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Abstract

Fang-Wu[15] presented a explicit spectral gap for the O-U process on path
space over a Riemannian manifold without boundary under the bounded Ricci
curvature conditions. In this paper, we will extend these results to the case of
the Riemannian manifold with boundary. Moreover, we also derive the similar
results for the stochastic heat process.
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1 Introduction
sect1

Functional inequality is an important tool to study the spectral gaps for some diffusion
operators in the analysis/stochastic analysis field, especially, for the case of infinite di-
mensional Riemannian path space. For the manifold without boundary, Fang[12] first
established the Poincaré inequality for the O-U operator on Riemanian path space by
the Clark-Ocean formula, after that the log-Sobolev inequality/(weak)Poincaré inequal-
ity have also been established for the O-U Dirichlet form, see e.g. [1, 3, 9, 18, 19, 23, 4,
21, 27, 28, 5] and references therein. Recently Naber[21] gave some characterizations
of the uniform bounds of Ricci curvature by the analysis of the path space. Motiviated
by this work, Fang and Wu[15] gave the explicit spectral gap of the O-U operator on
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path space under the Ricci curvature condition that K2 ≤ RicZ(:= Ric +∇Z) ≤ K1

and K2 +K1 ≥ 0. This condition K2 +K1 ≥ 0 is removed by Cheng-Thalimaier[5].
For the manifold with boundary, Wang[26] proved the damped log-Sobolev inequal-

ity for the O-U process on path space, but some geometric informations are hidden in
this inequality. In this article, our main aim is to present a estimate of the spectral gap
for the O-U operator on path space over a manifold (possible with boundary) under
the curvature and the second fundamental form conditions

eq1.1eq1.1 (1.1) K2 ≤ RicZ ≤ K1, σ2 ≤ I ≤ σ1

for some constantsK2, K1, σ2, σ1 ∈ R. In particular, our results cover Fang-Wu’s results
and Cheng-Thalmaier’s results. Moreover, we also obtain the estimate of the spectral
gap for the stochastic heat process.

To state our main results, we need to introduce some notation. Let M be a d-
dimensional complete Riemannian manifold possibly with a boundary ∂M and N be
the inward unit normal vector field of ∂M . Let L = 1

2
∆+ Z be the diffusion operator

for some C1 vector field Z, where ∆ is the Laplace operator on M .
Denote by the Riemannian path space:

W T
x (M) = {γ ∈ C([0, T ];M) : γ0 = x}.

Let ρ be the Riemannian distance on M. Then W T
x (M) is a Polish space under the

uniform distance

ρ∞(γ, σ) := sup
t∈[0,T ]

ρ(γt, σt), γ, σ ∈ W T
x (M).

Let O(M) be the orthonormal frame bundle over M and π : O(M) → M be the
canonical projection. Furthermore, we choose a canonical orthonormal basis {ei}1≤i≤d

on R
d and a standard orthonormal basis Hi(u) := (Huei)1≤i≤d for u ∈ O(M) of hor-

izontal vector fields on O(M). Then the horizontal reflecting diffusion process is the
unique solution to the SDEs:

dUx
t = Hi(U

x
t ) ◦ dWt +HZ(U

x
t )dt+HN(U

x
t )dl

x
t , Ux

0 ∈ Ox(M),eq1.2eq1.2 (1.2)

where Wt is the d-dimensional Brwonian motion on a complete filtration probability
space (Ω, {Ft}t≥0,P), HZ and HN are the horizontal lift of Z and N respectively, and
lxt is an adapted increasing process which increases only when Xx

t := πUx
t ∈ ∂M which

is called the local time of Xx
t on ∂M . Then it is easy to know that Xx

t solves the
equation

dXx
t = Ux

t ◦ dWt + Z(Xx
t )dt+N(Xt)dl

x
t , Xx

0 = xeq1.3eq1.3 (1.3)

up to the life time ζ( the maximal time of the solution).
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Let FC∞
T be the space of bounded Lipschitz continuous cylinder functions on

W T
x (M), i.e. for every F ∈ FC∞

T , there exist some N ≥ 1 and 0 < t1 < t2 · · · < tN ≤
T , f ∈ CLip(M

N ) such that F (γ) = f(γt1 , · · · , γtN ), γ ∈ W T
x (M) , where CLip(M

N)
is the collection of bounded Lipschitz continuous functions on MN . Suppose H is the
standard Cameron-Martin space for C([0, T ];Rd), i.e.

