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Evaluating Resilience of Electricity Distribution Networks via
A Modification of Generalized Benders Decomposition Method

Devendra Shelar, Saurabh Amin, and Ian Hiskens

Abstract—This paper presents a computational ap-
proach to evaluate the resilience of electricity Distri-
bution Networks (DNs) to cyber-physical failures. In
our model, we consider an attacker who targets mul-
tiple DN components to maximize the loss of the DN
operator. We consider two types of operator response:
(i) Coordinated emergency response; (ii) Uncoordi-
nated autonomous disconnects, which may lead to cas-
cading failures. To evaluate resilience under response
(i), we solve a Bilevel Mixed-Integer Second-Order
Cone Program which is computationally challenging
due to mixed-integer variables in the inner problem
and non-convex constraints. Our solution approach
is based on the Generalized Benders Decomposition
method, which achieves a reasonable tradeoff between
computational time and solution accuracy. Our ap-
proach involves modifying the Benders cut based on
structural insights on power flow over radial DNs. We
evaluate DN resilience under response (ii) by sequen-
tially computing autonomous component disconnects
due to operating bound violations resulting from the
initial attack and the potential cascading failures. Our
approach helps estimate the gain in resilience under
response (i), relative to (ii).

Index Terms—Cyber-Physical Security, Network
Resilience, Smart Grids, Generalized Benders Decom-
position

I. Introduction

Despite the ongoing modernization of electricity dis-
tribution networks (DNs), many distribution system op-
erators face both strategic and operational challenges in
ensuring a reliable and secure service to their customers.
The integration of distributed generators (DGs) and new
monitoring and control capabilities has enabled flexible
operations, which can be utilized to respond to typical
failure events such as sudden voltage drop [1–3]. However,
these capabilities also expose the vulnerabilities of DNs
to adversaries [4, 5]. Particularly, cyber-physical failures
in DNs can result in contingencies that cause cascading
network outages [6–8]. In this article, we argue that the
flexibility of modern DNs can be leveraged to generate a
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timely and effective response to cyber-physical failures.
We present a computational approach for evaluating the
DN resilience under realistic response capabilities.

For a given cyber-physical failure model and an
operational response capability of the operator, our
optimization-based approach can be used to evaluate the
worst-case post-contingency loss due to various factors,
such as the impact of voltage degradation and costs of
load control, load shedding, and line losses. By evaluating
this loss for different response (or control) operations,
we can compute their relative value in maintaining the
DN resilience against the given class of failures. From
a strategic viewpoint, this computation is useful for
knowing which control capabilities, if deployed in the DN,
will be most effective in response to contingencies arising
from such failures. From an operational viewpoint, it can
help the operator to implement the response in a timely
manner to limit the uncontrolled outages resulting from
the triggering of automatic protection mechanisms.

Indeed, defining the appropriate operational response
capability, the cyber-physical failure model, and the
nature of attacker-operator interaction are all crucial
aspects of our problem, which we introduce next.

Firstly, we consider three different operations sup-
ported by modern DNs; see Fig. 1. Operation (a) refers
to remote control by the control center; operation (b) -
autonomous disconnects of components due to activation
of local protection systems; and operation (c) - emergency
control by the Substation Automation (SA) systems.
Typically, operation (a) may include coordination of
one or more DNs, dispatch of generators, fault/outage
management, etc. Furthermore, operation (a) is typically
exercised during normal operating conditions over rela-
tively longer time scales (every 15 minutes or more) and
more regularly than operation (b) or (c) [9].

In contrast, operation (b) or (c) are executed in emer-
gency situations when certain components of a DN expe-
rience operating bound violations. In our model, opera-
tion (b) is an uncoordinated tripping of components based
on local checks of operating bounds at the DN nodes.
However, operation (c) is a coordinated action comprising
of DG dispatch, load control, and preemptive tripping of
components. Operation (c) utilizes information from DN
meters that includes node-level consumption, distributed
generation, and nodal voltages. When either operation
(b) or (c) is executed, it happens at a faster timescale (few
seconds). We assume that the operation (c) subsumes
(b) by making decisions that are coordinated across the
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Fig. 1: An illustration of modern DN operations: (b) and
(c) are secure (blue), and (a) is compromised (red).

SA system. Hence, (b) and (c) are never simultaneously
active.

Secondly, we study an attack model in which operation
(a) (see Fig. 1) is compromised by an attacker [10].
Control center operations are prone to cyber attacks by
remote entities as indicated by recent real-world inci-
dents [11]. In fact, the impact of such security failures
may be aggravated due to a failure in the adjoining
transmission network (TN). We model the impact of such
TN-side failure as a voltage sag (drop in the substation
voltage), and that of the security attack on operation
(a) as disturbances resulting due to the tripping of DGs,
at DN nodes. Thus, an important feature of our attack
model is that it can capture the effect of contingencies
resulting from simultaneous TN and DN failures.

The operator can respond to abovementioned cyber-
physical failures by operation (b) or (c). We refer to
these operations as response (b) and response (c) in order
to clearly distinguish them from operation (a) which is
prone to attack. We argue that both response (b) and
(c) can be considered secure against remote cyberat-
tacks. Response (b) relies on local checks of operating
parameters, and is implemented by actuators which are
geographically distributed. The SA systems (response
(c)) were recently required to secure both physical and
cyber-security perimeters by NERC [12]. Therefore, even
response (c) can be considered secure from a remote
attack.

Thirdly, we develop a computationally tractable ap-
proach to address the problem of determining the worst-
case post-contingency loss when the operator optimally
responds to the attacker actions with response (b) or (c).
For the case of response (c), we formulate a bilevel mixed-
integer second-order cone program (BiMISOCP), which
captures the sequential nature of attacker-operator inter-
action (Sec. II). The inner (operator) problem consists
of mixed-binary variables which model response (c), and
the second-order cone constraints model the non-linear
power flows (NPF) over a radial DN. The operator’s
objective is to minimize the post-contingency loss. The
outer (attacker) problem is to determine an attack that
will maximize the operator’s loss, assuming the operator

responds optimally. The worst case post-contingency loss
for response (c) is given by the maximin value of the
BiMISOCP.

To compute the worst-case post-contingency loss un-
der response (b), we present a two-step approach (ap-
pendix G). For a given attack, the first step evaluates
the impact of cascading failures in the DN by determining
DG disconnections. The second step determines the effect
of DG disconnects on the nodal voltages and evaluates
its impact on the load control/shedding. We propose a
randomized algorithm to estimate the worst-case post-
contingency loss under a maximally disruptive attacker
strategy.

Several papers have used bilevel formulations for secu-
rity assessment of power systems [3, 5–8, 13]. However,
BiMISOCP formulations with mixed-integer variables in
the inner problem are extremely challenging to solve, and
have received limited attention in the literature. Even
under linear constraints, the resulting bilevel mixed-
integer linear program (BiMILP), is still hard to solve
due to integer variables in the inner problem. Previous
works have utilized a relaxation technique to reformulate
this BiMILP as a single-level MILP, which can be solved
using an advanced branch-and-bound algorithm [14, 15]).
Recent papers have proposed intersection cuts [16, 17],
and disjunction cuts [18, 19] to introduce stronger cuts.
However, these approaches only solve a weak relaxation
of the original BiMILP [20, 21]. Other methods for
solving BiMILPs include the Generalized Benders De-
composition (GBD) method [21] and column constraint
generation [22]. However, the presence of integer variables
in the inner problem with nonlinear constraints precludes
the application of these methods to solve our BiMISOCP
problem.

We address this challenge by making the following
contributions:
1) We derive structural results on non-linear power flows

on a radial DN topology (appendix D), and use these
insights to generate more effective cuts for the inner
(operator) problem.

2) We describe a computational approach for solving a
BiMISOCP based on its reformulation as an equiv-
alent min-cardinality disruption problem, and then
applying a new algorithm that can be viewed as a
modified GBD method. Typically, in each iteration
of the classical GBD method, a generalized Benders
cut is added to the master (attacker) subproblem, in
which a linear expression in the attack variables is
constrained to be greater than zero [23]. We modify
this method by changing the right hand side of the cut
to be a positive value ε. Also, we introduce a heuristic
to select appropriate values of ε for each generalized
Benders cut by exploiting the structure of our problem
(Sec. IV).

3) Additionally, we provide a novel two-step approach to
estimate the worst-case post-contingency loss under
autonomous disconnects. The difference between this
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loss and the operator’s loss computed by the above-
mentioned GBD method provides an estimate of the
value of timely operator response.

The computational results demonstrate that our mod-
ified GBD method achieves a good tradeoff between the
computational speed and gap from the optimal (max-
imin) attack (Sec. VI).

We refer the reader to our online technical report [24],
which includes further details on the following: (i) Fur-
ther justification of our attacker and operator model,
and its technological feasibility (some discussion on ex-
tensions to other models is also provided); (ii) Full ex-
pressions of the constraints of the attacker and operator
subproblems, and the GBD cuts; and (iii) Details of some
technical results in appendix D.

II. Modeling and Problem formulation
In this section, we describe our approach to evaluate

DN resilience, and then present our sequential attacker-
operator bilevel problem formulation.
A. Evaluating resilience of DNs

A system’s resilience is broadly defined as “its ability to
prepare and plan for, absorb, recover from, and more suc-
cessfully adapt to adverse events” [25]. To systematically
evaluate a DN’s resilience, we need to select both a class
of adverse events and the DN’s ability to respond to those
events. In our setup, the class of disruptions is denoted
by Dk, where k is attacker’s resource constraint. We also
consider a set of feasible operator strategies (denoted by
U ) which model the response (c). We denote by LMm the
post-contingency loss which is a measure of the maximum
reduction in system performance under Dk; see Fig. 2.
Let Lmax denote the loss incurred when all loads and
DGs are disconnected. Then, RMm :“ 100p1´LMm{Lmaxq
i.e., the percentage drop in system performance, can be
viewed as a metric of the DN resilience under the response
capabilities U against attacks in Dk.
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Fig. 2: System performance under various response capa-
bilities. (The dashed lines indicate the restoration aspect
of DN resilience, which is not the focus of this paper.)

Furthermore, to compare the DN resilience under re-
sponse (c) with the case of autonomous disconnections
(b), we need to estimate the maximum loss corresponding
to the response (b) that would be induced by an attack
in Dk. Let the automatic disconnect actions be denoted
by unr, the resulting network state by xnr, and the corre-
sponding loss by LAD “ Lpunr, xnr). Then, the resilience

metric of the DN under autonomous disconnections (AD)
can be written as RAD “ 100p1´ LAD{Lmaxq.

Fig. 2 qualitatively illustrates the evolution of system
performance over time. Initially, the DN is operating
under the nominal conditions. Then, due to the TN/DN-
side disturbances, the system performance degrades. If
the operator fails to respond in a timely manner (in less
than a few seconds), then an uncontrolled cascade can
occur due to response (b), resulting in a loss LAD.

By evaluating the post-contingency loss due to a timely
operator response, and comparing it with the loss under
the autonomous disconnections, we can estimate the
value of the timely response toward improving the DN’s
resilience. We assume that all the devices within the DN
are networked in response (c). Hence, RMm ě RAD, and
we can evaluate the relative value of operational response
(or equivalently, the improvement in DN resilience) as
pRMm ´RADq; see Sec. VI.

B. BiMISOCP formulation for LMm

We now describe our bilevel program to evaluate LMm

over a radial DN for specific attacker and operator mod-
els.

We model the DN as a tree network of node set N
Ť

t0u
and line set E. Without loss of generality, we assume that
each node of the DN has a load and a DG. Furthermore,
we consider the constant power model for both loads and
DGs. We refer the reader to Table IV in the Appendix
for the table of notations.

