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Abstract

In the paper, we construct conservative Markov processes corresponding to
the martingale solutions to the stochastic heat equation on R

+ or R with values
in a general Riemannian maifold, which is only assumed to be complete and
stochastic complete. This work is an extension of the previous paper [55] on
finite volume case.

Moveover, we also obtain some functional inequalities associated to these
Markov processes. This implies that on infinite volume case, the exponential
ergodicity of the solution if the Ricci curvature is strictly positive and the non-
ergodicity of the process if the sectional curvature is negative.
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1 Introduction

This work is the continuity of [55], which is motivated by Tadahisa Funaki’s pioneering
work [33] and Martin Hairer’s recent work [42]. Let M be a n-dimensional compact
Riemannian manifold. In [42] Hairer considered the stochastic heat equation associated
to the energy

E(u) =
1

2

∫

S1

gu(x)(∂xu(x), ∂xu(x))dx,

for smooth functions u : S1 → M , and wrote the equation in the local coordinates
formally:

(1.1) ∂tu
α = ∂2xu

α + Γα
βγ(u)∂xu

β∂xu
γ + σα

i (u)ξi,

where Einsteins convention of summation over repeated indices is implied and Γα
βγ are

the Christoffel symbols for the Levi-Civita connection of (M, g), σi are vector fields on
M and ξi are independent space-time white noise. This equation may be also looked
as certain kind of multi-component version of the KPZ equation. By the theory of
regularity structure recently developed in [41, 10, 13], local well-posedness of (1.1) has
been obtained in [42] (see more recent work [9]).

By the Andersson-Driver’s approximation of Wiener measure in [6], we know that
there exists an explicit relation between the Langevin energy E(u) and Wiener (Brow-
nian bridge) measure. In particular, it has been obtained in [6] that Wiener (Brownian
bridge) measure µ on C([0, 1];M) could been interpreted as the limit of a natural
approximation of the measure exp(−E(u))Du, where Du denotes a ‘Lebesgue’ like
measure on path space. Based on the above connection, one may think the solution
to the stochastic heat equation (1.1) may have µ as an invariant (even symmetrizing)
measure.

In [55], starting from the Wiener measure (or Brownian bridge measure) µ on
C([0, 1],M) we use the theory of Dirichlet forms to construct a natural evolution which
admits µ as an invariant measure. Moreover, the relation between the evolution con-
structed in [55] and (1.1) has also been discussed in [55] by using the Andersson-Driver
approximation. It is conjectured in [55] that the Markov processes constructed by
Dirichlet form in [55] have the same law as the solution to (1.1). Since we consider
the Wiener measure on C([0, 1],M) in [55], the evolution corresponds to the stochas-
tic heat equation on [0, 1] for different boundary conditions with values in a compact
Riemannian manifold. In the paper, we extend the results in [55] from finite volume
[0, 1] to the half line R

+ or the real line R.
When M = Rn it is well-known that the law of Brownian motion on C([0,∞);Rn)

is an invariant measure of the following stochastic heat equatioin

∂tX =
1

2
∂2xX + ξ, X(t, 0) = 0,
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on [0,∞)× [0,∞). Here ξ is space-time white noise. By similar calculation as that in
[35] we easily know that the distribution of a two-sided Brownian motion with a shift
given by Lebesgue measure is invariant under the following stochastic heat equation

∂tX =
1

2
∂2xX + ξ,

on [0,∞) × R. This suggests us to use the law of Brownian motion on C([0,∞);M)
or the law of two sided Brownian motion on C(R;M) to construct the corresponding
stochastic heat equation on R+ or R with values in a Riemannian manifold.

Similarly as in [55], we construct the solution to stochastic heat equation by using
the following L2-Dirichlet form with the reference measure µ = the law of Brownian
motion on M/the law of two sided Brownian motion on M :

E (F,G) :=
1

2

∫

〈DF,DG〉Hdµ =
1

2

∞
∑

k=1

∫

Dhk
FDhk

Gdµ; F,G ∈ FCb,

where {hk}k≥1 is an orthonormal basis in H := L2(R+;Rd)/L2(R;Rd), and FCb and
DF are the set of all cylinder functions and L2-gradient respectively(refer to the defini-
tions in Section 2). In this case, the associated Dirichlet-Form E is called L2-Dirichlet
form.

For the half line case: we consider the reference measure as the law of Brownian
motion for the half line R+ on Riemannian path space C([0,∞);M) and choose the
state space as some weighted L2-space (see Section 2). By using a general integration
by parts formula from [16] (see also appendix) we can construct a martingale solution
to the stochastic heat equation with values in a general Riemannian manifold, which
is complete and stochastic complete.

For the whole line case: we first construct the two sided Brownian motion x̂ on
M with x̂(0) = o by an independent copy of Brownian motion on M . We consider the
reference measure given by the law µo

R
of x̂. By this we derive an integration by parts

formula by using the stochastic horizontal lift for independent copy (see Proposition 3.2
for the reason we choose it in this way). We also emphasize that the L2-Dirichlet form
is independent of the stochastic horizontal lift (see Remark 2.1), which can be seen as
a tool to obtain the integration by parts formula and the closablity of the associated
bilinear form (see Remark 3.1). Moreover, we also consider the reference measure as
µν
R
:=
∫

µx
R
ν(dx) with some Randon measure ν satisfying (3.19), which could be the

volume measure on M under some mild curvature condition (see Remark 3.9 below).
As mentioned before, the process corresponds to the stochastic heat equation on R

without any boundary condition for ν given by the volume measure on M . Here we
mainly concentrate on the more complicated case that ν and the reference measure
have infinite mass. We use a cut-off technique to find suitable test functions and
prove the quasi-regularity of the L2-Dirichlet form (see Theorem 3.12), which gives a
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Markov process as a martingale solution to the stochastic heat equation on [0,∞)×R

with values in a Riemannian manifold. It is not easy to obtain that the process is
conservative in this case, since 1 is not in the domain of the Dirichlet form. Under
mild curvature condition we find suitable approximation functions in the domain of
the L2-Dirichlet form and obtain that the Markov process is conservative in the sense
that the life time is infinity (see Theorem 3.13).

We also emphasize that the construction of the conservative Markov processes on
general manifold with reference measure having infinite mass still holds for the finite

volume case, especially for the free loop case with the reference measure ec
∫ 1
0
Scal(γ(s))dsµ̃ν(γ),

which is conjectured to be invariant measure for (1.1) in [9]. Here c ∈ R, µ̃ν :=
∫

µ̃xν(dx), with ν = p1(x, x)dx and µ̃x given by the Brownian bridge measure and pt
is the heat kernel for 1

2
∆ and Scal denotes the scalar curvature. For more details we

refer to Remark 3.11 and Remark 3.14.
In the final part of this paper, we study functional inequalities associated to L2-

Dirichlet-Form, which implies the long time behavior of the solutions to the stochastic
heat equations for infinite string. In this case, the L2-Dirichlet form is not comparable
with the O-U Dirichlet form constructed in [22], we refer readers to [1, 3, 4, 6, 12, 15,
16, 19, 22, 23, 24, 26, 34, 38, 31, 50, 52, 56, 59, 60, 62, 63, 64, 65] and references therein
for various study about O-U Dirichlet form on path and loop space.

As we explained before, this case corresponds to SPDEs on infinite volume. The
ergodicity property is different from that for the finite volume case (see [55]). For
different manifolds we have ergodicity or non-ergodicity for the associated Markov pro-
cesses. We establish the log-Sobolev inequality for the corresponding L2-Dirichlet form
if Ric ≥ K > 0 for some constant K and Poincaré inequality for compact Riemannian
manifold with some suitable curvature condition (see Theorem 4.1), which implies the
L2-exponential ergodicity in this case; When M = Rn, ergodicity still holds but the
Poincaré inequality does not hold in this case (see Theorem 4.3); When M is not a
Liouville manifold, the associated Dirichlet form E is reducible, which means that the
solutions to the stochastic heat equation are not ergodic.

Notations: In this paper we use Cm
c to denote Cm-differentiable functions with

compact support. We use Cm
b to denote Cm-differentiable functions with bounded

derivatives. For Hilbert space H we also use | · |H to denote the norm of it.
The rest of this paper is as follow: In Section 2, we will construct the stochastic

heat equation for the half line case on general Riemannian manifoldM . The stochastic
heat equation for the whole line will be established in Section 3, and the ergodicity or
non-ergodicity property of the processes will be obtained in Section 4.
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2 The case of half line R
+

Throughout the article, suppose that M is a complete and stochastic complete Rie-
mannian manifold with dimension n, and ρ is the Riemannian distance on M . In this
section, we will construct the stochastic heat process on half line. We first introduce
some notions. Fix o ∈M , the path space over M is defined by

W o
R+(M) := {γ ∈ C([0,∞);M) : γ(0) = o}.

ThenW o
R+(M) is a Polish (separable metric) space under the following uniform distance

d∞(γ, σ) :=
∞
∑

k=1

1

2k
sup
t∈[0,k]

(

ρ(γ(t), σ(t)) ∧ 1
)

, γ, σ ∈ W o
R+(M).

In order to construct Dirichlet forms associated to stochastic heat equations for
infinite strings on Riemannian path space, we also define the following weighted L1-
distance:

(2.1) d̃(γ, η) :=

∞
∑

k=1

1

2k

∫ k

k−1

ρ̃(γ(s), η(s))ds, γ, η ∈ W o
R+(M),

where ρ̃ = ρ ∧ 1. Obviously we have d̃ ≤ d∞. Let Eo
R+(M) be the closure of W o

R+(M)

with respect to the distance d̃, then Eo
R+(M) is a Polish space.

Let O(M) be the orthonormal frame bundle overM , we consider the following SDE,

(2.2)

{

dUt =
∑n

i=1Hi(Ut) ◦ dW i
t , t ≥ 0

U0 = uo,

where {Hi}ni=1 is a canonical orthonormal basis of horizontal vector fields O(M), uo is a
fixed orthonormal basis of ToM and (W i

t )t≥0, 1 ≤ i ≤ n is a standard Rn-valued Brow-
nian motion defined on a probability space (Ω,F ,P). Note that M is stochastically
complete, so Ut is well defined for all t ≥ 0. Let π : O(M) → M denote the canonical
projection, then xt := π(Ut), t ≥ 0 is the Brownian motion on M with initial point o,
and U· is the (stochastic) horizontal lift along x·. Let µ

o
R+ be the law of x[0,∞), then µ

o
R+

is a probability measure on W o
R+(M), and the (stochastic) horizontal lift (Ut(γ))t∈[0,∞)

is well defined for µo
R+-a.s. γ ∈ W o

R+(M), (whose distribution is the same as that of
(Ut)t∈[0,∞) under P). Therefore µo

R+ can be seen as a probability measure on Eo
R+(M)

with support contained in W o
R+(M), and (Ut(γ))t∈[0,∞) is also well defined for µo

R+-a.s.
γ ∈ Eo

R+(M).
Let FC1

b be the space of C1
b cylinder functions on Eo

R+(M) defined as follows: for

every F ∈ FC1
b , there exist some m ≥ 1, m ∈ N+, f ∈ C1

b (R
m), gj ∈ C0,1

b ([0,∞)×M),
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Tj ∈ [0,∞), j = 1, ..., m, such that
(2.3)

F (γ) = f

(∫ T1

0

g1(s, γ(s))ds,

∫ T2

0

g2(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds

)

, γ ∈ Eo
R+(M).

Here C0,1
b ([0,∞)×M) denotes the bounded functions which are continuous w.r.t. the

first variable and C1
b - differentiable w.r.t. the second variable. It is easy to see that F is

well defined for γ ∈ Eo
R+(M), FC1

b is dense in L2(Eo
R+(M);µo

R+) = L2(W o
R+(M);µo

R+).
For any F ∈ FC1

b of the form (2.3) and h ∈ H+ := L2([0,∞) → Rn; ds) = {h :
[0,∞) → Rn;

∫∞

0
|h(s)|2ds < ∞}, the directional derivative of F with respect to h is

(µo
R+-a.s.) defined by

DhF (γ) =
m
∑

j=1

∂̂jf(γ)

∫ Tj

0

〈

U−1
s (γ)∇gj(s, γ(s)), h(s)

〉

ds, γ ∈ Eo
R+(M),

where

∂̂jf(γ) := ∂jf

(∫ T1

0

g1(s, γ(s))ds,

∫ T2

0

g2(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds

)

.

and ∇gj denotes the gradient w.r.t. the second variable. By the Riesz representation
theorem, there exists a gradient operator DF (γ) ∈ H+ such that 〈DF (γ), h〉H+ =
DhF (γ), µ

o
R+-a.s.γ ∈ Eo

R+ , h ∈ H+. In particular, for γ ∈ W o
R+(M),

(2.4) DF (γ)(s) =

m
∑

j=1

∂̂jf(γ)U
−1
s (γ)∇gj(s, γ(s))1(0,Tj ](s).

We define the (Cameron-Martin) subspace H∞
+ of H+ as follows

(2.5) H
∞
+ :=

{

h ∈ C1
c ([0,∞);Rd)

∣

∣

∣
h(0) = 0,

∫ ∞

0

|h′(s)|2ds <∞
}

.

Fix a sequence of elements {hk}∞k=1 ⊂ H∞
+ such that it is an orthonormal basis in H+,

we define the following symmetric quadratic form as follows

(2.6) E
o
R+(F,G) :=

1

2

∫

Eo
R+

(M)

〈DF,DG〉H+dµ
o
R+ , F, G ∈ FC1

b .

Then it is obvious that

E
o
R+(F,G) =

1

2

∞
∑

k=1

∫

E
o
R+

(M)

Dhk
FDhk

Gdµo
R+ ; F,G ∈ FC1

b .
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Remark 2.1. Although the stochastic horizontal lift (Ut(γ))t∈[0,∞) is applied in the
definition of (E o

R+ ,FC1
b ), the value of E o

R+(F, F ) is independent of (Ut(γ))t∈[0,∞). In
particular, by the definition (2.4) of the gradient, we have

E
o
R+(F,G) =

1

2

∫

E
o
R+

(M)

m
∑

i=1

l
∑

j=1

∂̂if1(γ)∂̂jf2(γ)

∫ Ti∧Tj

0

〈∇g1i (s, γ(s)),∇g2j (s, γ(s))〉dsdµo
R+

for any F,G ∈ FC1
b with

F (γ) = f1

(
∫ T1

0

g11(s, γ(s))ds,

∫ T2

0

g12(s, γ(s))ds, ...,

∫ Tm

0

g1m(s, γ(s))ds

)

G(γ) = f2

(
∫ T1

0

g21(s, γ(s))ds,

∫ T2

0

g22(s, γ(s))ds, ...,

∫ Tl

0

g2l (s, γ(s))ds

)

, γ ∈ Eo
R+(M),

for f1 ∈ C1
b (R

m), f2 ∈ C1
b (R

l), gij ∈ C0,1
b ([0,∞)×M) i = 1, 2, j = 1, ..., m. This implies

the quadratic form E o
R+ is independent of (Ut(γ))t∈[0,∞).

Theorem 2.2. The quadratic form (E o
R+,FC1

b ) is closable and its closure (E o
R+ ,D(E o

R+))
is a quasi-regular Dirichlet form on L2(Eo

R+(M);µo
R+).

By using the theory of Dirichlet form (refer to [51]), we obtain the following asso-
ciated diffusion process.

Theorem 2.3. There exists a conservative (Markov) diffusion process M = (Ω,F ,Mt,
(X(t))t≥0, (P

z)z∈Eo
R+

(M)) on Eo
R+(M) having µo

R+ as an invariant measure and properly

associated with (E o
R+ ,D(E o

R+)), i.e. for u ∈ L2(Eo
R+(M);µo

R+) ∩ Bb(E
o
R+(M)), the

transition semigroup Ptu(z) := Ez[u(X(t))] is an E o
R+-quasi-continuous version of Ttu

for all t > 0, where Tt is the semigroup associated with (E o
R+ ,D(E o

R+)).

