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ON H-TRIVIAL LINE BUNDLES ON TORIC DM STACKS
OF DIMENSION TWO

CHENGXI WANG

ABSTRACT. We study line bundles on toric DM stacks Px of dimension
two. We give a combinatorial criterion of when infinitely many line
bundles on P have trivial cohomology. We further discuss the structure
of the set of such line bundles.
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1. INTRODUCTION

Derived categories of coherent sheaves on toric varieties and DM stacks
provide examples of combinatorially defined triangulated categories. A lot
of work has been done over the years aimed at finding exceptional objects
and collections in these categories in . In particular, line bundles provide
examples of exceptional objects. The description of line bundles on the DM
stacks is analogous to the description of the Picard group that was given
in . In 1997 Alastair King conjectured in the following.

Conjecture 1.1. Every smooth toric variety possesses a full strong excep-
tional collection of line bundles.

The conjecture was shown to be false in , but multiple negative and
positive results in this general direction have been obtained in |§|,|§|,,.
In @] Efimov also disproves weaker version of King’s conjecture proposed by
Costa and Mir6-Roig in , and Craw through constructing infinitely many
examples of toric Fano varities with Picard number three, which do not have
full exceptional collections of line bundles. Conjecture turned out to be
true for smooth toric Fano DM stacks of Picard number at most two and of
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any Picard number in dimension two [1]. Further, a full strong exceptional
collection of line bundles is constructed on any smooth toric nef-Fano Del
Pezzo stack in [10].

Since the requirement Ext’(L1,Ls) = 0 in the definition of exceptional
collections of line bundles translates into H (Lo ® £7') = 0, it is natural
to study line bundles with trivial cohomology spaces. In our paper, we are
interested in such H—trivial line bundles.

It is meaningful to ask when there are infinitely many H—trivial line
bundles. One way to get infinitely many H—trivial line bundles is to have a
fibration 7 from Px; to a certain base and a line bundle £ on Py such that
the higher direct images R, (L) = 0 for all i > 0. The reason is that by the
Leray spectral sequence, we get H'(Ps, £) = 0 for i > 0. Importantly, for
any line bundle F from the base, the higher direct images R, (LQm*F) = 0
for all ¢ > 0, which implies £ ® 7*F is H—trivial. Thus we may obtain
infinitely many H—trivial line bundles on Psx.

In this paper, we find a combinatorial criterion for when there exist infin-
itely many H—trivial line bundles on Py for smooth toric varieties and DM
stacks in dimension two.

Theorem Let Ps; be a proper smooth dimension two toric DM
stacks associated to a complete stacky fan ¥ = (X, {v;}! ;). Then there
are infinitely many H—trivial line bundles on Py if and only if there exists
{i,7} € {1,2,--- ,n} such that v; and v; are collinear.

Moreover, when there are infinitely many H—trivial line bundles, we dis-
play the tubes + ball description of H—trivial line bundles in Theorem
That is to say that the set of H—trivial line bundles can be depicted in the
form ”finite set + finite set of lines 7, which is revealed by Proposition [£.6]
and Theorem [1.9] Further, we generalize our results to broader classes A,
of line bundles with dim H® +dim H* +dim H? < m for some positive integer
m.

The paper is organized as follows. In Section [2| we review smooth toric
DM stacks and their Picard groups. Also, we introduce the cohomology of
line bundles on the stacks, the definition of forbidden cones and forbidden
sets, and state Theorem [2.11] Section [3] focuses on the proof of Theorem
We first prove the ’if” direction in Proposition As for the ’only if’
direction, the key step is to show that any non-zero element £ € Picg(Px)
is contained in the interior of some forbidden cone shifted to the origin (see
Lemma . Section (4] further reveals the tubes + ball structure of the set
of H—trivial line bundles. Section [5| contains generalization of our results
to Ay,. Section [6] proposes a conjecture in dimension 3 case. In Appendix
we collect several facts about cones in a finitely generated abelian group
which are used in the proof of the results in former sections.

Acknowledgements. The author thanks Lev Borisov for multiple useful com-
ments.
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2. LINE BUNDLES ON TORIC DM STACKS AND THEIR COHOMOLOGY

In this section, we introduce toric DM stacks Py, and their Picard groups
Pic(Pyx), and describe the cohomology of line bundles on Px;. We formulate
our main result which is a criterion for dimension two proper toric DM stacks
to have infinitely many line bundles with trivial cohomology.

In order to refrain from technicalities of the derived Gale duality of [2],
we consider a lattice N which is a free abelian group of finite rank. Let X
be a complete simplicial fan in N. We choose a lattice point v in each of
the one-dimensional cones of . If ¥ has n one-dimensional cones, we get a
complete stacky fan 3 = (X, {v;}I";), see [2].

The toric DM stack Py associated to this stacky fan 3 is constructed as
follows, see [2,[3]. We have a natural map with finite cokernel

c:Z" - N
given by (g1, ..., pn) — Y i #iv;. Taking the dual injective map
oc* :N*—= 7",
we get the cokernel of o* which we denote by Gale(N). Define the algebraic
Group G by
G := Hom(Gale(N),C").
Now we have an injection induced by ¢*

and G = {(C1,...,G¢n) € (CH" [, " =1 for all w € N*}, where w - v;
is natural pairing. Define the open set U in (C*)" as follows. A point
(x1,...,2y) € (C*)" lies in U if and only if there exists a cone in ¥ which
contains all {v;|x; = 0}. We have a natural action of G on U via inclusion
G C (C*)™. Group G acts with finite isotropy subgroups and we define by
Ps: the DM stack [U/G], see [2].

