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PICARD GROUP OF MODULI OF CURVES OF LOW GENUS IN

POSITIVE CHARACTERISTIC

ANDREA DI LORENZO

Abstract. We compute the Picard group of the moduli stack of smooth
curves of genus g for 3 ≤ g ≤ 5, using methods of equivariant intersection
theory. We base our proof on the computation of some relations in the inte-
gral Chow ring of certain moduli stacks of smooth complete intersections. As
a byproduct, we compute the cycle classes of some divisors on Mg.

Introduction

The Picard group is an important invariant of schemes. In the landmark paper
[Mum65] Mumford first introduced the notion of Picard group of a moduli func-
tor, and actually computed it in the case of the moduli functor of elliptic curves.
In subsequent works (e.g. [Vis89], [Kre99]) the notion of Picard group had been
extended to a large class of algebraic stacks. Moreover, in [Tot99] and [EG98] the
authors introduced the notion of equivariant Picard group of a scheme X endowed
with the action of an algebraic group G: they showed that the equivariant Picard
group coincides with the Picard group of the associated quotient stack [X/G].

In the papers [Har83] and [AC87] the authors computed the Picard group of the
moduli stack of smooth curves of genus g ≥ 3 over a base field of characteristic
zero: in particular they proved that Pic(Mg) is a free abelian group generated by a
single element λ1, which is the first Chern class of the Hodge bundle. The proof of
these results relies on topological techniques that seem hard to extend to the case
of base fields of positive characteristic.

Over base fields of positive characteristic we know the rational Chow ring of Mg

when g ≤ 6 (see [Fab90, Fab90b, Iza95, PV15]) and the rational Picard group for
every g ≥ 3 ([Mor01]), which turns to be of rank 1 and generated by λ1.

Therefore, it may still be the possible that, in positive characteristic, the abelian
group Pic(Mg) has more than one generator. In this paper we show that, in the
range 3 ≤ g ≤ 5, this is not the case.

Theorem. The Picard group of Mg, for 3 ≤ g ≤ 5, is freely generated by λ1,
without any assumption on the characteristic of the base field.

The proof of this theorem is obtained using methods of equivariant intersection
theory ([Tot99] and [EG98]). At the present moment equivariant intersection theory
is the only tool available that can be used to say something on integral Chow rings
of moduli stacks (see, among others, [Vis98], [EF08], [EF09], [FV18] and [DL18]).
This approach to cycle theoretic questions has also the advantage of being almost
independent of the characteristic of the base field, which is a key feature for the
present work.

Furthermore, using these techniques, we are also able to determine along the way,
almost without any extra effort, the cycle classes of some geometrically meaningful
divisors on Mg in terms of λ1, recovering some of the computations contained in
[TiB88] and [HM82].
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2 A. DI LORENZO

Corollary. Let Hg (resp. Tg, Mev
g ) denote the moduli stack of hyperelliptic curves

(resp. of trigonal curves, of smooth curves with an even theta characteristic) of
genus g. Then we have:

(1) [H3] = 9λ1.
(2) [Mev

4 ] = 34λ1.
(3) [T5] = 8λ1.

The methods used in this paper have the drawback that cannot be extended, at
least in an obvious way, to moduli of curves of higher genus. Indeed, we exploit
the fact that, for 3 ≤ g ≤ 5, the canononical model of a sufficiently general smooth
curve of genus g is a complete intersection in Pg−1.

This allows us to reduce the computation of Pic(Mg) to the computation of the
Picard group of certain moduli stacks of smooth complete intersections, which we
present as quotient stacks: the machinery of equivariant intersection theory is then
applied to these stacks.

Structure of the paper. In the first part of the paper, we focus on moduli
stacks parametrizing smooth complete intersections. Some of them are birational
to Mg for g = 3, 4, 5 and have the nice feature of being quite manageable from a
computational point of view.

In Section 1 we introduce the moduli stack Fn
a,b of smooth complete intersections

in Pn of codimension two and bidegree (a, b), where 0 < a < b and n > 2. In
Proposition 1.1.6 we give a presentation of this stack as a quotient stack. Next,
we use techniques of equivariant intersection theory to obtain a certain number
of relations that hold in the integral Chow ring of Fn

a,b (see Proposition 1.2.6 and

Remark 1.2.8). This enables us to completely determine, in terms of generators
and relations, the abelian group Pic(Fn

a,b) (see Theorem 1.2.7).
In Section 2 we move to the moduli stack Gn

d,m of smooth complete intersections in
Pn of m hypersurfaces of degree d, where 0 < m < n and n > 1. In Proposition 2.1.3
we give a presentation of this stack as a quotient stack and, just as in the previous
section, we obtain a certain number of relations that hold in its integral Chow ring
(see Proposition 2.2.8 and Remark 2.2.11), thus determining Pic(Gn

d,m).
Let us observe that Theorem 1.2.7 and Theorem 2.2.10 can also be deduced

from [Ben12]. Nevertheless, we preferred to give an independent treatment using
different methods, which seem to us to provide simpler and shorter proofs. These
techniques have also the advantage of being independent of the characteristic of the
base field. On the other hand, we only recover some particular cases of [Ben12],
where also more detailed constructions are provided.

In Section 3 we apply the results obtained in the previous sections in order to
prove the main theorems of the paper, which are Theorem 3.1.5, Theorem 3.2.5
and Theorem 3.3.4. Along the way we also deduce some interesting corollaries, in
particular Corollary 3.1.6, Corollary 3.2.7 and Corollary 3.3.5.

Acknowledgements. We thank Angelo Vistoli for his constant support and Roberto
Fringuelli for suggesting the problem of determining the Picard group of moduli of
curves in positive characteristic. We also thank Shamil Asgarli and Giovanni In-
chiostro for stimulating discussions on related arguments.

1. Picard group of moduli of smooth complete intersections in Pn of

codimension two.

In this section, we introduce and study the moduli stack of smooth complete
intersections in Pn of codimension two and bidegree (a, b), with a < b. We denote
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this stack as Fn
a,b and we define it in (1.1.1): in Proposition 1.1.6 we give a pre-

sentation of Fn
a,b as a quotient stack, and in Theorem 1.2.7 we compute its Picard

group. As observed in Remark 1.2.8, we actually compute a set of other relations
that hold true in the Chow ring of Fn

a,b.

1.1. The moduli stack Fn
a,b.

(1.1.1) Fix three integers a, b and n such that 0 < a < b and n > 2 . Let
Fn

a,b be the category fibred in groupoids over the site of schemes whose objects over

a scheme S are pairs (V → S, X ⊂ P(V )), where

• V is a vector bundle over S of rank n + 1.
• X is a closed subscheme of P(V ) of codimension 2, smooth over S.
• For every geometric point s in S the fiber Xs is a global complete intersec-

tion of bidegree (a, b).

The morphisms in Fn
a,b(S) between pairs (V → S, X ⊂ P(V )) and (V ′ → S, X ′ ⊂

P(V ′)) are given by isomorphisms of the vector bundles V and V ′ which induce
isomorphisms of X and X ′. It is easy to see that Fn

a,b is a stack over the site of
schemes.

