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1 Introduction

This work is the continuity of [55], which is motivated by Tadahisa Funaki’s pioneering
work [33] and Martin Hairer’s recent work [42]. Let M be a n-dimensional compact
Riemannian manifold. In [42] Hairer considered the stochastic heat equation associated

to the energy
1

E(u) = 3 /sl Gu(z) (Opu(z), Opu(w))de,

for smooth functions u : S' — M, and wrote the equation in the local coordinates
formally:

(1.1) ou® = O?u* + Fgw(u)ﬁxuﬁaxuy + o' (u)&;,

where Einsteins convention of summation over repeated indices is implied and 'z are
the Christoffel symbols for the Levi-Civita connection of (M, g), o; are vector fields on
M and &; are independent space-time white noise. This equation may be also looked
as certain kind of multi-component version of the KPZ equation. By the theory of
regularity structure recently developed in [41], 10} [I3], local well-posedness of (1.1) has
been obtained in [42] (see more recent work [9]).

By the Andersson-Driver’s approximation of Wiener measure in [6], we know that
there exists an explicit relation between the Langevin energy F(u) and Wiener (Brow-
nian bridge) measure. In particular, it has been obtained in [6] that Wiener (Brownian
bridge) measure p on C([0,1]; M) could been interpreted as the limit of a natural
approximation of the measure exp(—F(u))Zu, where Pu denotes a ‘Lebesgue’ like
measure on path space. Based on the above connection, one may think the solution
to the stochastic heat equation (1.1) may have p as an invariant (even symmetrizing)
measure.

In [55], starting from the Wiener measure (or Brownian bridge measure) p on
C([0, 1], M) we use the theory of Dirichlet forms to construct a natural evolution which
admits p as an invariant measure. Moreover, the relation between the evolution con-
structed in [55] and (1.1) has also been discussed in [55] by using the Andersson-Driver
approximation. It is conjectured in [55] that the Markov processes constructed by
Dirichlet form in [55] have the same law as the solution to (ILI]). Since we consider
the Wiener measure on C([0, 1], M) in [55], the evolution corresponds to the stochas-
tic heat equation on [0, 1] for different boundary conditions with values in a compact
Riemannian manifold. In the paper, we extend the results in [55] from finite volume
0,1] to the half line R or the real line R.

When M = R" it is well-known that the law of Brownian motion on C([0, c0); R™)
is an invariant measure of the following stochastic heat equatioin

1
0X = 5@5){ +¢&, X(t,0)=0,



on [0,00) x [0,00). Here ¢ is space-time white noise. By similar calculation as that in
[35] we easily know that the distribution of a two-sided Brownian motion with a shift
given by Lebesgue measure is invariant under the following stochastic heat equation

1

on [0,00) x R. This suggests us to use the law of Brownian motion on C([0,00); M)
or the law of two sided Brownian motion on C'(R; M) to construct the corresponding
stochastic heat equation on R™ or R with values in a Riemannian manifold.

Similarly as in [55], we construct the solution to stochastic heat equation by using
the following L?-Dirichlet form with the reference measure y = the law of Brownian
motion on M /the law of two sided Brownian motion on M:

1 1 &
g(F, G) = 5 /<DF, DG)Hd/J, = 5 Z/thFthGdu; F.Ge EC(,,
k=1

where {ht}r>1 is an orthonormal basis in H := L*(RT;R?)/L*(R;R?), and .Z# (), and
DF are the set of all cylinder functions and L2-gradient respectively(refer to the defini-
tions in Section 2). In this case, the associated Dirichlet-Form & is called L2-Dirichlet
form.

For the half line case: we consider the reference measure as the law of Brownian
motion for the half line R* on Riemannian path space C([0,00); M) and choose the
state space as some weighted L?-space (see Section 2). By using a general integration
by parts formula from [I6] (see also appendix) we can construct a martingale solution
to the stochastic heat equation with values in a general Riemannian manifold, which
is complete and stochastic complete.