By [14], we know the category of coherent sheaves on Py is equivalent to
the category of G—equivariant sheaves on U. Specifically, the line bundles
on Py are described explicitly as follows.

Definition 2.1. For any element (r1,...,r,) € Z™, we have the trivial line
bundle C x U — U with the G—linearization G x C x U — C x U denoted

by
((Cla .. '><n)7t7 (xlv v 7xn)) = (tHC:Za (Clxb <o 7Cn$n))
=1

By [14)], this gives a line bundle on Px, and we denote the corresponding
invertible sheaf in Picard group of Ps; by O(XI"_ 1 E;).

Then we have the following proposition to describe the Picard group of
Py which we denote by Pic(Py).
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Proposition 2.2. We obtain all line bundles on Py by the construction of
Definition[2.1, The Picard group of Px, is isomorphic to the quotient of Z"
with basis {E I by the subgroup of elements of the form > 7 | (w; - v;)E;
for allw e N*.

Proof. See [1]. O

Now we remind the reader how to calculate the cohomology of a line
bundle £ on Ps;. For each r = (r;); € Z", we define Supp(r) to be the
simplicial complex on n vertices {1,...,n} as follows

Supp(r) ={J C{1,...,n}r; >0foralliec J
and there exists a cone of ¥ containing all v;,7 € J}.

The following proposition gives a description of the cohomology of a linear
bundle £ on Ps;.

Proposition 2.3. (1] Let £ € Pic(Px). Then

H (Px, £) = P H& ;1 (Supp(r)),
where the sum is over all v = (r;)1y € Z" such that O3 ;i E;) = L.
Proof. See [1]. O

Remark 2.4. We have H°(L) # 0 if and only if there exists r € L% such
that O} 7 E;) = L. Another extreme case is that H™*N)(L) only ap-

pears when the simplicial complex Supp(r) = {0}, i.e. when O3 | riE;) =
L with all r; < —1.

Remark 2.5. Let £L=O(Y!" | a;E;) be a line bundle in Pic(Px). Assume
there is another expression £ = O(Y ., riE;). Then by Proposition
there exists an element f € N* such that r; = a; + f(v;) fori=1,...,n,
where f(v;) = (f.vi). Thus the cohomology of L can also be written as
following:
H (P, L) = €D Hyi%— ;-1 (Supp(ry)),
fEN*
where ¢ = (a; + f(vq))i;-

In this paper, our primary objects of interest are H—trivial line bundles
which we define below.

Definition 2.6. Let £ be a line bundle in Pic(Px). We say that L is
H—trivial iff H (Px, L) = 0 for all j > 0.

A combinatorial criterion for H—triviality is given in terms of forbidden
sets introduced below, see [1].

Definition 2.7. For every subset I C {1,...,n}, we denote Cy to be the
sitmiplicial complex Supp(r) where r; = —1 fori ¢ I andr; =0 fori € I. Let
A ={I C{1,...,n}|Cs has nontrivial reduced homology }. By Remark[2.]),
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A contains {1,...,n} and (. For each I € A, the forbidden set associated
to I is defined by

FS; = {(’)(Z(—l —r)E; + ZrzEl)]n € Z>o for all i}.
igl icl
Proposition 2.8. Let L be a line bundle on Px. Then L is H—trivial if
and only if L does not lie in F'St for any I € A.
Proof. This follows immediately from Proposition [2.3 U

Let Picg(Px) = Pic(Px) ® R which can be regarded as a quotient of R™
with basis elements given by F;. We know Picg(Px) is a vector space with
dimension equal to the rank of Pic(Py).

Definition 2.9. For each I € A, we define the forbidden point by
qr = — ZEZ S PiCR(PE).
i¢l
Define a cone associated to I with vertex at the origin to be

Zr =) RxoE;— Y RxoEi

icl i¢l
Define the forbidden cone FC1 C Picg(Px) by
FCr=qr+ Z7;.

Remark 2.10. By definition, we have F'S; C FCy for any I € A.

In this paper, we are mainly concerned with dimension two, i.e. N = Z2.
We have a complete simplicial fan ¥ in Z? with n one-dimensional cones
and n lattice points {v;}_; chosen in each of the one-dimensional cones
of 3, see Figure The maximal cones of ¥ are R>ov1 + R>qv2, R>ova +
R>vs, . .., R>0v,+R>v1. In dimension 2 case, we describe A = {0, {1,...,n}}U
{I c {1,...,n}|Cy is disconnected}. For example, we have {1,3} € A if
n>3,{n,2,3} € Aifn>4, but {1,2} ¢ A, {n,1,2} ¢ A for all n > 2.

U
,r:ﬂ ?..-‘3
I

1, -FL_'_'—'_'_'—'_'

i.-'F’ Li
Ug vy -
FiGure 1.

Our first key result is a criterion for toric DM stacks to have infinitely
many H—trivial line bundles whose proof is give in the next section. This
key result is:
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Theorem 2.11. Let Px; be a proper smooth dimension two toric DM stacks
associated to a complete stacky fan 3 = (X,{v;}I"1). Then there are infin-
itely many H—trivial line bundles on Px; if and only if there exists {i,j} C
{1,2,---,n} such that v; and v; are collinear.

Remark 2.12. To illustrate the result, observe that P? only has two H—trivial
line bundles O(—1) and O(=2), but P! x P! has infinitely many H—trivial
line bundles O(a,b), where a = —1 or b = —1. (1) of Figure |q is the fan
corresponding to P? and (2) of Figure@ is the fan corresponding to P x P!,

1) (2)

FIGURE 2.