(1.1.2) Let En+1 be the standard representation of GLn+1 and set

Wa := Syma(E∨
n+1)

The projective space P(Wa) is isomorphic to the Hilbert scheme of hypersurfaces
of degree a in Pn. In particular, there exists a universal hypersurface π : Ha →
P(Wa). This hypersurface is embedded in P(Wa) × Pn, thus we can consider the
restriction to Ha of the invertible sheaf pr∗

2OPn(b), which we denote OHa
(b). Define

Va,b := π∗OHa
(b): by cohomology and base change theorem, we have that Va,b is a

locally free sheaf whose fibre over a closed point [H ] of P(Wa) is the vector space
H0(H, OH(b)).

Another way to look at Va,b is the following. Consider the morphism of GLn+1-
representations:

ϕ : Wa ⊗ Wb−a −→ Wa ⊗ Wb, (f, g) 7−→ (f, fg)

This induces an injective morphism of locally free sheaves over P(Wa):

Wb−a ⊗ OP(Wa)(−1) −→ Wb ⊗ OP(Wa)

whose cokernel is Va,b. This locally free sheaf naturally inherits a GLn+1-linearization.

(1.1.3) Consider the two families of hypersurfaces Ha × P(Wb) and P(Wa) × Hb

over P(Wa) × P(Wb) and denote Xa,b their schematic intersection. There exists an
open subscheme U ′

a,b ⊂ P(Wa) × P(Wb) such that all the geometric fibres of the

relative scheme Xa,b|U ′

a,b
→ U ′

a,b are global complete intersections of bidegree (a, b).

Indeed, observe that the morphism ϕ of (1.1.2) induces an embedding of projective
bundles:

ϕ : P(Wa) × P(Wb−a) →֒ P(Wa) × P(Wb)

We see that the locus in P(Wa)×P(Wb) where the fibres of the schematic intersection
of Ha × P(Wb) and P(Wa) × Hb have codimension one is precisely Im(ϕ).

(1.1.4) The induced projection morphism P(Wa)×P(Wb)\ Im(ϕ) → P(Va,b) makes
the first scheme into an affine bundle over the second one. The restriction of the
relative scheme Xa,b to P(Wa) × P(Wb) \ Im(ϕ) descends along the projection to a
relative scheme π : Ca,b → P(Va,b). The fibres of this morphism are by construction
global complete intersections of bidegree (a, b).
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(1.1.5) Let Da,b denotes the closed subscheme of P(Va,b) where the fibres of the
family of complete intersections π : Ca,b → P(Va,b) are not smooth. The subscheme
Da,b is reduced, irreducible and has codimension one. This can be seen as follows:
consider the maximal open subscheme of Ca,b where the sheaf of relative differentials

Ω1
π has rank n − 2, and let Csing

a,b be its complement. In other terms Csing
a,b is the

degeneracy locus of the sheaf Ω1
π.

Consider the projection of Csing
a,b onto Pn: the fibre Csing

a,b (p) of Csing
a,b on a geomet-

ric point p of Pn corresponds to the scheme parametrising complete intersections
that have a singularity in p.

We claim that Csing
a,b (p) is reduced and irreducible. It is enough to show that this

holds for the fibre over p0 = [1 : 0 : . . . : 0], as all the fibres are isomorphic. Recall
from (1.1.4) that P(Wa) ×P(Wb) \ Im(ϕ) is an affine bundle over P(Va,b), hence we

can equivalently show that the closure of the preimage of Csing
a,b (p0) ⊂ P(Va,b) in

P(Wa) × P(Wb) is reduced and irreducible.
This latter scheme is easy to describe. Let [c0 : . . . : cn : . . .] denote the point in

P(Wa) corresponding to the form
∑n

i=0 ciX
a−1
0 Xi + · · · , and let [d0 : . . . : dn : . . .]

denote the point in P(Wb) associated to the form
∑n

i=0 diX
b−1
0 Xi + · · · (the other

terms are not relevant for our discussion).

The preimage of Csing
a,b (p0) can be described as the locus in P(Wa)×P(Wb) where

c0 = 0, d0 = 0, rk




c1 d1

...
...

cn dn


 ≤ 1 ⇐⇒ cidj − cjdi = 0.

It is straightforward to verify that these equations define an irreducible and reduced
subscheme of P(Wa) × P(Wb).

Hence, we have proved that the fibres of Csing
a,b → Pn are reduced and irreducible:

as Pn is irreducible and the morphism is proper and surjective, we can conclude
that Csing

a,b is irreducible and reduced. Moreover, this also shows that the fibres of

Csing
a,b → Pn have codimension n + 1 in P(Va,b), thus the codimension of Csing

a,b in

P(Va,b) ×Pn is n + 1: combining these observation with the fact that the morphism

Csing
a,b → Da,b is generically finite, we deduce that Da,b is irreducible, reduced and

has codimension one.

(1.1.6) Proposition. We have Fn
a,b ≃ [(P(Va,b) \ Da,b) /GLn+1].

Proof. Consider the stack F̃n
a,b whose objects over a scheme S are triples (V →

S, X ⊂ P(V ), α) where (V → S, X ⊂ P(V )) is an object of Fn
a,b and α is an

isomorphism between V and An+1
S . The obvious forgetful functor makes F̃n

a,b into

a GLn+1-torsor over Fn
a,b. We want to show that F̃n

a,b ≃ P(Va,b) \ Da,b.

The stack F̃n
a,b is equivalent to the stack whose objects are subschemes X ⊂ Pn

S

such that the projection X → S is smooth and for every geometric point s in S the
fibre Xs ⊂ Pn

k(s) is a global complete intersection of bidegree (a, b). The family

Ca,b|P(Va,b)\Da,b
−→ P(Va,b) \ Da,b

induces a morphism P(Va,b) \ Da,b → F̃n
a,b.

To construct its inverse, observe that given an object (X ⊂ Pn
T ) of F̃n

a,b(T ), there
is a unique hypersurface Ha that contains X : by cohomology and base change, we
see that R1pr1∗(IX ⊗pr∗

2O(a)) = 0, where IX is the sheaf of ideals of X . Therefore,
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the following sequence of OT -modules is exact:

0 −→ pr1∗(IX ⊗ pr∗
2O(a) −→ pr1∗pr∗

2O(a) −→ pr1∗(OX ⊗ pr∗
2O(a)) −→ 0

and moreover pr1∗(IX ⊗ pr∗
2O(a)) is an invertible sheaf. After possibly passing to

a cover of T , we can then trivialize pr1∗(IX ⊗ pr∗
2O(a)), obtaining in this way an

injective morphism OT → Wa ⊗OP
n
T

: the corresponding hypersurface Ha obviously
contains X , and its uniqueness follows from simple considerations on the bidegree.

We have thus defined a morphism f : T → P(Wa). By construction there is a
well defined injective morphism:

IX(b)|Ha
−→ OHa

(b)

By functoriality of the pushforward we get an injective morphism:

L := pr1∗(IX(b)|Ha
) −→ pr1∗OHa

(b)

Observe that the sheaf on the right is isomorphic to f∗Va,b and the sheaf on the left is
actually an invertible sheaf by the usual arguments involving cohomology and base
change theorem. Thus the morphism above yields a morphism T → P(Va,b). As

everything is functorial, we have constructed a morphism F̃n
a,b → P(Va,b). Moreover,

the hypotheses on the objects of X assure us that this morphism factorizes through
P(Va,b) \ Da,b. It is easy to see that the two morphisms that we have constructed
are one the inverse of the other. �

1.2. The Picard group of Fn
a,b.

From [EG98] we know that the Picard group of a quotient stack [X/G] is equal
to the G-equivariant Picard group of X . Therefore Proposition 1.1.6 implies the
following corollary:

(1.2.1) Corollary. Pic(Fn
a,b) ≃ PicGLn+1(P(Va,b) \ Da,b).