Here for the notion of E o
R+-quasi-continuity we refer to [51, Definition III-3.2]. By

Fukushima decomposition we have

Theorem 2.4. There exists a properly E o
R+-exceptional set S ⊂ Eo

R+(M), i.e. µo
R+(S) =

0 and Pz[X(t) ∈ Eo
R+(M) \ S, ∀t ≥ 0] = 1 for z ∈ Eo

R+(M)\S, such that ∀z ∈
Eo

R+(M)\S under Pz, the sample paths of the associated process M = (Ω,F ,Mt,
(X(t))t≥0, (P

z)z∈Eo
R+

(M)) on Eo
R+(M) satisfy the following for u ∈ D(E o

R+)

(2.7) u(Xt)− u(X0) =Mu
t +Nu

t Pz − a.s.,

where Mu is a martingale with quadratic variation process given by
∫ t

0
|Du(Xs)|2H+

ds
and Nt is zero quadratic variation process. In particular, for u ∈ D(L), Nu

t =
∫ t

0
Lu(Xs)ds, where L is the generator of (E o

R+ ,D(E o
R+)).

7



Remark 2.5. If we choose u(γ) =
∫ r2
r1
uα(γ(s))ds ∈ FC1

b , with u
α is a local coordinate

onM , then the quadratic variation process forMu is the same as that for the martingale
part in (1.1).

To prove Theorem 2.2, the crucial ingredient is the local integration by parts formula
in [16]. To do that, we need to introduce some notations. In the following, we first
introduce another cylinder functions set, every element in which only depends on finite
times:

F̂Cb :=
{

W o
R+(M) ∋ γ 7→ f(γ(t1), · · · , γ(tm)) : m ≥ 1,

0 < t1 < t2 · · · < tm <∞, f ∈ Cb,Lip(M
m)
}

,

where Cb,Lip(M
m) denotes the collection of bounded Lipschitz continuous functions on

Mm.
For a fixed o ∈ M , since M is complete, there exists a C∞ non-negative smooth

function ρ̂ :M → R with the property that 0 < |∇ρ̂(z)| ≤ 1 and

∣

∣

∣

∣

ρ̂(z)− 1

2
ρ(o, z)

∣

∣

∣

∣

< 1, z ∈ M.

For every non-negative m, define

(2.8) Dm := {z ∈M : ρ̂(z) < m} , τm(γ) := inf {s ≥ 0 : γ(s) /∈ Dm} .

We first introduce the following two results in [16] and [17], for convenience of
readers we will give the proof of them in the Appendix

Lemma 2.6. [Chen-Li-Wu [16]] For any m ∈ N
+ and T ∈ R

+, there exists a
stochastic process(vector fields) lm,T : [0,∞)×W o

R+(M) → [0, 1] such that

(1) lm,T (t, γ) =

{

1, t < τm−1(γ) ∧ T
0, t > τm(γ)

.

(2) Given any o ∈ Dm, lm,T (t, γ) is F
γ
t := σ{γ(s); s ∈ [0, t]}-adapted and lm,T (·, γ)

is absolutely continuous for µo
R+-a.s. γ ∈ W o

R+(M).

(3) For any positive integers k, p,m ∈ Z+ and t ∈ R+, we have

(2.9) sup
o∈Dm

∫

W o
R+

(M)

∫ t

0

|l′k,T (s, γ)|pdsµo
R+(dγ) ≤ C1(m, k, p, T )

for some positive constant C1(m, k, p, T ) (which may depends on m, T , p and k).

8



Lemma 2.7. [Chen-Li-Wu [17]] Let lm,T be the cut-off process constructed in Lemma

2.6, then for every F ∈ F̂Cb, m ∈ Z+, T ∈ R+, h ∈ H∞
+ (see (2.5)), the following

integration by parts formula holds

(2.10)

∫

W o
R+

(M)

(dF (U·lm,T (·)h(·)))µo
R+(dγ)

=

∫

W o
R+

(M)

(

F

∫ ∞

0

〈

(lm,Th)
′(s) +

1

2
RicUs (lm,T (s)h(s)) , dβs

〉)

µo
R+(dγ),

where βt denotes the anti-development of γ(·), whose distribution is a standard Rn-
valued Brownian motion under µo

R+.

Based on the above Lemma 2.7, and using an approximation procedure, it is not
difficult to obtain the following integration by parts formula.

Lemma 2.8. Let lm,T be mentioned in Lemma 2.7, then for every F ∈ FC1
b , m ∈ Z+,

T ∈ R+, h ∈ H∞
+ , the following integration by parts formula holds

(2.11)

∫

E
o
R+

(M)

(dF (U·lm,T (·)h(·)))µo
R+(dγ)

=

∫

Eo
R+

(M)

(

F

∫ ∞

0

〈

(lm,Th)
′(s) +

1

2
RicUs (lm,T (s)h(s)) , dβs

〉)

µo
R+(dγ),

where βt denotes the anti-development of γ(·), which is a Brownian motion under µo
R+.

Here µo
R+ can be seen as a probability measure on Eo

R+(M) with support contained in
W o

R+(M), and lm,T (t, γ) is also well defined for µo
R+-a.s. γ ∈ Eo

R+(M).

Proof. In fact, it suffices to check the result holds for F (γ) = f(
∫ t

0
g(s, γ(s))ds) ∈ FC1

b

with arbitrarily pre-fixed t ∈ R+, and the general case can be handled similarly. For
any k ≥ 1, defining

Fk(γ) = f





1

k

[kt]
∑

i=1

g(i/k, γ(i/k))



 .

Fix a time T > t > 0, then

(2.12)

∫

E
o
R+

(M)

(dFk)(U·lm,T (·)h(·))µo
R+(dγ)

=

∫

E
o
R+

(M)

(

Fk

∫ ∞

0

〈

(lm,Th)
′(s) +

1

2
RicUs (lm,T (s)h(s)) , dβs

〉)

µo
R+(dγ),

where we used supp(µo
R+) ⊂W o

R+(M) and (2.10).

9



By the dominated convergence theorem, it is easy to see that Fk → F in L2(Eo
R+(M);µo

R+)
as k → ∞. According to the definition of directional derivative, we have

dF (U·lm,T (·)h(·)) = 〈DF, lm,Th〉H+ = ∂̂f(γ)

∫ t

0

〈

U−1
s (γ)∇g(s, γ(s)), (lm,Th)(s)

〉

Rd ds

dFk(U·lm,T (·)h(·)) = 〈DFk, lm,Th〉H+ =
1

k
∂̂fk(γ)

[kt]
∑

i=1

〈

U−1
i/k(γ)∇g(i/k, γ(i/k)), (lm,Th)(i/k)

〉

Rn
,

with ∂̂f = f ′
(

∫ t

0
g(s, γ(s))ds

)

and ∂̂fk = f ′
(

1
k

∑k
i=1 g(i/k, γ(i/k))

)

. By our assump-

tions for f and g (especially ∇g is bounded) we know that

〈DFk, lm,Th〉H+ → 〈DF, lm,Th〉H+ in L2(Eo
R+(M);µo

R+), k → ∞.

By using the above argument, we get (2.11) by taking k → ∞ on both sides of the
equation (2.12) .

In the following we prove Theorem 2.2 by using the above integration by parts
formula.

Proof of Theorem 2.2. (a) Closablity: Let {Fm}∞m=1 ⊆ FC1
b be a sequence of

cylinder functions with

lim
m→∞

µo
R+

(

F 2
m

)

= 0, lim
k,m→∞

E
o
R+ (Fk − Fm, Fk − Fm) = 0.(2.13)

Thus {DFm}∞m=1 is a Cauchy sequence in L2
(

Eo
R+(M) → H+;µ

o
R+

)

, for which there
exists a limit Φ. It only suffices to prove that Φ = 0. Suppose that {hi}∞i=1 ⊂ H∞

+ ∩
C1

c ([0,∞);Rn) is an orthonormal basis of H+. By Lemma 2.8, for each G ∈ FC1
b and

any positive integers k,m, i ≥ 1, we have

µo
R+

(

〈DFk, lm,Thi〉H+G
)

= µo
R+

(

〈D (FkG) , lm,Thi〉H+

)

− µo
R+

(

〈DG, lm,Thi〉H+Fk

)

= µo
R+

(

FkG

∫ ∞

0

〈

(lm,Thi)
′(s) +

1

2
RicUs (lm,T (s)hi(s)) , dβs

〉)

− µo
R+

(

〈DG, lm,Thi〉H+Fk

)

.

(2.14)

In particular, for each hi ∈ C1
c ([0,∞);Rn), by (2.9) and the compact property of

supp(hi), we have

∫ ∞

0

〈

(lm,Thi)
′(s) +

1

2
RicUs (lm,T (s)hi(s)) , dβs

〉

∈ L2(Eo
R+(M);µo

R+).
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Since G and DG are bounded, and Fk → 0, |DFk−Φ|H+ → 0 in L2(Eo
R+(M);µo

R+),
we let k → ∞ in (2.14) and obtain that for every m, T, i ∈ N+,

µo
R+

(

〈Φ, lm,Thi〉H+G
)

= 0, ∀ G ∈ FC1
b .

Therefore we could find a µo
R+-null set ∆i ⊂ Eo

R+(M), such that

(2.15) 〈Φ(γ), lm,T (γ)hi〉H+ = 0, ∀ m, T ∈ N
+, γ /∈ ∆i.

For a fixed hi ∈ H∞
+ , there exists a positive integer Ti ∈ N+ (which may depend

on hi) such that supp(hi) ⊂ [0, Ti]. Since γ(·) is non-explosive, there is a µo
R+-null set

∆0 ⊂ Eo
R+(M) such that for every γ /∈ ∆0, there exists mi(γ) ∈ N+ satisfying

γ(t) ∈ Dmi−1, for all t ∈ [0, Ti],

where Dmi−1 is introduced by (2.8). Hence lmi,Ti
(t, γ) = 1 for all t ∈ [0, Ti]. Combining

this with (2.15) we know

〈Φ(γ), hi〉H+ = 0, i ≥ 1, γ /∈ ∆i ∪∆0,

which implies that Φ(γ) = 0, ∀ γ /∈ ∆ = ∪∞
i=0∆i. So Φ = 0, µo

R+-a.s., and (E o
R+ ,FC1

b )
is closable. By the standard method, we show easily that its closure (E o

R+ ,D(E o
R+)) is

a Dirichlet form.
(b) Quasi-Regularity: In order to prove the quasi-regularity of (E o

R+ ,D(E o
R+)), we

need to verify conditions (i)-(iii) in [51, Definition IV-3.1].
It is easy to see that each G ∈ FC1

b is continuous in (Polish space) (Eo
R+(M), d̃),

and FC1
b is dense in D(E o

R+) under the (E o
R+,1)

1/2-norm with

E
o
R+,1(·, ·) := E

o
R+(·, ·) + ‖ · ‖2L2(Eo

R+
(M),µo

R+
).

So (ii) of [51, Definition IV-3.1] holds.
Since the metric space (Eo

R+(M), d̃) is separable, we can choose a fixed countable
dense subset {ξm|m ∈ N+} ⊂ W o

R+(M). Next, we prove the tightness of the capacity
for (E o

R+ ,D(E o
R+)) which ensures (i) of [51, Definition IV-3.1].

Let ϕ ∈ C∞
b (R) be an increasing function satisfying with

ϕ(t) = t, ∀ t ∈ [−1, 1] and ‖ϕ′‖∞ ≤ 1.

For each m ≥ 1, the function vm : Eo
R+(M) → R is given by

vm(γ) = ϕ(d̃(γ, ξm)), γ ∈ Eo
R+(M),

with d̃ defined in (2.1). By Lemma 2.9 below vm ∈ D(E o
R+). We claim that

(2.16) wk := inf
m≤k

vm, k ∈ N
+, converges E

o
R+ − quasi-uniformly to zero on Eo

R+(M).

11



Then for every i ∈ N+ there exists a closed set Ki such that Cap(Kc
i ) <

1
i
and wk → 0

uniformly on Ki as k → ∞. Here Cap is the capacity associated to (E o
R+ ,D(E o

R+)) (see
[51, Section III.2]). Hence for every 0 < ε < 1 there exists k ∈ N

+ such that wk < ε on
Ki, by using the definitions of vm and wk, we obtain that Ki ⊂ ∪k

m=1B(ξm, ε), where
B(ξm, ε) := {γ ∈ Eo

R+(M); d̃(ξm, γ) < ε}. Consequently, for every i ≥ 1, Ki is totally
bounded, hence compact. Combining this with the fact limi→∞Cap(Kc

i ) = 0 we know
the capacity for (E o

R+ ,D(E o
R+)) is tight.

Now it only remains to show the claim (2.16). For each fixed m ≥ 1, by (2.19) in
Lemma 2.9 below we obtain

Dvm(γ)(s) = ϕ′(d̃(γ, ξm)) ·
(

∞
∑

k=1

1

2k
U−1
s ∇1ρ̃(γ(s), ξm(s))1(k−1,k](s)

)

,

where ∇1ρ̃ is the gradient of ρ̃ with respect to the first variable. By the definition (2.6)
of the quadratic form E o

R+, we have
(2.17)

E
o
R+(vm, vm) =

1

2

∫

E
o
R+

(M)

∣

∣Dvm(γ)
∣

∣

2

H+
dµo

R+(γ)

=
1

2

∞
∑

k=1

1

22k

∫

E
o
R+

(M)

|ϕ′(d̃(γ, ξm))|2 ·
(

∫ k

k−1

∣

∣∇1ρ̃(γ(s), ξm(s))
∣

∣

2

Tγ(s)M
ds
)

dµo
R+(γ)

≤ ‖ϕ′‖∞ ·
(

∞
∑

k=1

1

22k+1

)

≤ C, ∀ m ∈ N
+,

where C > 0 is a constant independent of m, and in the first inequality above we
applied the property that |∇1ρ| ≤ 1.

Since {ξm|m ∈ N} is dense in (Eo
R+(M); d̃), it is easy to verify that wk ↓ 0 µo

R+-a.s.
on Eo

R+(M) hence in L2(Eo
R+(M);µo

R+). By (2.17) we arrive at

E
o
R+(wk, wk) ≤ C, ∀k ∈ N

+,

where C is independent of k.
Based on this and [51, I.2.12, III.3.5] we obtain that a subsequence of the Cesaro

mean of some subsequence of wk converges to zero E o
R+-quasi-uniformly. But since

{wk}k∈N+ is decreasing, (2.16) follows. Now tightness in (i) of [51, Definition IV-3.1]
follows.

For any γ, η ∈ Eo
R+(M) with ε := d̃(γ, η) > 0, there exists certain ξN such that

d̃(ξN , η) <
ε
4
and d̃(ξN , γ) >

ε
4
. Take {Fm(γ) := ϕ(d̃(ξm, γ)), m ∈ N} for ϕ as above,

(iii) of [51, Definition IV-3.1] follows.
�

For a locally Lipschitz continuous function g :M → R, by Radamacher’s theorem,
it is well known that the gradient ∇g(x) of g exists for all x ∈M/S with some Lebesgue
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null set S ⊂ M . For convenience, let us define ∇g(x) = 0 for any x ∈ S. Also note
that µo

R+

(

γ(s) ∈ S
)

= 0 for each s > 0, hence ∇g(γ(s)) is µo
R+-a.s. well defined for

every s > 0.
Let Cb,Lip([0,∞)×M) be the set of all functions f on the product space [0,∞)×M

and each function g(t, x) is bounded and continuous with respect to the first variable
t ∈ [0,∞), and uniformly Lipschitz continuous with respect to the second variable
x ∈M .

Lemma 2.9. (1) For each fixed function F (γ) := f(
∫ t

0
g(s, γ(s))ds) with some fixed

t > 0, g ∈ Cb,Lip([0,∞)×M) and f ∈ C1
b (R). Then F ∈ D(E o

R+) and we have

(2.18) DF (γ)(s) = f ′

(
∫ t

0

g(r, γ(r))dr

)

·
(

U−1
s (γ)∇g(s, γ(s))1(0,t](s)

)

for ds× µo
R+ − a.s.(s, γ) ∈ [0,∞)×Eo

R+(M).