For the whole line case: we first construct the two sided Brownian motion & on
M with #(0) = o by an independent copy of Brownian motion on M. We consider the
reference measure given by the law pp of 2. By this we derive an integration by parts
formula by using the stochastic horizontal lift for independent copy (see Proposition [3.2]
for the reason we choose it in this way). We also emphasize that the L2-Dirichlet form
is independent of the stochastic horizontal lift (see Remark 2.1]), which can be seen as
a tool to obtain the integration by parts formula and the closablity of the associated
bilinear form (see Remark 3.1). Moreover, we also consider the reference measure as
ph = [ pgr(de) with some Randon measure v satisfying (3.19), which could be the
volume measure on M under some mild curvature condition (see Remark below).
As mentioned before, the process corresponds to the stochastic heat equation on R
without any boundary condition for v given by the volume measure on M. Here we
mainly concentrate on the more complicated case that v and the reference measure
have infinite mass. We use a cut-off technique to find suitable test functions and
prove the quasi-regularity of the L?-Dirichlet form (see Theorem B.12)), which gives a



Markov process as a martingale solution to the stochastic heat equation on [0, 00) x R
with values in a Riemannian manifold. It is not easy to obtain that the process is
conservative in this case, since 1 is not in the domain of the Dirichlet form. Under
mild curvature condition we find suitable approximation functions in the domain of
the L2-Dirichlet form and obtain that the Markov process is conservative in the sense
that the life time is infinity (see Theorem B.I3]).

We also emphasize that the construction of the conservative Markov processes on
general manifold with reference measure having infinite mass still holds for the finite
volume case, especially for the free loop case with the reference measure e© Jo Seal(y(s))ds av (),
which is conjectured to be invariant measure for (ILI]) in [9]. Here ¢ € R, 3" :=
[ i*v(dz), with v = pi(z, z)dz and @* given by the Brownian bridge measure and p;
is the heat kernel for %A and Scal denotes the scalar curvature. For more details we
refer to Remark [3.11] and Remark [3.14]

In the final part of this paper, we study functional inequalities associated to L*-
Dirichlet-Form, which implies the long time behavior of the solutions to the stochastic
heat equations for infinite string. In this case, the L2-Dirichlet form is not comparable

with the O-U Dirichlet form constructed in [22], we refer readers to [I, Bl 4, [6], 12], [T5]
(16, 19, 221 23] 241 26], (341, 138, 311, 50}, [52], 56, 591 [60] [62] 63, 64] [65] and references therein
for various study about O-U Dirichlet form on path and loop space.

As we explained before, this case corresponds to SPDEs on infinite volume. The
ergodicity property is different from that for the finite volume case (see [55]). For
different manifolds we have ergodicity or non-ergodicity for the associated Markov pro-
cesses. We establish the log-Sobolev inequality for the corresponding L?-Dirichlet form
if Ric > K > 0 for some constant K and Poincaré inequality for compact Riemannian
manifold with some suitable curvature condition (see Theorem 4.1), which implies the
L?-exponential ergodicity in this case; When M = R", ergodicity still holds but the
Poincaré inequality does not hold in this case (see Theorem 4.3); When M is not a
Liouville manifold, the associated Dirichlet form & is reducible, which means that the
solutions to the stochastic heat equation are not ergodic.

Notations: In this paper we use C7" to denote C"-differentiable functions with
compact support. We use C}" to denote C™-differentiable functions with bounded
derivatives. For Hilbert space H we also use | - |y to denote the norm of it.

The rest of this paper is as follow: In Section 2, we will construct the stochastic
heat equation for the half line case on general Riemannian manifold M. The stochastic
heat equation for the whole line will be established in Section 3, and the ergodicity or
non-ergodicity property of the processes will be obtained in Section 4.



2 The case of half line R

Throughout the article, suppose that M is a complete and stochastic complete Rie-
mannian manifold with dimension n, and p is the Riemannian distance on M. In this
section, we will construct the stochastic heat process on half line. We first introduce
some notions. Fix o € M | the path space over M is defined by

Wz (M) := {7 € C([0, 00); M) : 7(0) = o}.