(1.2.2) It is well known that PicGLn+1(P(Va,b)) is a free abelian group on three
generators, namely the first Chern class c1 of the standard representation of GLn+1,
the hyperplane section u of P(Wa) and the hyperplane section v of P(Va,b) regarded
as a projective bundle over P(Wa). So we get:

PicGLn+1(P(Va,b) \ Da,b) ≃ Z〈c1, u, v〉/〈[Da,b]〉

where [Da,b] denotes the equivariant cycle class of Da,b. In the following, we will
indicate as OP(Va,b)(−1) the tautological sheaf of P(Va,b), and OP(Wa)(−1) the pull-
back to P(Va,b) of the tautological sheaf of P(Wa).

Let π : Ca,b → P(Va,b) be as in (1.1.4), and take Csing
a,b to be the degeneracy locus

of the sheaf of relative differentials Ω1
π: it follows from the local description of the

singularity that is obtained in [SGA VII, Exp. XV, Th. 1.2.6] that the (n − 3)th

Fitting ideal of Ω1
π is radical, thus Csing

a,b is reduced. Alternatively, to prove this

claim, one can use the arguments of (1.1.5).

The closed subscheme Csing
a,b is GLn+1-invariant and it is birational to π(Csing

a,b ),

which is equal to Da,b. This shows that, in order to compute [Da,b], we can equiva-

lently compute the cycle class [Csing
a,b ] in the equivariant Chow ring of Ca,b and then

take its pushforward along the projection on P(Va,b).

(1.2.3) Lemma. Let pr1 : P(Va,b) ×Pn → P(Va,b) be the projection morphism. Set
Ea,b := (pr∗

1OP(Wa)(−1) ⊗ pr∗
2OPn(−a)) ⊕ (pr∗

1OP(Va,b)(−1) ⊗ pr∗
2(OPn(−b)). Then

we have:
π∗[Csing

a,b ] = pr1∗([Ca,b] · c
GLn+1

n−1 ([pr∗
2Ω1

Pn ] − [Ea,b]))



6 A. DI LORENZO

Proof. Consider the exact sequence:

π∗Ω1
P(Va,b)

φ
−→ Ω1

Ca,b
−→ Ω1

π −→ 0

The morphism φ has generically rank d = dim(P(Va,b)), and the sequence above

implies that the degeneracy locus Dd−1(φ) coincides with Csing
a,b . Observe that the

codimension of Csing
a,b is equal to the expected codimension of Dd−1(φ). We can

apply the equivariant version of Thom-Porteous formula (see [Ful98, Sec. 14.4])
which tells us that:

[Csing
a,b ] = [Dd−1(φ)] = c

GLn+1

n−1 ([Ω1
Ca,b

] − [π∗Ω1
P(Va,b)])

If i : Ca,b →֒ P(Va,b) × Pn denotes the closed embedding, which is regular, then we
have:

0 −→ i∗ICa,b
−→ i∗Ω1

P(Va,b)×Pn −→ Ω1
Ca,b

−→ 0

From this we see that:

[Ω1
Ca,b

] = i∗([Ω1
P(Va,b)×Pn ] − [ICa,b

])

inside K
GLn+1

0 (Ca,b). We also know by construction that i∗ICa,b
= i∗Ea,b.

We have the obvious identity:

[π∗Ω1
P(Va,b)] = i∗[pr∗

1Ω1
P(Va,b)]

Recall that Ω1
P(Va,b)×Pn ≃ pr∗

1Ω1
P(Va,b) ⊕ pr∗

2Ω1
Pn . Consequently:

[Ω1
P(Va,b)×Pn ] − [pr∗

1Ω1
P(Va,b)] = [pr∗

2Ω1
Pn ]

Putting all together, we deduce:

π∗c
GLn+1

n−1 ([Ω1
Ca,b

] − [π∗Ω1
P(Va,b)]) = π∗c

GLn+1

n−1 (i∗[pr∗
2Ω1

Pn ] − i∗[ICa,b
])

= pr1∗i∗i∗c
GLn+1

n−1 ([pr∗
2Ω1

Pn ] − [Ea,b])

= pr1∗([Ca,b] · c
GLn+1

n−1 ([pr∗
2Ω1

Pn ] − [Ea,b]))

and we are done. �

(1.2.4) Lemma. Let u (resp. v, t) be the pullback to Ua,b of the hyperplane section
of P(Wa) (resp. P(Va,b), Pn). Then [Ca,b] = (u + at)(v + bt).

Proof. Observe that Ca,b is the complete intersections of two independent global
sections of the locally free sheaf

(pr∗
1OP(Wa)(1) ⊗ pr∗

2OPn(a)) ⊕ (pr∗
1OP(Va,b)(1) ⊗ pr∗

2OPn(b))

This implies that [Ca,b] is equal to the top Chern class of the locally free sheaf
above. After a straightforward computation, we get the desired conclusion. �

(1.2.5) Lemma. Set Ea,b as in Lemma 1.2.3 and let ℓ1, . . . , ℓn+1 be the Chern
roots of the standard GLn+1-representation. Then:

c
GLn+1

n−1 ([pr∗
2Ω1

Pn ] − [Ea,b]) =





n+1∏

i=1

(1 − ℓi − t) ·

∞∑

j=0

ajtj ·

∞∑

k=0

bktk





n−1



PICARD GROUP OF MODULI OF CURVES OF LOW GENUS IN POSITIVE CHAR. 7

Proof. Let En+1 be the standard representation of GLn+1. Then the Euler exact
sequence for Pn = P(En+1) is:

0 −→ Ω1
Pn −→ E∨

n+1 ⊗ O(−1)) −→ O −→ 0

Thus

cGLn+1(Ω1
Pn) = cGLn+1(E∨

n+1 ⊗ O(−1)) =
n+1∏

i=1

(1 − ℓi − t)

where ℓ1, . . . , ℓn+1 are the Chern roots of En+1: as the expression above is sym-
metric in the ℓi it would be possible to rewrite it in terms of the usual Chern
classes c1, . . . , cn+1. On the other hand, the form above is more suitable for doing
computations.

We also have:

cGLn+1(Ea,b) = (1 − (u + at))(1 − (v + bt))

From this we deduce:

cGLn+1([pr∗
2Ω1

Pn ] − [Ea,b]) = pr∗
2cGLn+1(Ω1

Pn) · cGLn+1(Ea,b)−1

= cGLn+1(Ω1
Pn) · (1 + (u + at) + (u + at)2 + . . . ) · (1 + (v + at) + (v + at)2 + . . . )

Expanding the expression above and taking the degree n−1 part, we get the desired
conclusion. �

(1.2.6) Proposition. We have:

π∗[Csing
a,b ] =

(∑
(−1)k

(
n

k

)
ai+1bj+1 −

∑
(−1)k

(
n + 1

k

)
aibj

)
c1

+

(∑
(−1)k

(
n + 1

k

)
aibj+1(1 + (i + 1)a)

)
u

+

(∑
(−1)k

(
n + 1

k

)
ai+1bj(1 + (j + 1)b)

)
v

Proof. Recall from (1.1.5) that Csing
a,b has codimension n + 1 in P(Va,b) × Pn, hence

there is a unique way of writing it as

i∗[Csing
a,b ] = ξ1tn + ξ2tn−1 + · · · + ξn+1

Then π∗[Csing
a,b ] = pr1∗i∗[Csing

a,b ] = ξ1.