We formulate a bilevel problem to model the sequential
interaction between the strategic attacker (leader) and
the operator (follower). First, we model the effect of a
TN-side disruption on the DN as a drop in the substation
voltage ∆v0. Next, we consider a specific attack model
where the attacker attacks operation (a) by disrupting a
subset of DGs in the DN. We denote an attacker-induced
failure by d P t0, 1uN , where di “ 1 indicates that the DG
at node i is disrupted, di “ 0 otherwise. Let k denote the
attacker’s resource budget. For a given TN-side disrup-
tion ∆v0 and attacker action d, we consider that the oper-
ator can exercise response (c) by exercising load control,
changing the DG output, and disconnecting the loads and
DGs, if necessary. We denote the response (c) by u “
pβ, pg, qg, kc, kgq, and use x “ ppc, qc, p, q, P,Q, v, `q to
denote the post-contingency network state. Finally, we
denote by L pu, xq the loss function for a given operator
response and network state. We state our problem as
follows:

LMm :“ maxdPt0,1uN CMmpdq

s.t.
ř

iPN di ď k, (1)
CMmpdq :“ minu,x L pu, xq s.t.

v0 “ vnom ´∆v0 (2)
kgi ě di @ i P N (3)
pgi ď pgip1´ diq @ i P N (4)
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pgi ď pgip1´ kgiq @ i P N (5)
pgi ě 0 @ i P N (6)
qgi ě ´ηipgi, qgi ď ηipgi @ i P N (7)
kgi P t0, 1u, kci P t0, 1u @ i P N (8)
βi ě p1´ kciqβi, βi ď p1´ kciq @ i P N (9)
pci “ βipci, qci “ βiqci @ i P N (10)
kgi ě vg

i
´ vi, kgi ě vi ´ vgi @ i P N (11)

kci ě vci ´ vi, kci ě vi ´ vci @ i P N (12)
pi “ pci ´ pgi, qi “ qci ´ qgi @ i P N (13)
Pij “

ř

k:pj,kqPE Pjk `pj ` rij`ij @ pi, jq P E (14)
Qij “

ř

k:pj,kqPE Qjk`qj ` xij`ij @ pi, jq P E (15)
vj “ vi ´ 2rijPij´2xijQij `

∣∣z2
ij

∣∣ ` @ pi, jq P E (16)
`ijvi “ P 2

ij `Q
2
ij @ pi, jq P E (17)

where LMm denotes the Max-min (Mm) post-contingency
loss under response (c). For a fixed attack, the opera-
tor’s objective is to minimize the post-contingency loss
L pu, xq. The attacker’s objective is to choose an attack
that maximizes the minimum post-contingency loss.

We define Lpu, xq as the sum of: (i) cost due to loss of
voltage regulation, (ii) cost of load control, (iii) cost of
load shedding, and (iv) cost of line losses:

Lpu, xq “ WVR ‖vnom
´ v‖

8
`
ř

iPN WLC
i p1´ βiqpci

`
ř

iPN
`

WLS
i ´WLC

i

˘

kcipci `WLL ř

ijPE rij`ij ,
(18)

where for load at node i, WLC
i P R` denotes the cost of

per unit load controlled, WLS
i P R` and WLS

i ě WLC
i is

the cost in dollars of per unit load shed; WLL
P R` is the

cost of unit power lost in line losses; and WVR
P R` is the

cost of unit absolute deviation of nodal voltage from the
nominal value vnom. The weight WLS

i ´WLC
i is chosen to

enable proper counting of the cost of load control when
the load is disconnected.

Explanation of constraints: Eq. (1) states that the
attacker can disrupt at most k nodes. Eq. (2) models
the impact of a TN-side disruption in terms of sudden
drop in substation voltage; (3) states that if the attacker
disrupts a DG at node i, then that DG becomes non-
operational, and is effectively disconnected from the DN;
(4)-(7) determine the feasible space for a DG’s power
output; (6) states that the active power output of DG
is always non-negative; (7) states that the magnitude of
a DG’s reactive power output can atmost be ηi ě 0 times
its active power output; and (4) (resp. (5)) combined
with (6) and (7) state that the active and reactive power
output of DG is zero if it is disconnected due to attacker
(resp. operator) action.

Eq. (8) captures the binary constraints of the connec-
tivity variables; (9) and (10) together model that if a
load is connected to a DN, the operator may change the
actual consumption of the load to a fraction of its nominal
demand via direct load control; and (11) models that a
DG is disconnected if the nodal voltage violates either

of the DG’s operating voltage bounds, as required by
the IEEE standard rules for interconnection of DGs [26].
Similarly, a load at node i P N will disconnect if either
of its operating voltage bounds is violated (12).

Eq. (13) models the net nodal power consumption; (14)
(resp. (15)) is the active (resp. reactive) power conserva-
tion equation; (16) is the voltage drop equation; and (17)
models the current-voltage-power relationship [27].

Eq. (17) is a non-convex equation due to which the
operator subproblem becomes challenging to solve. Fur-
thermore, for a fixed operator response, the network
state computed using NPF constraints ((2) and (14)-
(17)) may not even be unique. Considering a linear power
flow (LPF) model instead would resolve the uniqueness
issue of the network state, and allow for a straightfor-
ward application of Benders cut. However, as stated in
Sec. I, an analogous application of the Benders cut does
not work for BiMISOCPs with binary variables in the
inner problem. Nevertheless, we can address the issue of
uniqueness of the network state by considering the convex
relaxation of (17) as follows [28]:

`ijvi ě P 2
ij `Q

2
ij @ pi, jq P E. (19)

Let Dk :“ td P t0, 1uN |
ř

iPN di ď ku denote the
set of feasible attacker strategies. Next, we can denote
an operator response strategy as u P U , where U :“
tpβ, pg, qg, kc, kgq P R5N | (5) ´ (9) holdu. Finally, we
denote the set of response strategies feasible after an
attack d by U pdq :“ tu P U | such that (3)´ (4) holdu.

For a u P U , let Xpuq “ tx P R5|N|`3|E| | (2), (10) ´
(16), (19) holdu denote the set of feasible post-
contingency states. Then, we can succinctly express
the attacker-operator interaction in the presence of
TN-side disturbance as follows:
LMm :“ max

dPDk
CMmpdq

s.t. CMmpdq :“ min
uPU pdq,xPXpuq

L pu, xq .
(Mm)

Here, the attacker’s (resp. operator’s) objective is to
maximize (resp. minimize) the loss L subject to DG and
load models, nonlinear power flows, TN-side disruption,
and the impact of failure captured by u P U pdq. We refer
the problem (Mm) as the Budget-k-max-loss problem.

One can indeed compare the solution of (Mm) with the
analogous Bilevel Mixed-Integer Linear Problem (BiM-
ILP). The BiMILP is different from the BiMISOCP in
two main aspects: i) The constraints involve the LPF
model instead of the NPF model, and ii) the objec-
tive function does not contain the line loss term. We
distinguish the variables and the quantities computed
using the LPF by the hat symbol. Thus, we denote the
BiMILP problem as pyMmq, the max-min value as L̂Mm,
the minimum post-contingency loss for a given attack d
as pCMmpdq, the network state as px, and the set of feasible
network states pX, and so on.

To summarize, our problem is to determine the max-
imin optimal attacker-operator strategies to compute the
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worst-case post-contingency loss LMm for NPF model.
C. Assumptions

We assume that DN lines have positive, but small
impedances, i.e., 0 ă rij ! 1, 0 ă xij ! 1 @ pi, jq P E,
and that voltage lower bounds are positive, i.e., vci ą 0,
vg

i
ą 0 @ i P N. These are rather mild assumptions

and hold true for DNs in practice [27, 28].
We also assume the following no reverse power flow

condition. For i P N, let Ni Ď N denote the subset of
nodes that belong to the subtree rooted at node i; then:
Definition 1. We say that DN satisfies the No Reverse
Power Flow condition (NRPF) if

ř

jPNi
pj ě 0,

ř

jPNi
qj ě 0 @ i P N.

Under the NRPF condition, the flows computed using
either linear or nonlinear power flow constraints are non-
negative, i.e. on any DN line, power does not flow towards
the substation. Hence, the name “no reverse power flow”.

We assume that the NRPF condition holds even when
all DGs are producing maximum output, i.e. pgi “
pgi and qgi “ ηipgi @ i P N. An important consequence
of the NRPF condition is that the convex relaxation of
(17) is exact [28], i.e., for fixed net nodal consumption,
there is a unique NPF solution such that inequality (19)
is tight.

Note that this property may hold even when NRPF
condition is not satisfied. For example, the convex relax-
ation is still exact under identical resistance-to-reactance
ratio [28]. However, under general conditions when NRPF
does not hold, the value of DN’s resilience as estimated
using convex relaxation provides a non-trivial upper
bound on the true resilience value.

III. Theoretical Results
In this section, we present novel structural results

based on power flows in radial DNs. We will use these
results in Sec. IV to reduce the computational time
required for solving (Mm).

For fixed p and q, let pP,Q, v, `q denote the network
state obtained using NPF constraints (2) and (14)-(17).
Again, for fixed p and q, let p pP, pQ,pv, p`q denote the
network state obtained using LPF constraints.

Let F “ tPij , Qij , `ijupi,jqPE denote the set of flow
quantities, and V “ tviuiPN the set voltage quan-
tities. Also, let pF and pV denote the corresponding
sets of LPF quantities. Let M “ tpi, qiuiPN de-
note the set of net nodal consumption quantities. Let
H “ tpPij , pPijq, pQij , pQijq, p`ij , p`ijqupi,jqPE and I “

tpvi,pviquiPN be the sets consisting of tuples each with
an entry of the NPF quantity and its corresponding LPF
quantity.

Our first proposition relates the signs and relative
magnitudes of the partial derivatives of NPF and LPF
quantities with respect to net nodal consumption. (We
refer the reader to Appendix B for the proofs of the
technical results.)

Proposition 1. Under NRPF, the following hold:
– flow quantities f (resp. f̂) computed using NPF (resp.

LPF) are increasing (resp. non-decreasing) in the net
nodal consumption,

– nodal voltages v (resp. v̂) for NPF or LPF are strictly
decreasing in the net nodal consumption, and

– the impact of a change in consumption is greater on the
NPF values than for the LPF values, i.e.

Bf

Bc
ě
Bf̂

Bc
ě 0 ą Bv̂

Bc
ą
Bv

Bc
@ pf, f̂q P H, pv, v̂q P I, c P M.

Intuitively, Prop. 1 holds because increasing net con-
sumption reduces the voltage at all nodes, which in turn,
increases the power flows and the currents on all lines.

The following proposition relates the optimal DG out-
put to its connectivity under optimal operator response.
Proposition 2. For a fixed attacker strategy, for i P N,
let ppg‹i , qg‹i , kg

‹
i q (resp. pxpg‹i , pqg

‹
i ,
xkg
‹

i q) be the optimal op-
erator response values for the variables of DG i computed
using NPF (resp. LPF). Under NRPF,

pg‹i “ pgip1´ kg
‹
i q, xpg

‹
i “ pgip1´xkg

‹

i q,

qg‹i “ ηipgip1´ kg
‹
i q, pqg‹i “ ηipgip1´xkg

‹

i q.

Prop. 2 implies that under NRPF, the active and
reactive power capability of connected DGs will be fully
exhausted leaving no room for response via DG output
control. An important consequence of Prop. 2 is that
the operator response can be simplified to β, kc, kg since
the DG output is uniquely determined by whether it is
connected or not.1

Henceforth, with a slight abuse of notation, we
use the notation U to denote the projection of the
set tu P R5N such that qgi “ ηipgi “ ηipgip1 ´
kgiq @ i P N and (8) ´ (9) holdu onto the space of
pβ, kc, kgq´variables. Then, an operator response can be
denoted by u “ pβ, kc, kgq P U .

The next proposition relates the impact of change in
net nodal consumption of a downstream node versus an
upstream node.
Proposition 3. Consider k, l P N such that k ă l, i.e.
k is a upstream of l. Let Zkl “ tppk, plq, pqk, qlqu. Under
NRPF, the impact of change in net nodal consumption at
l on the flow and voltage quantities is larger than that due
to an equivalent change in the net consumption at k, i.e.
Bf

Bcl
ą
Bf

Bck
ą 0 ą Bv

Bck
ą
Bv

Bcl
@ f P F, v P V, pck, clq P Zkl

Bf̂

Bcl
ě
Bf̂

Bck
ě 0 ą Bv̂

Bck
ě
Bv̂

Bcl
@ f̂ P pF, v̂ P pV, pck, clq P Zkl.

The next proposition relates the values of post-
contingency loss under optimal operator response (c) and
the DN’s resilience computed using NPF and LPF.

1In practice, the DGs may not be able to generate output at
their maximum capacity. In this case, the operator’s loss will be
even higher. Thus, the DN’s resilience which we compute will be an
upper bound on the true DN’s resilience.
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Proposition 4. For any attacker strategy, the minimum
operator loss as computed using NPF is greater than the
corresponding loss computed using LPF, i.e.

CMmpdq ą pCMmpdq @ d P Dk.

Consequently, the resilience computed using LPF upper
bounds the corresponding value computed using NPF, i.e.

RMm ď pRMm.

The next proposition describes the monotonicity prop-
erty of DN’s resilience with respect to k.
Proposition 5. If, for attacks d1, d2 P t0, 1uN , the set of
DGs attacked in d1 is a subset of those attacked in d2, i.e.,

ti P N | d1i “ 1u Ď ti P N | d2i “ 1u, (20)

then the operator’s loss due to d1 would not be greater than
that due d2, i.e.,

CMmpd
1q ď CMmpd

2q.

Consequently, the DN’s resilience is monotonically non-
increasing as attack cardinality increases. That is, if Rk

Mm
denotes the DN’s resilience under attack cardinality k,
then

Rk1
Mm ě Rk2

Mm @ 0 ď k1 ď k2 ď N.

