

edge. There are two different types of edges, namely inner edges with vertices at both

ends, and external edges with a vertex only at one end or no vertices at all. It follows

that there is exactly one external edge leaving a vertex, the so-called root. There are

n external edges which are input edges to vertices, called leaves. These are numbered

by {1, . . . , n}. There are k vertices numbered by {1, . . . , k}. The planarity of the tree

means that the input edges of each vertex v are numbered by {1, . . . , in(v)}, where if

v is numbered by i, then in(v) = ni. As described in [3, 1.5.6] or [10, §3.2] there is an

N-colored operad structure on SC . We set Os = SC . Then O is the image of Os under

the tensor functor sending the one point set to the unit, and Alg(O) ≃ Oper(C) [10,

Proposition 3.5, §3.3].

Let c1, . . . , ck ∈ N ∪ {a}, n ∈ N. If each ci is in N, we set P(c1, . . . , ck;n) =

O(c1, . . . , ck;n), and otherwise we set P(c1, . . . , ck;n) = ∅. If the output c = a, then

P(c1, . . . , ck; c) = O(c′1, . . . , c
′
k; 0), where c′i = ci if ci ∈ N and c′i = 0 if ci = a.

Proposition 4.7. There is an N∪{a}-colored operad structure on P. Moreover, there

is a natural equivalence Alg(P) ≃ Pairs(C).

Proof. The composition product and the unit maps of P are defined using the compo-

sition product and unit maps of O. If A is a P-algebra, then the structure maps

P(c1, . . . , ck; c)⊗ A (c1)⊗ · · · ⊗ A (ck) −→ A (c)

when c1, . . . , ck, c ∈ N give the sequence O = {A (n)}n≥0 the structure of an operad,

since P(c1, . . . , ck; c) = O(c1, . . . , ck; c). The O-algebra structure on A (a) is defined by

the structure maps

P(n, a, (k). . ., a; a) ⊗ A (k) ⊗ A (a)⊗
(n)
· · · ⊗A (a) −→ A (a),

since P(n, a, (k). . ., a; a) = O(n, 0, (n). . ., 0; 0).

Note that, as for O, P is the image in C of a colored operad, say Ps, in sets.

Lemma 4.8. If the unit in C is cofibrant, then the underlying collections of O and P

are cofibrant. More precisely, let c1, . . . , ck and c be sequences of colors for O and P,

respectively. Then the stabilizer groups of these sequences — which are subgroups of Σk

— act freely on Os(c1, . . . , ck; c) and Ps(c1, . . . , ck; c), respectively.

16



Proof. This uses the explicit description of these colored operads: two isomorphic planar

trees of the type we consider are already uniquely isomorphic, the additional numbering

of the vertices — and leaves for the case of Ps — force the actions to be free.

Proposition 4.9. Let C be a cofibrantly generated simplicial symmetric monoidal model

category such that all of its objects are small relative to the whole category. Suppose P is

strongly admissible (e.g., the unit in C is cofibrant and Pairs(C) has a transferred model

structure by Lemma 4.8). For a simplicial object A• in Pairs(C) there is a canonical

weak equivalence

hocolim∆opU(A•) −→ U(hocolim∆opA•).

Here, U denotes the forgetful functor Pairs(C) → CN∪{a}.

Proof. This follows directly from Lemma 3.1 and Proposition 4.7.

There is an embedding φ : Oper(C) → Pairs(C) given by O 7→ (O,O(0)). It is shown

in [4, Proposition 1.6] that φ has a left adjoint (O,A ) 7→ OA . The operad OA has the

property that the category of O-algebras under A is equivalent to OA -algebras, and

the canonical O-algebra map A → OA (0) is an isomorphism [4, Lemma 1.7]. Moreover,

there is a canonical isomorphism of monoids EnvO(A ) ∼= OA (1); see [4, Theorem 1.10].

Lemma 4.10. Suppose C is a symmetric monoidal model category, and Oper(C) and

Pairs(C) have transferred model structures. Then the embedding φ : Oper(C) → Pairs(C)

is a right Quillen functor.