3. PROOF OF THE MAIN RESULT

In this section, we give the proof of Theorem We first prove the ”if”
direction of Theorem 2.11]

Let v1,...,v; be t vectors in R? which are ordered clockwise. Let f be a
piecewise linear function on R? which is linear in each cone spanned by v;
and v; 1. We regard > 0 and < 0 as different signs. We count the number
of pairs of vectors {v;, vit1} C {v1,..., v} such that f(v;) and f(viy1) have
different signs. We call it the number of sign changes of f among {vy,...,v;}.

Lemma 3.1. Let vy,...,v; be t vectors in R? which are ordered clockwise.
Assume that f is a linear function, angle 6 between vy and vy is ™ and f(v1)
and f(v¢) have different signs. Then the the number of sign changes of f
among {v1,...,v} is exactly one.

FiGUuRreE 3.
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Proof. Since § = 7, we have that v; and v; are collinear. Also since f(v1)
and f(v;) have different signs, the line [ = {v € R?|f(v) = 0} passes through
the interior of the angle 6. We know f takes positive values on the vectors
at one side of [, negative values on the vectors at another side of I, zero on
the vectors on the line [. Thus there is exactly one sign change of f among

{vi,...,v}. See Figure O
Proposition 3.2. In the assumption of Theorem if there is {i,j} C
{1,2,--- ,n} such that v; and vj are collinear, Py, has infinitely many H—trivial

line bundles.

f=0 vy e = fley) —1=0

R\\’ff’ - e
g = f'i"r;) =0
=10
(1) (2)
FIGURE 4.
Proof. We assume that v, and v, are collinear, and v1, v, ..., v, are ordered

clockwise. We take a linear function h € N* such that h(v,) = h(vy) = 0 and
consider an element £ = O(3_,¢;, h(vi)E; — Ep) in Picard group Pic(Pyx),
where Iy = {i|h(v;) > 0}. Also let I_ = {i|h(v;) < 0}. By Remark [2.5 we
have
]P)g, @ Her j—1 Supp(rf))a
fEN*

where ry = (a; + f(v;))i~;. In order to show H*(Px, £) = 0, it is sufficient
to show there are exactly two sign changes in r; for each f € N*. Now we
arbitrarily take an element f € N*. Let >, riE; = 3 ;o h(vi)E; — Ep +
Yoy f(vi)E;. We know that 7; = (f + h)(v;) for i € I U{q}, i = f(v;)
for i € I_ U {q} and r, = —1 + f(vp). We consider the following two cases:
rp # —1and r, = —1.

First, in the case that r, # —1, we have f(v,) # 0 and therefore f(v,) #
0. They have different signs since f is a linear function and v, and v,
are collinear. If f(v,) > 0 and f(vy) < 0, we have 7, = f(vy) < 0 and
rp = f(vp) —1 > 0 since f(vp) is integer. Thus the sign of f(v;) is the same
as the sign of r; for all i € I_ U {p,q}. By Lemma the number of sign
changes of f among {v;|i € I_U{p, q}} is exactly one. Thus there is exactly
one sign change in {ry|i € I_U{p,q}}. See (1) of Figure [l If f(v,) < 0 and
f(vg) > 0, we have 7y = f(vg) > 0 and 7, = f(vp) —1 < 0. Analogously,
there is exactly one sign change in {r;|i € I_ U {p,q}}.
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FIGURE 5.

When f(v,) # 0 and f(v,) # 0, we also have (f + h)(vp) # 0 and (f +
h)(vq) # 0. They have different signs since f + h is a linear function and v,
and v, are collinear. If (f+h)(v,) > 0 and (f+h)(v,) < 0, we have f(v,) > 0
and f(vqg) < 0 since h(vp,) = h(vg) = 0. Then we have ry = f(vy) < 0 and
rp = f(vp)—1>0. If (f+h)(vy) <O0and (f+h)(vg) >0, we have f(v,) <0
and f(vg) > 0 since h(vp,) = h(vg) = 0. Then we have ry = f(vy) > 0 and
rp = f(vp) —1 < 0. Thus the sign of (f + h)(v;) is the same as the sign
of r; for all i € I U {p,q}. By Lemma the number of sign changes of
f+ h among {v;|i € I+ U{p,q}} is exactly one. Thus there is exactly one
sign change in {r;|i € I U{p,q}}. Thus there are exactly two sign changes
in ()i,

Second, in the case that r, = —1, we have r, = f(vq) = f(vp) = 0.
Thus (f + h)(vp) = (f + h)(vq) = 0. See (2) of Figure 4 Then we have
ri = f(v;)) >0foralli el orr,= f(v;) <O0foralliel_. Alsowe have
ri = (f+h)(v;) >0foralli € I orr; = (f+h)(v;) <Oforalli e Iy. There
are four cases in total. In each case, there are exactly one sign changes in
{rili € I+ U{p,q}} and one sign changes in {r;|i € I_ U {p, ¢}}. Thus there
are exactly two sign changes in (7;)_;. See (1),(2),(3), (4) of Figure

Thus we have infinitely many H—trivial line bundles. ([

Our next goal is to show that if there are infinitely many H—trivial line
bundles on the dimension two proper toric DM stack Ps, then there exists
{i,7} € {1,2,--- ,n} such that v; and v; are collinear. First, we prove the
following lemma.

Lemma 3.3. For any non-zero element L € Picg(Px) and any j € {1,2,...,n},

there exists a X— piece-wise linear function g on R? such that £ = Yoy g(vi)E;
in Picg(Px) and g(vj) = g(vj+1) = 0.