Then W2, (M) is a Polish (separable metric) space under the following uniform distance

d(1.0) = 3 o sup (p(1(1).0(0) A1), 7.0 € W, (M)

In order to construct Dirichlet forms associated to stochastic heat equations for
infinite strings on Riemannian path space, we also define the following weighted L!-
distance:

2.) A =Yg [ A n@)ds, e W (),

where p = p A 1. Obviously we have d < do,. Let EZ, (M) be the closure of W, (M)
with respect to the distance d, then Eg, (M) is a Polish space.
Let O(M) be the orthonormal frame bundle over M, we consider the following SDE,
(22) { AU, = S0, H(U) o W}, >0
UO = Uy,

where { H;}?_, is a canonical orthonormal basis of horizontal vector fields O(M), u, is a
fixed orthonormal basis of T,M and (W} )0, 1 < < n is a standard R"-valued Brow-
nian motion defined on a probability space (€,.%,P). Note that M is stochastically
complete, so U, is well defined for all t > 0. Let 7 : O(M) — M denote the canonical
projection, then x; := 7(U;), t > 0 is the Brownian motion on M with initial point o,
and U. is the (stochastic) horizontal lift along x.. Let g, be the law of g o, then pg,
is a probability measure on W, (M), and the (stochastic) horizontal lift (Uy(77))ic(0,)
is well defined for pg.-a.s. v € Wg, (M), (whose distribution is the same as that of
(Ut)tefo,00) under P). Therefore . can be seen as a probability measure on Eg, (M)
with support contained in Wg, (M), and (U(77))icp,) is also well defined for . -a.s.
v € Eg (M).

Let .ZC} be the space of C}} cylinder functions on Eg, (M) defined as follows: for
every F € .ZC}, there exist some m > 1, m € Nt f € CLR™), g; € C'([0, 00) x M),



T; € [0,00), j = 1,...,m, such that

P =5 ([ atsronds. [ atontNise [ onlsa(oas) . e B0,

Here Cp"'([0,00) x M) denotes the bounded functions which are continuous w.r.t. the
first variable and C}- differentiable w.r.t. the second variable. It is easy to see that F is
well defined for v € E¢ (M), .ZCy is dense in L*(ES, (M); %) = L* (W2, (M); &+ ).
For any F € ZC} of the form [3) and h € H, := L?([0,00) — R";ds) = {h :
[0,00) = R™; [;7 |h(s)]*ds < oo}, the directional derivative of F with respect to h is
(pg.-a.s.) defined by

m

DyF(7) =Y 0;f( / (U1 (7)Vgi(s,7(s)), h(s)) ds, v € Eg, (M),

where

X T Ty Tom
0100 =01 ([ atsroas, [ amlo. s [ gnlsirtoas)
0 0 0
and Vg; denotes the gradient w.r.t. the second variable. By the Riesz representation

theorem, there exists a gradient operator DF(y) € Hy such that (DF(y), h)u, =
DyF(v), pge-as.y € Eg. ., h € Hy. In particular, for v € Wg, (M),

(2.4) Z YV g;(s,7(5)01;(5)-
We define the (Cameron-Martin) subspace HZ® of H as follows
(2.5) HY = {h € Ccl([O,oo);Rd)’h(O) = O,/ |n'(s5)]?ds < oo} :
0

Fix a sequence of elements {h;}3>, C HY such that it is an orthonormal basis in H,
we define the following symmetric quadratic form as follows

1
(2.6) 2 (F.G) =5 / (M)<DF, DGy, dus,, F,Ge FCL.

Rt

Then it is obvious that

1 [e.9]
© (F,G) = 5 > / Dy, FD, Gdul.; F,G e FCy.
k=1 7 B (M)



Remark 2.1. Although the stochastic horizontal lift (Uy(7y))icpo,00) @S applied in the
definition of (2., FCy), the value of &L (F, F) is independent of (Uy(7))iep,00)- In
particular, by the definition (2.4) of the gradient, we have

/O ZZM )0;f2(y /Aj<V9i1(377(8)),Vg?(s,v(s)))dsdu§+

21]1

for any F,G € ZC} with

P =51 ([ ol [ okt @s [ s noas)
601 =g ([ dttsrtonas [ gt [ gf<s,v<s>>ds) e B (M)

for fr € CHR™), fa € C}(RY), g} € C’Ol([ ,o0)x M) i=1,2,7=1,...m. This implies
the quadratic form &g, is independent of (Us(7))ie(0,00)-

Theorem 2.2. The quadratic form (2., F C}) is closable and its closure (&2, , D(EL.))
is a quasi-regular Dirichlet form on L*(ES., (M); ug+ ).

