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Abstract

In this paper, a new alternating direction trust region method based on conic model is used to solve unconstrained

optimization problems. By use of the alternating direction method, the new conic model trust region subproblem

is solved by two steps in two orthogonal directions. This new idea overcomes the shortcomings of conic model

subproblem which is difficult to solve. Then the global convergence of the method under some reasonable conditions

is established. Numerical experiment shows that this method may be better than the dogleg method to solve the

subproblem, especially for large-scale problems.

Keywords: Unconstrained optimization, conic model, trust region method, alternating direction method, global

convergence

1. Introduction

In this paper, we consider the unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f (x) is continuously differentiable. The problem (1.1) have been studied by many researchers, including Han

[1], Powell [2], Yuan and Sun [3], Powell and Yuan [4], etc. There are many methods to solve problem (1.1), and

trust region method is a very effective method (see [4–9]). In addition, the book of Conn, Gould and Toint [10] is an

excellent and comprehensive one on trust region methods. Most optimization theory is based on the quadratic model

and uses the quadratic model to approximate f (x). That is, at the kth iteration, the following subproblem:

min
s∈Rn

̺k(s) = gT
k s +

1

2
sT Bks, (1.2)

s.t. ‖s‖ ≤ ∆k, (1.3)

is solved to obtain a search direction sk, where xk is the current iterate point, gk = ∇ f (xk), Bk is symmetric and an

approximation to the Hessian of f (x), ‖ · ‖ refers to the Euclidean norm, ∆k is the trust region radius at the kth iteration.

There are many methods can be used to solve the subproblem (1.2)-(1.3). The simple, low cost and effective

methods are dogleg methods, such as Powell’s single dogleg method [11] and Dennis and Mei’s double dogleg method

[12]. Then there are other scholars have studied the dogleg method [13–15]. Now, we recall the simple dogleg

algorithm for solving trust region subproblem with the quadratic model as following algorithm.
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Algorithm 1.1

Step 0. Input the data of the kth iteration i.e., gk, Bk and ∆k.

Step 1. Compute sN
k
= −B−1

k
gk. If ‖sN

k
‖ ≤ ∆k, then s∗ = sN

k
, and stop.

Step 2. Compute sc
k
= − gT

k
gk

gT
k

Bkgk
gk. If ‖sc

k
‖ ≥ ∆k, then s∗ = −∆kgk

‖gk‖ , and stop. Otherwise, go to Step 3.

Step 3. Compute

d = ‖sN
k − sc

k‖
2, e = (sN

k − sc
k)T sc

k, f = ‖sc
k‖

2 − ∆2
k , (1.4)

then s∗ = sc
k
+ λ(sN

k
− sc

k
), where λ =

−e+
√

e2−d f

d
.

We note that the solution of the subproblem obtained by dogleg methods is only an approximate solution of (1.2)-

(1.3). Moreover, practice experience shows that the quadratic model is not always effective. If the objective function

possesses high non-linear property and the iterative point is far away from the minimum, the quadratic model could

not approximate the original problem very well, which may lead to iteration proceed slowly.

In 1980, Davidon [16] proposed the conic model for solving unconstrained optimization. It is an alternative model

to substitute the quadratic model. And it has attracted wide attention of many authors in various areas [17–23]. A

typical trust-region subproblem with conic model was first proposed by Di and Sun in [24] as following.

min
s∈Rn

φk(s) =
gT

k
s

1 − aT
k

s
+

sT Bks

2(1 − aT
k

s)2
, (1.5)

s.t. ‖s‖ ≤ ∆k, 1 − aT
k s > 0, (1.6)

where horizon vector ak ∈ Rn, and Bk is symmetric and positive semidefinite. In [25], Ni proposed a new trust region

subproblem and gave the optimality conditions for the trust region subproblems of a conic model. That is, at the kth

iteration, the trial step sk is computed by solving the following conic model trust region subproblem

min
s∈Rn

φk(s) =
gT

k
s

1 − aT
k

s
+

sT Bks

2(1 − aT
k

s)2
, (1.7)

s.t. ‖s‖ ≤ ∆k, |1 − aT
k s| ≥ ε0, (1.8)

where ε0 (0 < ε0 < 1) is a sufficiently small positive number. The subproblem (1.7)-(1.8) considered more compre-

hensive than (1.5)-(1.6), and will not miss the solution of the original problem (1.1).

The research demonstrated that the conic model is superior to quadratic model to some extent, in particular, for

those class of objective functions with highly vibrating; in addition, the conic model can supply enough freedom to

make best use of both information of gradients and function values in iterate points. In view of this good properties

of conic model, we will continue to study it.

It is noteworthy that the simple dogleg algorithm for solving trust region subproblem based on the conic model

(DCTR) is similar to the above Algorithm 1.1, where

sN
k =

−B−1
k

gk

1 − aT
k

B−1
k

gk

,

sc
k =

−gT
k

gk

gT
k

Bkgk − aT
k

gkgT
k

gk

g.

However, the calculation of DCTR is much more complicated (see [26–28])

In order to find a simpler method and which is more suitable for the unique structure of the conic model, we

considered to using the alternating directions method for solving the conic model subproblem. Alternating directions

method (ADM) could date back to [29]. It has been well studied in the linearly constrained convex programming

problems. Because of its significant efficiency and easy implementation, ADM has attracted wide attention of many

authors in various areas, see [30–35].
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In this paper, we combine the subproblem (1.7)-(1.8) with alternating direction search method to propose a new

method for solving the conic trust region subproblem. The rest of this paper is organized as follows. In the next

section, the motivation and description of the simple alternating direction search algorithm are presented. In Section

3, we give the quasi-Newton method based on the conic model for solving unconstrained optimization problems and

prove its global convergence properties. The numerical results in Section 4 indicate that the algorithm is efficient and

robust.