Prop. 6 (resp. Prop. 7) relates the connectivity of loads
(resp. DGs) on downstream versus upstream nodes under
optimal operator response (c).
Proposition 6. Consider i, j P N such that i ă j. If (i)
the lower voltage bound, the nominal active and reactive
power demand, load control parameter, and the cost coef-
ficient of load control at i are at most the corresponding
values at j, and (ii) the cost coefficient of load shedding
at i is at least as much as that at j, then, in an optimal
operator response, the upstream load being shed implies
that the downstream load is also shed. That is,

vci ď vcj , pci ď pcj
β
i
ď β

j
, qci ď qcj

WLC
i ď WLC

j , WLS
i ě WLS

j

,

.

-

ùñ kc‹i ď kc‹j . (21)

Proposition 7. Consider i, j P N such that i ă j. If
(i) DGs at both i and j are not attacked, (ii) DG at i
has a capacity larger than that of the DG at j, and (iii)
the voltage lower bound at i is smaller than that at j,
then, in an optimal operator response, the upstream DG
being disconnected implies that the downstream DG is also
disconnected, i.e.

vg
i
ď vg

j

di “ 0, dj “ 0
pgi ě pgj , ηi ě ηj

,

.

-

ùñ kg‹i ď kg‹j . (22)

Propositions 6 and 7 characterize the notion of keep-
ing the more beneficial (“superior”) DN components
connected. That is, if the operator cannot keep the
“superior” components connected that help reduce the
overall loss and provide more flexibility in operation, then

the operator must disconnect the “inferior” components
first. As a special case, if all other parameters of two
components (DGs or loads) are identical, then the com-
ponent which is located upstream is more beneficial to the
operator than the downstream component. In Sec. IV, we
use these results to add cuts to the operator subproblem
of (Mm) and evaluate their effect on the computational
speedup in Sec. VI.

IV. Evaluating RMm - a Modified GBD Method

Our approach for evaluating RMm relies on using
a modified Generalized Benders Decomposition algo-
rithm [23] to solve (Mm) on a reformulated problem. The
overall approach is as follows. First, we argue that LMm

can be obtained by solving a Min-cardinality problem
instead. Then, we implement the GBD algorithm, which
decomposes the min-cardinality problem into a master
(attacker) problem (an integer program) and an operator
subproblem (a mixed-integer program). Then, the algo-
rithm solves these two problems in an iterative manner,
until either an optimal min-cardinality attack is obtained
or all the attacks are exhausted.

A. Min-cardinality disruption problem

Recall that in problem (Mm), the attacker’s goal is to
determine an optimal attack of size at most k (attack
resource). On the other hand, in the min-cardinality
problem, the attacker computes a disruption with as few
attacked DN nodes as possible to induce a loss to the
operator greater than a pre-specified threshold target
post-contingency loss, denoted Ltarget. In fact, the min-
cardinality problem and (Mm) are duals of each other [6].
Furthermore, any procedure that can obtain an optimal
solution of Min-cardinality problem (resp. (Mm)), can
be used to obtain an optimal solution of its dual (Mm)
(resp. min-cardinality problem) using a binary search on
the parameter Ltarget (resp. k); see [24] for additional
details.

Now, we describe the GBD method to solve the min-
cardinality problem. For given load and DG connectivity
vectors kc and kg , we define a configuration vector as
κ :“ pkc, kgq. Given an attack vector d, let Kpdq :“
tpkc, kgq P t0, 1u2N such that (3) holdsu, i.e. Kpdq de-
notes the set of all possible post-disruption configuration
vectors that the operator can choose from. Then, for a
fixed attack d and a fixed configuration vector κ P Kpdq,
consider the following second-order cone program:
P pd, κq :“ minβPr0,1sN L pu, xq

s.t. u “ pβ, κq , u P U , x P X puq .
(O-SOCP)

Note that (O-SOCP) may be infeasible as the chosen κ
may violate (11) or (12) in the set of constraints Xpuq.
In this case, the value of P pd, κq is set to 8.

Suppose that, for a given DN, we are concerned
with a TN-side disturbance ∆v0 and a target Ltarget
post-contingency loss. Following [6], we say that an
attack-induced disruption d P Dk defeats a configura-
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tion κ P Kpdq if P pd, κq ě Ltarget, and is successful
if it defeats every κ P Kpdq. We can now state the
Min-cardinality disruption problem as follows:

mindPt0,1uN
ř

iPN di

s.t. P pd, κq ě Ltarget @ κ P Kpdq.
(MCP)

If there exists an optimal solution of the problem (MCP),
say d‹, then it is a min-cardinality disruption correspond-
ing to Ltarget because it is successful and has minimum
number of attacked nodes.

However, problem (MCP) is not tractable in its current
form because the number of constraints is equal to the
cardinality of set Kpdq which can be exponential in N,
and verifying each constraint pP pd, κq ě Ltargetq is itself
an SOCP. The GBD algorithm addresses this issue.

B. Modified Generalized Benders Decomposition
The GBD algorithm decomposes (MCP) into two sub-

problems: attacker MILP master problem (A-MILP) and
operator MISOCP subproblem (O-MISOCP), which are
then solved in an iterative manner. In fact, in each
iteration, one needs to solve (A-MILP), (O-MISOCP),
and the dual of (O-SOCP), as discussed below. Fig. 3
summarizes the overall approach. The numbers in round
brackets indicate the order of the steps.

Original
BiMISOCP (Mm)

Min-cardinality
problem (MCP)

Attacker
MILP (A-MILP)

Operator
(O-MISOCP)
with Prop. 6, 7

L pu‹, x‹q
ě Ltarget

Exit

d‹

Operator SOCP
Ppd‹, κ‹q (O-SOCP)

Operator Dual
SOCP (O-SOCP2)

(1)
(2)

(3)

(4)

(6)

(7)

(5)

yes

no

u‹, x‹

d‹

u‹ “ pβ‹, κ‹q, x‹

Modified
generalized
Benders cut

Fig. 3: Computational approach to solve (Mm).

The attacker MILP can be written as follows:
mindPDk

ř

iPN di

s.t. set of generalized Benders cuts.
(A-MILP)

The master problem is initialized with only the integrality
and budget constraints on the attack variables, and with-
out any generalized Benders cut (to be defined in (66)).
In each iteration, solving the master problem (A-MILP),
which is a bounded MILP, if feasible, yields an attack d‹.
Then, this attack vector is used as an input parameter
for the operator subproblem (O-MISOCP). For a fixed
attack d‹, the operator subproblem is the same as the
inner problem of (Mm):

minuPU pd‹q,xPXpuq L pu, xq

s.t. (21), (22).
(O-MISOCP)

Note that (21) and (22) result due to Prop. 6 and
7; see appendix D. The problem (O-MISOCP) is also
a bounded MISOCP because the load and DGs have
bounded feasible space. If (O-MISOCP) is feasible, it
yields an optimal operator response u‹ and network
state x‹ for the disruption d‹. If the operator’s loss
L pu‹, x‹q exceeds the target loss Ltarget, the algorithm
terminates having successfully determined an optimal
min-cardinality attack. Otherwise, L pu‹, x‹q ă Ltarget
which implies that d‹ is not a successful disruption. In
this case, we need to generate a generalized Benders cut
to eliminate d‹ from the feasible space of (A-MILP).

Note that problem (O-SOCP) with parameters (d‹, κ‹)
can be simplified and rewritten as the following problem:

min
w

cJw

s.t. Aw ě b`Bd‹ : pλq (O-SOCP2)∥∥Ejw∥∥
2 ď gj

J
w : pαj , βjq @ j P N,

where ‖¨‖2 is the 2-norm; w is the primal decision vector
variable; A, B, and Ejs are matrices; and b, f js and
gjs are vectors of appropriate dimensions. Also, λ and
(αj , βj) for j P N are the dual variables corresponding to
the linear and SOCP inequalities, respectively. The |N|
second-order cone constraints correspond to (19).

Thus, the dual of problem (O-SOCP2) can be simply
written as:

max
λě0,αj ,βj

pb`Bd‹q
J
λ

s.t.
∥∥αj∥∥2 ď βj @ j P N (D-SOCP2)

c´AJλ`
ř

jPN
`

Ej
J
αj ´ βjgj

˘

“ 0

We solve the dual problem (thanks to strong duality, the
optimal values are the same) in (D-SOCP2) to compute
P pd‹, κ‹q and an optimal dual solution pλ‹, αj‹, βj‹q.
This furnishes a generalized Benders cut, which is added
to the master problem in the next iteration. In partic-
ular, if the dual problem in (D-SOCP2) has an optimal
solution pλ‹, αj‹, βj‹q, and its optimal value is L‹, then

pb`Bdq
J
λ‹ ě ε (23)

is the desired generalized Benders cut where ε is a non-
negative number. In a classical generalized Benders cut
the value of ε is 0. If the inner subproblem of (Mm) were
convex, such a cut would indeed be useful in eliminating
sub-optimal attacker strategies [23]. However, this cut is
not useful in the presence of discrete inner variables, i.e.
it does not eliminate any attack vector.

Hereafter, we refer to the generalized Benders cut in
(66) as simply the Benders cut. An exact expression for
(66) is provided in [24]. Note that d‹ does not satisfy
(66) when ε ą 0 because pb`Bd‹qJλ‹ “ P pd‹, κ‹q “
L‹ ă L‹ ` ε, where the first equality holds because
of strong duality in second-order cone programs. Thus,
choosing ε ą 0 is a modification to the Benders cut
which helps eliminate d‹ from attacker’s set of feasible
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strategies. However, due to numerical issues, an off-the-
shelf solver can “stall” at run-time, and may be unable
to generate dual vector values required for the Benders
cut. To address this issue, we add the following cut:

ř

piPN:d‹
i
“1q di `

ř

piPN:d‹
i
“1qp1´ diq ď N´ 1, (24)

which ensures that d‹ is eliminated.
Thus, in each iteration, we eliminate suboptimal at-

tacks from the feasible space of (A-MILP). Hence, the
new master problem obtained by adding a Benders cut
is a stronger relaxation of (MCP). Consequently, we get
a progressively tighter lower bound on the minimum
cardinality of the attack as the iteration continues, until
we get a successful attack. Since there are a finite number
of attacks, whether successful or not, the GBD algorithm
is bound to terminate.

Note that the overall algorithm, as depicted in Fig. 3,
is also applicable for solving the BiMILP pyMmq. In this
case, instead of solving an MISOCP and SOCP, the
algorithm would simply solve an MILP and an LP.

C. Choosing ε based on criticality parameter - A heuristic

The Benders cut, when simplified, is of the form
ř

iPN Cidi ě εj , where C “ λ‹JB is the coefficient
vector, and εj ą 0 is a scalar chosen for the jth added
Benders cut. The choice of εj in the Benders cut is
an important issue in our implementation of the GBD
algorithm. One way would be to choose a constant value
of ε for each Benders cut. However, if we choose too
large an ε then many attacks (possibly including the
optimal attacks) might be eliminated from the set of
feasible attacker strategies in (A-MILP). This introduces
an approximation error as a result of which, the obtained
min-cardinality attack may not be optimal. If we choose
too small an ε, then in each iteration only the current
min-cardinality attack vector is eliminated resulting in
performance no better than brute force enumeration over
all attacks.

To address this issue, we modify the Benders cut by
proposing a novel heuristic to assign varying values for ε
in each iteration. Suppose that in iteration j, the optimal
attack vector obtained is dj and the dual coefficient
vector is Cj “ λ‹JB; see (66). Let kj :“

ř

i d
j
i be the

cardinality of dj . Let σj be a permutation of nodes such
that Cjσjp1q ě Cjσjp2q ě ¨ ¨ ¨ ě CjσjpNq, with the ties broken
by lexicographical ordering. Here l “ σjpiq indicates that
node l P N has the ith highest value in the vector Cj .
Let m P r0 . . N ´ 1s be a parameter, which we call a
criticality parameter. We use m to obtain ε for selecting
critical DG nodes to attack. Let ej :“ minpN,m`kjq and
sj “ ej ´ kj ` 1. Then, one can choose ε for the pj` 1qth
iteration as follows:

εj`1 “ Cjσjpsjq ` Cjσjpsj`1q ` ¨ ¨ ¨ ` Cjσjpejq

kj terms

.

Essentially, we exclude the top minpm,N ´ kjq values,

and then take the sum of next kj coefficients. As m
increases, the εj value decreases, thereby allowing the
GBD algorithm to explore more number of attacks. As a
result, one would expect the optimality gap to be lower
and the computational time to be higher than the case
when m is small.