(2) For a fixed σ ∈ W o
R+(M), let G(γ) := f(d̃(γ, σ)) with f ∈ C1

b (R) and d̃ defined
by (2.1). Then G ∈ D(E o

R+) and we have

(2.19) DG(γ) = f ′(d̃(γ, σ)) ·
(

∞
∑

k=1

1

2k
U−1
s (γ)∇1ρ̃(γ(s), σ(s))1(k−1,k](s)

)

for ds×µo
R+ −a.s.(s, γ) ∈ [0,∞)×Eo

R+(M), where ∇1ρ̃(·, x) denotes the gradient
with respect to the first variable of ρ̃(·, ·).

Proof. Step (i) First we suppose that g ∈ Cb,Lip([0,∞)×M) and there exist a constant
L ∈ R

+ and a compact set K ⊂M such that

|g(s, x)− g(s, y)| ≤ Lρ(x, y), ∀x, y ∈M, s ∈ [0,∞)

and supp(g(s, ·)) ⊂ K, ∀s ∈ [0,∞).

Consider a local coordinate system {U, ϕU} on M , i.e. for any x ∈ M , there exists
a (bounded) neighborhood U of x and a C∞ diffeomorphism ϕU : U → V , where V
is a (bounded open) subset in Rn. Without loss of generality, we may assume that
suppg ⊂ [0,∞) × K. According to the unit decomposition theorem on manifold,
there exist N ∈ N+, Ui ∈ {U, ϕU}, 1 ≤ i ≤ N , and non-negative smooth functions
αi, 1 ≤ i ≤ N such that

(2.20)

N
∑

i=1

αi

∣

∣

∣

K
≡ 1, K ⊂

N
⋃

i=1

Ui and supp(αi) ⊂ Ui, 1 ≤ i ≤ N.

Define gi := gαi for each 1 ≤ i ≤ N . Then, from (2.20), we know supp(gi) ⊂
[0,∞) × Ui. Let Vi := ϕUi

(Ui) ⊂ Rn and g̃i : [0,∞) × Vi → R denoted by g̃i(s, y) :=

13



gi(s, ϕ
−1
Ui
(y)) for s ∈ [0,∞), y ∈ Vi. We can easily check that g̃i(s, ·) is Lipschitz

continuous with support contained in Vi for all s ∈ [0,∞).
Let φ ∈ C∞

c (Rn) be a polishing function satisfying that supp(φ) ⊂ B1(0) and
∫

Rn φ(x)dx = 1, where B1(0) is the 0-centered unit ball in Rn. Note that supp(g̃i(s, ·)) ⊂
Vi, then for each 1 ≤ i ≤ N , there exists a constant εi > 0 such that for every ε ∈ (0, εi),
the following g̃εi (s, ·) is well defined on Vi,

g̃εi (s, u) := g̃i ∗ φε(s, u) =

∫

Rd

g̃i(s, v)φε(u− v)dv, ∀ (s, u) ∈ [0,∞)× Vi,

and suppg̃εi (s, ·) ⊂ Vi, where φε(u) := ε−nφ
(

u
ε

)

. It is easy to verify

(2.21) lim
ε↓0

sup
v∈Vi

|g̃εi (s, v)− g̃i(s, v)| = 0, s ∈ [0,∞).

Since the Lipschitz constant of g̃i(s, ·) is independent of s, we also have for any p > 0,

sup
ε∈(0,εi),v∈Vi,s∈[0,∞)

|∇g̃εi (s, v)| ≤ Ci, 1 ≤ i ≤ N,

lim
ε↓0

∫

Vi

|∇g̃εi (s, v)−∇g̃i(s, v)|pdv = 0, ∀ s ∈ [0,∞)
(2.22)

for some constants Ci > 0, 1 ≤ i ≤ N , where ∇ is the gradient w.r.t. the second
variable.

Define gεi := g̃εi ◦ ϕUi
, and we extend gεi to the whole product space [0,∞) × M

by letting gεi |[0,∞)×Uc
i
= 0. Since supp(g̃εi ) ⊂ [0,∞)× Vi for all ε ∈ (0, εi) implies that

suppgεi ⊂ [0,∞)×Ui for every ε ∈ (0, εi), it is not difficult to see gεi ∈ C0,1
b ([0,∞)×M).

Taking ε0 := inf1≤i≤N εi, then for every ε ∈ (0, ε0) we could define gε :=
∑N

i=1 g
ε
i . By

(2.20), (2.21) and (2.22) we know for all p > 0,

lim
ε↓0

sup
y∈M

|gε(s, y)− g(s, y)| = 0, s ∈ [0,∞),

sup
ε∈(0,ε0),y∈M,s∈[0,∞)

|∇gε(s, y)| ≤ C,

lim
ε↓0

∫

M

|∇gε(s, y)−∇g(s, y)|pdy = 0, s ∈ [0,∞)

(2.23)

for some constant C > 0.
Define F ε(γ) := f(

∫ t

0
gε(s, γ(s))ds) ∈ FC1

b , then from (2.4) it is easy to obtain

DF ε(γ)(s) = f ′

(
∫ t

0

gε(r, γ(r))ds

)

·
(

U−1
s (γ)∇gε(s, γ(s))1(0,t](s)

)

, s ∈ [0,∞).

Combining this and (2.23) we have

sup
ε∈(0,ε0)

E (F ε, F ε) <∞,
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and
lim
ε↓0

µo
R+

(

∣

∣F ε(γ)− F (γ)
∣

∣

2
)

= 0.

By [51, Chap. I Lemma 2.12] we know that F ∈ D(E o
R+). Moreover, (2.23) ensures

lim
ε↓0

DF ε(γ)(s) = f ′

(
∫ t

0

g(r, γ(r))ds

)

·
(

U−1
s (γ)∇g(s, γ(s))1(0,t](s)

)

for ds × µo
R+-a.s. (s, γ) ∈ [0,∞) × Eo

R+(M). Combining this with the dominated
convergence theorem yields

lim
ε↓0

∫

E
o
R+

(M)

∫ ∞

0

∣

∣DF ε(γ)(s)− lim
ε↓0

DF ε(γ)(s)
∣

∣

2
dsdµo

R+ = 0,

which implies (2.18) immediately.
Step (ii) Now we consider the general case : g ∈ Cb,Lip([0,∞)×M). By the Greene-

Wu approximation theorem in [39], there exists a smooth function η : M → R
+ such

that for every R > 0, {x ∈M ; η(x) ≤ R} is compact and supx∈M |∇η(x)| ≤ C. Choose
hR : R+ → [0, 1], hR ∈ C∞(R+) with

hR(x) = 1, ∀ x ∈ [0, R], hR(x) = 0, ∀ x > R + 1, and ‖h′R‖∞ ≤ 2.

For each (s, x) ∈ [0,∞)×M , define gR(s, x) := g(s, x)hR(η(x)), FR(γ) := f(
∫ t

0
gR(s, γ(s))ds).

Based on the fact that supx∈M |∇η(x)| ≤ C it is easy to verify that gR(s, ·) : M → R

is Lipschitz continuous and with uniform compact support and with uniform Lipschitz
constant.

From Step (i) of the proof we know FR ∈ D(E o
R+) and it is not difficult to show

E
o
R+(FR, FR) ≤ C‖f ′‖2∞‖∇gR‖2∞ ≤ C‖f ′‖2∞(‖∇g‖∞ + ‖g‖∞)2,

lim
R→∞

µo
R+

(

∣

∣FR(γ)− F (γ)
∣

∣

2
)

= 0,

lim
R→∞

DFR(γ)(s) = DF (γ)(s) for ds× µo
R+ − a.s.(s, γ) ∈ [0,∞)× Eo

R+(M).

Combining this with the same arguments as in Step (i) we know F ∈ D(E o
R+) with

DF given by (2.18).
Step (iii) By similar arguments as above we can easily check that for F given as

in (2.3) with gi as in (1) the results in (1) follow. Let GN(γ) := f
(

d̃N
(

γ, σ
)

)

, where

d̃N
(

γ, σ
)

:=
∑N

k=1
1
2k

∫ k

k−1
ρ̃
(

γ(s), σ(s)
)

ds. Hence according to the conclusion in Step
(i),(ii) we obtain GN ∈ D(E o

R+) and

DGN(γ)(s) = f ′
(

d̃N
(

γ, σ
)

)

·
(

N
∑

k=1

1

2k
U−1
s (γ)∇1ρ̃

(

γ(s), σ(s)
)

1(k−1,k](s)
)
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for ds × µo
R+ − a.s.(s, γ) ∈ [0,∞) × Eo

R+(M). By this and the same arguments as in
Step (i) (by the dominated convergence theorem) it is easy to prove

lim
N→∞

µo
R+

(

|GN(γ)−G(γ)|2
)

= 0,

lim
N→∞

µo
R+

(

|DGN(γ)−DG(γ)|2
H+

)

= 0,

which implies G ∈ D(E o
R+) and DG has the expression (2.19).

Remark 2.10. (Finite Volume Case) Let µo
T be the distribution of the Brownian

motion starting from o on C([0, T ];M). Similar to the above argument, we can obtain
Theorems 2.2-2.4 and Lemma 2.8 hold with µo

R+ be replaced by µo
T . These extend the

results in [55, Section 2] to general Riemannian manifold.

3 The case of whole line

Fix o ∈M , the path space W o
R
(M) over M is defined by

W o
R(M) := {γ ∈ C(R;M) : γ(0) = o}.

Then W o
R
(M) is a separable metric space with respect to the distance d∞ as follows

(3.1) d∞(γ, σ) :=
∞
∑

n=1

1

2n
sup

s∈[−n,n]

(

ρ̃(γ(s), σ(s))
)

, γ, σ ∈ W o
R
(M).

where ρ̃ = ρ ∧ 1. Similar as in Section 2, we define the following L1-distance:
(3.2)

d̃(γ, η) :=
∞
∑

k=1

( 1

2k

∫ k

k−1

ρ̃(γ(s), η(s))ds+
1

2k

∫ −k+1

−k

ρ̃(γ(s), η(s))ds
)

, γ, η ∈ W o
R
(M).

Obviously we have d̃ ≤ 2d∞. Let Eo
R
(M) be the closure of W o

R
(M) with respect to the

distance d̃, then Eo
R
(M) is a Polish space.

Let W̄ be an n-dimensional Brownian motion independent of W and let Ū be the
solution to (2.2) withW replaced by W̄ . Set x̄t := π(Ū). Then x̄· is a Brownian motion
with initial point o on M , and independent of x. Define

x̂t :=

{

xt, t ≥ 0
x̄−t, t < 0

.

Denote by µo
R
the distribution of x̂ onW o

R
(M), then µo

R
is also a probability measure

onEo
R
(M) whose support is contained inW o

R
(M). Moreover, we can easily check that µo

R
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is the unique probability measure such that for F (γ) = f
(

γ(−t̄k), ..., γ(−t̄1), γ(t1), ..., γ(tm)
)

,
f ∈ Cb(M

k+m),

∫

E
o
R
(M)

F (γ)dµo
R =

∫

Mk+m

k
∏

i=1

p∆i t̄(ȳi−1, ȳi)

m
∏

i=1

p∆it(yi−1, yi)

f(ȳk, ..., ȳ1, y1, ..., ym)dȳ1...dȳkdy1...dym, y0 = ȳ0 = o,

where pt is the heat kernel corresponding to 1
2
∆ and −t̄k < ... < −t̄1 < t̄0 = 0 = t0 <

t1 < ... < tm, ∆it = ti − ti−1 and ∆it̄ = t̄i − t̄i−1.
Similar to Section 2, in order to construct Dirichlet forms associated to stochastic

heat equations in Riemannian path space, we consider the collection FCb of all cylinder
functions on Eo

R
(M) as follows: for every F ∈ FCb, there exist some m, k ∈ N, f ∈

C1
b (R

m+k), gi ∈ C0,1
b ([0,∞)×M), ḡj ∈ C0,1

b ((−∞, 0]×M), Ti, T̄j ∈ [0,∞), i = 1, ..., m,
j = 1, ..., k, such that
(3.3)

F (γ) = f

(∫ T1

0

g1(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds,

∫ 0

−T̄1

ḡ1(s, γ(s))ds, ...,

∫ 0

−T̄k

ḡk(s, γ(s))ds

)

.

For γ ∈ Eo
R
(M), define γ̃(s) := γ(s), s ≥ 0 and γ̄(s) := γ(−s), s ≥ 0 respectively, then

γ̃, γ̄ ∈ Eo
R+(M). Thus we could decompose γ = (γ̃, γ̄), in particular, under µo

R
, γ̃(·)

and γ̄(·) are two independent Brownian motions on M . We also define

(3.4) Us(γ) :=

{

Us(γ̃), s ≥ 0
U−s(γ̄), s < 0,

where Us(γ̃) : R
n → Tγ̃(s)M is the stochastic horizontal lift along γ̃(·) defined via (2.2).

By the above argument, for F ∈ FCb with form (3.3) we have

(3.5)

∫

E
o
R
(M)

F (γ)dµo
R

=

∫

E
o
R+

(M)

∫

E
o
R+

(M)

f

(
∫ T1

0

g1(s, γ̃(s))ds, ...,

∫ Tm

0

gm(s, γ̃(s))ds,

∫ 0

−T̄1

ḡ1(s, γ̄(−s))ds, ...,
∫ 0

−T̄k

ḡk(s, γ̄(−s))ds
)

dµo
R+(γ̃)dµo

R+(γ̄),

where µo
R+ is introduced in Section 2. It is easy to see that FCb is dense in L

2(Eo
R
(M);µo

R
).

Set:

H := L2(R → R
n; ds) =

{

h : R → R
n;

∫ ∞

−∞

|h(s)|2ds <∞
}

.
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For every h ∈ H and each F ∈ FCb of the form (3.3), the directional derivative of F
with respect to h is (µo

R
-a.s.) given by

(3.6)

DhF (γ) =

m
∑

j=1

∂̂jf(γ)

∫ Tj

0

〈

U−1
s (γ)∇gj(s, γ(s)), h(s)

〉

ds

+

k
∑

j=1

∂̂m+jf(γ)

∫ 0

−T̄j

〈

U−1
s (γ)∇ḡj(s, γ(s)), h(s)

〉

ds, γ ∈ Eo
R
(M), h ∈ H,

where

∂̂jf(γ) := ∂jf

(
∫ T1

0

g1(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds,

∫ 0

−T̄1

ḡ1(s, γ(s))ds, ...,

∫ 0

−T̄k

ḡk(s, γ(s))ds

)

,

Us(γ) is defined by (3.4), and ∇gj denotes the gradient w.r.t. the second variable.
By the Riesz representation theorem, there exists a gradient operator DF (γ) ∈ H
such that 〈DF (γ), h〉H = DhF (γ) for every h ∈ H. In particular, for the above F ,
γ ∈ W o

R
(M)

(3.7)

DF (γ)(s) =

m
∑

j=1

∂̂jf(γ)U
−1
s (γ)∇gj(s, γ(s))1(0,Tj ](s)

+
n
∑

j=1

∂̂j+mf(γ)U
−1
s (γ)∇ḡj(s, γ(s))1[−T̄j,0)(s).

Set

H
∞ :=

{

h ∈ C1
c (R;R

n)
∣

∣

∣
h(0) = 0,

∫

R

|h′(s)|2ds <∞
}

.

Fix a sequence of elements {hk} ⊂ H∞ such that it is an orthonormal basis in H, we
define the following symmetric quadratic form

E
o
R(F,G) :=

1

2

∫

E
o
R
(M)

〈DF,DG〉Hdµo
R; F,G ∈ FCb.

Remark 3.1. We deduce the integration by parts formula by using the above stochastic
horizontal lift U below. There are other ways to define the stochastic horizontal lift such
that it is adapted to the filtration generated by γ. However, as mentioned in Section 2,
the L2-Dirichlet form is independent of the stochastic horizontal lift, which can be seen
as a tool to obtain the integration by parts formula and the closablity of the associated
bilinear form.

Set β̃·, β̄· as the anti-development of γ̃ and γ̄ respectively (whose distribution under
µo
R
are two independent Rn-valued Brownian motions). Let lm,T : [0,∞)×W o

R+(M) →

18



[0, 1] be the vector fields constructed in Lemma 2.6 and we define l̂m,T : R×W o
R
(M) →

[0, 1] as follows,

(3.8) l̂m,T (t, γ) =

{

lm,T (t, γ̃), t ∈ [0,∞),

lm,T (−t, γ̄), t ∈ (−∞, 0).