Lemma 1.2.4 and Lemma 1.2.5 give us an almost explicit expression for i∗[Csing
a,b ]

in the equivariant Chow ring of P(Va,b) × Pn, which is the following:

(1) i∗[Csing
a,b ] = (u + at)(v + bt) · F (u, v, t, ℓ)

where

(2) F (u, v, t, ℓ) :=





n+1∏

i=1

(1 − ℓi − t) ·

∞∑

j=0

ajtj ·

∞∑

k=0

bktk





n−1

Let Fn−1−i(u, v, ℓ) denote the coefficient of ti in F (u, v, ℓ). We can use the relation

tn+1 = −(cn+1 + cnt + cn−1t2 + c1tn)

to put (1) in its canonical form, from which we see that the coefficient in front of
tn is

ξ1 = (av + bu)F0 + ab(F1 − c1F0)
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An explicit expression for F0 can be obtained by evaluating (2) in u = v = ℓi = 0.
We get:

F0 =



(1 − t)n+1 ·

∞∑

i=0

aiti ·
∞∑

j=0

bjtj





n−1

=
∑

(−1)k

(
n + 1

k

)
aibj

where the last sum is taken over the triples (i, j, k) such that i, j, k ≥ 0 and i+j+k =
n − 1.

Also F1 can be computed with almost the same trick, because:

F1 = (∂uF )(0)u + (∂vF )(0)v + (∂ℓ1
F )(0)

(∑
ℓi

)

After some computation and after having substitued
∑

ℓi = c1, we get:

F1 =

(∑
(−1)k

(
n + 1

k

)
(i + 1)aibj

)
u

+

(∑
(−1)k

(
n + 1

k

)
(j + 1)aibj

)
v

+

(∑
(−1)k

(
n

k

)
aibj

)
c1

where the sums are taken over the triples (i, j, k) such that i, j, k ≥ 0 and i+j +k =

n − 1. Putting all together, we obtain an explicit espression for ξ1 = π∗[Csing
a,b ]. �

Let ra,b,n(c1, u, v) be the expression appearing in Proposition 1.2.6. We are ready
to state and prove the main result of the section:

(1.2.7) Theorem. Pic(Fn
a,b) = Z〈c1, u, v〉/〈ra,b,n(c1, u, v)〉

Proof. Corollary 1.2.1 tells us that Pic(Fn
a,b) = PicGLn+1(P(Va,b) \ Da,b). We al-

ready observed in (1.2.2) that the group on the right is generated by the elements c1,
u and v, with a unique relation given by the cycle class [Da,b]. In (1.1.4) we reduced

the computation of [Da,b] to the computation of π∗[Csing
a,b ]. Then Proposition 1.2.6

permits us to conclude. �

(1.2.8) Remark. As already observed in the proof of Proposition 1.2.6, there is

a unique way to express [Csing
a,b ] as a polynomial in t of degree n. Let ξi be the

coefficients of this polynomial in t. These cycles can be seen as polynomials in the
generators of the GLn+1-equivariant Chow ring of P(Va,b), and can be explicitly
computed using Proposition 1.2.6.

Then ξ1, . . . , ξn gives relations in the Chow ring of Fn
a,b: we may ask ourselves if

these relations actually generate the whole ideal of relations of this integral Chow
ring.

2. Picard group of moduli of smooth equidegree complete

intersections in Pn

In this section we introduce and study the moduli stack Gn
d,m of complete inter-

sections of m hypersurfaces of degree d in Pn. This stack is defined in (2.1.1): in
Proposition 2.1.3 we present Gn

d,m as a quotient stack, and in Theorem 2.2.10 we
compute its Picard group. As observed in Remark 2.2.11, we actually compute a
set of other relations that hold true in the Chow ring of Gn

d,m.
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2.1. The moduli stack Gn
d,m.

(2.1.1) Fix three integers d, m and n such that d > 0 and 0 < m < n. Let
Gn

d,m be the category fibred in groupoids over the site of schemes whose objects

over a scheme S are pairs (V → S, X ⊂ P(V )), where:

• V is a vector bundle over S of rank n + 1.
• X is a closed subscheme of P(V ) of codimension m, smooth over S.
• For every geometric point s in S the fiber Xs is a global complete intersec-

tion of m hypersurfaces of degree d.

The morphisms in Gn
d,m(S) between pairs (V → S, X ⊂ P(V )) and (V ′ → S, X ′ ⊂

P(V ′)) are given by isomorphisms of the vector bundles V and V ′ which induce
isomorphisms of X and X ′. It is easy to see that Gn

d,m is a stack over the site of
schemes.

(2.1.2) Let En+1 be the standard representation of GLn+1 and define Wd :=

SymdE∨
n+1. Let Grm(Wd) be the grassmannian of m-dimensional subspaces of

Wd. It naturally inherits a GLn+1-action. We denote Td,m the universal, locally
free subsheaf of Wd ⊗ OGrm(Wd) of rank m.

Consider the product Grm(Wd)×Pn with the two projections pr1 and pr2. Then
we have a surjective morphism:

Wd ⊗ OGrm(Wd)×Pn = pr∗
2(Wd ⊗ OPn) −→ pr∗

2OPn(d)

because OPn(d) it is globally generated. This induces:

pr∗
1Td,m ⊗ pr∗

2OPn(−d) −→ Wd ⊗ pr∗
2OPn(−d) −→ pr∗

2OPn = OGrm(Wd)×Pn

Let IX′

d,m
to be the sheaf of ideals generated by the image of the morphism above,

and denote X ′
d,m ⊂ Grm(Wd) × Pn the closed subscheme defined by IX′

d,m
. We

have an obvious morphism X ′
d,m → Grm(Wd), which is proper.

There exists an open GLn+1-invariant subscheme Ud,m of Grm(Wd), whose com-
plement has codimension greater than one, such that the fibres of the restricted
morphism

π : X ′
d,m|Ud,m

=: Xd,m −→ Ud,m

are complete intersections of m hypersurfaces of degree d. This open subscheme
actually coincides with the subscheme of Grm(Wd) where the fibres of X ′

d,m are
local complete intersections, which is well known to be open.

Moreover, there exists a GLn+1-invariant divisor Dd,m inside Ud,m such that the
scheme Xd,m restricted over Ud,m \ Dd,m is smooth. This can be proved using the
same arguments of (1.1.5).

(2.1.3) Proposition. We have Gn
d,m ≃ [(Ud,m \ Dd,m) /GLn+1].

Proof. Define G̃n
d,m as the category fibred in groupoids over the site of schemes whose

objects are triples (V → S, X ⊂ P(V ), α) such that the pair (V → S, X ⊂ P(V )) is
an object of Gn

d,m(S) and α is an isomorphism between V and An+1
S . The forgetful

functor G̃n
d,m → Gn

d,m is a GLn+1-torsor, where GLn+1(S) acts on the isomorphism

α in the obvious way. We want to show that G̃n
d,m is isomorphic to Ud,m \ Dd,m.

Observe that the stack G̃n
d,m is equivalent to the stack whose objects are subschemes

X of Pn
S , smooth over S, whose geometric fibres are global complete intersections

of m hypersurfaces of degree d in Pn
k(s).