Proof. With these assumptions the functor φ has a left adjoint and preserves fibrations

and weak equivalences.

Lemma 4.11. Let C be a cofibrantly generated symmetric monoidal model category such

that the domains of the generating cofibrations are small relative to the whole category.

Suppose Pairs(C) has a transferred model structure. Then (O,A ) ∈ Pairs is cofibrant if

and only if O is cofibrant in Oper(C) and A is cofibrant in AlgO(C).

Proof. Recall Oper(C) has a left semi model structure over CΣ,•, and if O ∈ Oper(C) is

cofibrant, then the same holds for AlgO(C) over C [16, Theorems 3.2, 4.3].

Suppose (O,A ) is cofibrant. The lifting property with respect to trivial fibrations

(O1,pt) → (O2,pt) shows that O is cofibrant. And the lifting property with respect to

trivial fibrations (O,A1) → (O,A2) shows that A is cofibrant in AlgO(C).

Conversely, assume O and A are cofibrant. Let (O1,A1) → (O2,A2) be a trivial

fibration in Pairs(C), and (O,A ) → (O2,A2) a map. First, we can lift O → O2 to a
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map O → O1. Pulling the algebras A1 and A2 back to O gives us a lifting problem in

AlgO(C), which can be solved.

Theorem 4.12. Let C be a cofibrantly generated simplicial symmetric monoidal model

category such that all of its objects are small relative to the whole category. Let K

be a tensor-closed set of isomorphism classes of objects for Ho(C). Suppose O and

P are strongly admissible (e.g., if the unit in C is cofibrant and Oper(C) and Pairs(C)

have transferred model structures). If (O,A ) ∈ Pairs(C) is cofibrant and each O(n)

is K-colocal and A is underlying K-colocal, then the enveloping algebra EnvO(A ) is

underlying K-colocal.

Proof. Let F : C ⇄ Alg(O) :U be the free-forgetful adjunction. Let A• → A be the

standard augmented simplicial object with An = (FU)n+1A . Since AlgO(C) is a left

semi model category over C it follows that U(FU)nA , n ≥ 0, is cofibrant (for n > 0

one can also use the explicit formula for F ). By Lemma 4.11 it follows that (O,An) ∈

Pairs(C) is cofibrant.

For X ∈ C the enveloping algebra EnvO(FX) ∼= OFX(1) is given by the formula

EnvO(FX) ∼=
⊕

n≥0

O(n+ 1)⊗Σn X⊗n.

It follows that EnvO(An) is underlying K-colocal for each n ≥ 0.

Since the augmented simplicial object UA• → UA splits, Proposition 4.9 for Pairs(C)

implies there is a canonical weak equivalence

hocolim∆opA• −→ A .

Next we apply the derived functor of the left Quillen functor (O′,A ′) 7→ O′
A ′ — see

Lemma 4.10 — to (O,A•) → (O,A ), giving the augmented simplicial object OA•
→ OA

in Oper(C). Since derived left Quillen functors commute with homotopy colimits, there

is a weak equivalence

hocolim∆opOA•
−→ OA .

Proposition 4.9 for Oper(C) implies the weak equivalence

hocolim∆opOA•
(1) −→ OA (1).

Here, the homotopy colimit is computed in C. It follows that OA (1) ∼= EnvO(A ) is

underlying K-colocal, as claimed.
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Corollary 4.13. Let C, O, A , and K be as in Theorem 4.12 and suppose that Mod(A )

has a good EnvO(A )⊗LK-colocalization. If M′ → M is an EnvO(A )⊗LK-colocalization

of M ∈ Mod(A ), then U(M′) → U(M) is a K-colocalization in C.

Proof. Since K is tensor closed and EnvO(A ) is underlying K-colocal by Theorem 4.12,

it follows that the A -module EnvO(A ) ⊗L K is underlying K-colocal. To conclude we

proceed exactly as in the proof of Theorem 4.4, now with the monoid EnvO(A ).