2. A simple alternating direction search method

The conic model φk(s) in the subproblem (1.7)-(1.8) has one more parameter ak than ̺k(s), so φk(s) has more

freedom which can take into account the information concerning the function value in the previous iteration which is

useful for algorithms. Furthermore, the conic model possesses richer interpolation information and can satisfy four

interpolation conditions of the function values and the gradient values at the current and the previous points. Using

these rich interpolation information may improve the performance of the algorithms. Generally, the choice of the

parameters ak is a descent direction, such as g(xk−1), g(xk) or sk−1 (see [16–18, 26, 27]).

In view of the unique importance of the parameters ak, we consider the following alternating direction search

method to solve the subproblem (1.7)-(1.8). The new method is divided into two steps. First, we search along the

direction parallel to ak. And then search along the direction yk which is perpendicular to ak. For convenience, we omit

the index k of ak, gk and Bk in this section.

In this paper, we assume that a , 0 and B is positive (abbreviated as B > 0).

Let

s = τa + y, (2.1)

where τ ∈ R, y ∈ Rn and aT y = 0. Then, the solving process of subproblem (1.7)-(1.8) is divided into the following

two stages.

In the first stage, we set y = 0 and then s = τa. Substituting it into (1.7)-(1.8), we have

min ρ(τ) =
τaT g

1 − τaT a
+

τ2aT Ba

2(1 − τaT a)2
, (2.2)

s.t. τ ∈ Ω, (2.3)

where Ω = {τ | |τ|‖a‖ ≤ ∆, |1 − τ‖a‖2| ≥ ε0}.
For the purpose of clarity, we denote

τ∆ =
∆

‖a‖
, τd =

1 − ε0

‖a‖2
, τm =

1

‖a‖2
, τu =

1 + ε0

‖a‖2
. (2.4)

Then,

Ω = {τ | |τ| ≤ τ∆} ∩ {τ |τ ≤ τd or τ ≥ τu}. (2.5)

In the following, we consider three different cases of (2.2)-(2.3):

(1) If ∆‖a‖ ≤ 1 − ε0, then τ∆ ≤ τd and (2.2)-(2.3) becomes

(P1)

{

min ρ(τ),

s.t. τ ∈ [−τ∆, τ∆].
(2.6)

(2) If |1 − ∆‖a‖ | < ε0, then τd < τ∆ < τu and (2.2)-(2.3) becomes

(P2)

{

min ρ(τ),

s.t. τ ∈ [−τ∆, τd].
(2.7)

(3) If ∆‖a‖ ≥ 1 + ε0, then τu ≤ τ∆ and (2.2)-(2.3) becomes

(P3)

{

min ρ(τ),

s.t. τ ∈ [−τ∆, τd] ∪ [τu, τ∆].
(2.8)
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Now, we discuss the stationary points of ρ(τ). By the direct computation, we have that the derivative of ρ(τ) is

ρ′(τ) =
aττ + aT g

−‖a‖6(τ − τm)3
, (2.9)

where

aτ = aT Ba − aT aaT g. (2.10)

From (2.4), we know that 0 < τd < τm < τu and then from (2.5) τm < Ω. Therefore, if aτ , 0 then ρ(τ) has only one

stationary point

τcp =
−aT g

aτ
. (2.11)

Lemma 2.1. (1) If aτ < 0 then τm < τcp and ρ(τ) is monotonically decreasing in the in the trust region (τm, τcp); ρ(τ)

is monotonically increasing for τ < τm and τ > τcp.

(2) If aτ = 0, then aT g > 0 and ρ(τ) is monotonically increasing for τ < τm; ρ(τ) is monotonically decreasing for

τ > τm.

(3) If aτ > 0, then τcp < τm and ρ(τ) is monotonically increasing in the trust region (τcp, τm); ρ(τ) is monotonically

decreasing for τ < τcp and τ > τm.

Proof. From (2.4) and (2.11), we know that if aτ , 0 then

τcp − τm =
aT Ba

−aτ‖a‖2
. (2.12)

Then, since B ≻ 0, combining with (2.9) we can obtain that the lemma obviously holds.

Theorem 2.1. If aT g = 0 then the optimal solution of the subproblem (P1), (P2) and (P3) is

τ∗ = 0. (2.13)

Proof. If aT g = 0 then from (2.2) we have

ρ(τ) =
τ2aT Ba

2(1 − τaT a)2
≥ 0. (2.14)

Hence, the theorem holds.

Theorem 2.2. If aT g , 0, then the optimal solution of the subproblem (P1) is

τ∗ =



















−τ∆, if aτ ≤ 0,

max{−τ∆, τcp}, if aτ > 0, aT g > 0,

min{τcp, τ∆}, if aτ > 0, aT g < 0.

(2.15)

Proof. For the subproblem (P1), we know that Ω = [−τ∆, τ∆] where τ∆ ≤ τd < τm.

(1) If aτ ≤ 0, then from Lemma 2.1 (1)(2) we can easily obtain τ∗ = −τ∆.

(2) If aτ > 0, aT g > 0, then τcp < 0. From Lemma 2.1 (3), we can obtain that if τcp ≤ −τ∆ then τ∗ = −τ∆; If

−τ∆ < τcp < 0, then τ∗ = τcp. Therefore, τ∗ = max{−τ∆, τcp}.
(3) If aτ > 0, aT g < 0, then τcp > 0. From Lemma 2.1 (3), we can obtain that if 0 < τcp ≤ τ∆ then τ∗ = τcp; If

τ∆ < τcp < τm, then τ∗ = τ∆. Therefore, τ∗ = min{τcp, τ∆}.

Theorem 2.3. If aT g , 0, then the optimal solution of the subproblem (P2) is

τ∗ =



















−τ∆, if aτ ≤ 0,

max{−τ∆, τcp}, if aτ > 0, aT g > 0,

min{τcp, τd}, if aτ > 0, aT g < 0.

(2.16)
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Proof. The proof process is similar to the above Theorem 2.2, so we omitted it.