The construction of Xd,m of (2.1.2) yields a morphism Ud,m \ Dd,m → G̃n
d,m.

The inverse morphism is defined as follows: given a scheme S, let X ⊂ Pn
S be a
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closed subscheme, smooth over S, whose fibres are global complete intersections of
m hypersurfaces of degree d. Let pr1 (resp. pr2) denote the projection morphism
on S (resp. on Pn). Let IX be the sheaf of ideals of X , so that we have the inclusion
IX →֒ OP

n
S
.

We can tensorize this inclusion with pr∗
2O(d) and then take its pushforward along

the first projection, so to get an inclusion:

pr1∗(IX ⊗ pr∗
2O(d)) →֒ pr1∗pr∗

2O(d) = Wd ⊗ OS

The sheaf on the left is locally free of rank m: this can be easily proved us-
ing cohomology and base change. We have constructed in this way a morphism

G̃n
d,m(S) → (Ud,m \ Dd,m)(S) for every scheme S. As everything is functorial, we

actually get the desired morphism G̃n
d,m → Ud,m \Dd,m, which can be easily checked

to be the inverse of the morphism Ud,m \ Dd,m → G̃n
d,m that we defined before. �

2.2. The Picard group of Gn
d,m.

As before, from Proposition 1.1.6 we deduce the following corollary:

(2.2.1) Corollary. Pic(Gn
d,m) ≃ PicGLn+1(Ud,m \ Dd,m).

(2.2.2) Recall that the complement of Ud,m in Grm(Wd) has codimension greater
than one. This implies:

PicGLn+1(Ud,m) = PicGLn+1(Grm(Wd))

It is well known that the GLn+1-equivariant Picard group of Grm(Wd) is a free
abelian group on two generators c1 and s1. Namely, the cycle c1 is the first Chern
class of the standard representation En+1 and s1 is the first special Schubert class.
In particular, s1 = −c1(Td,m), where Td,m is the tautological subsheaf on Grm(Wd).
In this way we obtain:

PicGLn+1(Ud,m \ Dd,m) = Z〈c1, s1〉/〈[Dd,m]〉

Therefore, we only have to compute the cycle class of Dd,m.

(2.2.3) In (2.1.2) we constructed a closed subscheme i : Xd,m →֒ Ud,m × Pn whose
geometric fibres over Ud,m are global complete intersections of m hypersurfaces of

degree d in Pn. Let Xsing
d,m be the singular locus of Xd,m over Ud,m: by this we mean

the degeneracy locus of the sheaf of relative differentials Ω1
pr1

. If the characteristic
of the base field k is different from two, or if n − m is odd, then this locus, defined
by the (n − m − 1)th Fitting ideal of Ω1

pr1
, is generically reduced and we have:

pr1∗i∗[Xsing
d,m ] = [Dd,m]

If the characteristic of the base field is two and n − m is even, then we have:

pr1∗[Xsing
d,m ] = pr1∗(2[(Xsing

d,m )red]) = 2[Dd,m]

These assertions follows from the following two observations: first, the restricted
morphism from (Xsing

d,m )red → Dd,m is birational, as the generic fibre hase only
one isolated and ordinary quadratic singularity. Second, the scheme structure of
Xsing

d,m , induced by the (n − m − 1)th Fitting ideal of Ω1
pr1

, can be deduced from

[SGA VII, Exp. XV, Th. 1.2.6]: we see that, in the case that the characteristic of

the base field is two and n − m is even, the length of the structure sheaf of Xsing
d,m

localized at its (unique) irreducible component is two, and otherwise is one.

(2.2.4) Lemma. We have:

pr1∗i∗[Xsing
d,m ] = pr1∗([Xd,m] · c

GLn+1

n−m+1([pr∗
2Ω1

Pn ] − [pr∗
1Td,m ⊗ pr∗

2OPn(−d)]))
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Proof. Observe that, if we denote i : Xd,m →֒ Ud,m × Pn the closed embedding, we
have:

i∗IXd,m
= i∗(pr∗

1Td,m ⊗ pr∗
2OPn(−d))

With this minor change, the proof is basically the same as the one of Lemma 1.2.3.
�

(2.2.5) Remark. More generally, suppose to have two smooth varieties B and P
of dimension d and n and a smooth subscheme i : X →֒ B × P of codimension m.
Let r be the generic rank of Ω1

X/B and define Xk to be the locus of X where the

rank of Ω1
X/B is less or equal to k, where 0 ≤ k ≤ r. Using the same notation of

[Ful98, Sec. 14.4] we see that the arguments of the proof of Lemma 1.2.3 give the
following formula:

i∗[Xk] = [X ] · ∆
(d−k)
(n+d−m−k)(pr∗

2[Ω1
P ] − [IX ])

where IX is the sheaf of ideals of X . It naturally extends to the equivariant case.

(2.2.6) Lemma. Let Td,m be the tautological subsheaf as in (2.1.2) and let t
denotes the pullback of the hyperplane section of Pn to Grm(Wd) × Pn. Then we
have: [Xd,m] =

∑m
l=0(−1)m−ldltlcm−l(Td,m).

Proof. By construction we have that Xd,m is equal to the intersection of m global
sections of the rank m locally free sheaf pr∗

1T ∨ ⊗ pr∗
2O(d). This implies that [X ] =

c
GLn+1

m (pr∗
1T ∨ ⊗pr∗

2O(d)). Applying the formula for the top Chern class of a tensor
product of a vector bundle with an invertible line bundle (see [Ful98, Sec. 3.2]), we
get the desired result. �

(2.2.7) Lemma. Let e = n − m + 1 and set Ed,m := pr∗
1Td,m ⊗ pr∗

2OPn(−d). Then

c
GLn+1

e (pr∗
2[Ω1

Pn ] − [Ed,m]) is equal to:

∑
(−1)i

(
n + 1 − j

i − j

)(
n − i

m − 1 + k

)
de−i−kcjpr∗

1sk(Td,m)te−j−k

where 0 ≤ i ≤ e, 0 ≤ j ≤ i and 0 ≤ k ≤ e − i, and sk(Td,m) is the kth Segre class.

Proof. In order not to make the formulas below notationally too heavy, we will
suppress the apexes for the equivariant Chern classes. We have:

ce(pr∗
2[Ω1

Pn ] − [Ed,m]) =
{

pr∗
2c(Ω1

Pn)s(Ed,m)
}

e

=

e∑

i=0

pr∗
2ci(Ω

1
Pn)se−i(Ed,m)

The Euler exact sequence implies that c(Ω1
Pn) = c(E∨ ⊗ pr∗

2O(−1)). From [Ful98,
Sec. 3.2], we know that:

ci(E
∨ ⊗ pr∗

2O(−1)) =

i∑

j=0

(−1)i

(
n + 1 − j

i − j

)
cjti−j

Applying the formula for the Segre class of a tensor product of a vector bundle with
a line bundle (see [Ful98, Sec. 3.1]), we get:

se−i(Ed,m) =

e−i∑

k=0

(
n − i

m − 1 + k

)
de−i−kpr∗

1sk(Td,m)te−i−k
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Putting all together, we get the desired expression. �

(2.2.8) Proposition. We have:

[Xsing
d,m ] =

∑
(−1)m−l+i

(
n + 1 − j

i − j

)(
n − i

m − 1 + k

)
·

· de+l−i−kcjpr∗
1(sk(Td,m)cm−l(Td,m))te+l−j−k

where 0 ≤ i ≤ e, 0 ≤ j ≤ i, 0 ≤ k ≤ e − i and 0 ≤ l ≤ m.