Remark 4.14. One may ask for other hypothesis such that Theorem 4.12 still holds.

With C and K as above, suppose Oper(C) and Pairs(C) have transferred model structures.

Suppose C has a second simplicial model structure with the same weak equivalences and

cofibrant unit. We wish to conclude that a cofibrant underlying K-colocal (O,A ) yields

an underlying K-colocal enveloping algebra EnvO(A ).

As a replacement for Proposition 4.9 we sketch an alternate argument: Suppose

every Reedy cofibrant object X• ∈ sPairs(C) is cofibrant in sCN∪{a} for the Reedy model

structure. Now Ps — viewed as a colored operad in sSets— has an underlying cofibrant

collection. Let us assume the objectwise tensor functor sSets × sC → sC is a Quillen

bifunctor. Then ci → X• is a cofibration in sPairs(C), where ci is the constant simplicial

object on the initial object i of Pairs(C), see [16, Proposition 4.8]. Since ∆op has cofibrant

constants, it follows that X• is underlying Reedy cofibrant.

The same argument works for Oper(C). Alternatively, one can use that Oper(C) is a

left semi model category over CΣ,•.

4.2 Localization of modules

As in the previous section, we first discuss localization of modules over monoids and

then localization of modules over arbitrary operads.

Given a monoid A , we say that the functor A ⊗L − preserves S-equivalences if the

tensor product of A with any S-equivalence is an underlying S-equivalence.

Theorem 4.15. Let A be a strongly admissible monoid in a symmetric monoidal model

category C. Let S be a set of homotopy classes of maps such that A ⊗L − preserves

S-local equivalences and Mod(A ) has a good A ⊗L S-localization. If M → M′ is an

A ⊗L S-localization of M ∈ Mod(A ), then U(M) → U(M′) is an S-localization in C.

Proof. The proof is basically the same as for Theorem 3.14. We note the assumption

of tensor-closedness on the S-local equivalences is not needed since the free A -module

functor is defined by F (X) = A ⊗X for every X in C, and therefore An = (FU)n+1A →

(FU)n+1B = Bn is an F (S)-equivalence for every map of monoids A → B.
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Theorem 4.16. Let C be a cofibrantly generated simplicial symmetric monoidal model

category such that all of its objects are small relative to the whole category. Let S be a set

of homotopy classes of maps such that S-equivalences are tensor-closed. Suppose O and

P are strongly admissible (e.g., if the unit in C is cofibrant and Oper(C) and Pairs(C)

have transferred model structures). Let (O,A ) ∈ Pairs(C) be cofibrant. If A ⊗L −

preserves S-equivalences, then so does EnvO(A )⊗L −.

Proof. Let F : C ⇄ Alg(O) :U be the free-forgetful adjunction. Let A• → A be the

standard augmented simplicial object with An = (FU)n+1A . Suppose that for every

S-local equivalence g the map A ⊗L g is an S-local equivalence. Then, EnvO(An)⊗
L g

is also an S-local equivalence for every n ≥ 0. Now, using the same argument as in

the proof of Theorem 4.12 with the operad OA , it follows that EnvO ⊗ g is an S-

equivalence.

Corollary 4.17. Let C, O, A and S be as in Theorem 4.16 and suppose that Mod(A )

has a good EnvO(A ) ⊗L S-localization. If M → M′ is an EnvO(A ) ⊗L S-localization

for M ∈ Mod(A ), then U(M) → U(M′) is an S-localization in C.

Proof. Theorem 4.16 shows EnvO(A ) ⊗L − preserves S-local equivalences. The result

follows by applying Theorem 4.15 to the monoid EnvO(A ).