Proposition 3.2. For each F ∈ FCb and h ∈ H
∞, and for each l̂m,T defined by (3.8),

we have

(3.9)

∫

E
o
R
(M)

〈DF, l̂m,Th〉Hdµo
R
=

∫

E
o
R
(M)

FΘm,T
h dµo

R
,

where

Θm,T
h (γ) = Θm,T

h (γ̃, γ̄) =

∫ +∞

0

〈

1

2
RicUs(γ̃)hm,T (s, γ̃) + h′m,T (s, γ̃), dβ̃s

〉

+

∫ +∞

0

〈

1

2
RicUs(γ̄)hm,T (s, γ̄) + h′m,T (s, γ̄), dβ̄s

〉

.

(3.10)

Here hm,T (s, γ̃) := h(s)lm,T (s, γ̃) and hm,T (s, γ̄) := h(−s)lm,T (s, γ̄) for all s ∈ [0,∞).

Proof. By (3.5), (3.6) we have

∫

E
o
R
(M)

〈DF, l̂m,Th〉Hdµo
R

=

∫

E
o
R+

(M)

∫

E
o
R+

(M)

m
∑

j=1

∂̂jf(γ̃, γ̄)

∫ Tj

0

〈

U−1
s (γ̃)∇gj(s, γ̃(s)), lm,T (s, γ̃)h(s)

〉

dsdµo
R+(γ̃)dµo

R+(γ̄)

+

∫

E
o
R+

(M)

∫

E
o
R+

(M)

k
∑

j=1

∂̂m+jf(γ̃, γ̄)

∫ T̄j

0

〈

U−1
s (γ̄)∇ḡj(−s, γ̄(s)), lm,T (s, γ̄)h(−s)

〉

dsdµo
R+(γ̃)dµo

R+(γ̄)

:= I + II,

(3.11)

where ∂̂jf(γ̃, γ̄) := ∂̂jf(γ).
According to (2.11) of Lemma 2.8, we get

I =

∫

E
o
R+

(M)

∫

E
o
R+

(M)

F (γ̃, γ̄)

∫ +∞

0

〈

1

2
RicUs(γ̃)hm,T (s, γ̃) + h′m,T (s, γ̃), dβ̃s

〉

dµo
R+(γ̃)dµo

R+(γ̄),

II =

∫

E
o
R+

(M)

∫

E
o
R+

(M)

F (γ̃, γ̄)

∫ +∞

0

〈

1

2
RicUs(γ̄)hm,T (s, γ̄) + h′m,T (s, γ̄), dβ̄s

〉

dµo
R+(γ̃)dµo

R+(γ̄),

where F (γ̃, γ̄) = F (γ). Combining this and (3.11), we finish the proof.
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Similar to the arguments as in the proof of Theorem 2.2 and based on the above
integration by parts formula (3.9), we obtain the following:

Theorem 3.3. The quadratic form (E o
R
,FCb) is closable and its closure (E o

R
,D(E o

R
))

is a quasi-regular Dirichlet form on L2(Eo
R
(M);µo

R
).

Proof. (a) Closablity: (I) Suppose that {Fk}∞k=1 ⊆ FCb is a sequence of cylinder
functions with

lim
m→∞

µo
R

(

F 2
m

)

= 0, lim
k,m→∞

E
o
R (Fk − Fm, Fk − Fm) = 0.(3.12)

Thus {DFm}∞m=1 is a Cauchy sequence in L2 (Eo
R
(M) → H;µo

R
) for which there exists

a limit Φ. It suffices to prove that Φ = 0. Given an orthonormal basis {hk}∞k=1 ⊂
C∞

c (R;Rn)∩H∞ of H, by the integration by parts formula (3.9), for every G ∈ FCb, hk
and k, i,m, T ∈ N+ we have

µo
R

(

〈DFi, l̂m,Thk〉HG
)

= µo
R

(

〈D (FiG) , l̂m,Thk〉H
)

− µo
R

(

〈DG, l̂m,Thk〉HFi

)

= µo
R

(

FiGΘ
m,T
hk

)

− µo
R

(

〈DG, l̂m,Thk〉HFi

)

.
(3.13)

Since G and DG are bounded and Θm,T
hk

∈ L2(Eo
R
(M);µo

R
) (due to (2.9) and the fact

hk ∈ C1
c (R;R

d)), by (3.12) we could take the limit i → ∞ under the integral in (3.13)
to conclude

µo
R

(

〈Φ, l̂m,Thk〉HG
)

= 0, ∀ G ∈ FCb, k,m, T ∈ N
+,

therefore we could find a µo
R
-null set ∆k ⊂W o

R
(M), such that

(3.14) 〈Φ(γ), l̂m,T (γ)hk〉H = 0, ∀ m, T ∈ Z+, γ /∈ ∆k.

For a fixed hk, we could find a Tk ∈ N+ (which may depend on hk) satisfying
supp(hk) ⊂ [−Tk, Tk]. Since the coordinate process γ(·) is non-explosive, for every
γ /∈ ∆0 with some µo

R
-null set ∆0, there exists mk(γ) ∈ Z+, such that γ̃(t) ∈ Dmk−1

and γ̄(t) ∈ Dmk−1 for all t ∈ [0, Tk], hence l̂mk,Tk
(t, γ) = 1 for all t ∈ [−Tk, Tk]. Here

Dmk−1 is defined in (2.8). Combining this with (3.14) we know

〈Φ(γ), hk〉H = 0, k ≥ 1, γ /∈ ∆0 ∪∆k,

which implies that Φ(γ) = 0, ∀ γ /∈ ∆ := ∪∞
k=0∆k. So Φ = 0, a.s., and (E o

R+ ,FCb) is
closable. By standard procedure, it is not difficult to show that its closure (E o

R
,D(E o

R
))

is a Dirichlet form.
(b) Quasi-Regularity:

20



In order to prove the quasi-regularity, we need to verify conditions (i)-(iii) in [51,
Definition IV-3.1]. By the same arguments as in the proof of Theorem 2.2, we could
check (ii) and (iii) of [51, Definition IV-3.1] for (E o

R
,D(E o

R
)), so we omit the proof here.

Since the metric space (Eo
R
(M); d̃) is separable, we can choose a fixed countable

dense subset {ξm|m ∈ N+} ⊂ W o
R
(M). Let ϕ ∈ C∞

b (R) be an increasing function
satisfying with

ϕ(t) = t, ∀ t ∈ [−1, 1] and ‖ϕ′‖∞ ≤ 1.

For each m ≥ 1, the function vm : Eo
R
(M) → R is given by

vm(γ) = ϕ(d̃(γ, ξm)), γ ∈ Eo
R
(M),

where d̃ is defined by (3.2). According to the same procedures as in the proof of Lemma
2.9 we have vm ∈ D(E o

R
) and

Dvm(γ)(s) = ϕ′(d̃(γ, ξm)) ·
(

∞
∑

k=1

1

2k

(

U−1
s (γ̃)∇1ρ̃(γ̃(s), ξm(s))1(k−1,k](s)

+ U−1
−s (γ̄)∇1ρ̃(γ̄(−s), ξm(s))1[−k,−k+1)(s)

)

)

for ds×µo
R
−a.s.(s, γ) ∈ R×Eo

R
(M), where ∇1ρ̃(·, x) denotes the gradient with respect

to the first variable of ρ̃(·, ·). By such expression we arrive at

sup
m≥1

E
o
R
(vm, vm) <∞.

Then based on this and repeating the arguments as in the proof of Theorem 2.2 we
can show

(3.15) wk := inf
m≤k

vm, k ∈ N
+, converges E

o
R
− quasi-uniformly to zero on Eo

R
(M),

therefore the capacity associated with (E o
R
,D(E o

R
)) is tight. So (i) of [51, Definition

IV-3.1] holds. By now we have finished the proof.

Remark 3.4. By the theory of the Dirichlet form, for the case of the whole line, we
also derive similarly Theorems 2.3 and 2.4 in Section 2.

As explained in the introduction, the invariant measure for the stochastic heat
equation on the whole line could be the distribution of a two-sided Brownian motion
with a shift given by Lebesgue measure, which may not be finite measure. So in our
setting it is also natural to consider the reference measure given by

∫

M
µx
R
(dγ)ν(dx)

with some Randon measure ν (which may not be finite measure). The support of the
measure is the paths on M with initial point not fixed.
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Let WR(M) := C(R;M) be the free path space, then (WR(M), d∞) is also a sepa-
rable metric space with d∞ defined by (3.1). Let d̃ be the L1-distance defined by (3.2),
and let ER(M) be the closure of WR(M) under d̃. It is easy to see that ER(M) is a
Polish space.

For any fixed Radon measure ν (not necessarily finite) on M , we could introduce
a measure (not necessarily finite) µν

R
(dγ) :=

∫

M
µx
R
(dγ)ν(dx) on ER(M), where µx

R
is

the probability measure defined as µo
R
with o replaced by x. Then we have that for

F (γ) = f
(

γ(−t̄k), ..., γ(−t̄1), γ(t0), γ(t1), ..., γ(tm)
)

with f ∈ Cc(M
k+m+1), it holds

∫

ER(M)

F (γ)dµν
R
=

∫ k
∏

i=1

p∆i t̄(ȳi−1, ȳi)
m
∏

i=1

p∆it(yi−1, yi)

f(ȳk, ..., ȳ1, y0, y1, ..., ym)dȳ1...dȳkdy1...dymν(dy0),

(3.16)

where the variable y0 = ȳ0 and pt is the heat kernel corresponding to 1
2
∆ and −t̄k <

... < −t̄1 < t̄0 = 0 = t0 < t1 < ... < tm, ∆it = ti − ti−1 and ∆it̄ = t̄i − t̄i−1. Here
Cc(M

k+m+1) denote continuous functions on Mk+m+1 with compact support.

Remark 3.5. When M is compact and ν is the normalized volume measure, then
µν
R
corresponds to the distribution of stationary M-valued Brownian motion. In the

case that ν is given by the volume measure, the Markov process we construct below
corresponds to stochastic heat equation on R with values in M without any boundary
conditions.

Remark 3.6. If ν is the volume measure (M could be either compact or non-compact),
then by expression (3.16) we know that θ♯sµ

ν
R
= µν

R
for any s ∈ R, where θ♯sµ

ν
R
denotes the

push forward measure for µν
R
by the map θs : ER(M) → ER(M) as θs(γ)(t) := γ(t+ s).

This means that µν
R
is invariant under any translation on R.

Remark 3.7. In [9, 42], the authors studied (1.1) with solutions taking values in
free loop space L(M) := {γ ∈ C([0, 1];M); γ(0) = γ(1)}. In this case we could also
construct the L2-Dirichlet form (Ẽ ν

R
,D(Ẽ ν

R)) as follows

Ẽ
ν
R
(F, F ) :=

1

2

∫

L(M)

〈DF,DF 〉Hµ̃ν(dγ)

:=
1

2

∫

M

∫

Lx(M)

〈DF,DF 〉Hµ̃x(dγ)ν(dx),

(3.17)

where Lx(M) := {γ ∈ C([0, 1];M); γ(0) = γ(1) = x}, µ̃x denotes the Brownian bridge
measure on Lx(M).

For the free loop measure µ̃ν above, if ν(dx) = p1(x, x)dx, then µ̃ν is invariant
under any rotation on S1. In [55], the quasi-regularity of (Ẽ ν

R
,D(Ẽ ν

R)) has been studied
under the assumption that M is compact. As explained in Remarks 3.11 and 3.14, by
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the method of this paper, we could also obtain the corresponding results for the case
that M is non-compact.

The state space L(M) corresponds to the spatial variable with values in finite vol-
ume, while ER(M) and Eo

R
(M) correspond to the case that the spatial variable in infinite

volume.

Here we only consider the case that ν is an infinite measure, since when ν is a finite
measure, the case is simpler and it may be handled similar as in Theorem 4.1.

Next, we assume that ν is infinite, then µν
R
is also an infinite measure on ER(M)

with support contained in WR(M). In this case 1 /∈ L2(µν
R
) and we need to introduce

a new class of cut-off functions ER(M). Let FCLip be the space of bounded Lipschitz
continuous functions on ER(M), i.e. for every F ∈ FCLip, there exist some m, k ∈
N, f ∈ C1

b (R
m+k), gi ∈ C0,1

Lip([0,∞) × M), ḡj ∈ C0,1
Lip((−∞, 0] × M), Ti, T̄j ∈ [0,∞),

i = 1, ..., m, j = 1, ..., k, such that
(3.18)

F (γ) = f

(
∫ T1

0

g1(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds,

∫ 0

−T̄1

ḡ1(s, γ(s))ds, ...,

∫ 0

−T̄k

ḡk(s, γ(s))ds

)

,

where C0,1
Lip([0,∞)×M) denotes the collection of functions g : [0,∞) ×M → R such

that g is continuous on [0,∞) and Lipschitz continuous (not necessarily bounded) on
M with the associated Lipschitz constants independent of s ∈ [0,∞). Now we fix a
point o ∈M . Let

FCc :=
{

F ∈ FCLip; there exists R > 0 such that F (γ) = 0 for all

γ ∈ ER(M) satisfying

∫ 1

0

ρ
(

o, γ(s)
)

ds > R
}

.

Lemma 3.8. Suppose that for every R > 0, it holds

(3.19)

∫

M

µx
R+

(

sup
s∈[0,1]

ρ
(

x, γ(s)
)

> ρ(o, x)− R
)

ν(dx) <∞,

then FCc is a dense subset of L2(ER(M);µν
R
).

Proof. Step (i) We first show FCc ⊂ L2(ER(M);µν
R
). For every F ∈ FCc, without

loss of generality we may assume that there exist R > 0, such that F (γ) = 0 for all
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γ ∈ ER(M) satisfying
∫ 1

0
ρ
(

o, γ(s)
)

ds > R. Then we have

∫

ER(M)

|F (γ)|2µν
R
(dγ) =

∫

M

∫

E
x
R
(M)

|F (γ)|2µx
R
(dγ)ν(dx)

=

∫

B(o,2R)

∫

Ex
R
(M)

|F (γ)|2µx
R(dγ)ν(dx) +

∫

B(o,2R)c

∫

Ex
R
(M)

|F (γ)|2µx
R(dγ)ν(dx)

≤ ‖F‖2∞
(

ν
(

B(o, 2R)
)

+

∫

B(o,2R)c
µx
R+

(

sup
s∈[0,1]

ρ(x, γ(s)) > ρ(o, x)− R
))

ν(dx) <∞,

where the third step is due to the fact when x /∈ B(o, 2R), F (γ) = 0 for all γ ∈
Ex

R
(M) with sups∈[0,1] ρ(γ(s), x) ≤ ρ(o, x) − R (if sups∈[0,1] ρ(γ(s), x) ≤ ρ(o, x) − R,

then
∫ 1

0
ρ
(

o, γ(s)
)

ds ≥ infs∈[0,1] ρ(γ(s), o) > R, hence F (γ) = 0).
Step (ii) Now we are going to show FCc is dense in L2(ER(M);µν

R
). It suf-

fices to prove that for every G(γ) := f
(

γ(t1), · · · , γ(tm)
)

with some m ∈ N+, t1 <

t2 · · · < tm and f ∈ C1
c (M

m), there exists a sequence {Gk,R}k,R ⊂ FCc such that
limk,R→∞ µν

R

(

|Gk,R − G|2
)

= 0. Here C1
c (M

m) denotes the C1 functions on Mm with
compact support.

By Nash isometric imbedding theorem, there is a smooth isometric imbedding η :
M → R

N with some N ∈ N
+ and we can extend f ∈ C1

c (M
m) to f̃ ∈ C1

c (R
Nm)

satisfying f̃
(

η(x)
)

= f(x) for all x ∈ M . Choose ϕR ∈ C1
b (R,R), φR ∈ C1

c (R,R)
satisfying

ϕR(x) =











x, if |x| ≤ R,

R + 1, if x > R + 1,

−R − 1, if x < −R − 1,

φR(x) =











1, if |x| ≤ R,

∈ (0, 1), if R < |x| < R + 1,

0, if |x| > R + 1.