Proof. It easily follows from the proofs of Lemma 2.2.4, Lemma 2.2.6 and Lemma 2.2.7.
�

(2.2.9) Corollary. We have:

[Dd,m] =α−1

(
n−m+1∑

i=0

(−1)i

(
n + 1

i

)(
n + 1 − i

m

)
dn−i

)
s1

+ α−1

(
n−m+1∑

i=0

(−1)i+1

(
n

i

)(
n − i

m − 1

)
dn+1−i

)
c1

where α is equal to two if the characteristic of the base field is two and n − m is
even, and is equal to one otherwise.

Proof. From (2.2.3) we know that pr1∗[Xsing
d,m ] = α[Dd,m]. Using Proposition 2.2.8,

we can write

[Xsing
d,m ] =

n+1∑

q=0

ξqtq

where the coefficients ξq are polynomials in cj , sk(Td,m) and cp(Td,m). Using the
relation:

n+1∑

i=0

cit
n+1−i = 0

we deduce that pr1∗[Xsing
d,m ] = ξn − ξn+1c1. To explicitly compute the coefficient ξn,

we have to look at the addends in the summation of Proposition 2.2.8 where one
and only one among the classes c1, s1(Td,m) and c1(Td,m) appears. Then, to obtain
the desired formula, we have to use the fact that c1(T ) = −s1(T ) =: s1 and the
Pascal identity. �

Let rd,m(c1, s1) be the expression appearing in Corollary 2.2.9. Then we have:

(2.2.10) Theorem. Pic(Gn
d,m) = Z〈c1, s1〉/〈rd,m(c1, s1)〉.

Proof. It follows from Corollary 2.2.1, (2.2.2) and Corollary 2.2.9. �

(2.2.11) Remark. There is a unique way to express [Xsing
d,m ] as a polynomial in t of

degree n. Denote the coefficients of this polynomial as ζi, where 0 ≤ i ≤ n: these
cycles can be seen as polynomials in the generators of the GLn+1-equivariant Chow
ring of Ud,m, and can be explicitly computed using Proposition 2.2.8.

Then the cycles ζ1, . . . , ζn gives relations in the Chow ring of Gn
d,m: we may ask

ourselves, just as we have done in Remark 1.2.8, if these relations actually generate
the whole ideal of relations of this Chow ring.
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3. Picard group of moduli of smooth curves of low genus

The results obtained so far are applied in this section in order to compute the
Picard group of Mg, the moduli stack of smooth curves of genus g, for g = 3, 4, 5.
The main results are Theorem 3.1.5, Theorem 3.2.5 and Theorem 3.3.4. Moreover,
we also easily deduce, using this machinery, an explicit expression of some geomet-
rically meaningful divisors on these stacks in terms of the generator of the Picard
group. Namely, in Corollary 3.1.6 we compute the cycle class of the substack of
hyperelliptic curves of genus three, in Corollary 3.2.7 we compute the cycle class
of the substack of smooth curves of genus four with an even theta characteristic
and in Corollary 3.3.5 we compute the cycle class of the stack of trigonal curves of
genus five.

We recall here a technical result that will be frequently used throughout the
section:

(3.0.1) Lemma. Let π : C → S be a smooth and proper morphism whose fibres
are non-hyperelliptic genus g curves, and let ωπ denote the relative dualizing sheaf.
Then:

(1) π∗ωπ is a locally free sheaf of rank g and its formation commutes with base
change.

(2) The canonical morphism π∗π∗ωπ → ωπ is surjective.

Proof. It follows from the cohomology and base change theorem: the proof of
[Ols16, Sec. 8.4] works also for this case, after changing the tricanonical sheaf
with the canonical one. �

3.1. Genus three case.

(3.1.1) Let M3 be the moduli stack of smooth curves of genus three, and let
H3 be the substack of hyperelliptic curves, and define U3 := M3 \ H3. Thanks
to Lemma 3.0.1, we can consider the category fibred in groupoids over the site of
schemes whose objects are triples (π, i, β) where:

• π : C → S is an object of U3.
• i : C →֒ P(π∗π∗ωπ) is a closed embedding.
• β is an isomorphism between i∗O(1) and ωC/S .

There is an obvious morphism U ′
3 → U3. We also have a morphism in the opposite

direction: indeed, given a smooth family of genus three, non-hyperelliptic curves π :
C → S, by Lemma 3.0.1 we have a canonical, surjective morphism π∗π∗ωπ → ωπ,
which in turn induces a canonical embedding i : C →֒ P(π∗ωπ) and an isomorphism
β : i∗O(1) ≃ ωπ. As everything is functorial, we get the claimed morphism U3 → U ′

3.
It is almost immediate to check that the two morphisms are equivalences of stacks.

(3.1.2) Let Gn
d,m be the stack introduced in (2.1.1). We can consider the following

invertible sheaf:

Ld,m : (V −→ S, X ⊂ P(V )) 7−→ pr∗(det(IX |X) ⊗ OX(mn)) ⊗ det(V )

where pr : P(V ) → S is the projection. The sheaf appearing on the right is locally
free by cohomology and base change theorem. Denote as Pn

d,m the associated Gm-

torsor. More precisely, the objects of Pn
d,m are triples (V → S, X ⊂ P(V ), γ), where

the pair (V → S, X ⊂ P(V )) is an object of Gn
d,m and γ is a trivializing section of

pr∗(det(IX |X) ⊗ OX(mn)) ⊗ det(V ).

(3.1.3) Proposition. Set n = 2. Then we have U3 ≃ P2
4,1.
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Proof. From (3.1.1) we see that we can equivalently show that U ′
3 is isomorphic to

P2
4,1. First we construct a morphism U ′

3 → P2
4,1. Recall that the canonical model of

a family π : C → S of smooth, non-hyperelliptic curves of genus three is a smooth
quartic, thus given an object (π, i, β) of U ′

3 the pair (V(π∗ωπ) → S, i(C) ⊂ P(π∗ωπ))
is an object of G4,1.

The isomorphism β can be seen as a global, everywhere non-vanishing, section
of i∗O(−1) ⊗ ωπ. We have the following chain of easy identifications:

H0(C, i∗O(−1) ⊗ ωπ) = H0(P(π∗ωπ), i∗(i∗(O(−1) ⊗ I∨
C ⊗ ωP(π∗ωπ))))

= H0(P(π∗ωπ), I∨
C ⊗ ωP(π∗ωπ)(−1))

Using the canonical isomorphism ωP(π∗ωπ) ≃ O(−3) ⊗ det((π∗ωπ)∨), we deduce
that the isomorphism β can actually be regarded as a trivialization γ of the in-
vertible sheaf π∗(i∗(IC(4))) ⊗ det(π∗ωπ), so that the triple (V(π∗ωπ) → S, i(C) ⊂
P(π∗ωπ), γ) is an object of P2

4,1. As everything is functorially well behaved, this

defines a morphism U ′
3 → P2

4,1.
To construct the inverse morphism, consider an object (V → S, X ⊂ P(V ), γ)

of P2
4,1: with the same argument used before, we see that the trivializing section γ

induces an isomorphism β : i∗O(1) ≃ ωX/S , that pushed forward to S allows us to
identify V with pr|X∗ωX/S , using the canonical isomorphism pr∗O(1) ≃ V . We use
this identification to define the closed embedding i : X ⊂ P(V ) ≃ P(pr|X∗ωX/S).