H =

{

h ∈ C([0, T ];Rd) : h(0) = 0, ‖h‖2
HT

:=

∫ T

0

|h′
s|2ds < ∞

}

.

In order to construct O-U process on path space by the theory of Dirichlet form,
we first introduce the damped Mallavin gradient given by Wang[25]. To do that, we
will recommend a multiplicative functional Qx

s,t, which is first introduced by Hsu [20]
to investigate gradient estimate on Pt. For any fixed s ≥ 0, (Qx

s,t)t≥s is an adapted
right-continuous process on R

d ⊗ R
d such that Qx

s,tPUx
t
= 0 if Xx

t ∈ ∂M and

eq1.4eq1.4 (1.4) Qx
s,t =

(

I −
∫ t

s

Qx
s,r

{

RicZ(U
x
r )ds+ I(Ux

r )dl
x
r

}

)

(

I − 1{Xx
t
∈∂M}PUx

t

)

,

where Pu : Rd → R
d is the projection along u−1N , i.e.

〈Pua, b〉 := 〈ua,N〉〈ub,N〉, a, b ∈ R
d, u ∈ ∪x∈∂MOx(M).

For every F ∈ FC∞
T , by (4.2.1) in [25], the damped gradient is defined by

eq1.5eq1.5 (1.5) D̃tF (Xx
[0,T ]) =

∑

i:ti>t

Qx
t,ti

U−1
ti

∇if(X
x
t1
, · · · , Xx

tN
), t ∈ [0, T ].

Thus, the associated Mallavin gradient will defined as follows:

eq1.6eq1.6 (1.6) DtF (Xx
[0,T ]) =

∑

i:ti>t

(

I − 1{Xx
ti
∈∂M}PUx

ti

)

U−1
ti

∇if(X
x
t1
, · · · , Xx

tN
), t ∈ [0, T ].

For any constants K2, K1, σ2, σ1 with K2 ≤ K1, σ2 ≤ σ1and each t ∈ [0, T ], let µ be
the random measure on [0, T ] given by

µt(dr) = exp [−K2(r − t)− σ2(l
x
r − lxt )] {(|K1| ∨ |K2|)dr + (|σ1| ∨ |σ2|)dlxr}}

=: ϕ1(t, r,K1, K2, σ1, σ2)dr + ϕ1(t, r,K1, K2, σ1, σ2)dl
x
r

Denote by two measurable functions on W T
x (M)

eq1.7eq1.7 (1.7)

At =
(

1 + µ([t, T ])
)

+

∫ t

0

(

1 + µ([r, T ])
)

ϕ1(r, t,K1, K2, σ1, σ2)dr

Bt =

∫ t

0

(

1 + µ([r, T ])
)

ϕ2(r, t,K1, K2, σ1, σ2)dr.
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Throughout the article, we assume that the (reflecting if ∂M exists) L-diffusion
process is non-explosive. Let Px be the distribution of the L-diffusion process Xx

starting from a fixed point x up to some fixed time T > 0. Then Px is a probability
measure on the Riemannian path space W T

x (M). Define the following quadratic form
by

eq1.8eq1.8 (1.8) E
K1,K2

σ1,σ2
(F, F ) :=

∫

WT
x (M)

∫ T

0

|DtF |2(Atdt+Btdlt)dPx.

The following Logarithmic Sobolev inequality is the main result of this paper.

T1.1 Theorem 1.1. Assume that K2 ≤ RicZ ≤ K1 and σ2 ≤ I ≤ σ1. Then the following
Logarithmic Sobolev inequality holds

eq1.9eq1.9 (1.9) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ E
K1,K2

σ1,σ2
(F, F ), F ∈ FC∞

T .

By the above Theorem 1.1, we obtain the following Corollary for two special cases.