Theorem 2.4. If aτ < 0, then aT g > 0, τm < τcp and the optimal solution of the subproblem (P3) is

τ∗ =



















τu, if τm < τcp ≤ τu,

τcp, if τu < τcp < τ∆,

τ̃∆, if τcp ≥ τ∆,
(2.17)

where

τ̃∆ = arg min{ρ(−τ∆), ρ(τ∆)}. (2.18)

Proof. For the subproblem (P3), we know that

Ω = [−τ∆, τd] ∪ [τu, τ∆], (2.19)

where τd < τm < τu. If aτ < 0, then aT g > 0. And from Lemma 2.1 (1) we can easily obtain that τm < τcp and

τ∗ =



















arg min{ρ(−τ∆), ρ(τu)}, if τm < τcp ≤ τu,

arg min{ρ(−τ∆), ρ(τcp)}, if τu < τcp < τ∆,

arg min{ρ(−τ∆), ρ(τ∆)}, if τcp ≥ τ∆.
(2.20)

(1) If τm < τcp ≤ τu, then from (2.2) we have

ρ(τu) − ρ(−τ∆) =
∆

2‖a‖2a∆ + 2∆‖a‖b∆ + c∆

2ε2
0
‖a‖4(1 + ∆‖a‖)2

, (2.21)

where

a∆ = (1 + 2ε0)aT Ba − 2ε0‖a‖2aT g, (2.22)

b∆ = (1 + ε0)2aT Ba − (2 + ε0)ε0‖a‖2aT g, (2.23)

c∆ = (1 + ε0)2aT Ba − 2(1 + ε0)ε0‖a‖2aT g. (2.24)

Because τcp ≤ τu, then from (2.4) and (2.11) we have

−ε0‖a‖2aT g ≤ −(1 + ε0)aT Ba. (2.25)

And then

a∆ ≤ −aT Ba < 0, (2.26)

b∆ ≤ −(1 + ε0)aT Ba < 0, (2.27)

c∆ ≤ −(1 + ε0)2aT Ba < 0. (2.28)

Combining with (2.21), then

ρ(τu) < ρ(−τ∆).

Hence, τ∗ = τu.

(2) If τu < τcp < τ∆, then from (2.2) we have

ρ(τcp) − ρ(−τ∆) = −
a2
τ∆

2 − 2aτa
T g‖a‖∆ + ‖a‖2(aT g)2

2‖a‖2(1 + ∆‖a‖)2aT Ba
. (2.29)

Because aτ < 0, aT g > 0, then

ρ(τcp) < ρ(−τ∆).

Therefore, τ∗ = τcp. The theorem is proved.

5



Theorem 2.5. If aτ ≥ 0 and aT g , 0, then the optimal solution of the subproblem (P3) is

τ∗ =



















−τ∆, if aτ = 0,

max{−τ∆, τcp}, if aτ > 0, aT g > 0,

min{τcp, τd}, if aτ > 0, aT g < 0.

(2.30)

Proof. (1) If aτ = 0 then aT g > 0. Combining (2.19) and Lemma 2.1 (2), we know that

τ∗ = arg min{ρ(−τ∆), ρ(τ∆)}. (2.31)

However, by calculation we have

ρ(τ∆) − ρ(−τ∆)

=
2∆aT g

‖a‖(1 − ∆2‖a‖2)
+

2∆3aT Ba

‖a‖(1 − ∆2‖a‖2)2
(2.32)

=
2∆(∆2aτ + aT g)

‖a‖(1 − ∆2‖a‖2)2
. (2.33)

For aτ = 0 and aT g > 0, then

ρ(τ∆) > ρ(−τ∆).

Hence, τ∗ = −τ∆ and (2.30) holds.

(2) If aτ > 0, aT g > 0 then τcp < 0. Combining (2.19) and Lemma 2.1 (3), we know that the optimal solution of

the subproblem (P3) is

τ∗ =

{

arg min{ρ(−τ∆), ρ(τ∆)}, if τcp ≤ −τ∆,
arg min{ρ(τcp), ρ(τ∆)}, if − τ∆ < τcp < 0.

(2.34)

For aτ > 0, aTg > 0, then from (2.33) we note that

ρ(τ∆) > ρ(−τ∆). (2.35)

If −τ∆ < τcp < 0, then from Lemma 2.1 (3) we know that

ρ(−τ∆) > ρ(τcp).

Thus,

τ∗ =

{

−τ∆, if τcp ≤ −τ∆,
τcp, if − τ∆ < τcp < 0.

(2.36)

Then, (2.30) holds.

(3) If aτ > 0, aT g < 0, then from (2.11) and (2.12) we can get 0 < τcp < τm. Combining (2.19) and Lemma 2.1

(3), we know that the optimal solution of the subproblem (P3) is

τ∗ =

{

arg min{ρ(τcp), ρ(τ∆)}, if 0 < τcp < τd,

arg min{ρ(τd), ρ(τ∆)}, if τd ≤ τcp < τm.
(2.37)

For the subproblem (P3), we note that 1 − ∆‖a‖ ≤ −ε0. Because of aT g < 0, then

ρ(τ∆) =
∆aT g

‖a‖(1 − ∆‖a‖)
+

∆
2aT Ba

2‖a‖2(1 − ∆‖a‖)2
> 0. (2.38)

However, from ρ(0) = 0 and Lemma 2.1 (3) we can obtain that if 0 < τcp < τd then ρ(τcp) < 0; If τd ≤ τcp < τm then

ρ(τd) < 0 holds too. Therefore, it follows that

τ∗ =

{

τcp, if 0 < τcp < τd,

τd, if τd ≤ τcp < τm.
(2.39)

Then, (2.30) holds too and the theorem is proved.
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If τ∗ = τ∆, then from (2.4) we know that ‖τ∗a‖ = ∆. Therefore, for this case we set s∗ = τ∗a and exit the calculation

of subproblem. Otherwise, we know that τ∗a is inside the trust region. Then, we should carry out the calculation of

the second stage below.