Therefore, we can construct the morphism P2
4,1 → U ′

3 by sending a triple (V →
S, X ⊂ P(V ), γ) to the object (pr|X , i, β).

It is immediate to check that the two morphisms that we have defined are equiv-
alences of stacks. �

(3.1.4) From [Vis98, pg. 638] we know that there is a surjective morphism:

ρ∗ : Pic(Gn
d,m) −→ Pic(Pn

d,m)

whose kernel is generated by the first Chern class of the invertible sheaf Ld,m. This
relation may be computed using Proposition 2.1.3: indeed, the pullback of Ld,m

along the GLn+1 torsor Ud,m \ Dd,m → Gn
d,m is the equivariant invertible sheaf

pr|Xd,m∗(det(IXd,m
|Xd,m

) ⊗ pr∗
2O(mn)|Xd,m

) ⊗ det(En+1)

where Xd,m → Ud,m \ Dd,m is tautological family of smooth global complete inter-
sections of three quadrics and En+1 is the standard representation of GLn+1.

Recall that IXd,m
|Xd,m

≃ pr∗
1T ⊗ pr∗

2O(−d)|Xd,m
, where T is the universal sub-

sheaf defined over Grm(Wd). Putting all together, after a straightforward compu-
tation, we deduce:

Pic(Pn
d,m) ≃ Pic(Gn

d,m)/〈c1 − s1〉

where s1 is the first special Schubert cycle, i.e. the first Segre class of T . We are
ready to prove the main result of this subsection:

(3.1.5) Theorem. Let λ1 be the first Chern class of the Hodge bundle over M3.
Then the Picard group of M3 is freely generated by λ1, without any assumption on
the characteristic of the base field.

Proof. Putting together Proposition 3.1.3, (3.1.4) and Theorem 2.2.10 we deduce
that:

Pic(U3) = Z〈c1〉/〈9c1〉

Consider the localization exact sequence:

Z · [H3] −→ Pic(M3) −→ Pic(U3) −→ 0
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From this we see that the cycle class of H3 in Pic(M3) is equal to 9 c1 and Pic(M3)
is generated by c1.

Consider the category fibred in groupoids M̃3 whose objects are pairs (π : C →
S, α), where π : C → S is an object of M3 and α is an isomorphism between π∗ωπ

and O⊕3
S .

We see that M̃3 is a GL3-torsor over M3, thus it induces a morphism p : M3 →
B(GL3). By construction, if we denote E = [E/GL3] the universal GL3-torsor over

B(GL3), we have that p∗E = M̃3.
Therefore, the cycle c1 is equal to the first Chern class of the locally free sheaf of

rank three associated to the torsor M̃3, which is precisely the Hodge bundle. This
shows that c1 = λ1 and it concludes the proof. �

(3.1.6) Corollary. We have [H3] = 9λ1.

3.2. Genus four case.

(3.2.1) Let M4 be the moduli stack of smooth curves of genus four, and denote
U4 the open substack of non-hyperelliptic curves. Observe that the complement
of U4 has codimension two, thus Pic(M4) ≃ Pic(U4). Thanks to Lemma 3.0.1, we
can define a fibred category U ′

4 over the site of schemes whose objects are triples
(π, i, β), where:

• π : C → S is an object of U4.
• i : C →֒ P(π∗ωπ) is a closed embedding.
• β is an isomorphism between i∗O(1) and ωπ.

There is an obvious morphism U ′
4 → U4. We also have a morphism in the opposite

direction: indeed, given a smooth family of genus four, non-hyperelliptic curves π :
C → S, by Lemma 3.0.1 we have a canonical, surjective morphism π∗π∗ωπ → ωπ,
which in turn induces a canonical embedding i : C →֒ P(π∗ωπ) and an isomorphism
β : i∗O(1) ≃ ωπ. As everything is functorial, we get the claimed morphism U4 → U ′

4.
It is almost immediate to check that the two morphisms are equivalences of stacks.

(3.2.2) Observe that there is an invertible sheaf defined over the stack Fn
a,b, func-

torially defined as follows:

La,b : (V −→ S, X ⊂ P(V )) 7−→ pr|X∗(det(IX |X) ⊗ OX(a + b)) ⊗ det(V )

where pr : P(V ) → S is the canonical projection. The fact that the sheaf on the right
is invertible easily follows from the cohomology and base change theorem. Let Qn

a,b

be the Gm-torsor associated to La,b. By definition, the objects of Qn
a,b are triples

(V → S, X ⊂ P(V ), γ), where γ is an isomorphism between pr|X∗(det(IX |X) ⊗
OX(a + b)) ⊗ det(V ) and OS .

(3.2.3) Proposition. We have that U4 ≃ Q3
2,3.

Proof. From (3.2.1), we see that we can equivalently show that U ′
4 ≃ Q3

2,3. We

construct a morphism U ′
4 → Q3

2,3 as follows: given an object (π, i, β) of U ′
4, we send

it to the object (V(π∗ωπ) → S, i(C) ⊂ P(π∗ωπ), γ), where V(π∗ωπ) denotes the total
space of the vector bundle associated to the locally free sheaf π∗ωπ. We are using
here the well known fact that i(C) is a family of smooth complete intersections of
bidegree (2, 3). The element γ is constructed as follows: the isomorphism β can be
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seen as a global, everywhere non-vanishing, section of i∗O(−1) ⊗ ωπ. We have the
following chain of easy identifications:

H0(C, i∗O(−1) ⊗ ωπ) = H0(P(π∗ωπ), i∗(i∗(O(−1) ⊗ I∨
C ⊗ ωP(π∗ωπ))))

= H0(P(π∗ωπ), I∨
C ⊗ ωP(π∗ωπ)(−1))

Using the canonical isomorphism ωP(π∗ωπ) ≃ O(−4)⊗det((π∗ωπ)∨), we deduce that
the isomorphism β can actually be regarded as a trivialization γ of the invertible
sheaf π∗(i∗(IC(5))) ⊗ det(π∗ωπ). As everything is functorial, we have defined a
morphism U ′

4 → Q3
2,3.

To define the inverse morphism Q3
2,3 → U ′

4, observe that given an object (V →

S, i : X ⊂ P(V ), γ) of Q3
2,3, we can obtain an isomorphism β : i∗O(1) ≃ ωX/S from

γ by simply going backward in the chain of identifications above. Pushing forward
β to S, we obtain an isomorphism between V and pr|X∗ωX/S . Thus it makes sense

to define a morphism Q3
2,3 → U ′

4 by sending a triple (V → S, i : X ⊂ P(V ), γ) to
the triple (pr|X : X → S, i : X →֒ P(V ) ≃ P(pr∗ωX/S), β). It is easy to see that
the two morphisms that we have defined are equivalences of stacks. �

(3.2.4) From [Vis98, pg. 638] we know that the pullback morphism:

ρ∗ : Pic(Fn
a,b) −→ Pic(Qn

a,b)

is surjective, with kernel equal to the first Chern class of La,b. Recall from Proposition 1.1.6
that we have an isomorphism between Fn

a,b and [Ua,b \ Da,b/GL4]. Call π : Ca,b →

Ua,b the universal family of complete intersections of bidegree (a, b): by definition
it is a closed subscheme of Ua,b × P3. If ICa,b

denotes its sheaf of ideals, then we
have:

La,b ≃ [π∗(det(ICa,b
|Ca,b

) ⊗ pr∗
2O(a + b)|Ca,b

) ⊗ det(E))/GL4]

Recall that:

ICa,b
|Ca,b

= (pr∗
1OP(Wa)(−1) ⊗ pr∗

2OP3(−a)) ⊕ (pr∗
1OP(Va,b)(−1) ⊗ pr∗

2OP3(−b))|Ca,b

Therefore det(ICa,b
|Ca,b

) ⊗ pr∗
2O(a + b)|Ca,b

= pr∗
1(OP(Wa)(−1) ⊗ OP(Va,b)(−1))|Ca,b

and we deduce:

Pic(Qn
a,b) ≃ Pic(Fn

a,b)/〈c1 − u − v〉

where u = c1(OP(Wa)(1)) and v = c1(OP(Va,b)(1)).