We set ϕR,N(x) :=
∏N

i=1 ϕR(xi) for x = (x1, ..., xN).

Gk,R(γ) := φR

(

∫ 1

0

ρ
(

o, γ(s)
)

ds
)

f̃
(

k

∫ t1+
1
k

t1

ϕR,N◦η
(

γ(s)
)

ds, · · · , k
∫ tm+ 1

k

tm

ϕR,N◦η
(

γ(s)
)

ds
)

,

then it is easy to verify that Gk,R ∈ FCc for all k > 0 and R large enough, and
limk,R→∞ µν

R

(

|Gk,R − G|2
)

= 0 ( (since f̃ ∈ C1
c (R

Nm), this could be shown by the
dominated convergence theoem). By now we have finished the proof.

Now we give some sufficient conditions on the curvature of M for (3.19).
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Lemma 3.9. Suppose that

(3.20) Ricx(X,X) ≥ −C1

(

1 + ρ(o, x)α
)

, ∀ x ∈ M, X ∈ TxM, |X| = 1,

for some C1 > 0, α ∈ (0, 2) and o ∈ M , where Ricx denotes the Ricci curvature
operator at x ∈ M . Then for every Radon measure ν(dx) = ν(x)dx (here dx denotes
the volume measure on M) such that

(3.21) |ν(x)| ≤ C2 exp(C3ρ(o, x)
β), ∀x ∈M

with some C2, C3 > 0 and β ∈ (0, 2), (3.19) holds.

Proof. Note that (3.20) implies that

(3.22) Ricy(Y, Y ) ≥ −K1

(

ρ(o, y)
)

, ∀ y ∈M, Y ∈ TyM, |Y | = 1,

with K1(r) := C1(1 + rα). It is easy to verify that we could find a c1 > 0 such that

(3.23) c2 := sup
t>0

(

t
√

(n− 1)K1(t)− 2c1t
2
)

<∞.

Then according to [60, Lemma 2.2] we know that for every N > 0 and T > 0,

(3.24) µo
R+

(

sup
s∈[0,T ]

ρ
(

o, γ(s)
)

> N
)

≤ en+c2−κ(T )N2

,

where κ(T ) := 1
2T
e−1−2c1T .

Also note that (3.22) implies for every x ∈M ,

Ricy(Y, Y ) ≥ −2K1

(

ρ(x, y)
)

− 2K1

(

ρ(o, x)
)

, ∀ y ∈M, Y ∈ TyM,

Then taking c1 = 1 and using 2K1(t) + 2K1

(

ρ(o, x)
)

to replace K1(t) in (3.23), we
have c2 ≤ c3(1 + ρ(o, x)α). Therefore according to (3.24) we know for all R > 0 and
x /∈ B(o, 2R),

µx
R+

(

sup
s∈[0,1]

ρ
(

x, γ(s)
)

> ρ(o, x)−R
)

≤ exp
(

n + c3(1 + ρ(o, x)α)− κ(1)(ρ(o, x)− R)2
)

≤ exp
(

n + c3(1 + ρ(o, x)α)− κ(1)

4
ρ(o, x)2

)

≤ c4e
−c5ρ(o,x)2 ,

(3.25)

where c4, c5 are positive constants independent of x ∈M and R > 0. Denote by Cut(o)
the cut-locus of o in M and the exponential map from o ∈M by expo : ToM →M . It
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is well known that exp−1
o : M \ Cut(o) → exp−1

o

(

M \ Cut(o)
)

⊂ ToM ≃ R+ × Sn−1 is
a diffeomorphism, which induces the geodesic spherical coordinates of M (see e.g. [14,
Section III.1] for details). Let (r, θ) ∈ R

+ × S
n−1 be the element in geodesic spherical

coordinates, then for every f ∈ Cc(M) we have (see e.g. [14, Theorem III 3.1])

∫

M

f(x)dx =

∫

R+

∫

Sn−1

f
(

(r, θ)
)∣

∣|A (r, θ)|
∣

∣drdθ,

where A (r, θ) is a n× n matrix, |A | denotes the determinant of A , and A satisfying
the following equation

A
′′

(t, θ) + R(t, θ)A (t, θ) = 0, A (0, θ) = 0, A
′(0, θ) = I.

Here R(t, θ) ∈ L(Rn;Rn) ≃ Rn×n and R(t, θ)ξ := U−1
t R

(

γ′θ(t), Utξ
)

γ′θ(t) for all ξ ∈ Rn

with γθ(t) = expo

(

(t, θ)
)

, Ut : R
n → Tγθ(t)M is the parallel translation along geodesic

γθ(·), R denotes the Riemannian curvature operator on M .
Moreover, we have the following estimates for |A | (see e.g. [14, Theorem III 4.3]),

(3.26)
∣

∣|A (r, θ)|
∣

∣ ≤
(

√

n− 1

K1(r)
sinh

(

√

K1(r)

n− 1
r
))n−1

≤ c6e
c7r1+α/2

, r > 0,

where c6, c7 are positive constants independent of r, K1(r) is the function in (3.22) and
the last step is due to sinha

a
≤ cosh a and (3.20).

Combining (3.21), (3.25) and (3.26) yields

∫

B(o,2R)c
µx
R+

(

sup
s∈[0,T ]

ρ
(

x, γ(s)
)

> ρ(o, x)− R
)

ν(dx)

≤ c8

∫ ∞

2R

∫

Sn−1

exp
(

C3r
β + c7r

1+α/2 − c5r
2
)

dθdr

≤ c9

∫ ∞

2R

e−c10r2dr ≤ c11e
−c12R2

.

(3.27)

Here in the second step of inequality we have applied the fact α ∈ (0, 2) and β ∈ (0, 2).
Based on this estimate we could obtain (3.19) immediately.

Remark 3.10. By Lemma 3.9 we know that under curvature condition (3.20), the
property (3.19) holds if ν is the volume measure of M .

Remark 3.11. For the free loop measure µ̃ν defined by (3.17) on L(M), by carefully
tracking the proof of Lemma 3.8 we know if for every R > 0,

(3.28)

∫

M

µ̃x
(

sup
s∈[0, 1

2
]

ρ
(

x, γ(s)
)

> ρ(o, x)− R
)

ν(dx) <∞,
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then FCc is dense in L2(L(M); µ̃ν).
When we choose ν(dx) = p1(x, x)dx, it holds.

(3.29)

∫

M

µ̃x
(

sup
s∈[0, 1

2
]

ρ
(

x, γ(s)
)

> ρ(o, x)−R
)

ν(dx)

=

∫

M

µx
R+

(

1
{sup

s∈[0, 12 ]
ρ
(

x,γ(s)
)

>ρ(o,x)−R}
(γ)p 1

2

(

γ(
1

2
), x
)

)

dx

≤
∫

M

√

µx
R+

(

sup
s∈[0, 1

2
]

ρ
(

x, γ(s)
)

> ρ(o, x)−R
)

√

∫

M

p 1
2
(x, y)3dydx,

where the last step is due to Cauchy-Schwartz inequality.
If the curvature condition (3.20) holds, then we know that (3.25) is true. Moreover,

suppose (3.20) holds and the following lower bound of volume (3.30) is satisfied (, which
could be viewed as an local volume non-collapsed condition)

(3.30) inf
x;ρ(o,x)≤R

m
(

B(x,
1

2
)
)

≥ C1e
−C2Rβ

, ∀R > 1,

where β ∈ (0, 2), C1, C2 are constants, m denotes the volume measure on M and
B(x, r) := {y ∈ M ; ρ(y, x) ≤ r} is the geodesic ball on M . Then according to the
proof of [7, Corollary 3] (here our curvature condition (3.20) is a little different from
[7]), we have

p 1
2
(x, y) ≤ C3 exp

(

− C4ρ(x, y)
2 + C5

(

ρ(o, x)max(α,β) + ρ(o, y)max(α,β)
)

)

.

Putting this into (3.29) and by the same arguments as in the proof of Lemma 3.9 we
could prove (3.28).

As a result, combining all the above estimates we could prove that if (3.20) and
(3.30) are true, then FCc is dense in L2(L(M); µ̃ν).

For F ∈ FCc, we still define the directional derivative DhF (γ) along h ∈ H :=
L2(R → R

n; ds) and the gradient operator DF ∈ H as in (3.6) and (3.7), respectively.
Here as explained before Lemma 2.9 we know that DhF and DF are well-defined for
µν
R
-a.e. γ.
Now for the fixed o ∈ M , as in Lemma 2.6 (although here the initial point will

not be fixed, see e.g. [58] or [16]) we could construct a series of relatively compact
subset {Dm}∞m=1 of M (with o ∈ Dm for all m), and a series of adapted vector fields
{lm,T}∞m,T=1 such that lm,T : [0,∞)×WR+(M) → [0, 1], items (1)-(2) in Lemma 2.6 and
the following estimates hold

sup
x∈Dm

∫

Ex
R+

(M)

∫ t

0

|l′k,T (s, γ)|pdsµx
R+(dγ) <∞, k > m, p > 0.
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In particular, by (1) in Lemma 2.6 we have

lm,T (s, γ) ≡ 0, µx
R+ − a.s. γ ∈ Ex

R+(M) if x /∈ Dm.

As before, we split γ ∈ ER(M) into γ̃, γ̄ ∈ ER+(M) by

γ̃(s) := γ(s), s ≥ 0, γ̄(s) := γ(−s), s ≥ 0,

and following the procedures of (3.8) we could extend lm,T to an adapted vector field

l̂m,T : R×ER(M) → [0, 1]. Moreover, it holds that

l̂m,T (s, γ) ≡ 0, µx
R − a.s. γ ∈ Ex

R(M) if x /∈ Dm.

(3.31) sup
x∈Dm

∫

E
x
R
(M)

∫ t

0

|l̂′k,T (s, γ)|pdsµx
R
(dγ) <∞, ∀ k > m, p > 0.

By the proof of Theorem 2.8 in [16] (see also appendix), (3.9) holds for µx
R
with every

x ∈ Dq with q < m, which yields immediately for every F ∈ FCc, h ∈ H∞, m, k, T ∈
N+ with k > m (note that h(0) = 0 for every h ∈ H∞),

(3.32)

∫

Dm

∫

Ex
R
(M)

〈DF, l̂k,Th〉Hdµx
Rν(dx) =

∫

Dm

∫

Ex
R
(M)

FΘk,T
h dµx

Rν(dx),

where Θk,T
h is defined by (3.10).

Fix a sequence of elements {hk} ⊂ H
∞ such that it is an orthonormal basis in H,

we define the following symmetric quadratic form

E
ν
R
(F,G) :=

1

2

∫

ER(M)

〈DF,DG〉Hdµν
R
=

1

2

∞
∑

k=1

∫

ER(M)

Dhk
FDhk

Gdµν
R
; F,G ∈ FCc.

In particular, by the same arguments as in the proof of Lemma 3.8, we know E ν
R
(F, F ) <

∞ for every F ∈ FCc.
Since the reference measure µν

R
has infinite mass, we use a cut-off technique to prove

the quasi-regularity of the associated L2-Dirichlet form.

Theorem 3.12. Suppose that (3.19) holds. Then the quadratic form (E ν
R
,FCc) is clos-

able and its closure (E ν
R
,D(E ν

R
)) is a quasi-regular Dirichlet form on L2(ER(M);µν

R
).

Proof. (a) Closablity: The proof is similar to that of Theorem 3.3. Suppose {Fk}∞k=1 ⊆
FCc is a sequence of cylinder functions with

lim
m→∞

µν
R

(

F 2
m

)

= 0, lim
k,m→∞

E
ν
R
(Fk − Fm, Fk − Fm) = 0.(3.33)
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Thus {DFm}∞m=1 is a Cauchy sequence in L2 (ER(M) → H;µν
R
) for which there exists

a limit Φ. It suffices to prove that Φ = 0.
Combining (3.33) with (3.31) and (3.32) yields that for all m, k, T ∈ N

+, G ∈ FCc

and the orthonormal basis {hi}∞i=1 ⊂ H∞ of H with k > m,

∫

Dm

∫

E
x
R
(M)

G〈Φ, l̂k,Thi〉Hdµx
R
ν(dx) = 0,

which ensures the existence of a µν
R
-null set ∆i such that for all m, k, T ∈ N+ with

k > m,

(3.34) l̂k,T (γ)〈Φ(γ), hi〉H = 0, ∀ γ /∈ ∆i, γ(0) ∈ Dm.

For a fixed hi ∈ H∞, we could find Ti ∈ N+ (which may depend on hi) satisfying
supphk ⊂ [−Ti, Ti]. Since γ(·) is non-explosive, for every γ /∈ ∆0 with some µo

R
-null set

∆0, there exist mi, ki ∈ Z+ (which may depend on γ), such that ki > mi, γ(0) ∈ Dmi
,

γ(t) ∈ Dki−1 for all t ∈ [−Ti, Ti], hence l̂ki,Ti
(t, γ) = 1 for all t ∈ [−Ti, Ti]. By this and

(3.34) we know
〈Φ(γ), hi〉H = 0, i ≥ 1, γ /∈ ∆0 ∪∆i,

which implies that Φ(γ) = 0, ∀ γ /∈ ∆ := ∪∞
i=0∆i. So Φ = 0, a.s., and (E ν

R
,FCc)

is closable. By standard methods, we show easily that its closure (E ν
R
,D(E ν

R
)) is a

Dirichlet form.
(b) Quasi-Regularity:
We first verify (i) of [51, Definition IV-3.1]: Since the metric space (ER(M); d̃)

(d̃ is defined by (3.2)) is separable, we can choose a fixed countable dense subset
{ξm|m ∈ N+} ⊂ WR(M). Let ϕ ∈ C∞

b (R) such that ϕ is an increasing function
satisfying

ϕ(t) = t, ∀ t ∈ [−1, 1] and ‖ϕ′‖∞ ≤ 1.

Let φR ∈ C∞
c (R) such that ‖φ′

R‖∞ ≤ 2 and

φR(x) =











1, if |x| ≤ R,

∈ (0, 1), if R < |x| ≤ R + 1,

0, if |x| > R + 1.

For fixed o ∈M and each m,R ∈ N+, we define vm,R : ER(M) → R by

vm,R(γ) = φR

(

∫ 1

0

ρ(o, γ(s))ds
)

ϕ(d̃(γ, ξm)), γ ∈ ER(M).

Then by similar argument as in the proof of Lemma 2.9, it is easy to see that vm,R ∈
D(E ν

R
).
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Define for closed set A ⊂ ER(M)

DA(E
ν
R ) := {u ∈ D(E ν

R )|u = 0 µν
R − a.e. on Ac},

which is a closed subspace of D(E ν
R
). This implies that (E ν

R
,DA(E

ν
R
)) is a Dirichlet

form. Now we have vm,R ∈ DBR+1
(E ν

R
), with BR := {γ ∈ ER(M),

∫ 1

0
ρ(o, γ(s))ds ≤ R}.

Still according to the same procedures as that in the proof of Lemma 2.9 (2) we
have for every m,R ∈ N+,

Dvm,R(γ)(s)

=φR

(

∫ 1

0

ρ(o, γ(s))ds
)

ϕ′(d̃(γ, ξm)) ·
(

∞
∑

k=1

1

2k

(

U−1
s (γ̃)∇1ρ̃(γ̃(s), ξm(s))1(k−1,k](s)

+ U−1
−s (γ̄)∇1ρ̃(γ̄(−s), ξm(s))1[−k,−k+1)(s)

)

)

+ φ′
R

(

∫ 1

0

ρ(γ(s), o)ds
)

ϕ(d̃(γ, ξm))
(

U−1
s (γ̃)∇1ρ(γ̃(s), o)

)

1(0,1](s)

for ds×µν
R
−a.s.(s, γ) ∈ R×Eo

R
(M). Such expression yields that for every fixed R ∈ N+,

∫

sup
m≥1

|Dvm,R|2Hdµν
R
<∞.

Based on this and [51, Lemma I-2.12, Proposition III-3.5, Lemma IV-4.1] we obtain
that for every fixed R > 0,

(3.35) wk,R := inf
m≤k

vm,R converges E
ν
R − quasi-uniformly to zero on ER(M).