By using the theory of Dirichlet form (refer to [51]), we obtain the following asso-
ciated diffusion process.

Theorem 2.3. There exists a conservative (Markov) diffusion process M = (Q, F, M,
(X (t))>o0, (Pz)zeE§+(M)) on Eg (M) having g, as an invariant measure and properly
associated with (&2,,2(&%,)), t.e. for u € L*(Eg, (M);ug.) N By(ES (M)), the
transition semigroup Pou(z) = E*[u(X(t))] is an é"ﬂ@-quasi continuous version of Tyu
for allt > 0, where T} is the semigroup associated with (&g, , Z(E5+)).

Here for the notion of &%, -quasi-continuity we refer to [51, Definition I1I-3.2]. By
Fukushima decomposition we have

Theorem 2.4. There exists a properly &g, -exceptional set S C E%, (M), i.e. pu%.(S) =
0 and P*[X(t) € Eg.(M) \ S,Vt > 0] = 1 for 2 € Eg.(M)\S, such that Vz €
EZ (M)\S under P?, the sample paths of the associated process M = (Q,.F, 4,
(X (t))e>0, (PZ)ZGE;H(M)) on E2, (M) satisfy the following for u € 2(&5.)

(2.7) w(Xy) —u(Xo) = M+ N P?—a.s.,
where M™ is a martingale with quadratic variation process given by f(f | Du(X,) |5, ds

and N; is zero quadratic variation process. In particular, for v € D(L), N} =
[} Lu(X,)ds, where L is the generator of (2., 2(62,)).



Remark 2.5. If we choose u(y) = Trf u®(y(s))ds € FC}L, with u® is a local coordinate
on M, then the quadratic variation process for M" is the same as that for the martingale

part in (1.1).

To prove Theorem 2.2], the crucial ingredient is the local integration by parts formula
in [I6]. To do that, we need to introduce some notations. In the following, we first
introduce another cylinder functions set, every element in which only depends on finite
times:

FCyi= {Wge (M) 37 = F((1), () s M= 1,

0<ty <ty---<t, <oo,fe€ Cb,Lip(Mm)},

where Cp 1;,(M™) denotes the collection of bounded Lipschitz continuous functions on
M™,

For a fixed o € M, since M is complete, there exists a C'*° non-negative smooth
function p: M — R with the property that 0 < |Vp(2)| <1 and

<1, zeM.

()~ 500.2)

For every non-negative m, define
(2.8) Dy, :={zeM:p(z) <m}, 7n(y):=inf{s>0: v(s) ¢ D,,}.

We first introduce the following two results in [16] and [I7], for convenience of
readers we will give the proof of them in the Appendix

Lemma 2.6. [Chen-Li-Wu [16]] For any m € NT and T € RT, there exists a
stochastic process(vector fields) Ly, v : [0,00) x W2, (M) — [0,1] such that

W tnate)={ g (SN

(2) Given any o € Dy, Lynr(t, ) is F = o{y(s);s € [0,t]}-adapted and 1, 7(-,7)
is absolutely continuous for g -a.s. v € Wg, (M).

3) For any positive integers k.p,m € Z, and t € RT, we have
( ) y p g , P, + )

t
(2.9) sup / / 1 (5, 7)Pdsps (dy) < Cu(m, k,p, T)
wo, (M) Jo

OGDm

for some positive constant Cy(m, k,p,T) (which may depends on m, T, p and k).