Proof. Assume L = ). a;E;, where a; € R, we have a 3—piece-wise linear
function h on R? such that h(v;) = a;. Also, we take a linear function f on
R? such that f(v;) = a; and f(vj11) = aj41 and let g = h — f. Then we
have g(v;) =0, g(vj41) =0and ), a; E; = Y, g(vs) E; in Picg(Py). O
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Lemma 3.4. Assume that v; and v; are not collinear for any {i,j} C
{1,2,--- ,n}. Then any non-zero element L € Picr(Px) is contained in
the interior of Zy from Definition [2.9 for some I € A.

Proof. By Lemma we assume £ = Y . g(v;) E;, where g is a ¥ —piece-wise
linear function on R* such that g(v1) = g(ve) = 0. Let Iy = {i|g(v;) = 0}.
Since L is nonzero, we have Iy # {1,2,...,n}. Let J be the connected
component of Iy containing v; and ve. We write the points in J in clockwise
order as vg,...,v1,02,...,0;. Then we consider the following cases.

First, we consider the case when g(vx_1) and g(v;11) have different signs.
Without loss of generality, we assume g(vg—1) > 0 and g(v;41) < 0. We can
take a linear function f’ satisfying that f’(ve) > 0, f'(v1) < 0, 0 # f/(v;)
for all i € Iy and |f'(vi)| < |g(v;)] for all @ € {1,2,...,n}\Ip. Let ¢ =
g+ f’. Then we have that ¢'(vig—1) > 0,¢'(v1) < 0,¢'(v2) > 0,9 (vj+1) <O
and ¢'(v;) # 0 for i« = 1,...,n. Thus we have Isg = {i|¢'(v;) > 0} is
not connected. So Isg € A. Since 0 # f'(v;) for all i € Iy, we have
g (i) = (g+ f)(vi) # 0 for all i € Iy. Since |f'(vi)] < |g(vi)| for all
ie€{1,2,...,n}\Io, we have ¢'(v;) = (g + f)(v;) # 0 fori e {1,2,...,n}\Io.
So we have ¢'(v;) # 0 for all 7. Thus

L= Z o; B+ Z a; B
7:6[>0 i¢I>0

in Picg(Px), where o; = ¢'(v;) # 0 for all i and Isg = {i|¢g’(v) > 0}. This
implies that £ is in the interior of Cr_,. See (1) of Figure @

q—q—-—' g =g+
l] 0 U 0

W ey

q g=g+f 9 g =g+ f
o 00 + O+ , 0? o +
? ANV RNV
o - _ - T Lo oy Lo
f 0 ( s \\‘_ e \\__
i +\ . e
(3) @)
FIGURE 6.

Second, we consider the case that g(vix—1) > 0 and g(v41) > 0 have
the same sign. We will prove the case when both g(vg_1) and g(v;4+1) are
positive, and leave the completely analogous negative case to the reader. If
there is some element j ¢ J U {k — 1,1 + 1} such that g(v;) < 0, we can
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take a linear function f’ satisfying that f’ is negative on v; and on one or
both of v and vy, 0 # f'(v;) for all i € Iy and |f'(v;)] < |g(v;)] for all
ie{1,2,....,n}\Io. Let ¢ =g+ f'. We have ¢'(vip_1) > 0, ¢'(vj41) > 0,
¢'(vj) < 0 and one or both of ¢'(v1) and ¢'(ve) is negative. Also we have
g (v;)) 0 fori=1,...,n. Thus I.g = {i|¢’(v;) > 0} is not connected. So
I-p € A. With the same argument as before, we obtain £ is in the interior
of Cr_,. See (2) of Figure @

It remains to consider the case when g(v;) > 0 for alli ¢ JU{k—1,1+1}.
Now Iy is connected, we have Iy = J. Let 6 be the angle formed by vy
and v; and containing v;. We know that 6§ # m by assumption. If 6 > m,
we can take a linear function f’ satisfying that f/(vx) < 0 and f'(v;) < 0,
0 # f'(v;) for all i € Iy and |f'(vi)] < |g(v;)] for all i € {1,2,...,n}\ .
There must exists an element iy € J such that f’(v;,) > 0 since § > .
Let g = g+ f/, we have ¢'(vg—1) > 0, ¢'(vx) < 0, ¢'(viy) > 0, g'(v) <O,
g (vi+1) > 0 and ¢'(v;,) < 0. Also we have ¢'(v;) # 0 for i = 1,...,n.
Thus I~o = {i|¢’(v;) > 0} is not connected. So I~¢y € A. With the same
argument as before, we obtain L is in the interior of Cr_,. See (3) of Figure
6l If & < 7, we can take a linear function f’ satisfying f’(v;) > 0 for all
i € Iy and |f'(v;)| < |g(v;)| for all 4 € {1,2,... ., n}\Io. Let ¢ = g+ f/, we
have {i|¢’(v;) > 0} = {1,...,n} € A. With the same argument as before,
we obtain £ in the interior of Cyy 1. See (4) of Figure @

O
Definition 3.5. Let V = Picg(Px). We pick a Euclidean metric on V. Let
Fra,...,Fry, be faces of cone Z; and nr; be the unit normal vector of Fr;

such that the inner product of nr; with vector inside the cone is nonnegative.
We define a linear function hr; on V' by

hri(v) = (v,nr;)
for v € V, where (v,nr;) is inner product. Also, we define another two
functions hy(v) and E(v) on' V by
hr(v) =  in hri(v) and E(v) = max hi(v)
forv e V. We know E(v) is a continuous function on V' since hr;(v) is a
continuous function on 'V for each I € A andi=1,... k5.