We set s = τ∗a + y and substitute it into φk(s). And then the subproblem (1.7)-(1.8) becomes

min ψ(y) =
gT (τ∗a + y)

1 − τ∗aT a
+

(τ∗a + y)T B(τ∗a + y)

2(1 − τ∗aT a)2
, (2.40)

s.t. ‖y‖ ≤ ∆̃, aT y = 0, (2.41)

where

∆̃ =

√

∆2 − (τ∗)2‖a‖2. (2.42)

In order to remove the equality constraint in (2.41), we use the null space technique. That is, for a , 0 then there exist

n − 1 mutually orthogonal unit vectors q, q, · · · , qn−1 orthogonal to the parameter vector a. Set Q = [q, q, · · · , qn−1]

and y = Qu, where u ∈ Rn−1. Then (2.40)-(2.41) can be simplified as following subproblem

min ψ̃(u) = g̃T u +
1

2
uT B̃u, (2.43)

s.t. ‖u‖ ≤ ∆̃, (2.44)

where

g̃ =
QT g

1 − τ∗aT a
+

τ∗Q
T Ba

(1 − τ∗aT a)2
, B̃ =

QT BQ

(1 − τ∗aT a)2
(2.45)

Set gk = g̃, Bk = B̃ and ∆k = ∆̃. By Algorithm 1.1, we can obtain the solution u∗ of the subproblem (2.43)-(2.44).

Then y∗ = Qu∗ and s∗ = τ∗a + y∗. Thus, the subproblem (1.7)-(1.8) is solved approximately.

Now we could give the alternating direction search method for solving the conic trust region subproblem (1.7)-

(1.8) as following.

Algorithm 2.1

Given ε0, a, g, B and ∆.

Step 1. If aT g = 0, then τ∗ = 0. Set a = 0 and use Algorithm 1.1 to get sk, stop.

Step 2. Compute τcp, τd, τu, τ∆ and aτ by (2.4), (2.10) and (2.11).

Step 3. Compute 1 − ∆‖a‖.
Step 4. Solve the subproblem (2.2)-(2.3).

Step 4.1. If 1 − ∆‖a‖ ≥ ε0, then calculate τ∗ by (2.15); If |1 − ∆‖a‖ | < ε0, then calculate τ∗ by (2.16);

Otherwise, go to step 4.2.

Step 4.2. If aτ < 0 then calculate τ∗ by (2.17); If aτ ≥ 0 then calculate τ∗ by (2.30);

Step 5. If τ∗ = ±τ∆, then sk = ±τ∆a, and stop. Otherwise, compute Q, ∆̃, g̃ and B̃ by (2.42) and (2.45).

Step 6. Set gk = g̃, Bk = B̃ and ∆k = ∆̃. Then solve the subproblem (2.43)-(2.44) by Algorithm 1.1 to get u∗.

Step 7. Set y∗ = Qu∗ and sk = τ∗a + y∗, and stop.

In order to discuss the lower bound of predicted reduction in each iteration, we define the following predicted

reduction.

pred(s) = φ(0) − φ(s), pred1(τ) = ρ(0) − ρ(τ) (2.46)

pred2(y) = ψ(0) − ψ(y), pred3(u) = ψ̃(0) − ψ̃(u) (2.47)

Now we should prove the following theorem to guarantee the global convergence of the algorithm proposed in the

next section.
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Theorem 2.6. Under the same conditions as Lemma 2.1. If sk = ±τ∆a are obtained by Steps 5 in Algorithm 2.1, then

there exists a positive constant c1 such that

pred(sk) ≥ 1

2
c1∆‖g‖. (2.48)

Proof. (1) If sk = τ∆a, then we know that τ∗ = τ∆. By computation, we have

pred(sk) = pred1(τ∆) = −ρ(τ∆)

=
−∆(∆aτ + 2‖a‖aT g − ∆‖a‖2aT g)

2‖a‖2(1 − ∆‖a‖)2
,

where τ∆ is generated in two cases as defined in (2.15) and (2.17). In both cases, we can find τ∆ ≤ τcp and

∆aτ + ‖a‖aT g ≤ 0. (2.49)

Then

pred(sk) = pred1(τ∆) ≥
−∆aT g

2‖a‖(1 − ∆‖a‖)
. (2.50)

(1a) For 1 − ∆‖a‖ ≥ ε0, then from (2.15) we know that aτ > 0 and aT g < 0. Combining with (2.49) and (2.50) ,

we have

pred(sk) = pred1(τ∆) ≥ ǫ∆‖g‖
2

, (2.51)

where

ǫ =
|aT g|
‖a‖‖g‖

. (2.52)

(1b) For 1 − ∆‖a‖ ≤ −ε0, then from (2.17) we know that aτ < 0 and aT g > 0. Because of 1 − ∆‖a‖ < 0 and

aT g > 0, then from (2.50) we also have (2.51) holds.

(2) If sk = −τ∆a, then

pred(sk) = pred1(−τ∆) = −ρ(−τ∆)

=
∆(−aτ∆ + 2aT g‖a‖ + aT g‖a‖2∆)

2‖a‖2(1 + ∆‖a‖)2
. (2.53)

where −τ∆ is generated in the following three cases as defined in (2.15)-(2.17) and (2.30).

(2a) For 1 − ∆‖a‖ ≥ ε0, then 1 ≤ 1 + ∆‖a‖ ≤ 2 − ε0.

From (2.15), we know that if aτ ≤ 0 then aT g > 0. Thus,

−aτ∆ + aT g‖a‖ ≥ 0. (2.54)

And then, from (2.53) we know

pred(sk) = pred1(−τ∆)

≥ ∆aT g

2‖a‖(1 + ∆‖a‖)
≥ ǫ∆‖g‖

2(2 − ε0)
. (2.55)

On the other hand, if aτ > 0, aT g > 0 then −τ∆ ≥ τcp. Then from (2.4) and (2.11) we have (2.54) holds too. It

follows that (2.55) holds.