Therefore for each R,N ∈ N+ there exists a closed set F̂N,R ⊂ ER(M) with

(3.36) Cap((F̂N,R)
c) <

1

N
,

and wk,R converges uniformly on F̂N,R to zero as k → ∞. Here Cap denotes the
capacity associated to the Dirichlet form (E ν

R
,D(E ν

R
)). In particular, for every open

set U ⊂ ER(M)

Cap(U) := inf{E ν
R,1(w,w)|w ∈ D(E ν

R ), w ≥ G1ψ µν
R-a.e. on U},

where ψ ∈ L2(ER(M), µν
R
) with ψ > 0 is arbitrarily chosen, for β ∈ R

+, w ∈ D(E ν
R
),

E ν
R,β(w,w) := E ν

R
(w,w)+βµν

R
(w2) and (Gα)α>0 is the resolvent associated to the Dirich-

let form (E ν
R
,D(E ν

R
)) (we refer readers to [51, Chapter III. Defi. 2.4] for more details).
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Set FN,R := F̂N,R ∩ BR. Since by definition of FCc and D(E ν
R
), it is easy to verify

that FCc ⊂
⋃∞

R=1 DBR
(E ν

R
) ⊂ D(E ν

R
), which implies that

⋃∞
R=1 DBR

(E ν
R
) is dense in

D(E ν
R
) (with respect to E ν

R,1 norm). Then according to [51, Theorem III-2.11] we obtain

(3.37) lim
R→∞

Cap(Bc
R) = 0.

Note that by (3.36)

Cap((FN,R)
c) ≤Cap((F̂N,R)

c) + Cap(Bc
R)

≤ 1

N
+ Cap(Bc

R).

Combining this with (3.37) yields

(3.38) lim
N,R→∞

Cap((FN,R)
c) = 0.

Moreover, we have wk,R → 0 uniformly on FN,R ⊂ BR as k → ∞ and φR(
∫ 1

0
ρ(o, γ(s))ds) =

1 on BR, therefore due to the definition of wk,R it is not difficult to verify for every
fixed N,R ∈ N

+,

lim
k→∞

sup
γ∈FN,R

inf
m≤k

ϕ
(

d̃(γ, ξm)
)

= 0.

Hence for every 0 < ε < 1 there exists k ∈ N+ such that wk,R < ε on FN,R, which
implies that FN,R ⊂ ∪k

m=1B(ξm, ε), where B(ξm, ε) := {γ ∈ ER(M); d̃(ξm, γ) < ε}
denotes the ball in (ER(M), d̃). Consequently, for every N,R ∈ N+, FN,R is totally
bounded, hence compact.

By now we have shown that {FN,R}∞N,R=1 is a compact E -nest. So (i) of [51, Defi-
nition IV-3.1] holds

For any γ, η ∈ ER(M) with ε := d̃(γ, η) > 0, then there exist R ∈ N and certain
ξM such that d̃(ξM , η) <

ε
4
and d̃(ξM , γ) >

ε
4
. Taking a R large enough such that

φR

(

∫ 1

0
ρ(γ(s), o)ds

)

= φR

(

∫ 1

0
ρ(η(s), o)ds

)

= 1, then it is easy to see vM,R(γ) 6=
vM,R(η). Hence {vm,R(γ), m,R ∈ N+} separate points and (iii) of [51, Definition IV-
3.1] follows. Following the same procedures as in the proof of Theorem 2.2 and Theorem
4.1 above, we could check (ii) in [51, Definition IV-3.1]. By now we have finished the
proof.

By using the theory of Dirichlet form (refer to [51]), we obtain the following asso-
ciated diffusion process. Furthermore, we also obtain that the process is conservative
in the sense that the lifetime of the process is infinity. If the reference measure is
finite, it is easy to see 1 ∈ D(E ν

R
) and E ν

R
(1, 1) = 0, which implies the processes are

conservative and recurrent. However, in this case 1 /∈ D(E ν
R
). Motivated by [21] for

the finite dimensional case, we construct suitable approximation functions and obtain
that the processes are conservative under mild assumptions.
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Theorem 3.13. Suppose that (3.19) holds. There exists a (Markov) diffusion process
M = (Ω,F ,Mt, (X(t))t≥0, (P

z)z∈ER(M)) on ER(M) properly associated with (E ν
R
,D(E ν

R
)),

i.e. for u ∈ L2(ER(M);µν
R
)∩Bb(ER(M)), the transition semigroup Ptu(z) := E

z[u(X(t))]
is an E ν

R
-quasi-continuous version of Ttu for all t > 0, where Tt is the semigroup asso-

ciated with (E ν
R
,D(E ν

R
)). Moreover, the results in Theorem 2.4 also hold in this case.

Moreover, if conditions (3.20) and (3.21) hold, then the diffusion process M =
(Ω,F ,Mt, (X(t))t≥0, (P

z)z∈ER(M)) is conservative in the sense that Tt1 = 1 µν
R
-a.e.

for all t > 0 (c.f. [37, Section 1.6 P56]).
In particular, for M = R, ν being Lebesgue measure, the diffusion process M =

(Ω,F ,Mt, (X(t))t≥0, (P
z)z∈ER(M)) is recurrent in the sense that Gf = 0 or ∞ µν

R
-a.e.

with f ∈ L1(ER(M);µν
R
), f ≥ 0 (c.f. [37, Section 1.6 P56]). Here Gf =

∫∞

0
Ttfdt.

Proof. The existence of a diffusion process is the same as that for Theorem 2.4 (due
to quasi-regularity of (E ν

R
,D(E ν

R
))), so we omit it here.

Step (1) We first prove that the process is conservative.
Choose φR ∈ C∞

c (R) to be the same function as that in the proof of Theorem

3.12. For every R > 0, we define ΦR(γ) := φR

(

∫ 1

0
ρ(o, γ(s))ds

)

. For N > 0, choose

F ∈ L2(ER(M), µν
R
), F ≥ 0 with F (γ) = φN(

∫ 1

0
ρ(o, γ(s))ds). Let (L,D(L)) denote

the infinitesimal generator associated with (E ν
R
,D(E ν

R
)), then it holds that ut := TtF ∈

D(L) for all t > 0.
Note that

DΦR(γ)(s) = φ′
R

(

∫ 1

0

ρ(γ(s), o)ds
)(

U−1
s (γ)∇1ρ(γ(s), o)

)

1[0,1](s).

Since DΦR(γ) = 0 for all γ satisfying inft∈[0,1] ρ(γ(s), o) > R + 1, by (3.26) and (3.27)
we obtain for all R > 1,
(3.39)

E
ν
R
(ΦR) =

∫

M

∫

E
x
R
(M)

|DΦR(γ)|2Hdµx
R
ν(dx)

≤
∫

B(o,2R)

∫

E
x
R
(M)

dµx
R
ν(dx) +

∫

B(o,2R)c
µx
R+

(

sup
s∈[0,1]

ρ(x, γ(s)) ≥ ρ(o, x)− R− 1
)

ν(dx)

≤ ν(B(o, 2R)) + c1 exp(−c2R2) ≤ c3 exp(c4R
ζ),

where c1 − c4 are positive constants independent of R, ζ := max{1 + α
2
, β} < 2 with
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α, β ∈ (0, 1) being the constants in (3.20) and (3.21). Then we have
(3.40)

µν
R(FΦR)− µν

R(utΦR) =−
∫ t

0

d

ds
µν
R(usΦR)ds = −

∫ t

0

µν
R(LusΦR)ds

=

∫ t

0

∫

〈Dus, DΦR〉Hdµν
R
ds =

∫ t

0

∫

〈ϕN,RDus, ϕ
−1
N,RDΦR〉Hdµν

R
ds

≤
(∫ t

0

∫

|ϕN,RDus|2Hdµν
R
ds

)1/2(∫ t

0

∫

|ϕ−1
N,RDΦR|2Hdµν

R
ds

)1/2

,

where the operator D on us is the closure of D defined in (3.7) and

ϕN,R(γ) := exp
(

θψN,R(

∫ 1

0

ρ(γ(s), o)ds)
)

,

for some θ > 0, R > 2(N + 1) and ψN,R ∈ C1
b (R

+) satisfies ‖ψ′
N,R‖∞ ≤ 2, ψN,R(t) = t

for t ∈ [R,R + 1] and ψN,R(t) = 0 for t ∈ [0, N + 1]. Define ϕN,R,M := ϕN,RΦM . It is
obvious that ϕN,R,M ∈ FCc and limM→∞ ϕN,R,M = ϕN,R µν

R
-a.s. γ. By [51, Corollary

I-4.15] we know ϕ2
N,R,Mut ∈ D(E ν

R
). Furthermore we have

∂

∂t
µν
R(ϕ

2
N,R,Mu

2
t ) = 2µν

R(ϕ
2
N,R,MLut · ut) = −2

∫

〈Dut, D(ϕ2
N,R,Mut)〉Hdµν

R

=− 2

∫

〈Dut, 2utϕN,R,MDϕN,R,M + ϕ2
N,R,MDut〉Hdµν

R

≤− 2

∫

|ϕN,R,MDut|2Hdµν
R
+ 2
(

λ−1

∫

|ϕN,R,MDut|2Hdµν
R
+ λ

∫

|utDϕN,R,M |2
H
dµν

R

)

≤− 2

∫

|ϕN,R,MDut|2Hdµν
R + 2

(

λ−1

∫

|ϕN,R,MDut|2Hdµν
R + 8λθ2µν

R(ϕ
2
N,R,Mu

2
t )

+ 2λµν
R
(ϕ2

N,R|DΦM |2
H
u2t )
)

.

Here the last step is due to the property |DϕN,R,M |2
H
≤ 8θ2ϕ2

N,R,M + 2ϕ2
N,R|DΦM |2

H
.

Choosing λ = 1 and using Gronwall’s Lemma we obtain that

µν
R
(ϕ2

N,R,Mu
2
t ) ≤ exp(16θ2t)

(

µν
R
(ϕ2

N,R,MF
2) +

1

4θ2
λµν

R
(ϕ2

N,R|DΦM |2
H
u2t )
)

.

By the dominated convergence theorem we know limM→∞ µν
R
(ϕ2

N,R|DΦM |2
H
u2t ) = 0.

Based on this, choosing λ = 2 and letting M → ∞ we have

(3.41)

∫ t

0

|ϕN,RDus|2Hds ≤ 2e16θ
2tµν

R
(ϕ2

N,RF
2).
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For γ with DΦR(γ) 6= 0 (i.e. R ≤
∫ 1

0
ρ(o, γ(s))ds ≤ R + 1) it is easy to see

ϕN,R(γ)
−1 ≤ e−θR. Now combining (3.39), (3.40) and (3.41) yields

µν
R
(FΦR)− µν

R
(utΦR) ≤

[

2c3e
16θ2tµν

R
(ϕ2

N,RF
2)e−2θRtec4R

ζ

]1/2

,

Choosing θ = R
16t

we have

(3.42) µν
R
(FΦR)− µν

R
(utΦR) ≤

[

c5µ
ν
R
(ϕ2

N,RF
2)te−

R2

16t
+c4Rζ

]1/2

,

where c4, c5 are independent of F , N and R.
We arrive at for all R > 2(N + 1)

µν
R
(ΦNΦR)− µν

R
(Tt(ΦN )ΦR) ≤

[

c5µ
ν
R
(ϕ2

N,RΦ
2
N)te

−R2

16t
+c4Rζ

]1/2

=

[

c5µ
ν
R
(Φ2

N)te
−R2

16t
+c4Rζ

]1/2

,

where the last equality is due to the fact ΦN (γ) 6= 0 only if ϕN,R(γ) = 1 since R >
2(N + 1). Hence letting R → ∞ we derive for every N > 0 and t > 0 (note that ζ < 2
here)

∫

ΦNdµ
ν
R
−
∫

ΦNTt1dµ
ν
R
=

∫

ΦNdµ
ν
R
−
∫

Tt(ΦN )dµ
ν
R
≤ 0.

Since it always hold Tt1 ≤ 1, the above inequality implies that Tt1(γ) = 1 for all

γ ∈ ER(M) satisfying
∫ 1

0
ρ
(

γ(s), o
)

ds ≤ N . Also note that N is arbitrary, we obtain
Tt1(γ) = 1 for µν

R
-a.e. γ ∈ ER(M) immediately, therefore the processM is conservative.

Step (ii) Now we prove the recurrence property. Choosing φ̃R ∈ C∞
c (R+) satisfying

φ̃R(x) =











1, if x ≤ R,

∈ (0, 1), if R < x < 2R,

0. if x > 2R,

and ‖φ′
R‖∞ ≤ 1

R
. We define Φ̃R(γ) := φ̃R

(

∫ 1

0
ρ(o, γ(s))ds

)

. Then we have

DΦ̃R(γ)(s) = φ′
R

(

∫ 1

0

ρ(γ(s), o)ds
)(

U−1
s (γ)∇1ρ(γ(s), o)

)

1[0,1](s).

Now it holds |DΦ̃R|H ≤ 1
R

and DΦ̃R(γ) = 0 all γ satisfying inft∈[0,1] ρ(γ(s), o) > 2R,
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then still according to (3.27) we get

E
ν
R (Φ̃R) =

∫

M

∫

E
x
R
(M)

|DΦ̃R(γ)|2Hdµx
Rν(dx)

≤ 1

R2

∫

B(o,3R)

ν(dx) +

∫

B(o,3R)c

∫

E
x
R+

(M)

µx
R+

(

sup
s∈[0,1]

ρ(x, γ(s)) ≥ ρ(o, x)− 2R− 1
)

ν(dx)

≤ c6
R

+ c6 exp(−c7R2) → 0, R→ ∞.

Therefore we have found as series of Φ̃R such that Φ̃R → 1 µν
R
-a.e. as R → ∞ and

E ν
R
(Φ̃R) → 0 as R→ ∞, so the recurrence follows by [37, Theorem 1.6.5].

Remark 3.14. By integration by parts formula obtained in [18] and carefully tracking
the proof of Theorem 3.12 and 3.13, we could verify that if (3.20) and (3.30) are
true, then the conclusions of Theorems 3.12 and 3.13 still hold for (Ẽ ν

R
,D(Ẽ ν

R)) with
ν(dx) = p1(x, x)dx. Here (Ẽ ν

R
,D(Ẽ ν

R)) is defined in Remark 3.7.
Furthermore a similar argument implies that the results in Theorems 3.12 and 3.13

also hold for the reference measure given by ec
∫ 1
0
Scal(γ(s))dsµ̃ν(γ), if (3.20) and (3.30)

are true. Here c ∈ R and Scal denotes the scalar curvature.

Remark 3.15. (Finite Volume Case for the line) For each A1, A2 ∈ [0,∞), we
could also construct Wiener measure on C([−A2, A1],M). In this case the above results
also hold.

4 Ergodicity/ Non-ergodicity

4.1 Half line

In this section, we study the long time behavior of the Markov process X(t), t ≥ 0,
and the L2-Dirichlet form (E o

R+ ,D(E o
R+)) constructed in Section 2. In fact, we establish

some functional inequalities associated with (E o
R+ ,D(E o

R+)), which gives ergodicity or
non-ergodicity of the corresponding Markov process X(t), t ≥ 0.

4.1.1 M has strictly positive Ricci curvature

Theorem 4.1. [Log-Sobolev inequality and Poincaré inequality]

(1) Suppose that Ric ≥ K for K > 0, then the log-Sobolev inequality holds

(4.1) µo
R+(F 2 logF 2) ≤ 2C(K)E o

R+(F, F ), F ∈ FC1
b , µ

o
R+(F 2) = 1,

where C(K) := 4
K2 .
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(2) Suppose that M is compact and there exists ε ∈ (0, 1) such that

(4.2) δε := sup
T∈[0,∞)

δε(T ) <∞,

where

δε(T ) := ε−1
(

1− e−εT
)

∫ T

0

eεsη(s)ds, η(s) := sup
x∈M

µx
R+

[

exp
(

−
∫ s

0

K(γ(r))dr
)]

,

(4.3)

and K(x) := inf{Ricx(X,X);X ∈ TxM, |X| = 1}, x ∈ M . Then the following
Poincaré inequality holds,

(4.4) µo
R+(F 2)− µo

R+(F )2 ≤ δεE
o
R+(F, F ), F ∈ FC1

b ,

where δε is defined by (4.2).