(3.2.5) Theorem. Let λ1 be the first Chern class of the Hodge bundle over M4.
Then the Picard group of M4 is freely generated by λ1, without any assumption on
the characteristic of the base field.

Proof. From (3.2.1) and Proposition 3.2.3 we know that:

Pic(M4) = Pic(F3
2,3)/〈c1 − u − v〉

Applying Theorem 1.2.7 when a = 2, b = 3 and n = 3 we obtain:

Pic(F3
2,3) = Z〈c1, u, v〉/〈33u + 34v − 42c1〉

Therefore we get that Pic(M4) is freely generated by c1. By definition c1 is the

first Chern class of the vector bundle associated to the GL4-torsor F̃3
2,3 that we

introduced in the proof of Proposition 1.1.6. If we pull back this torsor along the
morphism U4 → F3

2,3 that we have constructed in (3.2.1) and Proposition 3.2.3,
we get exactly the GL4-torsor associated to the Hodge bundle. This implies that
c1 = λ1 and concludes the proof. �
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(3.2.6) Let Mev
4 denote the closed substack of M4 that parametrizes those curves

having an even theta characteristic. It is well known that Mev
4 has codimension

one. Therefore, to compute the class [Mev
4 ] in the Picard group of M4, we can

equivalently compute the class of its restriction to Pic(U4).
Recall that a family of smooth curves of genus four having an even theta charac-

teristic is canonically embedded as a complete intersection of a rank three quadric
and a cubic. Let ∆2 denotes the divisor in P(W2) parametrizing rank three quadrics:
then it follows that, in order to compute [Mrmev

4 ], we only have to determine the

cycle class of ∆2 in PicGL4(P(W2)) and then use the relations 33u + 34v − 42c1 = 0
and c1 − u − v = 0 to reduce the expression that we had found to a multiple of
c1 = λ1.

Applying [FV18, Pr. 4.3] we obtain that [∆2] = 4u − c1. Putting everything
together, we deduce the following result of Teixidor i Bigas (see [TiB88, Pr. 3.1]).

(3.2.7) Corollary. We have [Mev
4 ] = 34λ1.

3.3. Genus five case.

(3.3.1) Let M5 be the moduli stack of smooth curves of genus five and let T5

denotes the closed substack of trigonal curves. It is well known that this closed
substack has codimension one. Let U5 be the complement of T5 in M5, i.e. the
moduli stack of smooth, non-trigonal curves of genus five.

Again by Lemma 3.0.1, we can consider the fibred category U ′
5 over the site of

schemes whose objects are triples (π, i, β), where:

• π : C → S is an object of U5.
• i : C →֒ P(π∗ωπ) is a closed embedding.
• β is an isomorphism between i∗O(1) and ωπ.

Using the same argument of (3.2.1) we see that the two stacks U5 and U ′
5 are

equivalent.

(3.3.2) Recall from (3.1.2) that there is a Gm-torsor Pn
d,m over Gn

d,m whose objects

are triples (V → S, X ⊂ P(V ), γ), where the pair (V → S, X ⊂ P(V )) is an object
of Gn

d,m and γ is a trivializing section of pr∗(det(IX |X) ⊗ OX(mn)) ⊗ det(V ).

(3.3.3) Proposition. Set n = 4. Then we have U5 ≃ P4
2,3.

Proof. From (3.3.1) we see that we can equivalently show that U ′
5 is isomorphic to

P4
2,3. First we construct a morphism U ′

5 → P4
2,3. Recall that the canonical model

of a family π : C → S of smooth, non-trigonal curves of genus five is a smooth
complete intersection of three quadrics, thus given an object (π, i, β) of U ′

5 the pair
(V(π∗ωπ) → S, i(C) ⊂ P(π∗ωπ)) is an object of G4

2,3.
Moreover, using the same argument of the proof of Proposition 3.2.3 we see

that the isomorphism β induces a trivializing section of π∗(det(IC |C) ⊗ OC(6)) ⊗
det(π∗ωπ). As everything is functorially well behaved, this defines a morphism
U ′

5 → P4
2,3.

To construct the inverse morphism, consider an object (V → S, X ⊂ P(V ), γ) of
P4

2,3: as in the proof of Proposition 3.2.3, the trivializing section γ induces an iso-
morphism β : i∗O(1) ≃ ωX/S , that pushed forward to S allows us to identify V with
pr|X∗ωX/S , using the canonical isomorphism pr∗O(1) ≃ V . We use this identifica-
tion to define the closed embedding i : X ⊂ P(V ) ≃ P(pr|X∗ωX/S). Therefore, we

can construct the morphism P4
2,3 → U ′

5 by sending a triple (V → S, X ⊂ P(V ), γ)
to the object (pr|X , i, β).
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It is immediate to check that the two morphisms that we have defined are equiv-
alences of stacks. �

We are ready to prove tha main theorem of this subsection:

(3.3.4) Theorem. Let λ1 be the first Chern class of the Hodge bundle over M5.
Then the Picard group of M5 is freely generated by λ1, without any assumption on
the characteristic of the base field.

Proof. Putting together Proposition 3.3.3, (3.1.4) and Theorem 2.2.10 we deduce
that:

Pic(U5) = Z〈c1〉/〈8c1〉

From the exact sequence

Z · [T5] −→ Pic(M5) −→ Pic(U5) −→ 0

we easily conclude that Pic(M5) is freely generated by c1. The cycle c1 comes from
the Picard group of G4

2,3: in Proposition 2.1.3 we showed in particular that G4
2,3 has a

GL5-torsor over it, which is the scheme U2,3\D2,3, that can be described as the stack
in sets whose objects are triples (V → S, X ⊂ P(V ), α) where (V → S, X ⊂ P(V )) is
an object of G4

2,3 and α is an isomorphism between the locally free sheaf associated

to V and O⊕5
S .

The cycle c1 is the first Chern class of the locally free sheaf associated to this
GL5-torsor. This locally free sheaf can be described as the functor:

(V −→ S, X ⊂ P(V )) 7−→ (V −→ S)

It is immediate to check that if we pull back this sheaf along the morphism U5 → G4
2,3

that we constructed in the proof of Proposition 3.3.3 we recover the Hodge bundle
restricted to U5, thus c1 = λ1. This concludes the proof of the theorem. �

In particular, from the proof above we can retrieve a particular case of [HM82, pg.
24]:

(3.3.5) Corollary. We have [T5] = 8λ1.
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