(2b) For |1 − ∆‖a‖ | < ε0, then 2 − ε0 < 1 + ∆‖a‖ < 2 + ε0.
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Combining with (2.16), we can prove that (2.54) holds by the same way and

pred(sk) = pred1(−τ∆)

≥ ∆aT g

2‖a‖(1 + ∆‖a‖)
≥ ǫ∆‖g‖

2(2 + ε0)
. (2.56)

(2c) For 1 − ∆‖a‖ ≤ −ε0, then 1 + ∆‖a‖ ≥ 2 + ε0.

From (2.17), we know that if aτ < 0, then

ρ(−τ∆) ≤ ρ(τ∆).

By the definition of pred1(τ) in the (2.46), we get

pred1(−τ∆) ≥ pred1(τ∆).

Combining with the proof of the above case (1a) in this theorem, we have

pred(sk) = pred1(−τ∆)

≥ pred1(τ∆) ≥ ǫ∆‖g‖
2

. (2.57)

Therefore, the theorem follows from (2.51) and (2.55)-(2.57) with

c1 = min

{

ǫ,
ǫ

2 − ε0

,
ǫ

2 + ε0

}

=
ǫ

2 + ε0

. (2.58)

Theorem 2.7. Under the same conditions as Lemma 2.1. If sk is obtained from the above Algorithm 2.1, then there

exists a positive constant c4 such that

pred(sk) ≥ 1

2
c4‖g‖min

{

∆,
1

‖a‖
,
‖g‖
‖B‖

}

. (2.59)

Proof. (1) If sk is obtained by Algorithm 1.1, then from Nocedal and Wright [36] we have

pred(sk) ≥ 1

2
c2‖g‖min

{

∆,
‖g‖
‖B‖

}

, (2.60)

where c2 ∈ (0, 1].

(2) If sk = ±τ∆a, then (2.48) holds.

(3) sk = τ∗a + Qu∗, where τ∗ , ±τ∆. Combining with (2.46) and (2.47), we have

pred(sk) = pred1(τ∗) + pred3(u∗).

Because of u∗ is obtained by Algorithm 1.1, then from [36] we have

pred3(u∗) ≥
1

2
c3‖g̃‖min

{

∆̃,
‖g̃‖
‖B̃‖

}

, (2.61)

where c3 ∈ (0, 1], ∆̃, g̃ and B̃ as defined by (2.42) and (2.45). Thus,

pred(sk) ≥ pred1(τ∗), (2.62)

where τ∗ can be τcp, τd or τu.
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(3a) If τ∗ = τcp, then from (2.62) we have

pred(sk) ≥ pred1(τcp)

= −
τcpaT g

1 − τcp‖a‖2
−

τ2
cpaT Ba

2(1 − τcp‖a‖2)2

=
(aT g)2

2aT Ba
=
ǫ2‖g‖2

2‖B‖
, (2.63)

where the second equality is from (2.11) and the last equality is from (2.52).

(3b) If τ∗ = τd, then

pred(sk) ≥ pred1(τd)

= − τdaT g

1 − τd‖a‖2
−

τ2
d
aT Ba

2(1 − τd‖a‖2)2

=
−(1 − ε0)[2ε0‖a‖2aT g + (1 − ε0)aT Ba]

2ε2
0
‖a‖4

.

From (2.15)-(2.17) and (2.30), we know that τd ≤ τcp and aT g < 0. For τd ≤ τcp, then we have

ε0‖a‖2aT g + (1 − ε0)aT Ba ≤ 0

and

pred(sk) ≥ pred1(τd)

≥ −(1 − ε0)aT g

2ε0‖a‖2
=
ǫ(1 − ε0)‖g‖

2ε0‖a‖
, (2.64)

where 0 < ε0 < 1.

(3c) If τ∗ = τu, then

pred(sk) ≥ pred1(τu)

= − τuaT g

1 − τu‖a‖2
−

τ2
uaT Ba

2(1 − τu‖a‖2)2

=
(1 + ε0)[2ε0‖a‖2aT g − (1 + ε0)aT Ba]

2ε2
0
‖a‖4

.

From (2.15)-(2.17) and (2.30), we know that τcp ≤ τu, aτ < 0 and aT g > 0. For τcp ≤ τu, then we have

ε0‖a‖2aT g − (1 + ε0)aT Ba ≥ 0

and

pred(sk) ≥ pred1(τu)

≥ (1 + ε0)aT g

2ε0‖a‖2
=
ǫ(1 + ε0)‖g‖

2ε0‖a‖
. (2.65)

Therefore, the theorem follows from (2.48), (2.60) and (2.63)-(2.65) with

c4 = min

{

c1, c2, ǫ
2,
ǫ(1 − ε0)

ε0

}

. (2.66)

10



3. The algorithm and its convergence

In this section, we propose a quasi-Newton method with a conic model for unconstrained minimization and prove

its convergence under some reasonable conditions. In order to solve the problem (1.1), we approximate f (x) with a

conic model of the form

mk(s) = fk +
gT

k
s

1 − aT
k

s
+

1

2

sT Bks

(1 − aT
k

s)2
, (3.1)

where fk = f (xk), gk = ∇ f (xk), Bk ∈ Rn×n and ak ∈ Rn are parameter vectors.

The choice of the parameters ak and Bk in (3.1) can refer to [16–18, 26, 27] and [37, 38] respectively. We set

sk−1 = xk − xk−1, (3.2)

β = ( fk − fk−1)2 − (gT
k−1sk−1)(gT

k sk−1), (3.3)

If β > 0, then

βk =
fk−1 − fk +

√
β

−gT
k−1

sk−1

; (3.4)

otherwise, βk = 1. In the updating process, we compute

ak =
1 − βk

gT
k−1

sk−1

gk−1, (3.5)

Bk+1 = Bk −
Bksk sT

k
Bk

sT
k

Bksk

+
zkzT

k

zT
k

sk

, (3.6)

where

zk = θyk + (1 − θ)Bksk, θ ∈ [0, 1], (3.7)

θ =























1, if yT
k

sk ≥ 0.2sT
k

Bksk,

0.8sT
k

Bksk

sT
k

Bksk − yT
k

sk

, otherwise,
(3.8)

and yk = gk+1 − gk.