C1.2 Corollary 1.2. (a) Assume that M is a Riemannian manifold without a boundary and
K1 ≤ RicZ ≤ K2, then the Logarithmic Sobolev inequality holds

eq1.10eq1.10 (1.10) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ C(T,K1, K2)

∫

WT
x (M)

∫ T

0

|DtF |2dtdPx, F ∈ FC∞
b (M).

In particular, when K2 < 0, we have

eq1.11eq1.11 (1.11) Spect( L)−1 ≤ 1

2
+

1

2

(

1 +
|K1| ∨ |K2|

K2

[

1− e−K2T
]

)2

.

When K2 > 0, we have

eq1.12eq1.12 (1.12) SG( L)−1 ≤ (1 + β)2 − 2

√

(

β +
β2

2

)(

β + β2 − β2

2
e−K2T

)

e−
K2T

2 ,

where β = |K1|∨|K2|
K2

.
(b) Let M be Ricci flat Riemannian manifold with boundary, and we assume that

the second fundamental form satisfies σ2 ≤ I ≤ σ1, then
When σ2 ≥ 0, we get that for any F ∈ FC∞

T

eq1.13eq1.13 (1.13)

E

(

F 2 log
F 2

‖F‖2
L2

)

≤
∫

WT
x (M)

(1 + σ1l
x
T )

∫ T

0

|DtF |2dtdPx

+

∫

WT
x (M)

(σ1(1 + σ1l
x
T )T )

∫ T

0

|DtF |2dltdPx.
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When σ2 < 0, we get that for any F ∈ FC∞
T

eq1.14eq1.14 (1.14)

E

(

F 2 log
F 2

‖F‖2
L2

)

≤
∫

WT
x (M)

(1 + (|σ1| ∨ |σ2|) exp [(−σ2 + ε)lxT ])

∫ T

0

|DtF |2dtdPx

+

∫

WT
x (M)

(

2(|σ1| ∨ |σ2|)2 exp [(−σ2 + ε)lxT ]
)

∫ T

0

|DtF |2dltdPx

for some constant ε > 0.

Remark 1.3. (1) Wang [25] proved that the damped Logarithmic Sobolev inequality.
(2) When M is a Riemannian manifold without boundary, and K2 ≤ RicZ ≤

K1, K2 +K1 ≥, Fang-Wu [15] first proved (1.10), later , this result had been extended
to the general case of K2 and K1 by Cheng-Thalimaier[5].

The rest of this paper is organized as follows: In Section 2, we will prove Theorem
1.1 and Corollary 1.2. The estimate of the spectral gap for the stochastic heat process
will be presented in Section 3.

2 Proofs of Theorem 1.1 and Corollary 1.2

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1. By Theorem 4.4 in [25], we know that the following damped
logarithmic Sobolev inequality holds

eq2.1eq2.1 (2.1) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ 2

∫

WT
x (M)

∫ T

0

|D̃tF |2dtdPx.

Therefore it suffices to show that

eq2.2eq2.2 (2.2)

∫ T

0

|D̃tF |2dt ≤
∫ T

0

|DtF |2(Atdt +Btdlt).

By using the assumptions of K2 ≤ RicZ ≤ K1 and σ2 ≤ I ≤ σ1, we have

‖RicZ‖ ≤ |K1| ∨ |K2|, ‖I‖ ≤ |σ1| ∨ |σ2|,

Combining this with (1.14)

Qx
s,t =

(

I −
∫ t

s

Qx
s,r

{

RicZ(Ux
r )ds+ I(Ux

r )dl
x
r

}

)

(

I − 1{Xx
t
∈∂M}PUx

t

)

.

and [26, Theorem 3.2.1], it is easy to derive that

eq2.3eq2.3 (2.3)
∥

∥Qx
t,r

∥

∥ ≤ exp [−K2(r − t)− σ2(l
x
r − lxt )] .
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By the definition of the damped gradient, we get
eq2.4eq2.4 (2.4)

D̃tF (Xx
[0,T ]) =

∑

i:ti>t

Qx
t,ti

U−1
ti

∇if(X
x
t1
, · · · , Xx

tN
) = DtF (Xx

[0,T ])−

∑

i:ti>t

∫ ti

t

Qx
t,r

{

RicZ(Ux
r )ds+ I(Ux

r )dl
x
r

}

(

I − 1{Xx
t
∈∂M}PUx

ti

)

U−1
ti

∇if(X
x
t1
, · · · , Xx

tN
)

= DtF (Xx
[0,T ])−

∫ T

t

Qx
t,r

{

RicZ(Ux
r )DrF (Xx

[0,T ])dr + I(Ux
r )DrF (Xx

[0,T ])dl
x
r

}

.