A Preliminaries on model categories

If C is a cofibrantly generated model category with set of generating cofibrations I and

set of generating trivial cofibrations J , we implicitly assume the (co)domains of the

elements of I are small relative to the I-cellular maps and that the (co)domains of

the elements of J are small relative to the J-cellular maps. This condition is satisfied

if C is a combinatorial model category ; that is, C is cofibrantly generated and locally

presentable, since in this case every object is λ-small for some cardinal λ. Let sSets

denote the category of simplicial sets. Recall that for a simplicial symmetric monoidal

model category C there exists a monoidal Quillen adjunction i : sSets ⇄ C : r. Any

such C is canonically enriched and (co)tensored over sSets. The tensor, enrichment,

and cotensor are defined by the functors i(−) ⊗ −, r(Hom(−,−)), and Hom(i(−),−),

respectively, where Hom(−,−) denotes the internal hom in C. These three functors form

a Quillen adjunction of two variables.
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A.1 The Reedy model structure on simplicial objects

Let C be a model category. The simplicial objects in C is the category sC of ∆op-diagrams

in C, where ∆ denotes the simplicial category. In its Reedy model structure [11, 15.3]

the weak equivalences are the levelwise weak equivalences, while the cofibrations and

fibrations are defined by means of latching and matching objects, respectively.

Let C be a simplicial model category. The realization |X•|C of a simplicial object

X• : ∆
op → C is the coequalizer of the diagram

∐
[m]→[n]∆[m]⊗Xn //

//∐
[n]∆[n]⊗Xn

induced by Xn → Xm and ∆[m] → ∆[n], respectively, for each map [m] → [n] in ∆.

Using coend notation, as in [11, 18.3.2] and [12, IX.6], this can be recast as

|X•|C =

∫ [n]∈∆

∆[n]⊗Xn = ∆⊗∆op X•.

If the category is clear from the context we write |X•| instead of |X•|C .

Lemma A.1. Let C be a simplicial model category and X• a Reedy cofibrant simplicial

object in C. Then the Bousfield–Kan map

hocolim∆opX• = N(− ↓ ∆op)op ⊗∆op X• −→ ∆⊗∆op X• = |X•|

is a weak equivalence.

Proof. See [11, Theorem 18.7.4].

The category s2C of bisimplicial objects in C is the category of simplicial objects in

sC. There is an obvious diagonal functor diag : s2C → sC defined by diag(X•,•)n = Xn,n.

Lemma A.2. Let X•,• be a bisimplicial object in a simplicial model category C. Then

there is a natural isomorphism

∫ [n],[m]∈∆×∆

(∆[n]×∆[m])⊗Xn,m
∼=

∫ [n]∈∆

∆[n]⊗Xn,n.

Proof. The left Kan extension of the Yoneda functor ∆ → sSets along the diagonal

∆ → ∆ ×∆ is the functor ∆×∆ → sSets that sends ([n], [m]) to ∆[n]×∆[m]. Hence

the coends ∆⊗∆op diag(X•,•) and (∆×∆)∆op×∆opX•,• are isomorphic.

If C has a symmetric monoidal structure, there is a symmetric monoidal tensor

product in sC defined by the objectwise tensor product, i.e., (X• ⊗ Y•)n = Xn ⊗ Yn.
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Lemma A.3. Let C be a symmetric monoidal model category.

(i) Then sC is a symmetric monoidal model category for the Reedy model structure.

(ii) If C is simplicial the realization functor is symmetric monoidal.

Proof. The first part is an application of [1, Theorem 3.51 and Example 3.52]. For the

second part, observe that

|X•| ⊗ |Y•| ∼=

(∫ [n]∈∆

∆[n]⊗Xn

)
⊗

(∫ [m]∈∆

∆[m]⊗ Ym

)

∼=

∫ ([n],[m])∈∆×∆

(∆[n]×∆[m])⊗Xn ⊗ Ym
∼=

∫ [n]∈∆

∆[n]⊗Xn ⊗ Yn,

where the last isomorphism follows by applying Lemma A.2 to the bisimplicial object

(X ⊗ Y )n,m = Xn ⊗ Ym.

Lemma A.4. Let C be a cofibrantly generated model category. Then the Reedy model

structure on sC is cofibrantly generated.