An intuitive reason for why this heuristic works is
as follows. By Prop. 3, we get the insight that the
downstream nodes in a DN are critical. Therefore, the
attacker may attack as many downstream nodes as he
can subject to his resource constraint. However, in this
case the attacker may fail to exploit the cascading nature
of the attack. Specifically, the attacker may be better off
by not disrupting a few downstream nodes, and instead
using his budget on compromising a few upstream nodes.
Consequently, the downstream DGs, which are anyway
more likely to face voltage bound violations, may be
disconnected due to the operator response. That is why
choosing a lower value of εj allows the GBD algorithm
to explore attacks that do not compromise the most
critical nodes (as suggested by the dual coefficients in the
Benders cut). Essentially, the dual coefficients Cj do not
capture the cascading effect due to further disconnection
of other DGs and loads because we fix the configuration
vector for solving the SOCP. In other words, Cjs do not
represent the true “criticality” of the DG nodes because
they ignore the cascading effects. Therefore, varying the
criticality parameter m allows the algorithm to explore
attacks on DGs whose criticality as indicated by Cj value
is less. As we show in Sec. VI, the GBD algorithm with
variable value for ε takes significantly fewer iterations
compared with brute force or the GBD algorithm with a
constant ε.

V. Evaluating RAD - A Two-Step Approach
A. Autonomous disconnect model - Response (b)

To model the network state under response (b), i.e.
uncoordinated autonomous disconnects, we propose the
following two-step approach. In the first step, we compute
the subset of DGs which will autonomously disconnect
due to the attacker-induced failure as well as due to the
resulting voltage bound violations. In the second step,
we determine the subset of loads facing voltage bound
violations caused by the DG disconnects in the first step.
Since voltage bound violations are typically indicative of
faults, DGs are disconnected a lot sooner than the loads
as a precautionary measure to avoid feeding current to a
fault. This is why we focus on only DG disconnections in
the first step. Thus, our approach allows us to compute
the worst-case loss due to a cascade. This is the main
difference between our approach and the multi-round
cascade algorithm described in [29].

Now, we provide the details of our two-step approach.
For a fixed operator action u P U , let Z denote the set of
network states x that satisfy the constraints (2), (10),
(11), (13)-(16) and (19). Note that Xpuq Ď Zpuq be-
cause Xpuq has an additional constraint (12). For a fixed
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attacker action d P Dk, let pu‹inpdq, x‹inpdqq denote the
intermediate autonomous disconnect action and the cor-
responding network state. We can extract the information
about disconnected DGs and the nodal voltages from this
intermediate action and network state pu‹inpdq, x‹inpdqq to
compute the final autonomous disconnect action and the
post-contingency state denoted by pu‹nr, x

‹
nrq. We formu-

late a problem to compute pu‹inpdq, x‹inpdqq as follows:

minuin,xin L puin, xinq

s.t. uin P U pdq, xin P Z puinq

βin
i “ 1 @ i P N,

(P-IN)

where the intermediate state does not require the loads to
satisfy the voltage bound constraint. Note that the load
control parameters are set to unity to model the fact that
under autonomous disconnections, the operator will not
be able to exercise load control.

Next, to compute pu‹nr, x
‹
nrq, we extract the value of

DG connectivity vector kgin‹ and voltage data vin‹ from
the intermediate action-state pair pu‹inpdq, xin‹pdqq. Then,
we use this value to parameterize the following problem:

min
unr,xnr

L punr, xnrq

s.t. unr P U , xnr P X punrq

βnr
i “ kcnr

i @ i P N
kgnr

i ě kgin‹
i pdq @ i P N

kcnr
i ě vi ´ vin‹

i pdq @ i P N
(21), (22).

(P-FN)

The optimal solution of the above problem provides us
pu‹nr, x

‹
nrq, i.e the final autonomous disconnect action and

the post-contingency state.
Algorithm 3 summarizes the execution of the two-step

approach. It takes as input an initial attack-induced con-
tingency d, and generates automatic disconnect actions
for one or more components due to the uncontrolled
cascade. Note that the load control parameter βi “ 1
throughout the cascading disconnects of DGs, unless the
load becomes fully disconnected, in which case it switches
to βi “ 0. The final connectivity vector u‹nr corresponds
to a situation where all the connected components satisfy
voltage bounds, and can be used to compute the corre-
sponding post-contingency loss L pu‹nr, x

‹
nrq.

Algorithm 1 Uncontrolled cascade under response (b)
Input: attacker action d (initial contingency)
1: u‹nr, x

‹
nr Ð GetCascadeFinalState(d)

2: function GetCascadeFinalState(d)
3: Compute u‹inpdq, x‹inpdq by solving (P-IN)
4: Extract parameters pkgin‹, vin‹

q from pu‹in, x
‹
inq

5: Instantiate (P-FN) with parameters pkgin‹, vin‹
q

6: Solve (P-FN) to compute the final state u‹nr, x
‹
nr

7: return u‹nr, x
‹
nr

8: end function

B. Randomized algorithm for lower bounding LAD

For each cardinality k, we can compute the worst case
loss under response (b) using brute force. However, that
would require evaluating loss over combinatorially many
`N

k
˘

attacks. Therefore, we present a randomized algo-
rithm to compute worst case loss under the autonomous
disconnections; see Algorithm 2.

Algorithm 2 Random attacks and approximately worst
case attack for autonomous disconnections
Input: Z (number of random permutations)
1: Initialize Y “ 0NˆZ and V “ 0N
2: for t P r1 . . Zs do
3: Generate a random permutation σ of nodes N
4: Reset d “ 0
5: for k “ 1 . . N do
6: Set dσpkq “ 1 {{ k cardinality attack
7: punr, xnrq Ð GetCascadeFinalState(d)
8: {{ Refer Algorithm 3 for GetCascadeFinalState
9: Y rk, ts Ð Lpunr, xnrq

10: end for
11: end for
12: for k P r1 . . Ns do
13: V rks Ð maxtPrZs Y rk, ts
14: end for
15: return Y, V

The algorithm performs the following steps: for each
random permutation of nodes, for each attack cardinality
k, it disrupts the first k nodes in that permutation,
and computes the loss due to autonomous component
disconnects (using Algorithm 3). Then, for each attack
cardinality, it chooses the maximum among all computed
losses. As shown in Sec. VI, for any randomly chosen
attack of cardinality k ă N, if we disrupt one more DG,
then the loss incurred under autonomous disconnections
will increase. This monotonicity of increasing loss for in-
creasing attack cardinality cannot be shown if we simply
choose N` 1 random attacks of cardinalities k P r0 . . Ns,
and plot the loss values vs. k. This is the main idea behind
Algorithm 2. In Sec. VI, we implement the modified GBD
algorithm and Algorithm 2 to compute the value of timely
response, i.e. RMm ´RAD.

VI. Computational Results
We refer the reader to the appendix for the setup of

our computational study.
Our computational results are organized to show: (a)

the value of timely operator response compared to au-
tonomous disconnections; (b) comparison of the solutions
of our GBD approach with the optimal solution (gen-
erated for small networks by brute force); and (c) the
scalability of our approach to larger networks.

Solution accuracy of the modified GBD method: For a
fixed cardinality k, we compute the optimal loss L‹ using
brute force over all disruptions. For N “ 36 node network,
the brute force method finished after «24 hours. Thus,
under a time limit of 24 hours, the exhaustive search was
possible only for N “ 36 node network. Then, we use L‹
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as the parameter Ltarget for the problem (MCP). If the
GBD algorithm applied to (MCP) computes a successful
attack with the same cardinality k, then indeed we have
obtained the optimal attack of cardinality k.
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Fig. 4: Accuracy of GBD algorithm in computing RMm.

Fig. 4 shows that our GBD method with variable ε
choices performs very well in computing optimal attacks.
The accuracy of the modified GBD method decreases as
ε increases as shown by curve corresponding to ε “ 50
in Fig. 4a, and increases as the criticality parameter m
increases as can be seen in Fig. 4b; see Sec. IV-C. To
generate the curve “linear, m “ 1”, we first applied
the modified BD method to pyMmqto obtain the optimal
attacker strategy, and then computed the operator’s post-
contingency loss under NPF for that attacker strategy.
We explain how we chose the fixed values for ε in the
discussion of next experiment.

Performance of the modified GBD method: Table I
compares the computational time and solution accuracy
of the GBD method with constant ε and variable ε
choices. We also show the results for our solution ap-
proach applied to the BiMILP, where the optimal attacks
are then used to evaluate operator’s loss using NPF
constraints. In Table I, Gap denotes the percentage
gap between the cardinality of attack obtained by GBD
and that of optimal attack; and niter the number of
iterations the algorithm took to reach either convergence
or the iteration limit. The first three rows correspond
to fixed ε choices. The next three rows correspond to
variable ε choices. In the last two rows, l indicates that
the optimal attacker strategy was computed using the
BD method for the pyMmq, and then reevaluated using
NPF constraints. Results show that GBD method with
variable ε provides significant computational speedup,
while still retaining solution accuracy.˚ indicates that
algorithm was terminated after it reached the iteration
limit of 10000.

Consider the case of N “ 24. Since half the nodes have
DGs, there are 212 “ 4096 possible attacks. If we choose
fixed ε value of 10 or 20, the GBD approach takes explores
nearly all 4096 attacks resulting in a performance as bad
as the brute force method. For a large ε “ 50, it takes
1596 iterations (which is more than a third of all the

attacks), and provides 8.33% gap. On the other hand,
using the variable ε approach, with m “ 0, it converges
in 17 iterations while still providing 8.33% gap.

N “ 24 N “ 36
Gap niter Time Gap niter Time

ε “ 10 0.00% 4096 3112.4s 0.00% 10000* 12537s
ε “ 20 0.00% 4094 3098.9s 50.0% 4190 5045.3s
ε “ 50 8.33% 1596 815.3s – – –
m “ 0 8.33% 17 1.49s 27.78% 22 6.44s
m “ 1 8.33% 123 13.43s 22.22% 230 46.12s
m “ 2 5.56% 496 85.90s 16.67% 1828 825.44s

l, m “ 0 8.33% 22 2.25s 27.78% 29 4.97s
l, m “ 1 8.33% 161 22.65s 16.67% 198 54.42s

TABLE I: Computational performance vs. ε choices.

Table II shows the benefits of adding cuts (21) and
(22) on the computational time required to solve the
operator subproblem. These experiments were carried
with variable ε choices for parameter m P t0, 1u. Adding
the cuts (21)-(22) become significantly beneficial for large
networks, as m increases.

N “ 24 N “ 36 N “ 118

m “ 0 with cuts 2.30s 4.60s 87.34s
no cuts 1.87s 4.55s 88.83s

m “ 1 with cuts 9.74s 24.66s 613.42s
no cuts 10.66s 28.29s 2949.04s

TABLE II: Computational speedup due to cuts.

Value of timely response: Recall that in Sec. I,
we used post-contingency loss to define the resilience
metric for SA system response (RMm) and autonomous
disconnection (RAD) cases; and that RMm ě RAD. Fig. 5
compares the resiliency values for the two cases (response
(c) versus autonomous disconnection (b)) for varying
number of nodes attacked, where computation of RMm

(resp. RAD) involves using the GBD algorithm (resp.
Algorithm 3). In Fig. 5, the resilience curve due to
response (b) under random attacks is obtained by us-
ing Algorithm 2 in the Sec. V-B.
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Fig. 5: Value of timely response (N “ 36).

Indeed, under autonomous disconnections, we find
that the voltage bound violations cause even the non-
disrupted DGs to disconnect resulting in a cascade.
However, under operator response, the SA detects these
voltage bound violations, and preemptively exercises load
control and/or disconnects the loads/DGs to reduce the
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total number of non-disrupted DGs from being discon-
nected, and minimize the impact of the attack. The dif-
ference between the two resiliency curves gives the value
of timely response via the SA system. The intermediate
curves in Fig. 5 correspond to the DN resilience under
random attacks and autonomous disconnections. Finally,
when both a TN-side disturbance and a DN attack are
simultaneous, the resilience metric of the DN decreases;
see Fig. 5b.

Scalability of GBD algorithm: We tabulate the com-
putational time required by the GBD algorithm to com-
pute min-cardinality attacks for different network sizes
and varying values of the resilience metric Rtarget “
100 p1´ Ltarget{Lmaxq; see Table III. Note that even for
N “ 118 nodes, which has 2118 configuration vectors, the
GBD algorithm finishes computations in «10 minutes.
In comparison, for N “ 36 node network, the brute force
method took «24 hours. The failure cases in Table III
correspond to the cases where there does not exist an at-
tack vector that exceeds the target loss values. The real-
ized resilience metric can significantly fall short of the tar-
get resilience metric (Rtarget “ 100 p1´ Ltarget{Lmaxq);
for e.g., when the attack cardinality changes from 8 to 9,
the resilience for 36-node network decreases sharply from
98.18% to 87.97%. This means that the 36-node DN is
at least 85% (actual value 87.97%) resilient to k “ 9
cardinality attacks.