Then we have
eq2.5eq2.5 (2.5)

|D̃tF |(Xx
[0,T ]) ≤ |DtF |(Xx

[0,T ])

+

∫ T

t

exp [−K2(r − t)− σ2(l
x
r − lxt )] {(|K1| ∨ |K2|)dr + (|σ1| ∨ |σ2|)dlxr}|DrF |(Xx

[0,T ])}

= |DtF |(Xx
[0,T ]) +

∫ T

t

|DrF |µt(dr).

The Hölder’s inequality implies that

eq2.6eq2.6 (2.6) |D̃tF |2(Xx
[0,T ]) ≤

(

1 + µt([t, T ])
)

(

|DtF |2 +
∫ T

t

|DrF |2µt(dr)

)

Thus, we obtain
eq2.7eq2.7 (2.7)

∫ T

0

|D̃tF |2dt ≤
∫ T

0

(

1 + µ([t, T ])
)

|DtF |2dt+
∫ T

0

∫ T

t

(

1 + µ([t, T ])
)

|DrF |2µt(dr)dt

=

∫ T

0

(

1 + µ([t, T ])
)

|DtF |2dt+
∫ T

0

∫ T

t

(

1 + µ([t, T ])
)

|DrF |2ϕ1(t, r,K1, K2, σ1, σ2)drdt

+

∫ T

0

∫ T

t

(

1 + µ([t, T ])
)

|DrF |2ϕ2(t, r,K1, K2, σ1, σ2)dlrdt

=

∫ T

0

(

1 + µ([t, T ])
)

|DtF |2dt+
∫ T

0

∫ r

0

(

1 + µ([t, T ])
)

|DrF |2ϕ1(t, r,K1, K2, σ1, σ2)drdt

+

∫ T

0

∫ r

0

(

1 + µ([t, T ])
)

|DrF |2ϕ2(t, r,K1, K2, σ1, σ2)dlrdt

=

∫ T

0

(

1 + µ([t, T ])
)

|DtF |2dt+
∫ T

0

∫ t

0

(

1 + µ([r, T ])
)

ϕ1(r, t,K1, K2, σ1, σ2)dr|DtF |2dt

+

∫ T

0

∫ t

0

(

1 + µ([r, T ])
)

ϕ2(r, t,K1, K2, σ1, σ2)dr|DtF |2dlt

=

∫ T

0

|DtF |2(Atdt+Btdlt).
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Up to now, we complete the proof.

2.2 Proof of Corollary 1.2

To prove Corollary 1.2, we need some preparations. Let β = |K1|∨|K2|
K2

and define

eq2.8eq2.8 (2.8)
Λ(t, T ) = 1 + β

[

1− exp [−K2(T − t)]
]

+
(

β + β2
)

[

1− exp (−K2t)
]

+
β2

2
[exp (−K2(t+ T ))− exp (−K2(T − t))]

and
C(T,K1, K2) := sup

t∈[0,T ]

Λ(t, T ).

Similar to the proof of Proposition 3.3 in Fang-Wu[15] for the case of K1 +K2 ≥ 0, in
the following we will discuss monotonicity of the function Λ(·, T ).

p2.1 Proposition 2.1. (1) If K2 < 0, then t → Λ(t, T ) is strictly increasing over [0, T ].
(2) If K2 ≥ 0, then the maximum is attained at a point t0 in (0, T ).

Proof. According to the definition (2.8) of Λ(t, T ), we get

Λ(0, T ) = 1 + β
(

1− e−K2T
)

and

Λ(T, T ) = 1 +
(

β + β2
)

[

1− exp (−K2T )
]

+
β2

2

[

e−2K2T − 1
]

=
1

2
+

1

2

[

1 + β
(

1− e−K2T
)

]2

=
1

2
+

1

2
Λ2(0, T ).