Proof. Here we make use of smallness of the (co)domains of the sets of generating

(trivial) cofibrations, see [11, Theorem 15.6.27].

A.2 Bousfield (co)localizations

Let C be a simplicial model category, S a set of homotopy classes of maps in C, andK a set

of isomorphism classes of objects of Ho(C). The homotopy type of the derived simplicial

mapping space map(X,Y ) can be computed using Map(QX,RY ), where Map(−,−) is

the simplicial enrichment. Here, Q and R denote cofibrant and fibrant replacement

functors in C, respectively.

An object Z in Ho(C) is S-local if for every representative f : A → B of an element

of S, the induced map

f∗ : map(B,Z) −→ map(A,Z)

is an isomorphism in Ho(sSets). An object Z in C is S-local if its image in Ho(C) is

so. The class of S-local objects is closed under homotopy limits. A map g : X → Y in

Ho(C) is an S-local equivalence or simply an S-equivalence if for every S-local Z, the

induced map

g∗ : map(Y,Z) −→ map(X,Z)

22



is an isomorphism in Ho(sSets). A map X → Y in C is an S-local equivalence if its

image in Ho(C) is so.

A map f : X → Y in Ho(C) is a K-colocal equivalence if for any representative K of

an element of K, the induced map

f∗ : map(K,X) −→ map(K,Y )

is an isomorphism in Ho(sSets). Likewise, a map in C is a K-colocal equivalence if its

image in Ho(C) is so. An object W in Ho(C) is called K-colocal if for every K-colocal

equivalence g : X → Y , there is an induced isomorphism

g∗ : map(W,X) −→ map(W,Y )

in Ho(sSets). An object W in C is K-colocal if its image in Ho(C) is so. The class of

K-colocal objects is closed under homotopy colimits.

If X is an object of C, an S-localization is an S-local equivalence X → X ′ for X ′

S-local. Dually, a K-colocalization is a K-colocal equivalence X ′ → X for X ′ K-colocal.

A simplicial symmetric monoidal model category C is tensor-closed if the class of S-

local equivalences is closed under the derived tensor product. Likewise, K is tensor-closed

if the class of K-colocal objects is closed under the derived tensor product.

Definition A.5. Let S be a set of maps and K be a set of objects in a simplicial model

category C.

(i) C has a good S-localization if the left Bousfield localization with respect to S exists;

that is, if the classes of cofibrations in C and S-local equivalences define a model

structure on C. This is the S-local model structure denoted by CS .

(ii) C has a good K-colocalization if the right Bousfield localization with respect to K

exists; that is, if the classes of fibrations in C and K-colocal equivalences define a

model structure on C, and the K-colocal objects are generated under homotopy

colimits by the objects of K. This is the K-colocal model structure denoted by CK.

The S-local fibrations are the maps in C with the right lifting property with respect

of all maps of C that are cofibrations and S-local equivalences, Similarly, the K-colocal

cofibrations are the maps in C with the left lifting property with respect to all maps of

C that are fibrations and K-colocal equivalences.

If C has a good CS-localization, then an S-localization of X is just a fibrant replace-

ment of X in the localized model structure CS (also called an S-local replacement).

Similarly, if C has a good K-colocalization, then a K-colocalization is a cofibrant re-

placement in the colocalized model structure CK.
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Theorem A.6. Let C be a cellular or combinatorial simplicial model category.

(i) If C is left proper, then C has a good S-localization for every set of maps S.

(ii) If C is right proper, then C has a good K-colocalization for every set of objects K.

Moreover, the K-colocal objects is the smallest class of objects of C that contains

K and is closed under homotopy colimits and weak equivalences.

Proof. For C cellular see [11, Theorem 4.1.1] and [11, Theorem 5.1.1, Theorem 5.1.5]. If

C is combinatorial the result follows from [1, Theorem 4.7] and [1, §5].