Let sk be the solution of the subproblem (1.7)-(1.8) by Algorithm 2.1. Then either xk + sk is accepted as a new

iteration point or the trust region radius is reduced according to a comparison between the actual reduction of the

objective function

ared(sk) = f (xk) − f (xk + sk) (3.9)

and the reduction predicted by the conic model

pred(sk) = −
gT

k
sk

1 − aT
k

sk

− 1

2

sT
k

Bksk

(1 − aT
k

sk)2
(3.10)

That is, if the reduction in the objective function is satisfactory, then we finish the current iteration by taking

xk+1 = xk + sk (3.11)

and adjusting the trust-region radius; otherwise the iteration is repeated at point xk with a reduced trust-region radius.

Now we give the alternating direction trust-region algorithm based on conic model (3.1).

Algorithm 3.1 (ADCTR).

Step 0. Choose parameters ǫ, ε, ε0 ∈ (0, 1), 0 < η1 < η2 < 1, 0 < δ1 < 1 < δ2 and ∆̄ > 0; give a starting point

x0 ∈ Rn, B0 ∈ Rn×n, a0 ∈ Rn and an initial trust region radius ∆0 ∈ (0, ∆̄]; set k = 0.
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Step 1. Compute fk and gk. If ‖gk‖ < ε, then stop with xk as the approximate optimal solution; otherwise go to

Step 2.

Step 2. Set a = ak, g = gk, B = Bk and ∆ = ∆k. Then solve the subproblem (1.7)-(1.8) by Algorithm 2.1 to get one

of the approximate solution sk.

Step 3. Compute ared(sk), pred(sk) and

rk =
ared(sk)

pred(sk)
, (3.12)

If rk ≤ η1, then set ∆k = δ1∆k, and go to Step 2. If rk > η1, then set xk+1 = xk + sk and

∆k =

{

min{δ2∆k, ∆̄}, if rk ≥ η2, ‖sk‖ = ∆k,

∆k, otherwise.

Step 4. Generate ak+1 and Bk+1; set k = k + 1, and go to Step 1.

In this algorithm, the procedure of ”Step 2-Step 3-Step 2” is named as inner cycle. The following theorem

guarantees that the ADCTR algorithm does not cycle infinitely in the inner cycle.

Assumption 3.1. The level set

L(x0) = {x| f (x) ≤ f (x0)}

and the sequence {‖ak‖}, {‖gk‖} and {‖Bk‖} are all uniformly bounded, Bk is symmetric and positive definite and f is

twice continuously differentiable in L(x0).

From (3.10) and Theorem 2.2, we have

pred(sk) ≥
1

2
c4‖gk‖min

{

∆k,
1

‖ak‖
,
‖gk‖
‖Bk‖

}

, (3.13)

where c1 as defined by (2.66).

Theorem 3.1. Suppose that Assumption 3.1 holds. sk is the solution of conic trust-region subproblem (1.7)-(1.8).

If the process does not terminate at xk, then we must have rk > η1 after a finite number of inner iterations.

Proof. We assume that the algorithm does not terminate at xk, then there is ε1 > 0 such that

‖gk‖ ≥ ε1. (3.14)

From Assumption 3.1 we have

‖ak‖ ≤ ā, ‖gk‖ ≤ ḡ, 0 < ‖Bk‖ ≤ B̄. (3.15)

For simplicity, we suppose that the superscript denotes the iterative step of inner iteration at xk, then

rk ≤ η1, ∆
j

k+1
= δ1∆

j

k
, j = 1, 2, · · · (3.16)

Assume s
j

k
is a solution of subproblem (1.7)-(1.8) with trust-region radius ∆

j

k
, then it is easy to know that

lim
j→∞
∆

j

k
= 0, lim

j→∞
‖s j

k
‖ = 0. (3.17)

From (3.14), (3.15) and (3.17), we can obtain that there exist an integer j1 and a constant η3 > 0 such that

pred(s
j

k
) ≥ η3∆

j

k
, ∀ j ≥ j1. (3.18)

It follows from (3.16) that

r
j

k
=

fk − f (xk + s
j

k
)

pred(s
j

k
)

≤ η1. (3.19)
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On the other hand, from (3.17) and (3.15) we can get

1

1 − aT
k

s
j

k

= 1 + aT
k s

j

k
+ o(‖s j

k
‖), (3.20)

(s
j

k
)T Bks

j

k

2(1 − aT
k

s
j

k
)2
=

1

2
(s

j

k
)T Bks

j

k
+ o(‖s j

k
‖2). (3.21)

And then, from (3.15)-(3.20) we have
∣

∣

∣

∣

fk − f (xk + s
j

k
) − pred(s

j

k
)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

fk − f (xk + s
j

k
) + (1 + aT

k s
j

k
)gT

k s
j

k
+

1

2
(s

j

k
)T Bks

j

k
+ o(‖s j

k
‖2)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−1

2
(s

j

k
)T∇2 f (xk + ϑks

j

k
)s

j

k
+ aT

k s
j

k
gT

k s
j

k
+

1

2
(s

j

k
)T Bks

j

k
+ o(‖s j

k
‖2)

∣

∣

∣

∣

∣

≤ 1

2
(M1 + B̄ + 2āḡ + O(1))‖s j

k
‖2

≤ 1

2
(Q + O(1))(∆

j

k
)2, (3.22)

where ϑk ∈ (0, 1) and Q = M1 + B̄ + 2āḡ. Combining with (3.18) and (3.22), we can get that

∣

∣

∣

∣

∣

∣

∣

fk − f (xk + s
j

k
)

pred(s
j

k
)
− 1

∣

∣

∣

∣

∣

∣

∣

≤ (Q + O(1))

2η3

∆
j

k
, (3.23)

holds for all j ≥ j1. By (3.17) and (3.23),

fk − f (xk + s
j

k
)

pred(s
j

k
)

> η1 (3.24)

holds for all sufficiently large j, which contradicts (3.19). This completes the proof.