In particular, the second in the above implies that Λ(T, T ) ≥ Λ(0, T ).
Next, we take the derivative of Λ(t, T ) with respect to t,

Λ′(t, T ) = −βK2e
−K2(T−t) +

(

β + β2
)

K2e
−K2t − β2

2
K2

[

e−K2(t+T ) + e−K2(T−t)
]

.

Then we have

eq2.9eq2.9 (2.9)
Λ′(0, T ) = −βK2e

−K2T +
(

β + β2
)

K2 − β2K2e
−K2T

= βK2(1 + β)(1− e−K2T ) ≥ 0;

and

eq2.10eq2.10 (2.10)

Λ′(T, T ) = −βK2 +
(

β + β2
)

K2e
−K2T − β2

2
K2

[

e−2K2T + 1
]

= −βK2

(

1− (1 + β) e−K2T +
β

2

[

e−2K2T + 1
]

)

= −βK2[1− e−K2T ]− β2K2

2
[1− e−K2T ]2.
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Noting that

eq2.11eq2.11 (2.11)

{

Λ′(T, T ) > 0 if K2 < 0,
Λ′(T, T ) < 0 if K2 > 0.

Now we look for t ∈ [0, T ] such that Λ′(t, T ) = 0. We have

eq2.12eq2.12 (2.12)

Λ′(t, T ) = 0

⇔ − e−K2(T−t) + (1 + β) e−K2t − β

2

[

e−K2(t+T ) + e−K2(T−t)
]

= 0

⇔ − e−K2T e2K2t + (1 + β)− β

2

[

e−K2T + e−K2T e2K2t
]

= 0

⇔
(

1 +
β

2

)

e−K2T e2K2t = 1 + β − β

2
e−K2T .

Therefore there exists at most one t such that Λ′(t, T ) = 0. For the case where K2 < 0,
if there exists t0 ∈ (0, T ) such that Λ(t0, T ) < 0. Then by (2.9) and (2.11), the
equation Λ′(t, T ) = 0 has at least two solutions, it is impossible. Therefore for K2 < 0,
Λ′(t, T ) ≥ 0. For K2 > 0, we suppose t0 such that Λ′(t0, T ) = 0, then by (2.12)

e2K2t0 =
(

1 +
β

2 + β

(

1− e−K2T
))

eK2T .

Thus the proof is completed.

By the above Proposition 2.1, it is easy to obtain the following Proposition 2.2.

p2.2 Proposition 2.2. (i) If K2 > 0,

sup
t∈[0,T ]

Λ(t, T ) = (1 + β)2 −
(

β +
β2

2

)

√

1 +
β

2 + β

(

1− e−K2T

)

e−
K2T

2

−

(

β + β2 − β2

2
e−K2T

)

√

1 + β

2+β

(

1− e−K2T

)

e−
K2T

2 .

eq2.13eq2.13 (2.13)

(ii) If K2 < 0,

eq2.14eq2.14 (2.14) sup
t∈[0,T ]

Λ(t, T ) =
1

2
+

1

2

(

1 +
|K1| ∨ |K2|

K2

[

1− e−K2T
]

)2

.
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Proof of Corollary 1.2. (a) Since M is a Riemannian manifold without boundary, then
the local time lt = 0, thus we have

µt(dr) : = (|K1| ∨ |K2|) exp [−K2(r − t)] dr.

Then

eq2.15eq2.15 (2.15) µ([t, T ]) =
(|K1| ∨ |K2|)

K2
[1− exp [−K2(T − t)]] .

Which implies that

eq2.16eq2.16 (2.16)
ϕ1(r, t,K1, K2, σ1, σ2) = (|K1| ∨ |K2|) exp [−K2(t− r)]

ϕ2(r, t,K1, K2, σ1, σ2) = 0.

Then by (2.15) and the first equality of (2.16),
eq2.17eq2.17 (2.17)

∫ t

0

(

1 + µ([r, T ])
)

ϕ1(r, t,K1, K2, σ1, σ2)dr

= (|K1| ∨ |K2|)
∫ t

0

(

1 +
(|K1| ∨ |K2|)

K2
[1− exp [−K2(T − r)]]

)

exp [−K2(t− r)] dr

=

(

(|K1| ∨ |K2|)
K2

+
(|K1|2 ∨ |K2|2)

K2
2

)

[

1− exp (−K2t)
]

− (|K1|2 ∨ |K2|2)
2K2

2

exp (−K2(t+ T )) (exp (2K2t)− 1) .