If F : C → D is a left Quillen functor, denote by LF : Ho(C) → Ho(D) its left derived

functor. If U : D → C is a right Quillen functor, denote by RU its right derived functor.

Lemma A.7. Let F : C ⇄ D : U be a simplicial Quillen adjunction, S a set of homotopy

classes of maps in C, and K a set of isomorphism classes of objects of Ho(C).

(i) An object Z in D is LF (S)-local if and only if RU(Z) is S-local in C. Moreover,

if g is an S-local equivalence in C, then LF (g) is an LF (S)-local equivalence in D.

(ii) A map f is an LF (K)-colocal equivalence in D if and only if RU(f) is a K-colocal

equivalence in C. Moreover, if W is K-colocal in C, then LF (W ) is LF (K)-colocal

in D.

Proof. Both statements follow by using derived adjunctions.

B Colored operads

In this appendix we recall the definitions and basic properties of colored operads and

their algebras that are used in the paper. Throughout, V denotes a cocomplete closed

symmetric monoidal category with tensor product⊗, initial object 0, unit I, and internal

hom HomV(−,−). The elements in the set C are referred to as colors.

Definition B.1. A C-colored collection K in V consists of a set of objects K(c1, . . . , cn; c)

in V for each (n + 1)-tuple of colors (c1, . . . , cn, c) equipped with a right action of the

symmetric group Σn given by maps

α∗ : K(c1, . . . , cn; c) −→ K(cα(1), . . . , cα(n); c),

where α ∈ Σn (by default, Σn is the trivial group if n = 0 or n = 1).
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A map of C-colored collections ϕ : K −→ L consists of maps in V

ϕc1,...,cn;c : K(c1, . . . , cn; c) −→ L(c1, . . . , cn; c),

for (n + 1)-tuples (c1, . . . , cn, c), n ≥ 0, that is compatible with the action of Σn. We

denote by CollC(V) the category of C-colored collections in V.

Definition B.2. A C-colored operad O in V is a C-colored collection equipped with unit

maps I −→ O(c; c) for every c ∈ C and, for every (n + 1)-tuple of colors (c1, . . . , cn, c)

and n given tuples

(a1,1, . . . , a1,k1 ; c1), . . . , (an,1, . . . , an,kn ; cn),

a composition product map

O(c1, . . . , cn; c) ⊗O(a1,1, . . . , a1,k1 ; c1)⊗ · · · ⊗ O(an,1, . . . , an,kn ; cn)

��

O(a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , an,1, . . . , an,kn ; c),

that is compatible with the symmetric groups actions and subject to the associativity

and unitary isomorphisms, see [6, §2].

A map of C-colored operads is a map of the underlying C-colored collections that is

compatible with the unit and composition product maps.

Denote by VC the product category of copies of V indexed by the set of colors C; that

is, VC =
∏

c∈C V. For every object X = (X(c))c∈C in VC , the endomorphism colored

operad End(X) of X is the C-colored operad defined by

End(X)(c1, . . . , cn; c) := HomV(X(c1)⊗ · · · ⊗X(cn),X(c)).

Here, X(c1)⊗· · ·⊗X(cn) is the unit I when n = 0. The composition product is ordinary

composition and the Σn-action is defined by permutation of the factors.

Definition B.3. Let O be any C-colored operad in V. An O-algebra (or an algebra

over O) A is an object X = (X(c))c∈C of VC together with a map O −→ End(X) of

C-colored operads.

Equivalently, since the monoidal category V is closed, an O-algebra is a family of

objects X(c) in V for every c ∈ C together with maps

O(c1, . . . , cn; c)⊗X(c1)⊗ · · · ⊗X(cn) −→ X(c),
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for every (n + 1)-tuple (c1, . . . , cn, c), that are compatible with the symmetric group

action, the unit maps of O, and subject to the usual associativity isomorphisms.

A map of O-algebras f : A −→ B is comprised of maps (fc : X(c) −→ Y (c))c∈C of

underlying collections inducing a commutative diagram of C-colored collections

O //

��

End(X)

��

End(Y) // Hom(X,Y).