Remark 3.6. Let S be the unit sphere in V. We know that the distance
from a point v € Z1 to the face Fr; equals hy;(v). Also by Lemma we
know that any s € S is contained in the interior of Z; for some I € A. So
E(s) > 0 for all s € S. Since S is compact, there exists € > 0 such that
E(s) > e forallseS.

We will show that arbitrary shifts of Forbidden cones cover almost all
of V. We have Z; = {v € V|hyi(v) > O0fori = 1,...,kr}. Moreover,
for each I € A, we arbitrarily chose an element z; € Z;. Now we have
xr+ Zr = {v € Vlhr;i(v) > hyi(zr) fori = 1,...,kr}. Then we have the
following lemma.
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Lemma 3.7. Let x1 be arbitrary points in Zy. Assume that for any non-zero
point v € V, there exists some I € A such that v is in the interior of Zj.
Then there is a positive number d such that if |v| > d, we have v € 1 + Z
for some I € A.

Proof. Pick d such that d > %hu(x[) for all I and 1 < i < k7. By Remark
we have & (|Z—|) > e. By the definition of the function &, there exists

some I € A such that hj(h%‘) > e. Then hI,i(ﬁ) > e forall 1 <i < kj.

Thus hy;(v) > €|lv] > ed > hyi(xr) for all 1 < i < k;. Then hy;(v—x7) >0
for all 1 < ¢ < ky. This implies v — x7 € Z;. O

We apply Lemma [3.7] to the shifts of the forbidden cones which have the
property that their lattice points are in the forbidden sets. Such shifts exist
by Proposition Since we have the assumption that N = ! Zv;, then
by Proposition [7.5] for each I € A, we take a point 77 in F'Sy such that
rr+(ZrnN Zk) C F'Sy, where F'St is the Forbidden set corresponding to I.

Proposition 3.8. In the assumption of Theorem if no v; and v; are
collinear, then Pxy has finitely many H—trivial line bundles.

Proof. Assume v; and v; are not collinear for any {i,j} C {1,2,---,n}.
Then by Lemma any non-zero element £ € Pic(Px) C Picg(Pyx) is
contained in the interior of Z; for some I € A. Then by Lemma there
is a positive number d such that |£| > d implies £ € r; + Z; for some
I € A. Thus £ is in F'Sy for some I € A. By Proposition we obtain
L is not H—trivial. Thus all H—trivial line bundles are contained in the
ball in Picg(Px) with radius d and center at the origin. Because the torsion
part of Pic(Pyx) is finite, this implies there are finitely many H—trivial line
bundles. O

Proof of Theorem |2.11] The result follows from Proposition and Propo-
sition 3.8 O

4. FURTHER DESCRIPTION OF THE INFINITE SET OF H—TRIVIAL LINE
BUNDLES

In this section, when the set of H—trivial line bundles is infinite, we show
the set is of the form ”finite set + finite set of lines ”. Thus the number of
H—trivial line bundles in a ball of radius « grows at most as constant times
Q.

We want to show that Lemma almost holds, in the sense that there
are finitely many exceptions, up to scaling.

Lemma 4.1. Let L be a point in V = Picg(Px). Then L is not contained
in the interior of Zr for any I € A if and only if there exists collinear v,
and vq such that L=, ;+ h(v;)E; in V for a linear function h on (R?)*,
where h(vy) = h(vg) =0 and J* ={i € {1,...,n}|h(v;) > 0}.
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Proof. Let £ be an non-zero point in V' which is not contained in the interior
of Z; for any I € A. Arbitrarily picking an element j € {1,2...,n}, by
Lemma we assume £ = ) . g(v;)E;, where g is a X —piece-wise linear
function on R? such that g(vj) = g(vj41) = 0. Let I = {i|g(v;) = 0}. Since
L is nonzero, we have Iy # {1,2,...,n}. Let J be the connected component
of Iy containing v; and vj41. We write the points in J in clockwise order as
Uky -+ Vj, Vj41,-- -, 0. Applying the argument of Lemma we conclude
that the angle 6 between vy, and v; must be w. Applying the same argument
to v and viy1, we get that g is linear on vy, vj41,..., v If g(v;) > 0, we
take h = g. If g(v;) < 0, we take h = —g. Then £ = >, ;4 h(v;)E; in V,
where h(vg) = h(v)) =0 and J* = {i € {1,...,n}h(v;) > 0}.

Now we consider the other direction. For any linear function f € (R?)*,
let 3, rik = 3 7icr, Mui) Ei+ 321 f(vi)E;. We know L is contained in the
interior of Z; for some I € A if and only if there exists a f € (R?)* such
that r; # 0 for all 4 € {1,...,n} and I = {i|r; > 0}. For any f € (R?)*, if
f(vp) # 0, we get that there are exactly two sign changes in (r;)]"; using
the same argument as the first case in the proof of Proposition [3.2] Thus if
ri # 0 for all ¢ € {1,...,n}, we know {i € {1,...,n}|r; > 0} is connected.
If f(vp) =0, we have r, = 0. Thus £ is not contained in the interior of Zy
for any I € A. O

For now, let us assume v, and v, are collinear and there are no other
collinear pairs. We take a linear function g such that g(v,) = g(vq) = 0.