Thus we get

eq2.18eq2.18 (2.18)

Bt =

∫ t

0

(

1 + µ([r, T ])
)

ϕ2(r, t,K1, K2, σ1, σ2)dr = 0

At =
(

1 + µ([t, T ])
)

+

∫ t

0

(

1 + µ([r, T ])
)

ϕ1(r, t,K1, K2, σ1, σ2)dr

= 1 +
(|K1| ∨ |K2|)

K2

[1− exp [−K2(T − t)]]

+

(

(|K1| ∨ |K2|)
K2

+
(|K1|2 ∨ |K2|2)

K2
2

)

[

1− exp (−K2t)
]

+
(|K1|2 ∨ |K2|2)

2K2
2

[exp (−K2(t + T ))− exp (−K2(T − t))] .

From which we have

eq2.19eq2.19 (2.19)

∫ T

0

|DtF |2(Atdt +Btdlt) ≤
∫ T

0

Λ(t, T )|DtF |2dt.
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Then (1.9), (1.10) and (1.11) come from Theorem 1.1 and Proposition 2.2.
(b) By the assumption of M , we know that

eq2.20eq2.20 (2.20) µt(dr) = (|σ1| ∨ |σ2|) exp [−σ2(l
x
r − lxt )] dl

x
r .

Thus,

eq2.21eq2.21 (2.21) µ([t, T ]) = (|σ1| ∨ |σ2|) exp [σ2l
x
t ]

∫ T

t

exp [−σ2l
x
r ] dl

x
r .

In addition, (2.20) implies that

eq2.22eq2.22 (2.22)
ϕ1(r, t,K1, K2, σ1, σ2) = 0

ϕ2(r, t,K1, K2, σ1, σ2) = (|σ1| ∨ |σ2|) exp [−σ2(l
x
t − lxr )] .

Then, by the definition of At and Bt,

eq2.23eq2.23 (2.23)

At = 1 + (|σ1| ∨ |σ2|) exp [σ2l
x
t ]

∫ T

t

exp [−σ2l
x
r ] dl

x
r

Bt = (|σ1| ∨ |σ2|)
∫ t

0

(

1 + (|σ1| ∨ |σ2|) exp [σ2l
x
r ]

∫ T

r

exp [−σ2l
x
u] dl

x
u

)

× exp [−σ2(l
x
t − lxr )] dr.

Since lxt is a increasing process, we have

eq2.24eq2.24 (2.24) At ≤
{

1 + σ1l
x
T , if σ2 ≥ 0,

1 + (|σ1| ∨ |σ2|) exp [(−σ2 + ε)lxT ] , if σ2 < 0

and

eq2.25eq2.25 (2.25) Bt ≤
{

σ1(1 + σ1l
x
T )T, if σ2 ≥ 0,

2(|σ1| ∨ |σ2|)2 exp [(−σ2 + ε)lxT ] , if σ2 < 0

By Theorem 1.1, when σ2 ≥ 0, we get

eq2.26eq2.26 (2.26)

E

(

F 2 log
F 2

‖F‖2
L2

)

≤
∫

WT
x (M)

(1 + σ1l
x
T )

∫ T

0

|DtF |2dtdPx

+

∫

WT
x (M)

(σ1(1 + σ1l
x
T )T )

∫ T

0

|DtF |2dltdPx,
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and when σ2 < 0, we get

eq2.27eq2.27 (2.27)

E

(

F 2 log
F 2

‖F‖2
L2

)

≤
∫

WT
x (M)

(1 + (|σ1| ∨ |σ2|) exp [(−σ2 + ε)lxT ])

∫ T

0

|DtF |2dtdPx

+ 2

∫

WT
x (M)

(

|σ1| ∨ |σ2|)2 exp [(−σ2 + ε)lxT ]
)

∫ T

0

|DtF |2dltdPx.