Entries are resilience metric of DN (in percentage), number
of iterations (written in brackets), time (in seconds), attack
cardinality.

Rtarget N “ 24 N “ 36 N “ 118
99 91.33, (3), 1.46, 1 98.18, (111), 13.01, 8 98.94, (10), 10.6, 6
95 91.33, (3), 1.46, 1 87.97, (112), 13.26, 9 94.19, (19), 15.89, 14
90 82.78, (8), 1.96, 3 87.97, (112), 13.26, 9 89.89, (29), 23.29, 23
85 82.78, (8), 1.96, 3 82.58, (122), 16.36, 11 84.97, (95), 90.75, 39
80 74.61, (18), 2.93, 5 76.94, (137), 20.69, 13 79.71, (86), 613.42, 52
75 74.61, (18), 2.93, 5 71.05, (171), 32.35, 15 Failure
70 66.41, (16), 0.31, 6 65.43, (25), 0.67, 18
65 58.17, (54), 8.01, 8 60.56, (230), 56.65, 18
55 49.53, (112), 17.13, 11 Failure
45 Failure

TABLE III: Scalability of the modified GBD algorithm.

VII. Concluding remarks
In this article, we developed a computational approach

to evaluate the resilience of DNs under a class of cy-
berphysical disruptions. We considered an attack model
that involves a TN-side voltage disturbance, and DN-side
supply-demand disturbance. We formulated the overall
problem as a BiMISOCP, and developed a solution ap-
proach based on a modification of the GBD method. This
modification entails introducing a criticality parameter.
Our approach for solving BiMISOCPs with binary vari-
ables in the inner problem fills an existing gap in the
literature, and can be applied to other resource allocation
problems in power systems. We also estimated the value
of timely operator response which involves preemptive
load control or component disconnections implemented
via substation automation. Future work involves extend-
ing our attacker-operator interaction model to DNs with

microgrid islanding capabilities, and using the proposed
approach to determine operator strategies for faster sys-
tem performance recovery after a cyberphysical disrup-
tion event.
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Appendix

DN parameters
0 substation node label
N set of non-substation nodes in DN
E set of edges in DN
N “ |N| number of non-substation nodes in DN
j complex square root of ´1, j “

?
´1

vnom nominal squared voltage magnitude (1 pu)
v0 squared voltage magnitude at substation node
Nodal quantities of node i P N
vi squared voltage magnitude at node i
pci ` jqci nominal demand at node i
pgi ` jqgi nominal generation at node i
ηi maxqgi,pgi‰0p|qgi| {pgiq maximum ratio of abso-

lute reactive power to active power
pci ` jqci actual power consumed at node i
pgi ` jqgi actual power generated at node i
pi ` jqi net power consumed at node i
vci,vci lower, upper voltage bounds for load at node i
vg

i
,vgi lower, upper voltage bounds for DG at node i

kgi 0 if DG at node i is connected to DN; 1 otherwise
kci 0 if load at node i is connected to DN; 1 otherwise
βi fraction of demand satisfied at node i
β
i

lower bound of load control parameter βi
x P R6N`1 x “ pp, q, P,Q, v, `q the network state
Parameters of edge pi, jq P E
Pij ` jQij power flowing from node i to node j
rij ,xij resistance and reactance of line pi, jq P E
`ij square of magnitude of current on line pi, jq
Precedence relationship between nodes i, j P N, i ‰ j
i ă j Node i precedes node j if i lies on the path

connecting j and the substation node 0
Cyber-physical failure parameter
∆v0 Drop in substation voltage due to transmission

network-side disturbance.
Attack variables
d P t0, 1uN di “ 1 if DG at node i is disrupted; 0 otherwise.
Operator response variables
u u “ pβ, pg, qg, kc, kgq an operator response
Generic math notation
ra . . bs integer interval set for a, b P Z

TABLE IV: Table of Notations.

A. Setup for Computational Study
We consider three networks: 24 node, and modified

IEEE 36 node and 118 node networks. Each line has an
identical impedance of rij “ 0.01,xij “ 0.02. Half of
the nodes have a DG and half have a load. Hence, the
maximum cardinality of an attack in our computational
study will be half the number of the nodes in the DN.
Consider a parameter α “ 6

N . Before the contingency,

each DG has active power output of pgi “ α, and
each load has a demand of pci “ 1.25α. Thus, we
assume 80% DG penetration since the total DG output
is 80% of the total demand. The voltage bounds are
vci “ 0.9, vci “ 1.1, vg

i
“ 0.92 and vgi “ 1.08.

The reactive power values are chosen to be exactly one
third that of the corresponding active power value, i.e. a
0.95 (lagging) power factor for each load and DG. The
values are chosen such that the total net active power
demand in the DN is 0.75 pu, and the lowest voltage
in the network before any contingency is close to vg.
The maximum load control parameter is β

i
“ 0.8, i.e. at

most 20% of each load demand can be curtailed. For the
sake of simplicity, we assume that all DGs and loads are
homogeneous. The values of cost coefficients are chosen
to be WLC

“ 100{pci,WVR
“ 100 and WLS

“ 1000{pci.

B. Proofs of Technical Results in appendix D

For i P N, let Pi Ď E denote the subset of DN edges
on the path from the substation node 0 to node i. For
i, j P N, let Rij (resp. Xij) denote the sum of resistances
(resp. reactances) of the edges common to Pi and Pj , i.e.,

Rij :“
ř

ppk,lqPPiXPjq rkl, Xij :“
ř

ppk,lqPPiXPjq xkl.

Let Ni Ď N be the subset of nodes that form the
subtree rooted at node i, which includes node i, and let
Wi Ď E be the subset of edges that form the subtree
Ni. Then, the following equations can be derived using
recursion on the radial tree topology.
pPij “

ř

kPNj
pk @ pi, jq P E (25)

pQij “
ř

kPNj
qk @ pi, jq P E (26)

pvj “ vnom ´ 2
ř

k pRjkpk `Xjkqkq @ j P N (27)
Pij “ pPij `

ř

pk,lqPWi
rkl`kl @ pi, jq P E (28)

Qij “ pQij `
ř

pk,lqPWi
xkl`kl @ pi, jq P E (29)

vj “ pvj ´ 2
ř

pk,lqPEpRjlrkl `Xjlxklq`kl`
ř

pk,lqPPj pr
2
kl ` x2

klq`kl
(30)

Thus, we can write p pP, pQ,pvq as functions of pp, qq and
pP,Q, vq as functions of pp, q, `q. Furthermore, we have
assumed the NRPF condition. Hence, as shown in [28],
the NFPF solution is unique. Thus, even ` can be con-
sidered a function of pp, qq.

Consider the iterative Backward-Forward Sweep (BFS)
algorithm [30] used to compute the NPF values, which we
modify to consider the TN-side voltage disturbance. Let
pP t, Qt, vt, `tq be the values computed in tth iteration of
the FBS algorithm.

Initialization:

v0
i “ vnom ´∆v0 @ i P Nzt0u (31)

vt0 “ vnom ´∆v0 @ t P r1 . . Ts (32)
`0ij “ 0, P 0

ij “
pPij , Q

0
ij “

pQij @ pi, jq P E. (33)

Backward Sweep: Starting from the leaf nodes to the
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substation node, compute:

`tij “
´

pP t´1
ij q

2
` pQt´1

ij q
2
¯

{vt´1
i @ pi, jq P E (34)

P tij “ pj ` rij`tij `
ř

k:pj,kqPE P
t
jk @ pi, jq P E (35)

Qtij “ qj ` xij`tij `
ř

k:pj,kqPE Q
t
jk @ pi, jq P E. (36)

Forward Sweep: Starting from the children nodes of
the substation node to the leaf nodes, compute @ pi, jq P
E:

vtj “ vti ´ 2
`

rijP tij ` xijQtij
˘

` pr2
ij ` x2

ijq`
t
ij . (37)

The BFS algorithm is bound to converge under mild
assumptions of power flows in the DNs, for e.g., small
line losses, small line impedances; see [13] for technical
definitions of these assumptions.
Proof of Prop. 1. Let tpP t, Qt, vt, `tquTt“1 be the values
computed by the BFS algorithm in iteration t “ r1 . . Ts
where T is a fixed large number of iterations. Now,
suppose that pk increases marginally to pk ` ∆pk,
while all other consumption values remain constant. Let
tp qP t, qQt,qvt, q`tquTt“1 be the new values computed by the
BFS algorithm.

From (58) and (59), we get:
qP 0
ij “ P 0

ij `∆pk @ pi, jq P Pk (38a)
qP 0
ij “ P 0

ij @ pi, jq P EzPk (38b)
qQ0
ij “ Q0

ij @ pi, jq P E. (38c)

By applying (57) and (61), we get
q`1ij ą `1ij @ pi, jq P Pk (39a)
q`1ij “ `1ij @ pi, jq P EzPk. (39b)

Next, from (60) and (62), we get:

qv1
i ă v1

i @ i P N,

which, in turn, implies
q`2ij ą `2ij @ pi, jq P E.

Now, by making an inductive argument based on (57)-
(60), we can show that

q`tij ą `tij @ pi, jq P E, t ě 2.

Furthermore, we can also show that
q`tij ´

q`t´1
ij ą `tij ´ `

t´1
ij @ pi, jq P E, t ě 2. (40)

(The proof of (40) requires a further detailed analysis
which is provided in [24].) Thus, q`tij and `tij are the tth
terms of two monotonically increasing and converging
sequences such that the difference between consecutive
terms of the former sequence are strictly greater than
the corresponding difference of the latter. Therefore, the
relative ordering also remains true for the converged
values in the final iteration, i.e., q`ij ą `ij @ pi, jq P E.
Then, by applying (51)-(53), we can show that

qPij ´ Pij ą qP 0
ij ´ P

0
ij ě 0 @ pi, jq P E

qQij ´Qij ą qQ0
ij ´Q

0
ij “ 0 @ pi, jq P E

qvi ´ vi ă qv0
i ´ v0

i ă 0 @ i P N.

Then, taking the limit ∆pk Ñ 0,

BPij
Bpk

ą
B pPij
Bpk

ě 0 ą Bpvl
Bpk

ą
Bvl
Bpk

@ pi, jq P E, l P N.

We conclude the proof by noting that a similar argument
can be made had qk been increased instead of pk. �

Proof of Prop. 2. The proof follows from the applica-
tion of Prop. 1. Suppose that an optimal response
pβ‹, kc‹, kg‹, pg‹, qg‹q results in voltages v‹ and currents
`‹. Also, for the sake of contradiction, suppose that
D i P N, pg‹i ă pgi. Thus, increasing pgi will increase the
voltages and reduce line losses. Suppose, keeping every-
thing else a constant, the operator changes his response
to pgi “ pgi, which results in voltages v and currents
`. Due to NRPF condition, the new voltage values will
satisfy v‹j ď vj ď vnom ď vj @ j P N and `jk ď `‹jk. Thus,
the new response is feasible. Furthermore, the second and
third terms in the objective function remain the same,
whereas the first and last terms are strictly smaller for
the newer response. This contradicts the optimality of
pβ‹, kc‹, kg‹, pg‹, qg‹q. �

Proof of Prop. 3. Let pP t, Qt, vt, `tq (resp.
p qP t, qQt,qvt, q`tqq be the values computed in tth iteration
of the BFS algorithm when pk (resp. pl) is increased by
∆p. Applying (48) and (49), we get

qP 0
ij “ P 0

ij `∆pk @ pi, jq P PlzPk (41a)
qP 0
ij “ P 0

ij @ pi, jq P EzpPlzPkq (41b)
qQ0
ij “ Q0

ij @ pi, jq P E. (41c)

This is because when the consumption at l increases, the
additional power has to travel a path Pl that subsumes
the path Pk. The rest of the proof is similar to that of
Prop. 1. Essentially, we again show that:

q`ij ą `ij @ pi, jq P E,

and, therefore,
qPij ´ Pij ą 0, qQij ´Qij ą 0 @ pi, jq P E
qvi ´ vi ă 0 @ i P N.

The proof is completed by taking the limit ∆p Ñ 0. �

Proof of Prop. 4. Let pu‹, x‹q be the optimal solution of
the problem CMmpdq. For the fixed operator response u‹,
the p and q vectors are uniquely determined. Let px be
the LPF solution for the p and q vectors. By applying
Prop. 1, we can show that vnom ě pv ě v. Therefore,
we can claim that pu‹, pxq is a feasible solution for the
problem pCMmpdq.