Remark 4.2. Obviously if

(4.5) lim sup
t↑∞

1

t
sup
x∈M

log µx
R+

[

exp
(

−
∫ s

0

K(γ(r))dr
)]

< 0,

then condition (4.2) holds.
Moreover, as explained in [27, 59], condition (4.5) is equivalent to the spectral

positivity of the operator L0 = −∆ + K (here L0f(x) := ∆f(x) + K(x)f(x)). In
particular, if Ric ≥ K for some constant K > 0, then (4.2) holds.

Remark 4.3. (i) According to [61], the log-Sobolev inequality implies hypercontrac-
tivity of the associated semigroup Pt and Poincaré inequality, which derives the
L2-exponential ergodicity of the process: ‖PtF −

∫

Fdµ‖L2 ≤ e−t/C(K)‖F‖L2 .

(ii) Poincaré inequality also implies the irreducibility of the Dirichlet form (E o
R+ ,D(E o

R+)).
It is obvious that the Dirichlet form (E o

R+ ,D(E o
R+)) is recurrent. Combining these

two results, by [37, Theorem 4.7.1], for any nearly Borel non-exceptional set B,

Pz(σB ◦ θn <∞, ∀n ≥ 0) = 1, for q.e. z ∈ Eo
R+(M).

Here σB = inf{t > 0 : X(t) ∈ B}, θ is the shift operator for the Markov process
X, and for the definition of any nearly Borel non-exceptional set we refer to
[37]. Moreover by [37, Theorem 4.7.3] we obtain the following strong law of large
numbers: for f ∈ L1(Eo

R+(M), µo
R+)

lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫

fdµo
R+ , Pz − a.s.,

for q.e. z ∈ Eo
R+(M).
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Proof of Theorem 4.1. Step (1) By the standard method and the technique in
[31](See also [40] and [55] and references therein), it is not difficult to prove (4.1). For
the reader’s convenience, in the following we give a detailed proof.

By [40] we have the martingale representation theorem, that is, for F ∈ FC1
b with

the form
(4.6)

F (γ) = f

(∫ T1

0

g1(s, γ(s))ds,

∫ T2

0

g2(s, γ(s))ds, ...,

∫ Tm

0

gm(s, γ(s))ds

)

, γ ∈ Eo
R+(M),

we have

(4.7) F = µo
R+(F ) +

∫ T

0

〈HF
s , dβs〉,

where T = maxTi, βs is the anti-development of canonical path γ(·) (whose distribution
is an Rn-valued Brownian motion under µo

R+) and

(4.8) HF
s = µo

R+

[

M−1
s

∫ T

s

Mr(DF (r))dr

∣

∣

∣

∣

Fs

]

.

Here and in the following (Ft) is the natural filtration generated by γ(·), µo
R+ [·|Ft]

denotes the conditional expectation under µo
R+ and Mt is the solution of the equation

(4.9)
d

dt
Mt +

1

2
MtRicUt = 0, M0 = I.

Let F = G2 for G ∈ FC1
b being strictly positive and with the form (4.6), consider the

continuous version of the martingale Ns = E[F |Fs]. By the lower bound of the Ricci
curvature it is easy to verify for every 0 ≤ s ≤ r <∞

(4.10) ‖M−1
s Mr‖ ≤ exp

(

− 1

2

∫ r

s

K(γ(t))dt
)

≤ exp
(

− K(r − s)

2

)

,

where ‖ · ‖ denotes the matrix norm. Then we can take the conditional expectation
µo
R+ [·|Fs] in (4.7) to obtain

(4.11) Ns = µo
R+[F ] +

∫ s

0

〈HF
r , dβr〉.

Now applying Itô’s formula to Ns logNs, we have

µo
R+

(

G2 logG2
)

− µo
R+(G2) logµo

R+(G2)

= µo
R+ (NT logNT )− µo

R+ (N0 logN0) =
1

2
µo
R+

[∫ T

0

N−1
s |HF

s |2ds
]

.
(4.12)
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Here and in the following we use | · | to denote the norm in Rd. Note that

DF = D(G2) = 2GDG.

Using this relation in the explicit formula (4.8) for HF , we have

(4.13) HF
s = 2µo

R+

[

GM−1
s

∫ T

s

MrDG(r)dr

∣

∣

∣

∣

Fs

]

.

By Cauchy-Schwarz inequality in (4.13) and (4.10), we have

|HF
s |2 ≤ 4µo

R+[G2|Fs]µ
o
R+

[(
∫ T

s

e−K(r−s)/2|DG(r)|dr
)2∣
∣

∣

∣

Fs

]

.

Thus the right hand side of (4.12) can be controlled by

(4.14) 2µo
R+

[
∫ T

0

(
∫ T

s

e−K(r−s)/2|DG(r)|dr
)2

ds

]

.

By Hölder’s inequality we have
(∫ T

s

e−K(r−s)/2|DG(r)|dr
)2

≤
∫ T

s

e−K(r−s)/2dr

∫ T

s

e−K(r−s)/2|DG(r)|2dr.

Then changing the order of integration we obtain

µo
R+

(
∫ T

0

(
∫ T

s

e−K(r−s)/2|DG(r)|dτ
)2

ds

)

≤ µo
R+

(
∫ T

0

J1(s, T )|DG(s)|2ds
)

,

where

J1(s, T ) :=

∫ s

0

2

K

(

1− e−K(T−t)/2
)

e−K(s−t)/2dt

=
2

K2

[

2(1− e−
Ks
2 )− e−

K(T−s)
2 + e−

K(T+s)
2

]

≤ 4

K2
, ∀ s ∈ [0, T ]

Hence

µo
R+

(
∫ T

0

[(
∫ T

s

e−K(r−s)/2|DG(r)|dr
)2]

ds

)

≤ 4

K2
E

o
R+(G,G).

Combining all above estimates into (4.12), we complete the proof for (4.1).
Step (2) Some proof in this step is inspired by that of [59, Theorem 1]. Still

applying Itô formula to N2
s (where Ns = µo

R+ [F |Fs] and F ∈ FC1
b with the form (4.6)

) we arrive at

µo
R+(F 2)− µo

R+(F )2

= µo
R+(N2

T )− µo
R+(N2

0 ) = µo
R+

(

∫ T

0

|HF
s |2ds

)

.
(4.15)
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By (4.8), (4.10), Markov property and Cauchy-Schwartz inequality we obtain

∣

∣HF
s

∣

∣

2 ≤ µo
R+

[
∫ T

s

exp

(

−
∫ r

s

K(γ(t))dt

)

e−ε(T−r)dr
∣

∣

∣
Fs

]

µo
R+

[
∫ T

s

eε(T−r)|DF (r)|2dr
∣

∣

∣
Fs

]

≤
(
∫ T

s

sup
x∈M

µx
R+

[

exp

(

−
∫ r−s

0

K(γ(t))dt

)]

e−ε(T−r)dr

)

µo
R+

[
∫ T

s

eε(T−r)|DF (r)|2dr
∣

∣

∣
Fs

]

=

(
∫ T

s

η(r − s)e−ε(T−r)dr

)

µo
R+

[
∫ T

s

eε(T−r)|DF (r)|2dr
∣

∣

∣
Fs

]

,

where in the second inequality we used the Markov property of the canonical process

γ(·) and η(t) is defined by (4.3). Therefore let φ(t) :=
∫ t

0

(

∫ T

s
η(r − s)e−ε(T−r)dr

)

ds,

t ∈ [0, T ] it holds

µo
R+

(

∫ T

0

|HF
s |2ds

)

≤
∫ T

0

(

∫ T

s

η(r − s)e−ε(T−r)dr
)(

∫ T

s

eε(T−r)µo
R+(|DF (r)|2)dr

)

ds

=

∫ T

0

φ′(s)
(

∫ T

s

eε(T−r)µo
R+(|DF (r)|2)dr

)

ds

= µo
R+

(

∫ T

0

φ(r)eε(T−r)|DF (r)|2dr
)

.

Since by elementary calculation it is easy to check supr∈[0,T ] φ(r)e
ε(T−r) ≤ δε(T ), com-

bining all the estimates into (4.15) yields (4.4). �

4.1.2 M = Rn

In this subsection we consider the case that M = Rn and o = 0 ∈ Rn and we use Xt

to denote X(t) for simplicity. As mentioned in the introduction, it is easy to see that
the Markov process (Xt)t≥0 associated with (E o

R+ ,D(E o
R+)) is the unique solution to the

following stochastic heat equations on R+ × R+

∂tXt =
1

2
∆Xt + ξ, t > 0,

Xt(0) =0, t > 0,

X0(·) =γ(·) ∈ Eo
R+(Rn)

(4.16)

where ξ denotes an standard R
n-valued space-time white noise on R

+ × R
+ (on some

probability (Ω,F ,P)). In the Euclidean space, we have the following ergodicity results.
In this case, the exponential ergodicity does not hold any more, which implies that the
L2-spectral gap is zero.

Theorem 4.4. Suppose M = Rn, then the following statements hold
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(1) For every F ∈ L2(Eo
R+(Rn);µo

R+) we have

(4.17) lim
t→∞

µo
R+

(

∣

∣PtF (γ)− µo
R+(F )

∣

∣

2
)

= 0,

where PtF (γ) := E
[

F (Xγ
t )
]

, (Xγ
t )t≥0 is the solution to (4.16) with initial value

X0(·) = γ.

(2) The Poincaré inequality does not hold, i.e. for any C > 0, there exists F ∈
D(E o

R+) such that

(4.18) µo
R+(F 2)− µo

R+(F )2 ≥ CE
o
R+(F, F ).

In particular, the spectral gap

CR+(SG) := inf
F 6=const,F∈D(E o

R+
)

E o
R+(F, F )

µo
R+(F 2)− µo

R+(F )2
= 0,

and the exponential ergodicity does not hold in this case.

Proof. Step (1) As explained in [36, Page 315], the solution Xt to (4.16) with initial
value X0(·) = γ has the following expression,

Xγ
t (x) =

∫

R+

p(t, x, y)γ(y)dy +

∫ t

0

∫

R+

p(t− s, x, y)ξ(ds, dy)

:= U1(t, x) + U2(t, x),

where p(t, x, y) is the Dirichlet heat kernel on R+ with the following expression

p(t, x, y) =
1√
2πt

[

exp
(

− (x− y)2

2t

)

− exp
(

− (x+ y)2

2t

)

]

, x, y ∈ R
+, t > 0.

By [36, Lemma 4.3] and the law of iterated logarithm (which implies limy→+∞
γ(y)
y

=

0 for µo
R+-a.s. γ ∈ Eo

R+(Rn)), it is easy to verify that for µo
R+-a.s. γ ∈ Eo

R+(Rn) and
every x ∈ R+,

lim
t→+∞

U1(t, x) = 0.

Note that U2(t, ·) =
(

U1
2 (t, ·), . . . , Un

2 (t, ·)
)

is a centered Gaussian vector on L2(R+; e−rxdx),
and for every x, y ∈ R+ it holds

lim
t↑∞

E[U i
2(t, x)U

j
2 (t, y)]

= lim
t↑∞

E
[(

∫ t

0

∫

R+

p(t− s, x, z)ξi(ds, dz)
)(

∫ t

0

∫

R+

p(t− s, y, z)ξj(ds, dz)
)]

= δji lim
t↑∞

∫ t

0

∫

R+

p(t− s, x, z)p(t− s, y, z)dzds

= δji lim
t↑∞

∫ t

0

p(2(t− s), x, y)ds = δji lim
t↑∞

1

2

∫ 2t

0

p(s, x, y)ds = δji (x ∧ y), 1 ≤ i, j ≤ n,

40



where the last calculation can be found in [20, Section 2.3], δji = 1 when i = j and
δji = 0 when i 6= j.

This implies that U2(t, ·) converges weakly in L2(R+; e−rxdx) as t ↑ ∞ to a Gaussian
random vector whose distribution is µo

R+. Combining all the estimates above we know
that for µo

R+-a.s. γ ∈ Eo
R+(Rn), Xγ

t (·) converges weakly on L2(R+; e−rxdx) as t ↑ ∞ to
a Gaussian random vector whose distribution is µo

R+ . Thus for µo
R+-a.s. γ ∈ Eo

R+(Rn)
and every F ∈ FC1

b we have

lim
t→∞

PtF (γ) = µo
R+(F ).

By this and the dominated convergence theorem we obtain (4.17) holds for F ∈
FC1

b immediately. By approximations we can easily check that (4.17) holds for
F ∈ L2(Eo

R+(Rn);µo
R+), which implies that µo

R+ is ergodic.
Step (2) We first suppose the Poincaré inequality holds, i.e. for F ∈ D(E o

R+)

(4.19) µo
R+(F 2)− µo

R+(F )2 ≤ CE
o
R+(F, F )

for some C > 0. For a fixed T > 0, let FT (γ) :=
∫ T

0
γ1(s)ds, where γ1(s) denotes the

first coordinate of process γ(s) := (γ1(s), · · · , γn(s)). By the proof of Lemma 2.9, it is
not difficult to verify that FT ∈ D(E o

R+).
At the same time, we have for o = 0 ∈ R

n

µo
R+(F 2

T ) = µo
R+

(

∫ T

0

∫ T

0

γ1(s)γ1(t)dsdt
)

=

∫ T

0

∫ T

0

µo
R+

(

γ1(s)γ1(t)
)

dsdt =

∫ T

0

∫ T

0

(s ∧ t)dsdt

≥
∫ T

0

∫ t

0

sdsdt ≥ T 3

6
,

µo
R+(FT ) =

∫ T

0

µo
R+(γ1(s))ds = 0,

and

E
o
R+(FT ) =

∫

E
o
R+

(Rn)

|DFT (γ)|2H+
dµo

R+ ≤ T.

Here we have applied the property that |DFT (γ)(s)| ≤ 1[0,T ](s). Combining all the

estimates above and putting FT into (4.19) we arrive at T 3

6
≤ CT . Then letting

T → ∞ we get C = +∞ and there is a contradiction. So (4.19) does not hold for any
C > 0. The results for spectral gap follow from [61].

Remark 4.5. By carefully tracking the proof of Theorem 4.4, it is not difficult to verify
that the conclusion of Theorem 4.4 still holds for every initial point o ∈ Rn, not only
o = 0.
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4.1.3 M is not a Liouville manifold

In this subsection, we prove that when M is not a Liouville manifold, (E o
R+ ,D(E o

R+))
is reducible, which by [11, Propsition 2.1.6] implies that the Markov semigroup (Pt)t≥0

constructed in Theorem 2.3 is non-ergodic in the sense that there exists a non-constant
function F ∈ D(E o

R+) such that PtF = F µo
R+-a.s..

Recall that we call a connected Riemannian manifoldM a Louville manifold, if there
does not exist a non-constant bounded harmonic function on M . In particular, if M
is not a Liouville manifold, then there exists a bounded harmonic function u :M → R

which is not a constant.

Theorem 4.6. If M is not a Liouville manifold, then (E o
R+ ,D(E o

R+)) is reducible.
Hence µo

R+ is not ergodic for the Markov process associated with (E o
R+ ,D(E o

R+)).

Proof. The following argument follows essentially from [2, Theorem 4.3] and [60, The-
orem 1.5]. Since M is not Louville manifold, we could find a non-constant harmonic

function u : M → R. For every fixed T > 0, we define FT := 1
T

∫ T

0
u(γ(t))dt. Since u

is harmonic, by Itô’s formula we obtain

(4.20) u(γ(t))− u(o) =

∫ t

0

〈∇u(γ(s)), Us(γ)dβs〉Tγ(s)M ,

where βs denotes the anti-development of γ(·), whose law is an R
n-valued Brownian

motion under µo
R+ . Thus Nt := u(γ(t)) − u(o) is a bounded martingale, according to

the martingale convergence theorem, there is a non-constant random variable N∞ such
that

lim
t↑∞

µo
R+

(∣

∣Nt −N∞

∣

∣

2)
= 0,

which implies immediately

(4.21) lim
T↑∞

µo
R+

(∣

∣FT −N∞

∣

∣

2)
= 0.