Let S be the unit sphere in V with center origin, P+ = % and
i€J v/
P~ = —P*. By Lemma we know that PT and P~ are the only two

points on S that are not contained in the interior of Z; for any I € A.
For each I € A, Let hr;, hy and & be the functions defined in Definition
If P* € Z;, we know P is on the boundary of Z;. Let {Fr1,..., Fr i}
be all the faces of Z; that containing P™. Let C* be an open cone with cen-
ter line R>oPT. Also, we can choose a sufficiently small C* which satisfies
the following:
o (1) CTN{Z/|PT ¢& Z;} = 0, which implies if PT ¢ Z;, we have
hr(v) =0 for any v € CT;

e (2) when Pt € Z;, we have hy(v) = {r{link} hri(v).
rel,...,

Let U be the orthogonal complement of RPT in linear space V and
pr:V —=-U

be the orthogonal projection. Let £ be the function defined in Definition

Lemma 4.2. There exists a positive constant A such that
E(v) > Adist(v, PT)
for all points v € CT.
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Proof. We assume Zj,,...,Zy, are all the cones containing P*. By (1),
we have £(v) = max }h[i(U) for v € C*. For each i € {1,...,m},

ie{l,....m
let Fy,1,...,F5, 5, be all the faces of Zj, containing PT. By (2), we have

hr,(v) = {mink }h[iyj(’l)). We can assume v = aPT 4 pr(v) for some a €
JE{1,....k;
R>o. Then we have hy, ;(v) = hy, j(pr(v)).

Define a function on U by

Eu(u) = m;lx{je {If.%?k,} hrj(u)}

for w € U. For any v € C, we have £(v) = Ey(pr(v)). We know &y is con-
tinuous on U and &y (ku) = kEy(u) for k > 0. By Lemma[4.1] we know that
P and P~ are the only two points on S that are not contained in the interior
of Zr for any I. So we have £ takes positive value on V\{P*, P~}. Then
Eu takes positive value on U\{0} since pr(v) # 0 implies v ¢ {PT, P~ }.
So there is a positive constance A such that &y (u) > A for any u on the
unit sphere in U. For any u € U\{0}, we have & (u) = |u\€U(W“|) Thus
Eu(u) > Alu| for u € U\{0}. This implies for any v € CT\P*, we have
E(v) > Alpr(v)]. Since |pr(v)| = dist(v, P*), we get the result. O

Remark 4.3. In the similar way, we have a positive constant A’ such that
E(v) > A dist(v, P7) for allv € C~, where C~ be an open cone with center
line R>o P~ which is sufficiently small.

Proposition 4.4. Let S be the unit sphere in V and W = S\((CT N S) U
(C7NS)). There exist two positive constants A and € such that £(v) > € for
allve W and

E(v) > min{e, Adist(v, PT), Adist(v, P7)}
forallv e S.
Proof. We have S = (CTNS)u(C~NS)UW. Since (CTNS) and (C~ N
S) are open in S, we get W is closed. Thus W is compact. So there

is a positive constance € such that £(v) > e for v € W. Thus we have
E(v) > min{e, Adist(v, PT), A’ dist(v, P7)} for all v € S\{P*,P~}. Let

A =min{A, A}, we get the conclusion. O
Let a = max {hri(rr)}. Let B be a ball in V' with radium a and
Iv{hl,i}ii1

center origin. Also denote T be a tube with center line RP™ and radium S.
We have the following theorem.

Theorem 4.5. Let a > %, 3 > ¢ and L is an element in Pic(Px). Then
we have L is not H—trwial if L is outside of BUT. See Figure[7
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FIGURE 7.

Proof. Let L ¢ BUT, we claim £ is H—trivial. Otherwise, £ ¢ r; + Z;
for all I. Then there exists hr; such that hr;(£) < hr;(r7) < a. By the
definition of hy, we have hy(L£) < a for all I. So we get £(L) < a. If
L ¢ CTUC™, we have ﬁ € W. Also, we know E(ﬁ) < 1z7- Since £ ¢ B,

a

we have [£| > a > 2. So 5(%) < ¢, which contradicts to Proposition
If £ € CT, we have £(L£) > Adist(v, PT) by Proposition Thus
dist(v, PT) < ¢ < f8, which implies £ € T. Thus we get contradiction. The
case that £ € C'~ is similar. O

We give a description of H—trivial line bundles inside the tube by the
following proposition.

Proposition 4.6. Let D1 and Djy be two elements in Pic(Px). If D1 + 1Dy
is H—trivial for all | € Z>¢, then Dy + 1Dy is H—trivial for all | € 7.

Proof. We know that Dy does not lie in the interior of Z; for any I € A.
The reason is that if Dy lies in the interior of Z; for some I € A, we can
find a sufficiently large [ € Z>¢ such that Dy + (D, € F'S;. By Lemma
we have Dy = . ;4 h(v;)E; in Picg(Ps) for a linear function h on
(R*)*, where h(v,) = h(vg) = 0 and J* = {i € {1,...,n}h(v;) > 0}.
That is to say there exists f € (R?)* such that Dy + >ic1,..ny S (i) Ei =
Y ics+ h(vi)E;. We can take a sufficiently large positive integer m such
that mf(v;) € Z and mh(v;) € Z for all i € {1,...,n}. Now we have
mDy + 3 ieqr, oy mf(0i)Ei = 32, j+ mh(vi)E; and mf € N*. This im-
plies mDy is equivalent to ), ;+ mh(v;)E; by Proposition i.e. mDy =
Y ics+ mh(v;)E; in Pic(Ps). We denote ), ;v mh(v;)E; by D3. Also we
have mh € N*. Since } S,y oy g+ (—mh(vi)) By = D343 1 oy (—mh(vs)) E;,
we have Dy is equivalent to 3 ;ccy 1\ j+(—mh(v;))E; which we denote by
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Dy4. Note —mh(v;) > 0 for i € {1,...,n}\(J" U{p,q}). We get both Dj
and Dy are effective. So we have the Koszul Complex

0 — O(—D3 — D4) - O(—D3) & O(—D4) - O = Opsnp, — 0.