Now, Lpu‹, x‹q ´ pLpu‹, pxq “ WVR
p‖vnom ´ v‹‖8 ´

‖vnom ´ pv‖8q`WLL ř
ijPE rij`‹ij ě 0, because both these

terms are non-negative.
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Let d‹ and d̂‹ be the optimal attacker strategies to
problems (Mm) and pyMmq, respectively. Then, Lpd‹q ě
Lpd̂‹q ě pLpd̂‹q, where the first inequality holds because of
optimality of d‹, and the second inequality holds because
of the first half of Prop. 4. The proof completes by
applying the definitions of RMm and pRMm. �

Proof of Prop. 5. For an attack d P t0, 1uN , the op-
erator’s subproblem involves minimization over the set
U pdq. If two attacks d1, d2 P t0, 1uN satisfy (20), then
the set of feasible operator strategies under d2 is a
subset of that under d1, i.e., U pd2q Ď U pd1q. Therefore,
CMmpd

1q ď CMmpd
2q.

Now, suppose that k1, k2 are such that 0 ď k1 ď
k2 ď N. Furthemore, d1 and d2 are the optimal attacks
for attack cardinalities k1 and k2, respectively. We can
construct an attack d3 P t0, 1uN such that |d3| “ k2 and
d1i “ 1 ùñ d3i “ 1 @ i P N. Then,

CMmpd
1q ď CMmpd

3q ď CMmpd
2q,

where the first inequality holds because d1 and d3 satisfy
(20), and the second inequality holds because of the
optimality of d2 over attacks of cardinality k2. The proof
is completed by noting that

Rk1
Mm “ 100p1´ CMmpd

1q{Lmaxq

ě 100p1´ CMmpd
2q{Lmaxq “ Rk2

Mm.

�

Proof of Prop. 6. Suppose for contradiction that u P U
is an optimal response such that kci “ 1, kcj “ 0, and
βj “ a for some value a P rβ

j
, 1s. Then, we construct a

response qu which is exactly the same as u except that
qkci “ 0, qkcj “ 1, and qβi “ a. Let x and qx be the
corresponding network states. By Prop. 3, q` ă ` and
vnom ą qv ą v ě vc. Therefore, qx satisfies voltage
bounds, and qu is a feasible operator strategy. Also, by
Prop. 1 and Prop. 3, the cost of voltage deviation and
the cost of line loss is smaller because the increase in
active and reactive load at i (i.e. apci and aqci) is at
most equal to the reduction in active and reactive load
at j (apcj and aqcjq).

Now, the cost of load control and shedding in response
qu is no worse than that in u (because WLC

j `WLC
i p1 ´

aq ď WLC
i ` WLC

j p1 ´ aq). Moreover, the improved
voltage profile may allow further reduction in cost of
load control/shedding. Thus, u cannot be an optimal
response. �

Proof of Prop. 7. Suppose for contradiction that u P U
is an optimal response such that kgi “ 1, and kgj “ 0.
Then, we can construct a response ǔ which is exactly
the same as u except that |kgi “ 0, because DG i was
not disrupted by the attacker. Then, the cost of voltage
deviations and line losses in response ǔ is lesser than that
in u by Prop. 3 and the fact that the decrease in active
and reactive output of DG i (i.e. pgi and ηipgi) is smaller

than the increase in active and reactive output of DG
j (i.e. pgj and ηjpgj). Thus, u cannot be an optimal
response. �
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Technical Report
This document provides additional discussions regard-

ing our paper “Evaluating Resilience of Electricity Dis-
tribution Networks via A Modification of Generalized
Benders Decomposition Method”, which we submitted to
IEEE Transactions on Control of Network Systems.

The outline for this report is as follows. In appendix A,
we describe the distinctions between different operations
that the operator can exercise. In appendix B, we pro-
vide a discussion on our attacker and operator modeling
choices, their technological feasibility, and their exten-
sibility to other attacker and operator models. In ap-
pendix C, we restate the formulations for the BiMISOCP,
and provide an analogous formulation of the BiMILP
problem defined using linear power flows. In appendix D,
we provide additional details about the proof of Proposi-
tion 1 in the main manuscript. In appendix E, we describe
the equivalence of the Min-cardinality and the Budget-k-
max-loss problems, and provide additional details about
our solution approach. Finally, in appendix H, we add
additional details about our computational study such
as the network topology, and present a computational re-
sult, which we could not include in the main manuscript.
A. Introduction

The distinctions between operations (a) and response
(b) and response (c) is summarized in Table V.

Property Operation (a) Operation (b) Operation (c)
Place of com-
mand initiation

Control center DN node Substation

Actions
Dispatch,

fault/outage
management

Disconnections
Load control,

Disconnections,
DG dispatch

Input

Node-level
consumption,
distributed
generation,

nodal voltages

Local nodal
voltage

Node-level
consumption,
distributed
generation,

nodal voltages

Response time 15 minutes or
more

A few seconds
to a few
minutes

A few seconds

Coordinated yes no yes

Purpose System-level
optimization

Device
protection

Prevention of
network cascade

Attacked yes no no

TABLE V: Properties of operations (a), (b), and (c).

B. Discussion on modeling choices
1) Cyberphysical failure model
Our model considers a generic cyber-physical failure

model that captures the effects of DN-side component
disruptions caused by security failures as well as effects
of disturbances from the TN. Our model of TN-side
disturbances is motivated by situations such as failure
of a transmission line or a bulk generator, which result
in low voltage conditions that last for a prolonged period
(several minutes). We model its impact as a sudden drop
in the substation node’s voltage by ∆v0, which we assume

to be exogenously given (and fixed). Indeed, ∆v0 “ 0
indicates no TN-side disturbance.2

On the other hand, our attack model is motivated
by the security failure scenarios discussed in [10]. Our
attack model is relevant in the context of smart DNs,
with a hierarchical control architecture; for further details
we refer the reader to [31]. In this architecture, the
main controller resides in the DN control center and
performs the traditional tasks such as the optimization
of DN operations and Volt-VAr control during nominal
operations. Besides, it also provides flexibility to imple-
ment new functionalities such as DGMS. An attack on
the DN control center server can affect one or more of
these functionalities. For the sake of concreteness, we
limit our attention to a specific attack scenario in which
the attacker targets the DGMS server, with the aim to
simultaneously disrupt multiple DGs connected to the
DN. However, our modeling approach is general in that it
can also accommodate other important attack scenarios
such as mass remote disconnects of loads or invalid load
control commands [10].3

Furthermore, our attack model considers that the
control center functionalities such as DGMS are more
viable targets for remote external attackers than local
substation automation (SA) systems. Indeed, recent in-
cidents [11] have confirmed that control center/DGMS
servers can be targets of sophisticated phishing attacks
(e.g. through a download of infected email attachments
by the human operators who manage these servers). In
contrast, a growing number of distribution utilities are
regulated under NERC CIP standards which secure the
substations against remote attacks via reperimetrisation
of the substation cyber architecture [12, 32]. In addition,
SA is typically not prone to insecure actions by human
insiders.

Our attack model is motivated by the security failure
scenarios discussed in [10]. These scenarios capture the
capabilities of the following threat actors: (i) cyber-
hackers of an enemy nation motivated to disrupt supply
to critical facilities, (ii) a malicious adversary looking
to extort ransom money from the utility, or (iii) a
disgruntled internal employee motivated by revenge. In
this paper, we are concerned with type (i) actors. Such
actors can leverage existing vulnerabilities in DN cyber
architecture such as non-confidentiality of control com-
mands, lack of multi-factor authentication, and incorrect
firewall rules that allow unauthorized access. Particularly,
a threat actor can exploit these vulnerabilities to launch
replay attacks [33], or a server-side attack at the control
center, or hack operator credentials, any of which could
allow him to perform malicious activities such as mass

2Note that a TN-side disturbance can also result in a change
in frequency away from the nominal operating frequency of the
network. In our future work, we extend our model to include
frequency disturbances.

3An attack on a DN control center can also be used to open
circuit breakers. We consider this attack in the future work.
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remote disconnect of components. We model the DN-side
disruptions as nodal supply-demand disturbances. For
example, mass disconnects of DGs (resp. loads) can cause
loss of supply (resp. demand). Additionally, a threat actor
could program his attack to be launched simultaneously
with a TN-side disruption. A high-level framework for
modeling impact of cyber-physical disruptions to DN is
illustrated in Fig. 6.

Threat actors Vulnerabilities Threats

Disconnect
commands

DN-side
disruptions

TN-side
disturbances

Supply-demand
disturbances
at DN nodes

Voltage
disturbance at

substation node

Operator response
– Load control, component

disconnections
(current version)
– microgrid islanding,

DN restoration
(future work)

Contingencies

Post-contingency loss

Fig. 6: Framework for modeling impact of cyber-physical
failures on DNs. The arrows in the top box indicate that
threat actors exploit vulnerabilities of the system and
pose risk of threats. One such threat is to issue disconnect
commands leading to DN-side disruptions that cause
supply-demand disturbances. Additionally, from the TN-
side, certain events can cause voltage fluctuations which
together with supply-demand disturbances can lead to
contingencies. Then, the operator response to the adverse
event determines the incurred post-contingency loss.

The disconnections of DGs and their inverters lead
to a sudden drop in active as well as reactive power
supply. Under heavy loading (high demand) conditions,
reactive power often cannot be supplied from the bulk
supply sources through the transmission lines. The reac-
tive power shortfall may be exacerbated by a voltage dip
resulting from a TN-side disturbance, as discussed be-
low. This may result in sustained low-voltage conditions,
e.g. a fault-induced delayed voltage recovery (FIDVR)
event [34, 35] and/or result in voltage collapse.

Now we model the impact of an attacker’s actions on
the DN state. If the attacker disrupts a DG at node i,
then that DG becomes non-operational, and is effectively
disconnected from the DN, i.e

kgi ě di @ i P N. (42)

2) Discussion on Operator model
The emergency response capability (refer (c) in Fig. 1)

of modern SA systems is enabled by fine-grained data
collection of node-level consumption, distributed gener-
ation, and nodal voltages. Many of the newer installa-
tions of smart meters are already equipped with data
logging and communication capabilities. As a side note,
the temporal frequency of data collected by low-voltage
residential meters can vary from 15 minute to 24 hour

intervals, depending on the desired control functionali-
ties, customer privacy levels provided by the operator as
well as the available communication bandwidth between
DN nodes and the SA. In contrast, for the purpose of
emergency response, meters installed at medium voltage
to low voltage transformers at DN nodes can be utilized
to provide aggregated node-level data from the customer
meters in real-time (every second). With this capability,
sudden changes in local DG output can also be detected
by the SA, thereby enabling the operator to identify the
attack vector d. This level of monitoring does not involve
individual customer meter readings, and hence, does not
violate privacy regulations.

Thus, the currently available capabilities of collection
and processing of node-level data can be exploited by the
operator to implement fast response strategies through
SA.

The best response by the DN operator can be com-
puted sufficiently fast. Indeed, the window of opportunity
which we allude to in Figure 2 of the manuscript can be
of the order of thirty seconds or so for which the ride-
through schemes are prescribed. In those 30 seconds, the
operator may be able to detect the attacker’s actions, by
observing the sudden change in the active and reactive
power consumption and generation via the Advanced
Metering Infrastructures deployed at the DN medium-
voltage nodes. Based on this knowledge, the operator can
determine which nodes have been attacked. Then, the
operator can solve the operator subproblem (MISOCP)
within a few 100 milliseconds to determine an optimal
response.

Traditional response to voltage regulation: Indeed,
other types of classical actions implemented through
control of voltage regulators and capacitors as well as net-
work reconfiguration can also form part of the operator
response. However, we chose load control and intentional
disconnects due to timing requirements. The time-scale of
the disturbance created by the attack can be very small
(few seconds), and can trigger an immediate cascade of
component disconnects due to operating bound viola-
tions. Typically, voltage regulators and capacitor banks
require a longer response time; in fact, frequent activation
of these devices is discouraged as they are subject to
mechanical wear and tear [36]. On the other hand, thanks
to advances in SA and power electronics based control of
loads/DGs, our response strategy can be implemented
within a few milliseconds after the information about
the timing and extent of the disruption is obtained by
the SA. Our modeling approach can be extended to
situations where appropriate changes in the settings of
voltage regulators and capacitor banks are deemed to
be desirable aspects of operator response; these can be
incorporated as integer decision variables in the inner
problem of the considered bilevel formulation.

We assume that the DN is connected to a “stiff” trans-
mission network, barring the effect of transmission side
disruption. As a result, one can argue that the transient
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effects arising due to attacker-operator interaction may
not be as significant.

Loss function: We have included the cost of load
shedding, but not the cost of disconnection of customer-
owned DGs because the customers are likely to face more
inconvenience if there is load shedding, in comparison
to DG disconnections during a contingency. However, we
can easily account for the cost of DG disconnections in
our formulation.