On the other hand, set FR
T := 1

T

∫ T

0
φR(ρ(o, γ(s)))u(γ(s))ds, where o ∈M , φR is defined

as in the proof of Theorem 3.12. Then by Lemma 2.9 it is easy to see that FR
T ∈ D(E o

R+)
for R, T > 0. Note that for fixed T > 0, FR

T → FT in L2(Eo
R+(M), µo

R+), as R → ∞.
We also have

E
o
R+(FR

T , F
R
T ) ≤ 1

T 2

∫ T

0

µo
R+

(

|∇u(γ(s))|2
)

ds+
4

T 2

∫ T

0

µo
R+

(

|u(γ(s))|2
)

ds

≤ 1

T 2
µo
R+

(

∣

∣u(γ(T ))− u(o)
∣

∣

2
)

+ C1 ≤ C,

where C,C1 are constants independent of R and the second inequality follows from
(4.20). This by [51, Lemma I-2.12] implies that FT ∈ D(E o

R+) and

DFT (γ)(s) =
1

T

(

Us(γ)
−1∇u(γ(s))

)

1[0,T ](s),
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hence

lim
T↑∞

E
o
R+(FT , FT ) = lim

T↑∞

1

T 2

∫ T

0

µo
R+

(

|∇u(γ(s))|2
)

ds

= lim
T↑∞

1

T 2
µo
R+

(

∣

∣u(γ(T ))− u(o)
∣

∣

2
)

≤ lim
T↑∞

4‖u‖∞
T 2

= 0,

(4.22)

where the second equality follows from (4.20).
Combining (4.21), (4.22) with the closbility of (E o

R+,D(E o
R+)) yields that N∞ is not

a constant, N∞ ∈ D(E o
R+) and E o

R+(N∞, N∞) = 0. So (E o
R+ ,D(E o

R+)) is reducible.

Note that ifM is a Cartan-Hadamard manifold with section curvature −c1(ρ(o, x)∨
1)2 ≤ Secx(X1, X2) ≤ −c2(ρ(o, x)∨1)−2 for some c1, c2 > 0 and every x ∈M , X1, X2 ∈
TxM with |X1| = |X2| = 1, then M is not a Louville manifold (where Secx denotes the
sectional Curvature tensor at x ∈ M). So we have the following result immediately.

Corollary 4.7. IfM is a Cartan-Hadamard manifold with section curvature −c1(ρ(o, x)∨
1)2 ≤ Secx(X1, X2) ≤ −c2(ρ(o, x) ∨ 1)−2 for some c1, c2 > 0 and every x ∈ M ,
X1, X2 ∈ TxM with |X1| = |X2| = 1, then (E o

R+ ,D(E o
R+)) is reducible. Hence µo

R+ is not
ergodic for the Markov process associated with (E o

R+ ,D(E o
R+)) constructed in Theorem

2.3.

4.2 The whole line

In this section, we will study the functional inequality and ergodic property for the
Dirichlet form (E ν

R
,D(E ν

R
)) constructed in Section 3, where ν(dx) = ν(x)dx is a proba-

bility measure onM which is absolutely continuous with respect to volume (Lebesgue)
measure on M . The case for (E o

R
,D(E o

R
)) is similar and we omit the details here.

As in Section 3, for γ ∈ ER(M), we could decompose γ = (γ̃, γ̄) with

γ̃(s) := γ(s), γ̄(s) := γ(−s), s ≥ 0

. We also set

Ms(γ) :=

{

M̂s(γ̃), s ≥ 0,

M̂−s(γ̄), s < 0.

Here M̂t(γ) denotes the solution to (4.9) with γ ∈ ER+(M).

Lemma 4.8. Suppose M is compact, for every F ∈ FCb with the form (3.3) we have

∇xµ
x
R
(F ) =

m
∑

j=1

µx
R

[

∫ Tj

0

∂̂jf(γ)Ms(γ)Us(γ)
−1∇gj

(

s, γ(s)
)

ds
]

+
k
∑

j=1

µx
R

[

∫ 0

−T̄j

∂̂m+jf(γ)Ms(γ)Us(γ)
−1∇ḡj

(

s, γ(s)
)

ds
]

,

(4.23)
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where ∂̂jf(γ) denotes the same item as that in (3.6) and Us(γ) is defined in (3.4).

Proof. For simplicity, we only prove (4.23) for F = f
(

∫ T

0
g(s, γ(s))ds

)

for some

f ∈ C1
b (R) and g ∈ C0,1

b ([0,∞) × M). Other cases could be tackled similarly (by
decomposing into γ = (γ̃, γ̄)).

For each k ∈ N
+, let Fk(γ) := f

(

∑k
i=1

T
k
g
(

ti, γ(ti)
)

)

with ti =
iT
k
, 1 ≤ i ≤ k. Then

applying [38, Lemma 3.3] we obtain that

∇xµ
x
R(Fk) = µx

R

[

k
∑

i=1

T

k
∂̂fk(γ)MtiUti(γ)

−1∇g
(

ti, γ(ti)
)

]

,

where ∂̂fk(γ) = f ′
(

∑k
i=1

T
k
g
(

ti, γ(ti)
)

)

.

Based on such expression it is easy to verify that

lim
k→∞

∫

M

∣

∣

∣
∇xµ

x
R
(Fk)− µx

R

[

∫ T

0

∂̂f(γ)MsUs(γ)
−1∇g

(

s, γ(s)
)

ds
]∣

∣

∣

2

dx = 0,

lim
k→∞

∫

M

∣

∣µx
R(Fk)− µx

R(F )
∣

∣

2
dx = 0,

where ∂̂f(γ) := f ′
(

∫ T

0
g
(

s, γ(s)
)

ds
)

. According to this we could prove for every

smooth vector fields V ∈ C∞(TM),

∫

M

〈

µx
R

[

∫ T

0

∂̂f(γ)MsUs(γ)
−1∇g

(

s, γ(s)
)

ds
]

, V (x)
〉

TxM
dx = −

∫

M

µx
R(F )divV (x)dx,

which means

∇xµ
x
R
(F ) = µx

R

[

∫ T

0

∂̂f(γ)MsUs(γ)
−1∇g

(

s, γ(s)
)

ds
]

.

Thus (4.23) holds for F = f
(

∫ T

0
g(s, γ(s))ds

)

and we have finished the proof.

Theorem 4.9. [Log-Sobolev inequality and Poincaré inequality]

(1) Suppose that Ric ≥ K for K > 0 and the following log-Sobolev inequality holds
for ν (on M)

(4.24) ν
(

f 2 log f 2
)

− ν(f 2) log ν(f 2) ≤ C1

∫

M

|∇f(x)|2ν(dx), ∀ f ∈ C1(M).

Then the log-Sobolev inequality holds

(4.25) µν
R
(F 2 logF 2) ≤

( 8

K2
+

2C1

K

)

E
ν
R
(F, F ), F ∈ FCc. µ

ν
R
(F 2) = 1.
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(2) Suppose M is compact and the following Poincaré inequality holds

(4.26) ν(f 2)− ν(f)2 ≤ C2

∫

M

|∇f(x)|2ν(dx), ∀ f ∈ C1(M),

and there exists ε ∈ (0, 1) such that

(4.27) δε := sup
T∈[0,∞)

δε(T ) <∞,

and

C0 :=

∫ ∞

0

η(s)ds <∞,

where δε(T ), η(s) are defined by (4.3). Then the following Poincaré inequality
holds,

(4.28) µν
R(F

2)− µν
R(F )

2 ≤
(

δε + C0C2

)

E
ν
R (F, F ), F ∈ FCc.

Remark 4.10. As explained by [61, Chapter 5], if M is compact and ν(dx) = ν(x)dx
is a probability measure such that infx∈M ν(x) > 0, then the log-Sobolev inequality
(4.24) and Poincaré inequality (4.26) hold. In particular, (4.24) and (4.26) hold for
the normalized volume measure when M is compact.

Proof of Theorem 4.9. Step (1) Let

G(γ̄) :=

√

∫

E
x
R+

(M)

F 2(γ̃, γ̄)µx
R+(dγ̃),

g(x) :=

√

∫

E
x
R+

(M)

∫

E
x
R+

(M)

F 2(γ̃, γ̄)µx
R+(dγ̃)µx

R+(dγ̄) =

√

∫

ER(M)

F 2(γ)µx
R
(dγ).
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Then we have for every F ∈ FCc with form (3.3),

∫

ER(M)

F 2(γ) logF 2(γ)µν
R
(dγ)

=

∫

M

∫

E
x
R+

(M)

∫

E
x
R+

(M)

F 2(γ̃, γ̄) logF 2(γ̃, γ̄)µx
R+(dγ̃)µx

R+(dγ̄)ν(dx)

≤ 2C(K)

∫

M

∫

E
x
R+

(M)

∫

E
x
R+

(M)

|D̃F (γ̃, γ̄)|2
H+
µx
R+(dγ̃)µx

R+(dγ̄)ν(dx)

+

∫

M

∫

E
x
R+

(M)

G2(γ̄) logG2(γ̄)µx
R+(dγ̄)ν(dx)

≤ 2C(K)

∫

M

∫

E
x
R+

(M)

∫

E
x
R+

(M)

|D̃F (γ̃, γ̄)|2
H+
µx
R+(dγ̃)µx

R+(dγ̄)ν(dx)

+ 2C(K)

∫

M

∫

E
x
R+

(M)

|D̄G(γ̄)|2
H+
µx
R+(dγ̄)ν(dx) +

∫

M

g2(x) log g2(x)ν(dx)

≤ 2C(K)

∫

M

∫

E
x
R+

(M)

∫

E
x
R+

(M)

|D̃F (γ̃, γ̄)|2
H+
µx
R+(dγ̃)µx

R+(dγ̄)ν(dx)

+ 2C(K)

∫

M

∫

E
x
R+

(M)

|D̄G(γ̄)|2
H+
µx
R+(dγ̄)ν(dx) + C1

∫

M

|∇g(x)|2ν(dx) + µν
R
(F 2) logµν

R
(F 2).

(4.29)

Here in the second step we applied (4.1) to F (·, γ̄) (with γ̄ fixed) with D̃F (γ̃, γ̄) de-
noting the L2 gradient with respect to the variable γ̃ ∈ ER+(M); in the third step we
applied (4.1) to G(γ̄) with D̄G(γ̄) denoting L2 gradient with respect to the variable
γ̄ ∈ ER+(M) and the property

∫

E
o
R+

(M)
G2(γ̄)µx

R+(dγ̄) = g2(x) ; in the last step we

applied (4.24) to g(x) and the property
∫

M
g2(x)ν(dx) = µν

R
(F 2). At the same time, it

holds

∣

∣D̃F (γ̃, γ̄)
∣

∣

2

H+
+
∣

∣D̄F (γ̃, γ̄)
∣

∣

2

H+
=
∣

∣DF (γ)
∣

∣

2

H
,

∣

∣D̄G(γ̄)
∣

∣

2

H+
=

∣

∣

∣

∫

E
x
R+

(M)
F (γ̃, γ̄)D̄F (γ̃, γ̄)µx

R+(dγ̃)
∣

∣

∣

2

H+
∫

E
x
R+

(M)
F 2(γ̃, γ̄)µx

R+(dγ̃)
≤
∫

E
x
R+

(M)

∣

∣D̄F (γ̃, γ̄)
∣

∣

2

H+
µx
R+(dγ̃).

Meanwhile by (4.23),

|∇g(x)|2 =

∣

∣

∣
µx
R

[

F (γ)J(γ)
]∣

∣

∣

2

∫

E
x
R
(M)

F 2(γ)µx
R
(dγ)

≤ µx
R
[|J(γ)|2],
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where

J(γ) =
m
∑

j=1

∫ Tj

0

∂̂jf(γ)Ms(γ)Us(γ)
−1∇gj

(

s, γ(s)
)

ds

+
k
∑

j=1

∫ 0

−T̄j

∂̂m+jf(γ)Ms(γ)Us(γ)
−1∇ḡj

(

s, γ(s)
)

ds

=

∫ T

−T

Ms(γ)DF (γ)(s)ds

(4.30)

with T := max{max1≤j≤m Tj ,max1≤j≤k T̄j}. Based on the expression of J(γ) above we
arrive at

|∇g(x)|2 ≤ µx
R

[(

∫ T

−T

‖Ms(γ)‖2ds
)

·
(

∫ T

−T

|DF (γ)|2(s)ds
)]

≤ 2
(

∫ ∞

0

e−Ksds
)

µx
R

[

|DF (γ)|2
H

]

,

where the last step follow from the estimates ‖Ms(γ)‖ ≤ e−
K|s|
2 for all s ∈ R.

Finally, combining all the estimates above into (4.29) yields (4.25).
Step (2) Similar as (4.29) (and apply (4.4)) we obtain

∫

ER(M)

F 2(γ)µν
R
(dγ)−

(

∫

ER(M)

F (γ)µν
R
(dγ)

)2

≤ δε

∫

M

∫

E
x
R+

(M)

∫

E
x
R+

(M)

|D̃F (γ̃, γ̄)|2
H+
µx
R+(dγ̃)µx

R+(dγ̄)ν(dx)

+ δε

∫

M

∫

E
x
R+

(M)

|D̄Q(γ̄)|2
H+
µx
R+(dγ̄)ν(dx) + C2

∫

M

|∇q(x)|2ν(dx),

(4.31)

where

Q(γ̄) :=

∫

E
x
R+

(M)

F (γ̃, γ̄)µx
R+(dγ̃), q(x) :=

∫

E
x
R
(M)

F (γ)µx
R
(dγ).

Still by the same arguments in Step (1) we could show

|D̄Q(γ̄)|2
H+

=
∣

∣

∣

∫

E
x
R+

(M)

D̄F (γ̃, γ̄)µx
R+(dγ̃)

∣

∣

∣

2

H+

≤
∫

E
x
R+

(M)

∣

∣D̄F (γ̃, γ̄)
∣

∣

2

H+
µx
R+(dγ̃),

|∇q(x)|2 ≤
∣

∣µx
R

[

J(γ)
]∣

∣

2 ≤ µx
R

[

∫ T

−T

‖Ms‖2ds
]

· µx
R

[

∫ T

−T

|DF (s)|2ds
]

≤ 2
(

∫ ∞

0

η(s)ds
)

· µx
R

[

∣

∣DF (γ)
∣

∣

2

H

]

,
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where J(γ) is defined by (4.30) and the last step above is due to

µx
R

[

∫ T

−T

‖Ms‖2ds
]

= 2µx
R+

[

∫ T

0

‖Ms‖2ds
]

≤ 2µx
R+

[

∫ T

0

exp(−
∫ s

0

K(γ(r))dr)ds
]

≤ 2

∫ ∞

0

η(s)ds.

Then combining all the above estimates into (4.31) yields (4.28). �

When M = Rn, the Markov process constructed in Section 3 corresponds to the
solutions to the stochastic heat equations. The most interesting case is that ν is given
by Lebesgue measure, which is related the the stochastic heat equations without any
boundary condition. In this case the reference measure has infinite mass. So we do not
investigate the long time behavior here.

Following the same procedure in Theorem 4.6 we can still get the following result.
So we omit the proof here.

Theorem 4.11. If M is not a Liouville manifold and ν is a probability measure, then
(E ν

R
,D(E ν

R
)) is reducible. Hence µν

R
is not ergodic for the Markov process associated

with (E ν
R
,D(E ν

R
)).
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[55] M. Röckner, B. Wu, R.C. Zhu and R.X. Zhu,Stochastic Heat Equations with Values
in a Manifold via Dirichlet Forms, arxiv: 1711.09570.

[56] D.W. Stroock, An introduction to the analysis of paths on a Riemannian mani-
fold, Mathematical Surveys and Monographs, 74. American Mathematical Society,
Providence, RI, 2000.

[57] A. Thalmaier, On the differentiation of heat semigroups and poisson integrals,
Stochastics and Stochastic Reports 61 (1997) 297–321.

[58] A. Thalmaier and F.-Y. Wang, Gradient estimates for harmonic functions on reg-
ular domains in Riemannian manifolds, J. Funct. Anal. 155 (1998) 109–124.

[59] F.-Y. Wang, Spectral gap on path spaces with infinite time interval, Sciences in
China. 42, (1999), 600-604.
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