Corollary 2.3. Let M :=
{

x = (x1, · · · , xd) ∈ R
d : a1x1 + · · ·+ adxd ≥ c

}

for some
constant c ∈ R, then M is a Riemannian manifold without boundary and Ric = 0 with
I = 0, thus we have

eq2.28eq2.28 (2.28) E

(

F 2 log
F 2

‖F‖2
L2

)

≤
∫

WT
x (M)

∫ T

0

|DtF |2dtdPx.

3 Stochastic heat equation

In this section, we will consider the spectral gap for the stochastic heat equation on a
Riemannian manifold with boundary. Before moving on, let’s introduce some notation.

The stochastic heat equation on Riemannian manifold had been studied detailed
by [22](see also [17]). Here they introduced some notation. In particular, the classical
cylinder function depending on finite times is not in the domain of generator associated
to the stochastic heat equation. Thus, we need to introduce a class of new cylinder
function FC1

b on W T
x (M), i.e. for every F ∈ FC1

b , there exist some m ≥ 1, m ∈
N, f ∈ C1

b (R
m), gi ∈ C

0,1
b ([0, 1]×M), i = 1, ..., m, such that

eq3.1eq3.1 (3.1) F (γ) = f

(
∫ 1

0

g1(s, γs)ds,

∫ 1

0

g2(s, γs)ds, ...,

∫ 1

0

gm(s, γs)ds

)

, γ ∈ W T
x (M),

where C
0,1
b ([0, 1] × M) denotes the functions which are continuous w.r.t. the first

variable and differentiable w.r.t. the second variable with continuous derivatives.
For any F ∈ FC1

b with (2.2) form and h ∈ L2([0, 1];Rd), according to Wang[25],
the damped Malliavin gradient of F is given by

˙̃
DF (s)(γ) :=

m
∑

j=1

∂̂jf(γ)

∫ T

s

Qs,uU
−1
u (γ)∇gj(u, γu)du, γ ∈ W T

x (M).

11



Let ∇̃F be the damped L2-gradient of F , and since

∫ T

0

〈

˙̃
DF (s), h′

s

〉

ds = 〈h,DF 〉H = DhF = 〈h,DF 〉〉L2

=

∫ T

0

〈

∇̃F (s), hs

〉

ds =

∫ T

0

〈

∇̃F (s),

∫ s

0

h′
udu

〉

ds

=

∫ T

0

∫ s

0

〈

∇̃F (s), h′
u

〉

duds =

∫ T

0

∫ T

u

〈

∇̃F (s), h′
u

〉

dsdu

=

∫ T

0

〈
∫ T

s

∇̃F (u)du, h′
s

〉

ds.

Then, we have
∫ T

s

∇̃F (u)du = ˙̃
DF (s).

Thus,

∇̃F (s) =
m
∑

j=1

∂̂jf(γ)Qs,TU
−1
s (γ)∇gj(s, γs).

The L2-gradient of F is defined by

∇F (s) =
m
∑

j=1

∂̂jf(γ)U
−1
s (γ)∇gj(s, γs).

By Lemma 4.3.2 in [25], we have

eq3.2eq3.2 (3.2)

F = F +
√
2

∫ T

0

〈 ˙̃DF (s), dBs〉

= F +
√
2

∫ T

0

〈
∫ T

s

∇̃F (u)du, dBs

〉

= F +
√
2

∫ T

0

〈
∫ T

s

Qs,u∇F (u)du, dBs

〉

By the standard the procedure, we have

eq3.3eq3.3 (3.3) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ 2

∫

WT
x (M)

∫ T

0

∣

∣

∣

∣

∫ T

s

Qs,u∇F (u)du

∣

∣

∣

∣

2

dsdPx.
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By (2.3) and Hölder’s inequality, we get

eq3.4eq3.4 (3.4)

∣

∣

∣

∣

∫ T

t

Qs,u∇F (u)du

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

∫ T

s

e−K(u−s)−σ(lxu−lxs )∇F (u)du

∣

∣

∣

∣

2

≤
∫ T

s

e−K(u−s)−σ(lxu−lxs )du

∫ T

s

e−K(u−s)−σ(lxu−lxs )|∇F |2(u)du

=

∫ T

s

e−K(u−s)−σ(lxu−lxs )du

∫ T

s

e−K(u−s)−σ(lxu−lxs )|∇F |2(u)du.