Also, the cost of load control is modeled as an affine
function as opposed to a quadratic function. Typically
the incremental cost of load control should be larger when
the distributed power decreases. Indeed, such a cost func-
tion can be handled provided the operator sub-problem
is maintained as a SOCP. However, we demonstrate
that the performance of Benders decomposition approach
in terms of its computational requirements significantly
improves when the operator sub-problem is an MILP as
opposed to when it is MiSOCP. Hence, to ensure that
we can model the operator sub-problem as an MILP, we
keep the cost of load control as an affine function.

C. Problem formulation

Nominal load
pck ` jqck

pck ` jqck
Actual load

pgl ` jqgl
Actual
generation

Nominal
generation
pglp1` jηlq

0

v0

i

vi

j

vj

k

vk

l

vl

Power flow
Pij ` jQij

rij ` jxij
impedance

`ij

Substation
node

Fig. 7: Illustration of a radial distribution network.

Fig. 7 illustrates the topology and parameters of a
radial distribution network pertaining to our problem.

1) BiMILP formulation for L̂Mm

Solving a bilevel problem can be computationally dif-
ficult, especially when the inner subproblem is an MIS-
OCP. To check whether using linear power flow (LPF)
approximation provides any computational advantage,
we propose an analogous Bilevel Mixed-Integer Linear
Problem (BiMILP) based on LPF. Therefore, consider
the classical LinDistFlow model [37]:

Pij “
ř

k:pj,kqPE Pjk ` pj @ pi, jq P E (43)
Qij “

ř

k:pj,kqPE Qjk ` qj @ pi, jq P E (44)
vj “ vi ´ 2 prijPij ` xijQijq @ pi, jq P E, (45)

where (43)-(44) are the approximate power conservation
equations and (45) is the voltage drop equation.

We approximate the loss function in (18) as the sum of
following costs: (i) cost due to loss of voltage regulation,
(ii) cost of load control, and (iii) cost of load shedding:
pLpu, xq “ WVR ‖vnom

´ v‖
8
`
ř

iPN WLC
i p1´ βiqpci

`
ř

iPN
`

WLS
i ´WLC

i

˘

kcipci,
(46)

where we omit the line loss term for the sake of BiMILP
formulation.

Let pX denote the set of post-contingency states x that
satisfy the constraints (2), (10)-(13), (17), and (43)-(45).
Again, we can denote the attacker-operator interaction
under LPF constraints as follows:
L̂Mm :“ max

dPDk

pCMmpdq

s.t. pCMmpdq :“ min
uPU pdq,xP pXpuq

pL pu, xq .
(yMm)

Note that current-magnitude-squared variables ` do not
affect the loss function pL, and do not impact the choice of
other decision variables in (yMm) as ` only appear in (17).
Hence, the problem (yMm) is still effectively a BiMILP
despite having a non-linear equation (17).

2) Features of our bilevel formulation
Some features of Problem (Mm) are as follows. We

model the TN-side disruption as a sudden drop in substa-
tion voltage by ∆v0, which we assume to be exogenously
given (and fixed). Indeed, ∆v0 “ 0 indicates no TN-
side disturbance. In the attack model, we only consider
disruption of DGs at nodes. However, our model is exten-
sible to include attacks on loads. In our model, DGs may
disconnect due to voltage bound violations. However,
the DGs may also disconnect for other reasons such as
frequency bound violations, which we will consider in
our future work. The DG model is chosen such that
there is no tradeoff between active and reactive power
output of the DG. Our loss model can also be extended
to include cost of DG disconnections, which we have not
considered only for the sake of simplicity. The operator
model can also be extended to include the traditional
response mechanisms such as voltage regulators and ca-
pacitors. However, we do not consider them due to timing
requirements.

D. Technical results
1) Efficient computation of LPF and NPF solutions

For fixed p and q, let pP, pQ,pv and p` be the LPF solutions
of (2), (17) and (43)-(45). Since pP, pQ,pv do not depend
on p` and are linear functions of p and q, pP, pQ,pv and p`
can be solved for in Op|N|q time.

Again, for fixed p and q, let pP,Q, v, `q be the solution
of the problem:

minP,Q,v,` WVR ‖vnom ´ v‖8 `
ř

pi,jqPE rij`ij
s.t. (2), (14)´ (16), (19).

(47)

Note that problem (47) is the same as the optimal power
flow problem [28] such that the lower and upper bounds
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for the net nodal consumption at each node are equal to
pi and qi. Furthermore, problem (47) is a SOCP and has
a cost function that is strictly increasing in `. Therefore,
under NRPF, it has a unique solution [28].

Now, the objective in problem (47) is strictly increasing
in pp, q, `q and pi and qi is fixed @ i P N. Furthermore, we
have assumed the NRPF condition. Hence, as shown in
[28], the solution of problem (47) is unique. Thus, even `
can be considered a function of pp, qq.

The following lemma states the conditions under which
the partial derivatives of the flow and voltage quantities
can be defined.
Lemma 1. Let c P M be a net nodal consumption
quantity. Let f̂ P pF denote a flow quantity and v̂ P pV a
voltage quantity computed using LPF. Let f P F and v P V
be corresponding NPF quantities. The partial derivatives
Bf̂
Bc and Bv̂

Bc exist with or without NRPF. Furthermore,
under NRPF, the partial derivatives Bf

Bc and Bv
Bc also exist.

Consequently, the following hold:
Be

Ba
“
Be

Bb
“ ´

Be

Bc
@ e P F Y pF Y V Y pV, pa, b, cq P J .

Henceforth, with a slight abuse of notation, we
use the notation U to denote the projection of the
set tu P R5N such that qgi “ ηipgi “ ηipgip1 ´
kgiq @ i P N and (8) ´ (9) holdu onto the space of
pβ, kc, kgq´variables. Then, an operator response can be
denoted by u “ pβ, kc, kgq P U .

2) Detailed proof of Prop. 1
For i P N, let Pi Ď E denote the subset of DN edges

on the path from the substation node 0 to node i. For
i, j P N, let Rij (resp. Xij) denote the sum of resistances
(resp. reactances) of the edges common to Pi and Pj , i.e.,

Rij :“
ř

ppk,lqPPiXPjq rkl,
Xij :“

ř

ppk,lqPPiXPjq xkl.

Let Ni Ď N be the subset of nodes that form the
subtree rooted at node i, which includes node i, and let
Wi Ď E be the subset of edges that form the subtree
Ni. Then, the following equations can be derived using
recursion on the radial tree topology.
pPij “

ř

kPNj
pk @ pi, jq P E (48)

pQij “
ř

kPNj
qk @ pi, jq P E (49)

pvj “ vnom ´ 2
ř

k pRjkpk `Xjkqkq @ j P N (50)
Pij “ pPij `

ř

pk,lqPWi
rkl`kl @ pi, jq P E (51)

Qij “ pQij `
ř

pk,lqPWi
xkl`kl @ pi, jq P E (52)

vj “ pvj ´ 2
ř

pk,lqPEpRjlrkl `Xjlxklq`kl`
ř

pk,lqPPj pr
2
kl ` x2

klq`kl
(53)

Thus, we can write p pP, pQ,pvq as functions of pp, qq and
pP,Q, vq as functions of pp, q, `q.

Consider the iterative Backward-Forward Sweep (BFS)
algorithm [30] used to compute the NPF values, which we

modify to consider the TN-side voltage disturbance. Let
pP t, Qt, vt, `tq be the values computed in tth iteration of
the FBS algorithm.

Initialization:

v0
i “ vnom ´∆v0 @ i P Nzt0u (54)

vt0 “ vnom ´∆v0 @ t P r1 . . Ts (55)
`0ij “ 0, P 0

ij “
pPij , Q

0
ij “

pQij @ pi, jq P E. (56)

Backward Sweep: Starting from the leaf nodes to the
substation node, compute:

`tij “
´

pP t´1
ij q

2
` pQt´1

ij q
2
¯

{vt´1
i @ pi, jq P E (57)

P tij “ pj ` rij`tij `
ř

k:pj,kqPE P
t
jk @ pi, jq P E (58)

Qtij “ qj ` xij`tij `
ř

k:pj,kqPE Q
t
jk @ pi, jq P E. (59)

Forward Sweep: Starting from the children nodes of
the substation node to the leaf nodes, compute @ pi, jq P
E:

vtj “ vti ´ 2
`

rijP tij ` xijQtij
˘

` pr2
ij ` x2

ijq`
t
ij . (60)

The BFS algorithm is bound to converge under mild
assumptions of power flows in the DNs, for e.g., small
line losses, small line impedances; see [13] for technical
definitions of these assumptions.

Proof of Prop. 1. Let tpP t, Qt, vt, `tquTt“1 be the values
computed by the BFS algorithm in iteration t “ r1 . . Ts
where T is a fixed large number of iterations. Now,
suppose that pk increases marginally to pk ` ∆pk,
while all other consumption values remain constant. Let
tp qP t, qQt,qvt, q`tquTt“1 be the new values computed by the
BFS algorithm.

From (58) and (59), we get:
qP 0
ij “ P 0

ij `∆pk @ pi, jq P Pk (61a)
qP 0
ij “ P 0

ij @ pi, jq P EzPk (61b)
qQ0
ij “ Q0

ij @ pi, jq P E. (61c)

By applying (57) and (61), we get
q`1ij ą `1ij @ pi, jq P Pk (62a)
q`1ij “ `1ij @ pi, jq P EzPk. (62b)

Next, from (60) and (62), we get:

qv1
i ă v1

i @ i P N,

which, in turn, implies
q`2ij ą `2ij @ pi, jq P E.

Now, by making an inductive argument based on (57)-
(60), we can show that

q`tij ą `tij @ pi, jq P E, t ě 2.

Furthermore, we can also show that
q`tij ´

q`t´1
ij ą `tij ´ `

t´1
ij @ pi, jq P E, t ě 2. (63)
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The detailed argument for the previous inequality (63) is
as follows.

Let fj “ Pj
2
`Qj

2

Bvi . Also, let the shorthand for Ba
Bch`k

be
written as B`ka. Then,

B`kPj “ rk1tk P Nju @ j P N
B`kQj “ xk1tk P Nju @ j P N
B`kvi “ ´pRikrk `Xikxkq p2´ 1tk P Piuq @ i P N,

where 1tu is an indicator function.
Therefore,

B`kfj “
2 pPjB`kPj `QjB`kQjq

vi
´

`

Pj
2
`Qj

2˘
B`kvi

vi2

“
2 prkPj ` xkQjq1tk P Nju

vi

`

`

Pj
2
`Qj

2˘
rpRikrk `Xikxkq p2´ 1tk P Piuqs

vi2

Now, suppose q` and p` are such that q`k ą p`k @ k P
N, then qPj ą pPj and qQj ą pQj @ j P N as well as
qvi ă pvi @ i P N. Since the resistances and reactances
are positive,

2
´

rk qPj ` xk qQj
¯

ą 2
´

rk pPj ` xk pQj
¯

,

rpRikrk `Xikxkq p2´ 1tk P Piuqs ą 0,
and qP 2

j `
qQ2
j ą

pP 2
j `

pQ2
j .

Therefore,

B`kfj

∣∣∣∣
`“q`

ą B`kfj

∣∣∣∣
`“p`

@ j, k P N,

i.e., the partial derivative of fj with respect to `k when
evaluated at ` “ q` is greater than the partial derivative
of fj with respect to `k when evaluated at ` “ p`.

(Here, the detailed argument for the proof of (63) ends,
and we return to the rest of the proof of Prop. 1. )

Thus, q`tij and `tij are the tth terms of two monotonically
increasing and converging sequences such that the differ-
ence between consecutive terms of the former sequence
are strictly greater than the corresponding difference of
the latter. Therefore, the relative ordering also remains
true for the converged values in the final iteration, i.e.,

q`ij ą `ij @ pi, jq P E.

Then, by applying (51)-(53), we can show that
qPij ´ Pij ą qP 0

ij ´ P
0
ij ě 0 @ pi, jq P E

qQij ´Qij ą qQ0
ij ´Q

0
ij “ 0 @ pi, jq P E

qvi ´ vi ă qv0
i ´ v0

i ă 0 @ i P N.

Then, taking the limit ∆pk Ñ 0,

BPij
Bpk

ą
B pPij
Bpk

ě 0 ą Bpvl
Bpk

ą
Bvl
Bpk

@ pi, jq P E, l P N.