In the following we give the global convergence property of Algorithm 3.1.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then for any ε > 0, the Algorithm 3.1 terminates in finite

number of iterations, that is

lim
k→∞
‖gk‖ = 0.

Proof. We give the proof by contradiction. Suppose that there is ε2 > 0 such that

‖gk‖ ≥ ε2, ∀k. (3.25)

Combining with (3.13), (3.15) and (3.25), we have

pred(sk) ≥
1

2
c4ε2 min

{

∆k,
1

ā
,
ε2

B̄

}

≥
1

2
ζ∆k (3.26)

where the first inequality of (3.26) follows from

min{p, q, r} ≥ pqr

pq + qr + rp
, ∀p, q, r > 0,

and the second inequality is from ∆k ≤ ∆̄ and

ζ =
c1ε

2
2

ε2 + B̄∆̄ + ε2ā∆̄
.
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From Steps 3 of Algorithm 3.1 and (3.26), we obtain that for all k

fk − fk+1 ≥ η1pred(sk) ≥ 1

2
η1ζ∆k. (3.27)

Since f (x) is bounded from below and fk+1 < fk, we have

∞ >
∑

k∈S
( fk − fk+1) ≥

∑

k∈S

(

1

2
η1ζ∆k

)

. (3.28)

Combining with Theorem 3.1, we know that
∞
∑

k=1

∆k < ∞, (3.29)

which implies that

lim
k→∞
∆k = 0, lim

k→∞
‖sk‖ = 0. (3.30)

On the other hand, similar to the proof of (3.20)-(3.24) we can obtain

rk =
fk − f (xk + sk)

pred(sk)
> η1, ∀k ≥ K, (3.31)

where K is sufficiently large. From Step 3 of Algorithm 3.1, it follows that

∆k+1 ≥ ∆k, ∀k ≥ K,

which is a contradiction to (3.30). The theorem is proved.

4. Numerical Tests

In this section, algorithm ADCTR is tested with some standard test problems from [26, 40]. The purpose of this

paper is to propose a new method to solve the conic trust region subproblem, that is alternating direction method, so

we performed algorithm ADCTR on a limited number of test problems. The names of the 16 test problems are listed

in Table 1.

All the computations are carried out in Matlab R2015b on a microcomputer in double precision arithmetic. These

tests use the same stopping criterion ‖gk‖ ≤ 10−5. The columns in the Tables have the following meanings: No.

denotes the numbers of the test problems; n is the dimension of the test problems; Iter is the number of iterations; n f

is the number of function evaluations performed; ng is the number of gradient evaluations; fk is the final objective

function value; ‖g‖ is the Euclidean norm of the final gradient; CPU(s) denotes the total iteration time of the algorithm

in seconds. The sign * means that when the number of iterations reaches 5000, the algorithm fails to stop. The

parameters in these algorithms are

a0 = 0, B0 = I, ε0 = ǫ = 10−5, ∆0 = 1, ∆̄ = 10, η1 = 0.01, η2 = 0.75, δ1 = 0.5, δ2 = 2.

The numerical results of algorithm ADCTR for 16 unconstrained optimization problems are listed in Table 2. We

note that the optimal value of these test problems is f∗ = 0. From Table 2, we can see that our algorithm can obtain

the minimum value of the function after a finite number of iterations. And the corresponding minimum point is the

stability point, which is also the optimal solution. Therefore, the performance of ADCTR is feasible and effective.

In order to analyze the effectiveness of our new algorithm, we compare ADCTR with the conic quasi-Newton trust

region algorithm in which the subproblems are solved by the dogleg method (DCTR), see Zhu [26] and Lu [27]. As

the dimensions of each test problem ranging from 2 to 4000, we have actually computed 48 numerical comparisons

experiments and the numerical results are listed in Table 3. Analyzing the numerical results, we have the following

conclusions: for the 16 problems, our algorithm ADCTR is better than the DCTR for 12 tests, is somewhat bad for

2 tests, and the two algorithms are same in efficiency for the other 2 tests; our algorithm in which the subproblems

are solved by alternating direction method is competitive with algorithm DCTR in [26]. Especially for large-scale

problems, our new algorithm has a strong numerical stability.
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Table 1: Test functions.

No. Problem No. Problem

1 Cube 2 Penalty-I

3 Beale 4 Conic

5 Extended powell 6 Variably Dimensioned

7 Rosenbrock 8 Extended Trigonometric

9 Tridiagonal Exponential 10 Brent

11 Troesch 12 Cragg and Levy

13 Broyden Tridiagonal 14 Brown

15 Discrete Boundary Value 16 Extended Trigonometric

Table 2: Results of ADCTR.

No. n Iter n f /ng fk ‖g‖ CPU (s)

1 2 52 53/43 1.0377e-15 1.9477e-06 0.064681

2 2 10 11/11 9.0831e-06 8.9419e-06 0.048493

3 2 18 19/18 9.0379e-15 9.3925e-07 0.053525

4 2 16 17/13 1.1407e-12 2.1360e-06 0.050445

5 4 41 42/34 4.8648e-09 4.5887e-06 0.062011

6 4 32 33/29 2.3856e-14 3.0965e-07 0.066287

7 2 50 51/49 1.5486e-14 5.4101e-06 0.064227

8 4 47 48/34 7.9158e-15 4.1153e-07 0.076865

9 4 7 8/8 8.1577e-12 4.5905e-06 0.058505

10 4 81 82/58 5.8024e-18 4.6604e-07 0.089702

11 4 59 60/51 1.0955e-13 2.7230e-06 0.077290

12 4 48 49/43 1.1247e-08 5.2578e-06 0.068215

13 4 35 36/19 1.4498e-11 5.0442e-06 0.063276

14 2 91 92/52 0.1998e-06 2.5916e-07 0.089294

15 4 23 24/15 2.0042e-12 8.2898e-06 0.061544

16 4 14 15/15 3.0282e-04 4.9068e-06 0.048488

5. Conclusions

In this paper, we propose an alternating direction trust region method based on the conic model for unconstrained

optimization and investigate its convergence. Conic models are more flexible to approximate objective functions and

have stronger modeling property. Alternating direction method (ADM) has been well studied in the context of linearly

constrained convex programming problems. It is because of the significant efficiency and easy implementation of

ADM that we consider applying it to solving the trust region subproblem based on the conic model. Initial numerical

results show that our new method is competitive and it is also effective and robust for large-scale problems. The

numerical results and the theoretical results lead us to believe that the method is worthy of further study.