Let

ϕ(s) =

∫ T

s

e−K(u−s)−σ(lxu−lxs )du.

Then by changing the order of integration we obtain

∫

WT
x (M)

∫ T

0

∣

∣

∣

∣

∫ T

s

Qs,u∇F (u)du

∣

∣

∣

∣

2

dsdPx ≤
∫

WT
x (M)

∫ T

0

ϕ(s)

∫ T

s

e−K(u−s)−σ(lxu−lxs )|∇F |2(u)dudsdPx

=

∫

WT
x (M)

∫ T

0

A(s)|∇F |2(s)dsdPx,

where

A(s) =

∫ s

0

ϕ(u)e−K(s−u)−σ(lxs−lxu)du.

Thus, we get the following Logarithmic Sobolev inequality.

T3.1 Theorem 3.1. Assume that RicZ ≥ K and I ≥ σ. Then the following Logarithmic
Sobolev inequality holds

eq3.5eq3.5 (3.5) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ 2

∫

WT
x (M)

∫ T

0

A(s)|∇F |2(s)dsdPx, F ∈ FC1
b .

c3.2 Corollary 3.2. (a) Assume that M is a Riemannian manifold with a convex boundary
and K ≤ RicZ, then the Logarithmic Sobolev inequality holds

eq3.6eq3.6 (3.6) E

(

F 2 log
F 2

‖F‖2
L2

)

≤ C(T,K)

∫

WT
x (M)

∫ T

0

|∇F |2dtdPx, F ∈ FC∞
b (M),

where

C(T,K) =







1
2K2

[

2− 2−e−KT√
2eKT−1

− e−KT
√
2eKT − 1

]

, if K ≥ 0,

1
K2

[

1− e−KT
]2
, if K < 0.
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Proof. Since the boundary is convex, thus I ≥ σ ≥ 0. Thus

ϕ(s) =

∫ T

s

e−K(u−s)−σ(lxu−lxs )du ≤
∫ T

s

e−K(u−s)du =
1

K

[

1− e−K(T−s)
]

and

A(s) =

∫ s

0

ϕ(u)e−K(s−u)−σ(lxs−lxu)du ≤ 1

K

∫ s

0

[

1− e−K(T−u)
]

e−K(s−u)du

=
1

2K2

[

2− 2e−Ks + e−K(T+s) − e−K(T−s)

]

.

Then we get

A(0) = 0, A(T ) =
1

2K2

(

1− e−K
)2

In the following, similar to the argument of Proposition 2.1. Taking the derivative of
s → A(s) gives

A′(s) =
1

2K

[

2e−Ks − e−K(T+s) − e−K(T−s)

]

.

Thus,

eq3.7eq3.7 (3.7) A′(0) =
1

K

[

1− e−K
]

≥ 0, A′(T ) = − 1

2K

[

e−K − 1
]2
.

Noting that

eq3.8eq3.8 (3.8)

{

A′(T ) > 0 if K < 0,
A′(T ) < 0 if K > 0.

Now we look for s ∈ [0, T ] such that A′(s) = 0. We have

c3.1c3.1 (3.9)

A′(s) = 0

⇔ 2e−Ks − e−K(T+s) − e−K(T−s) = 0

⇔ 2− e−KT − e−KT+2Ks = 0

⇔ e2Ks = 2eKT − 1.

Therefore there exists at most one t such that A′(s) = 0. For the case where K < 0,
if there exists s0 ∈ (0, T ) such that A(s0) < 0. Then by (3.7) and (3.8), the equation
A′(s) = 0 has at least two solutions, it is impossible. Therefore for K < 0, A′(s) ≥ 0.
For K > 0, we suppose s0 such that Λ′(t0, T ) = 0, then by (3.9)

e2Ks0 = 2eKT − 1.

The proof is completed.
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Corollary 3.3. Let M be a Ricci-flat Riemannian manifold with a convex boundary,
then we have

E

(

F 2 log
F 2

‖F‖2
L2

)

≤T 2

∫

WT
x (M)

∫ T

0

|∇F |2dtdPx.
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