We conclude the proof by noting that a similar argument
can be made had qk been increased instead of pk. �

E. Discussion on BiMISOCP formulation

1) Example for problem (O-SOCP)

Note that problem (O-SOCP) with parameters (d‹, κ‹)
can be simplified and rewritten as the following problem:

minw cJw

s.t. Aw ě b`Bd‹ (O-SOCP2)∥∥Eiw ` f i∥∥2 ď gi
J
w ` hi @ i P r1 . . Ns,

where ‖¨‖2 is the L-squared norm; w is the primal decision
vector variable; A, B, and Ei for i P r1 . . Ns are matrices;
b, f i and gi for i P r1 . . Ns are vectors of appropriate
dimensions; and his are scalars. The N second-order cone
constraints correspond to (19).

The dual of problem (O-SOCP2) is as follows:

max
λě0

pb`Bd‹q
J
λ`

N
ÿ

i“1

`

f i
J
αi ´ βihi

˘

s.t. c´AJλ`
N
ÿ

i“1

`

Ei
J
αi ´ βigi

˘

“ 0∥∥αi∥∥
2
ď βi @ i P r1 . . Ns

(D-SOCP2)

Here w and λ are the primal and dual decision vector
variables; A “ rAeq

JAin
J
s
J, B “ rBeq

JBin
J
s
J are

matrices and b “ rbeq
Jbin

J
s
J is a vector of appropriate

dimensions.
Recall the primal problem in (O-SOCP2). With the

help of an example, we show how to instantiate the primal
problem. Consider a DN G with nodes t0, 1u and line
p0, 1q. Then the variable w is given as:

w “ pβ1, pg1, qg1, p1, q1, P1, Q1, v0, v1, `1, tq,

where t is an auxiliary variable. The corresponding cost
vector c is given as:

c “ p´WLC, 0, 0, 0, 0,WAC, 0, 0, 0, 0,WLL,WVR
q. (64)

Furthermore, we are given the parameters d and
κ “ pkc1, kg1q. Then, the constraints of the problem
(D-SOCP2) are given as follows:
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´pc1 1 0 1 0 0 0 0 0 0 0
´qc1 0 1 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

w “

beq
hkkikkj

»

—

—

—

—

–

0
0
0
0
0

fi

ffi

ffi

ffi

ffi

fl

`

Beq
hkkikkj

»

—

—

—

—

–

0
0
0
0
0

fi

ffi

ffi

ffi

ffi

fl

d
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

E1J
hkkikkj

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
0
0
?

2
?

2
1
0
1
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

w `

f1J
hkkikkj

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
0
0
0
0
0
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

ď

g1J
hkkikkj

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
0
0
0
0
1
0
1
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

w `

h1
hkkikkj

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0
0
0
0
0
0
0
0
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(65)

Note that the previous equation (65) is equivalent to∥∥∥p?2P1,
?

2Q1, v0, `1q
∥∥∥

2
ď pv0 ` `1q

ðñ 2P 2
1 ` 2Q2

1 ` v0
2 ` `1

2
ď v0

2 ` `1
2
` 2v0`1

ðñ `1 ě
P 2

1 `Q
2
1

v0

Finally, A “
„

Ain
Aeq



, B “
„

Bin
Beq



, and b “

„

bin
beq



.

2) Equivalence of min-cardinality problem and Budget-
k-max-loss problem

The min-cardinality problem is equivalent to (Mm)
in the following sense. The loss LMm in (Mm) is non-
decreasing with k (due to the inequality constraint
ř

iPN di ď k). Therefore, if the parameter Ltarget is
gradually increased then the minimum attack cardinality
computed by the min-cardinality problem will be non-
decreasing in Ltarget. Thus, for a fixed budget k, the
smallest Ltarget value at which the minimum attack
cardinality changes from k to k ` 1 will be the optimal
value of problem (Mm). By implementing a binary search
on the parameter 100Ltarget{Lmax between 0´ 100%, we
can determine the smallest Ltarget at which the minimum
attack cardinality changes from k to k ` 1. Conversely,
if we can solve (Mm), then by implementing a binary
search on the parameter k between 0 and N, we can
determine the minimum attack cardinality whose optimal
loss exceeds Ltarget. However, (MCP) is a relatively easier
problem to solve using GBD because the master problem
of (MCP) has fewer variables and constraints than the
corresponding master problem of (Mm).

The quantity 100Ltarget{Lmax is also relevant from the
viewpoint of DN resilience. For example, if we want to
evaluate whether or not a DN is 80% resilient to a k
cardinality attack, we can set Ltarget “ 0.2Lmax, and then
check if the optimal value of the min-cardinality problem
is smaller than or equal k.

3) Generalized Benders Cut

Note that problem (O-SOCP) with parameters (d‹, κ‹)
can be simplified and rewritten as the following problem:

min
w

cJw

s.t. Aw ě b`Bd‹ : pλq (O-SOCP2)

∥∥Ejw ` f j∥∥2 ď gj
J
w ` hj : pαj , βjq @ j P N,

where ‖¨‖2 is the L-squared norm; w is the primal decision
vector variable; A, B, and Ejs are matrices; b, f js and
gjs are vectors of appropriate dimensions; and hjs are
scalars. The N second-order cone constraints correspond
to (19). Also, λ and (αj , βj) for j P N are the dual vari-
ables corresponding to the linear and SOCP inequalities,
respectively.

The dual of problem (O-SOCP2) is as follows:

max
λě0,
αj ,βj

pb`Bd‹q
J
λ

s.t. c´AJλ`
ÿ

jPN

`

Ej
J
αj ´ βjgj

˘

“ 0∥∥αj∥∥
2
ď βj @ j P N

(D-SOCP2)

We solve the dual problem (thanks to strong duality, the
optimal values are the same) in (D-SOCP2) to compute
P pd‹, κ‹q and an optimal dual solution pλ‹, αj‹, βj‹q.
This furnishes a generalized Benders cut, which is added
to the master problem in the next iteration. In partic-
ular, if the dual problem in (D-SOCP2) has an optimal
solution pλ‹, αj‹, βj‹q, and its optimal value is L‹, then

pb`Bdq
J
λ‹ ě L‹ ` ε (66)

is the desired generalized Benders cut where ε is a non-
negative number. In a classical generalized Benders cut
the value of ε is 0. If the inner subproblem of (Mm) were
convex, such a cut would indeed be useful in eliminating
sub-optimal attacker strategies [23]. However, this cut is
not useful in the presence of discrete inner variables, i.e.
it does not eliminate any attack vector.

Hereafter, we refer to the generalized Benders cut as
simply the Benders cut. Note that d‹ does not sat-
isfy the Benders cut constraint when ε ą 0 because
pb`Bd‹q

J
λ‹ `

ř

jPN
`

f j
J
αj ´ βjhj

˘

“ P pd‹, κ‹q “
L‹ ă L‹ ` ε, where the first equality holds because
of strong duality in second-order cone programs. Thus,
choosing ε ą 0 is a modification to the Benders cut
which will help eliminate d‹ from attacker’s set of feasible
strategies. However, due to numerical issues, an off-the-
shelf solver “stalls” sometimes, and is unable to generate
dual vector values required for the Benders cut. To
address this issue, we add the following cut:

ř

piPN:d‹
i
“1q di `

ř

piPN:d‹
i
“1qp1´ diq ď N´ 1, (67)

which definitely eliminates d‹.
F. Exact expression of Benders cut

An equality constraint a “ b can be reformulated as
a ě b and ´a ě ´b. Now, suppose that the equality
constraints in (2)-(16) are similarly reformulated. Then,
let the dual variables corresponding to the constraints
(2)-(16) are as follows:
λp2aq, λp2bq, λp4q, λp5q, λp6q, λp7aq, λp7bq, λp9aq, λp9bq, λp9cq,
λp9dq, λp10aq, λp10bq, λp10cq, λp10dq, λp11aq, λp11bq, λp12aq,
λp12bq, λp13aq, λp13bq, λp13cq, λp13dq, λp14aq, λp14bqλp15aq,
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λp15bq, λp16aq, λp16bq.
Here, for example, λp2aq and λp2bq are the dual variables
correspond to the constraint (2). Also, the two sets of
equalities in (13) would correspond to four sets of in-
equalities. Hence, the dual variables λp10aq, λp10bq, λp10cq,
and λp10dq.

The vector b can be written as follows:
b “ rvnom ´ ∆v0,´vnom ` ∆v0,´pg,´pg,03N, β ,
´1N,04N,vg ´ kg,´vg ´ kg,vc ´ kc,´vc ´ kc,010Ns.

The vector pBdq “ r0, 0,pg d d,024Ns.
Then, the Benders cut (66) can be written as follows:

pλp2aq´λp2bqqpvnom´∆v0q`
ř

iPN
`

λ
p4q
i p´pgi`pgidiq´

λ
p5q
i pgi`λ

p9aq
i β

i
´λ

p9bq
i `λ

p11aq
i pvg

i
´kgiq`λ

p11bq
i p´vgi´

kgiq ` λ
p12aq
i pvci ´ kciq ` λ

p12bq
i p´vci ´ kciq

˘

ě L‹ε

1) Comparative remarks about solution approach
We now offer some comparative remarks about our

solution approach to (Mm) which – as mentioned earlier
– is a BiMISOCP with conflicting objectives in the inner
(operator) and outer (attacker) problems. In general, one
can reformulate a BiMISOCP as a single level MISOCP
(for example, via a high-point relaxation (HPR) prob-
lem [14, 15]), and use an advanced branch-and-bound
algorithm to solve the problem. Note, however, the HPR
is a weak relaxation of the original BiMISOCP due to
directly conflicting objectives [20, 21]. More recent work
has developed intersection cuts [16, 17] and disjunction
cuts [18, 19] – these approaches introduce stronger cuts
for the HPR problem. However, these approaches are
only suitable for BiMISOCPs in which the inner problem
has integer coefficients in the constraints. In contrast,
our problem (Mm) has fractional coefficients. A recent
paper by Hua et. al [21] addresses this issue by applying a
Generalized Benders decomposition method but without
the min-cardinality reformulation; as a result, the master
problem in their approach needs to handle a relatively
larger number of variables and constraints. Since in our
solution approach we apply the Min-cardinality reformu-
lation, the resulting master problem has fewer variables
and constraints. Another approach by Zeng and An [22]
uses a Column Constraint Generation (CCG) method,
whose iterations progressively add variables and con-
straints (particularly the disjuntive constraints resulting
from the KKT conditions for the inner problem with fixed
binary variables). While these approaches are certainly
of interest in solving (Mm), we find that our proposed
approach achieves desirable computational performance
as discussed in the case study in the main paper.
G. Evaluating RAD - A Two-Step Approach

We restate the intermediate and final problems for our
two-step approach here. The intermediate problem is as
follows:

minuin,xin L puin, xinq

s.t. uin P U pdq, xin P Z puinq

βin
i “ 1 @ i P N,

(P-IN)

Algorithm 3 Uncontrolled cascade under response (b)
Input: attacker action d (initial contingency)

1: u‹nr, x
‹
nr Ð GetCascadeFinalState(d)

2: function GetCascadeFinalState(d)
3: Compute u‹inpdq, x‹inpdq by solving (P-IN)
4: Extract parameters pkgin‹, vin‹q from pu‹in, x

‹
inq

5: Instantiate (P-FN) with parameters pkgin‹, vin‹q
6: Solve (P-FN) to compute the final state u‹nr, x

‹
nr

7: return u‹nr, x
‹
nr

8: end function

The problem to compute the final state under the au-
tonomous disconnections is as follows:

min
unr,xnr

L punr, xnrq

s.t. unr P U , xnr P X punrq

βnr
i “ kcnr

i @ i P N
kgnr

i ě kgin‹
i pdq @ i P N

kcnr
i ě vi ´ vin‹

i pdq @ i P N

(P-FN)

The optimal solution of the above problem will provide
us pu‹nr, x

‹
nrq, i.e the final autonomous disconnect action

and the post-contingency state.

Remarks about Algorithm 3: In Algorithm 3, DGs
disconnect before the loads disconnect. This can be jus-
tified by considering a sudden voltage drop. Such voltage
behavior can be indicative of a fault within the DN,
and therefore DGs supplying power to a fault can be
potentially dangerous. Therefore, according to [26], when
voltage bound violations occur, the DGs are supposed
to disconnect within two seconds or less, depending on
the extent of the voltage drop. On the other hand, the
loads can continue to operate even a minute after mild
or moderate voltage bound violations occur. Indeed, we
can infer this from the fact that the response time of
voltage regulators along DN feeders is typically at least
15 to 30 seconds [34, 38]. However, the disconnect actions
of loads happen due to activation of protection devices
which operate based on local measurements, i.e. they
operate independent of each other. Therefore, in the
worst case all loads experiencing voltage bound violations
may disconnect together. Hence, our choice to consider
the disconnection of all the DGs followed by the discon-
nection of all loads is reasonable.
H. Computational studies

Topologies of modified IEEE test networks: The
modified IEEE test networks are shown in Fig. 8.
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Fig. 8: Modified IEEE test networks. DG nodes are
indicated by gray color.
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