Since the support of D is U;c j+ B, the support of Dy is Uie (1. )\ (J+U{p,q}) Bi
and the intersection of this two sets is empty, we have Op,np, is trivial. Thus
we obtain

0— O(—Dg — D4) — O(—Dg) D O(—D4) — 0 —=0.
Also since both D3 and D, are equivalent to mDs, we get
(4.1) 0— (’)(—2ng) — O(—sz) D O(—?TLDQ) — O —=0.

Suppose there is a [ < 0 such that D1 + [Ds is not H—trivial. Let [y be the
maximal one in the set {l € Zo|D1+1D3 is not H— trivial}. We tensor the
sequence (4.1) by O(D; + (lp + 2m)D3) and get

0— O(Dy+1lgD2) — (O(Dy + (l()—‘rm)Dg))@Q — O(D1+ (lp+2m)D3) — 0.

Since the choice of Iy, we have both O(D1 + (lop + m)D2) and O(D1 + (lp +
2m)Dy) are H—trivial. Thus O(D; + lpD2) is H—trivial, which leads to
contradiction. O

Remark 4.7. All H—trivial line bundles are within B UT. Let O be the
origin of V. Pick non-zero lattice point Q € T. Let H and H' be two
hyperplanes which are perpendicular to the vector @ and pass through Q
and O respectively. Then we get a cylinder by cutting the tube T by H and
H' which we denote by Y. We know every lattice point in T equals a point
in'Y plus cQ for some c € Z. Since there are finitely many lattice points in
Y, all the lattice points in T are on finitely many parallel lines inside T'.

Example 4.8. Let ¥ be a complete simplicial fan in N = 72, see (1)
of Figure[8 Let vy = (1,1),v2 = (0,1),v3 = (=1,0),v4 = (0,—1),v5 =
(1,—1) to be the chosen lattice points in each of the one-dimensional cones
of ¥. We consider the toric DM stack Px associated to this stacky fan
¥ = (%,{vi}}.,). By Theorem there are infinitely many H—trivial
line bundles on Px.
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(1) (2)

FiGURE 8.

The Picard group Pic(Px) is generated by E1, E4 and Es. A point aE7 +
bEs + cEs in Pic(Px) is denoted by (a,b,c). We computed H—trivial line
bundles to be 71 = {(a,—1,a)la € Z}, 72 = {(a,—1,a — 1)la € Z} and
73 = {(a,—1,a — 2)|a € Z} which lie in three lines respectively, and a finite
set as follows:

(1,0,—1),(—1,0, 1), (~1,0,0), (—1,0,1), (—1,1,0), (0,0, —1),
(—2,-2,-2), (-1, -2,-2), (0, =2, —2), (0, =3, —3), (0, =2, —3), (0, —2, —4)

See (2) of Figure @ This is consistent with Theorem Proposition
and Remark [{.7

If we have more than one pair of collinear vectors in {vy,...,v,}, then
the following theorem holds.

Theorem 4.9. Let {vp,, vy }_; be all collinear pairs in X. There are | tubes
{T1,...,T;} with center line passing through O and sufficiently large radius,
and a ball B with center O and sufficiently large radium such that any line
bundle outside of B\J(U'_,T;) is not H—trivial.

Proof. The argument of Theorem is repeated for each collinear pair.
Details are left to the reader. ([

5. GENERALIZATION TO dim H? 4+ dim H! + dimH2Z < m

This section contain a generalization of the main theorem.
Let Pic(Pyx) be the Picard group of Px. For any positive integer m, we
consider the set

Ay, = {L£ € Pic(Px)|dim H(Px, £) + dim H (Px, £) + dim H*(Px, £) < m}.
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We know Ay = {£ € Pic(Px)|L is H—trivial}. Also by Theorem we
know A is finite iff there exists no {4, j} C {1,2,...,n} such that v; and v,
are collinear. We have the following theorem.

Theorem 5.1. In the assumption of Theorem if no v; and vj are
collinear, then A, is finite for any positive integer m.

Proof. By Lemmal|[7.6] for each I, we have an element n; € Z; such that any
element £ € (n; + Z;) N Pic(Px) can be expressed as a linear combination
of generators of Z; in at least m ways. And each expression contributes at
least one to dim HO(Px, £) + dim H!(Py;, £) 4+ dim H?(Ps;, £) by Proposition
Thus £ ¢ A,,. Also by Proposition we have that any non-zero
element in Picg(Py) is contained in the interior of Z; for some I since v;
and v; are not collinear for any {i,j} C {1,2,--- ,n}. Then by Lemma 3.7
there is a positive number d' such that if |L| > d’, we have £ € n; + Z; for
some I. Thus A, C {L € Pic(Px)||£| < d'}, which implies A,, is finite. O

Remark 5.2. The tubes + ball description of H—trivial line bundles also
applies to Ap,. The argument is the same.

6. COMMENTS

In this section, we express our expectation for the case of dimension three.