In addition, the main purpose of this paper is to explore a new method for solving the conic model subproblem.

Therefore, there are many aspects worthy of further improvement and research in this paper. For example, we can con-

sider the weak convergence assumptions that the Hessian approximations Bk is symmetric and positive semidefinite.

The rate of convergence has not been studied.
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Table 3: Numerical results of DCTR and ADCTR

Solver DCTR ADCTR

No. n Iter n f /ng ‖g‖ CPU (s) Iter n f /ng ‖g‖ CPU (s)

1

20 746 747/517 9.2593e-07 0.116584 100 101/92 2.1475e-06 0.079679

200 2387 2388/2023 2.6984e-08 2.377265 82 83/59 4.6090e-06 0.308822

1000 * */* * * 74 75/56 1.4596e-06 19.36706

2

200 76 77/53 3.1715e-06 0.138719 79 80/53 4.1422e-06 0.137110

500 96 97/62 6.5292e-06 1.118043 78 79/54 4.6576e-06 1.270450

1000 82 83/57 5.5181e-06 6.454441 86 87/57 8.8824e-06 8.026574

3

2 20 21/19 4.3711e-07 0.042443 18 19/18 9.3925e-07 0.053525

20 24 25/19 2.4476e-07 0.042636 24 25/25 4.9198e-06 0.056501

200 27 28/24 3.6411e-08 0.077384 26 27/27 2.0468e-07 0.145411

2000 29 30/25 6.1805e-06 15.70090 35 36/28 8.8657e-06 54.47877

4

20 15 16/14 5.7802e-07 0.039310 16 17/13 4.8378e-09 0.055520

200 16 17/12 3.7354e-06 0.051864 19 20/18 3.4444e-07 0.094543

2000 18 19/19 3.9029e-07 13.50780 19 20/17 2.5377e-06 17.65469

5

40 121 122/104 8.7449e-06 0.064345 48 49/43 6.0181e-06 0.076145

1000 121 122/116 2.3550e-06 14.01567 92 93/77 8.1189e-06 18.098231

2000 121 122/116 2.6445e-06 106.0106 69 70/60 6.2005e-06 97.24934

6
40 120 121/75 6.0183e-06 0.125199 145 146/116 7.2779e-06 0.115281

400 * */* * * 1124 1125/774 3.2877e-06 11.33673

7

20 90 91/69 1.3138e-06 0.106181 83 84/54 1.0093e-06 0.082832

200 517 518/392 4.5464e-06 0.926231 61 62/52 2.0797e-06 0.242663

2000 326 327/294 2.2237e-06 218.2702 71 72/54 7.8519e-07 112.6556

8
4 46 47/38 9.2635e-06 0.054172 47 48/34 4.1153e-07 0.076865

40 * */* * * 354 355/265 9.1963e-06 0.147167

9

40 6 7/7 1.1958e-06 0.054117 6 7/7 1.8900e-06 0.060258

400 6 7/7 1.6354e-07 0.111561 6 7/7 2.3374e-07 0.133484

4000 11 12/12 8.4467e-07 40.15594 11 12/12 8.9545e-07 47.93941

10
4 377 378/298 8.2689e-06 0.175454 81 82/58 4.6604e-07 0.089702

40 * */* * * 1260 1261/910 5.7484e-06 0.391677

11

4 70 71/37 2.9831e-06 0.073789 59 60/51 2.7230e-06 0.077290

40 192 193/133 4.2981e-06 0.108448 132 133/122 3.1390e-06 0.116485

500 * */* * * 1119 1120/1023 9.3082e-06 21.02191

12

4 43 44/41 4.4263e-06 0.062761 48 49/43 5.2578e-06 0.068215

40 1977 1978/1315 8.1245e-06 0.369235 190 191/146 9.5513e-06 0.129097

400 * */* * * 351 352/252 8.4470e-06 4.848008

13

4 35 36/16 8.9785e-06 0.053999 35 36/19 5.0442e-06 0.063276

40 359 360/263 9.3216e-06 0.140429 47 48/29 7.5584e-06 0.084719

400 1996 1997/1400 9.7095e-06 14.38582 55 56/34 9.2260e-06 0.746511

1000 * */* * * 52 53/36 9.5547e-06 10.46032

14

2 98 99/59 5.6830e-06 0.058219 91 92/52 2.5916e-07 0.089294

20 164 165/87 6.2362e-06 0.076377 125 126/98 9.9306e-06 0.094535

200 * */* * * 209 210/161 9.3905e-06 0.656179

15

4 27 28/16 4.2390e-07 0.063120 23 24/15 8.2898e-06 0.061544

400 33 34/11 8.4956e-06 0.162408 35 36/15 7.7218e-06 0.202917

1000 21 22/2 9.0840e-06 0.101637 21 22/2 9.0840e-06 0.160027

4000 25 26/2 5.6751e-07 0.970886 25 26/2 5.6751e-07 2.331821

16

4 19 20/16 1.4241e-06 0.051494 14 15/15 4.9068e-06 0.048488

40 518 519/329 7.5993e-06 0.117250 63 64/42 6.2298e-06 0.057708

400 * */* * * 60 61/48 4.6296e-06 0.571713
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