The top and left arrows are the given O-algebra structures on X and Y, respectively.

The C-colored collection Hom(X,Y) is defined as

Hom(X,Y)(c1, . . . , cn; c) := HomV(X(c1)⊗ · · · ⊗X(cn), Y (c)),

and the right and bottom arrows are induced by the maps fc. If V has pullbacks, then

a map f of O-algebras can be viewed as a map of C-colored operads

O −→ End(f),

where End(f) is the pullback of the diagram of C-colored collections

End(f) //

��

End(X)

��

End(Y) // Hom(X,Y).

(4)

Note that End(f) inherits a C-colored operad structure from the C-colored operads

End(X) and End(Y). We denote the category of O-algebras by AlgO(V).

Definition B.4. Given a C-colored operad O and an object X = (X(c))c∈C in VC , the

restricted endomorphism operad EndO(X) is defined by

EndO(X)(c1, . . . , cn; c) :=

{
End(X,Y)(c1, . . . , cn; c) if O(c1, . . . , cn; c) 6= 0,

0 otherwise.
(5)

There is a canonical inclusion of C-colored operads EndO(X) −→ End(X), and thus

every map O −→ End(X) of C-colored operad factors uniquely through the restricted

endomorphism operad EndO(X). Hence an O-algebra structure on X is given by a map

of C-colored operads O −→ EndO(X).
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If α : C −→ D is a function between sets of colors, any D-colored operad O pulls

back to a C-colored operad α∗O and there is an adjoint functor pair (see [3, §1.6])

α! : OperC(V)
//
OperD(V) : α

∗.oo (6)

The restriction functor α∗ is defined by (α∗O)(c1, . . . , cn; c) := O(α(c1), . . . , α(cn);α(c)).

A function α : C −→ D also defines an adjoint pair between the corresponding categories

of algebras for every D-colored operad O in V, i.e.,

α! : Algα∗O(V)
//
AlgO(V) : α

∗.oo (7)

If A is an O-algebra with structure map γ : O −→ End(X), then (α∗X)(c) := X(α(c))

for all c ∈ C, with structure map defined by (6), i.e.,

α∗γ : α∗O −→ α∗End(X) = End(α∗X). (8)

When C = {c}, a C-colored operad O is an operad, where O(n) is short for

O(c, . . . , c; c) with n ≥ 0 inputs. The associative operad Ass is the one-color operad

with Ass(n) = I[Σn] for n ≥ 0. Here, I[Σn] is the coproduct of copies of the unit

I indexed by Σn, on which Σn acts freely by permutations. The commutative operad

Com is the one-color operad with Com(n) = I for n ≥ 0. Algebras over Ass are the

associative monoids in V, while algebras over Com are the commutative monoids in V.

For O a one-colored operad in V, let ModO be the C-colored operad with colors C =

{r,m} and nonzero termsModO(r,
(n). . ., r; r) := O(n), n ≥ 0, andModO(c1, . . . , cn;m) :=

O(n), n ≥ 1, where exactly one ci is m and the rest (if any) are equal to r. An algebra

over ModO is a pair (R,M ) of objects of V, where R is an O-algebra and M is a

module over R. That is, an object equipped with maps

O(n)⊗ R ⊗
(k−1)
· · · ⊗ R ⊗ M ⊗ R ⊗

(n−k)
· · · ⊗ R −→ M

for n ≥ 1 and 1 ≤ k ≤ n, that are equivariant and compatible with associativity

isomorphisms and the unit of O.

When O = Ass, an algebra over ModO is a pair (R,M ) where R is a monoid

in V and M is an R-bimodule, i.e., an object equipped with commuting left and right

R-actions. When O = Com , then R is a commutative monoid in V and M is a module

over it (indistinctly left or right).

Let α denote the inclusion of {r} into {r,m}. Then α∗ModO = O for every operad

O, and α∗(R,M ) = R for the corresponding algebras.
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