We consider the smooth toric DM stack Py associated to a complete
stacky fan ¥ = (X, {v;}!_;) in a lattice with rank 3. Similarly to dimension
two case, infinitely many H—trivial line bundles can be obtained by having
a fibration 7 from Pyx to a certain base and a line bundle £ on Ps such
that the higher direct image Rim,(L£) = 0 for all i > 0. The following
conjecture is meant to encode the existence of such fibrations with two- or
one-dimensional base.

Conjecture 6.1. There are infinitely many H—trivial line bundles on Py if
and only if there exists {i,j} C {1,2,--- ,n} such that v; and vj are collinear
or there exists a plane intersecting all three dimensional cones of 3 at their
boundaries.

It is hoped that the methods and approach of this paper will still be useful
for Conjecture One of the reasons to study H—trivial line bundles on
dim 3 smooth DM Fano stacks is to try to find an example of one without
full exceptional collection of line bundles. Conjecture[6.1]indicates that such
example is likely to have origin far from all diagonals.

7. APPENDIX: SEVERAL FACTS ABOUT CONES AND SEMIGROUPS

In this section, we state and prove several facts about the relationship
between lattice points in a cone and semigroup generated by several lattice
points in a finitely generated group M. We assume M = Z* @ M;,, for some
positive integer k, where My, is torsion part of M.
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Let wy,...,wy, be n elements of M such that M = "7 | Zw;, that is to
say wi,...,w, generate M over Z. We assume C' = "' | R>qw; is a cone
satisfying CN(—C) = {0}. Then we pick a supporting hyperplane such that
all w; are on the same side of the plane, that is to say the linear function
corresponding to the hyperplane which we denote by h takes positive value
on all w;.

Lemma 7.1. Let x be a point in C. If h(x) > """ | h(w;), there is a point
y € C such that x =y + wj for some j € {1,...,n}.

Proof. We assume z = Y . | a;w; (modMi,,), where a; € R>g. Then we
have h(z) = > aih(w;). 0 <a; < 1fori=1,...,n, we get h(z) <
>y h(w;) which contradicts our assumption. Thus there is a; > 1 for some
jeA{l,...,n}. Let y = x —wj. So y is a linear combination of w; with
nonnegative coefficients and = = y + w;. O

Corollary 7.2. Let F'S = Y " | Z>ow; be the semigroup generated by w;.
For any point x € C, we can write x = a+ b, where a € F'S and b € C' with

h(b) < 325y h(wi).

Proof. If h(z) < >, h(w;), we have x = a + b, where a = 0 and b = =.
If h(z) > > | h(w;), by Lemma there exits some j; € {1,...,n} such
that + —w; € C. If h(z —wj,) < D7, h(w;), we have x = a + b, where
a=wjand b=z—w;. If h(x—w;) > > " h(w;), we use Lemmaagain
to get some jo € {1,...,n} such that z — w;;, —w;, € C. We repeat the
process which will stop within finite steps. That is to say, there is an integer
m such that all the coefficient of  — >~)" , w;, € C are less than one. Thus
h(z =32 wj,) < Yo h(w;). Sox =a+b, where a =Y ", wj, € F'S and
b=z — 3" wj. 0

Remark 7.3. We consider a set {p € CNM|h(p) < > 7" h(w;)} which we
denote by I'. Since the lattice points in a bounded region are finite, we know
I" is a finite set. Then we have the following corollary.

Corollary 7.4. We assume I' = {p1,...,p:}. Then we have
t
CcnM=|Jm+FS).
i=1
Proposition 7.5. Let F'S = )" | Z>ow;. Then there exists a pointr € F'S
such that r+(CN M) C FS.

Proof. Since M = Y | Zw;, we assume p; = Zj a;jw; (modMo,), where

ajj € Z. Let aj = 1n<1a2<t|aij| for j = 1,...,n. Denote r = >\, ajw;. We
<i<

claim r + (CN M) C FS. For any point p € CN M, p € p; + FS for some
ie{l,...,t} by Corollary We assume p = p; + s, where s € F'S. We
have all the coefficients of r 4 p; are in Z>o by the definition of a;. Thus
r+p, € FS. Sor+p=r+p +sekFS. (|
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We also have a lemma.

Lemma 7.6. If n > k, there exists a point p € F'S such that every element
inr+p+(CNM) can be written as a nonnegative integer linear combination
of wy,...,w, in at least m different ways.

Proof. Since n >k and M = Y7 | Zw;, there exists a relation Y ;" | a;w; =
0, where a; € Z and {ila; # 0} # 0. Let I+ = {ila; > 0} and I_ =
{ila; < 0}. We claim I # (). Otherwise, we have Y ;" ; a;h(w;) < 0 since
the assumption that h takes positive value on all w;. This contradicts to
Yoy aih(w) = (3 a;w;) = h(0) = 0. Similarly, we have I_ # (). Then
let p; = ZieJ+ aw; = Y ;7 (—a;)w;. Let p= (m +1)p;. We have

p=mpy +p1 = Z ma;w; + Z (—a;)w;
iedy ieJ_

=(m—1)p1+2p = Z (m — 1)a;w; + Z 2(—a;)w;

iedy ied_

=p1+mpr = Z a;w; + Z m(—a;)w;
i€]+ ieJ_
Thus p can be written as a nonnegative integer linear combination of wq, ..., w,
in at least m different ways. Then for arbitrary z € r + (C N M), we
assume = = y_ . byw,; for b; € Z>0 by Lemma We have z + p =
i1 biwi + 3 ey, (m 41— flaw; + 37,05 j(—a;)w; for j=1,...,m. So
T+p can be written as a nonnegative integer linear combination of wy, ..., wy,
in at least m different ways. O
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