Lemma 2.7. [Chen-Li-Wu [17]] Let l,,, 7 be the cut-off process constructed in Lemma
(2.4, then for every F € #Cy,, m € Z*, T € R*, h € HY (see [21)), the following
integration by parts formula holds

(AF (Ul (-)h(-))) ps (d)

W, (M)

-/ - (F [ (b 6)+ Ghicr, (i (Dh(s)) 05, ) e a0,

where ; denotes the anti-development of ~y(-), whose distribution is a standard R"™-
valued Brownian motion under jig., .

(2.10)

Based on the above Lemma 2.7 and using an approximation procedure, it is not
difficult to obtain the following integration by parts formula.

Lemma 2.8. Let I, 7 be mentioned in Lemma(2.7, then for every F € FC}, m € Z,,
T € R*, h € HY, the following integration by parts formula holds

o (AF Ul z()h(-))) pi+ (dy)

o B Zo+<M> (F /0°° <(lm7Th),(S) + %Ri% Uz (5)h(5)) ’dﬁs>) i)

where f; denotes the anti-development of v(-), which is a Brownian motion under ug,., .

Here pig, can be seen as a probability measure on Eg, (M) with support contained in
Wgi (M), and L, p(t,) is also well defined for jig, -a.s. v € Eg, (M).

Proof. In fact, it suffices to check the result holds for F'(vy) = f(f(;t g(s,7(s))ds) € ZC}
with arbitrarily pre-fixed ¢ € R*, and the general case can be handled similarly. For
any k > 1, defining

[kt]

1 , .
Fe(y) = £ | 7 D ali/k,A(i/k))
i=1
Fix a time T" >t > 0, then

[y APz ORE) (@)

).

where we used supp(ug+) C Wgy (M) and (2.10).

o
R+

9



By the dominated convergence theorem, it is easy to see that Fy, — F'in L*(E%, (M); u%+)
as k — 0o. According to the definition of directional derivative, we have

AF (Ul (Jh()) = (DF, Ly rh)s /<U DV (5, 7(5)), (nrh)(5)) e s
[kt]
AFL (Ul (V1)) = (DFi bnrh)as, = 7053 ) (URGTala/A G, ()G,

with 8f = f/ (fo ))ds) and df, = f’ (% Zleg(z/k:,v(z/k:))) . By our assump-
tions for f and g (espemally Vg is bounded) we know that

(DFy, lrhya, — (DF, L, rh)u, in L*(Eg. (M); u%), k — oc.

+

By using the above argument, we get (ZI1]) by taking & — oo on both sides of the

equation (212 .
U

In the following we prove Theorem by using the above integration by parts
formula.

Proof of Theorem (a) Closablity: Let {F,,}>_, C ZC} be a sequence of
cylinder functions with

(2.13) lim pge (Fr) =0, lim &8 (Fy — Fo, o — Fy) =0,

k,m—o00

Thus {DFE,}°_, is a Cauchy sequence in L? (Eg., (M) — H,;pg. ), for which there
exists a limit ®. It only suffices to prove that & = 0. Suppose that {h;}2, C H¥ N
CX(]0,00); R™) is an orthonormal basis of H,. By Lemma 2.8 for each G € #C} and
any positive integers k, m,7 > 1, we have

M?m (<DFk, lm,Thi>H+G)

= s (D (FxG), Lprhidu, ) — 1 (DG, lnrhi)u, Fr)

=i (6 [ (it (5)+ R, (G (6In(5) 5. )
— 1% (DG Ly hi)es. F)

(2.14)

In particular, for each h; € C!(]0,00);R"), by ([29) and the compact property of
supp(h;), we have

[ty () + R, (69 05, ) € L5 (30 ).

10



Since G and DG are bounded, and Fj, — 0, |DF}, — ®|g, — 0in L*(E (M); u%+ ),
we let k& — oo in (2I4]) and obtain that for every m,T,i € Nt

s (@, Ly rhi)u, G) =0, VG e .ZC,.
Therefore we could find a g -null set A; C Eg, (M), such that
(2.15) (@), Lnr(Vhi)u, =0, Vm,TeN", v¢A,.

For a fixed h; € HS°, there exists a positive integer 7; € N* (which may depend
on h;) such that supp(h;) C [0,7;]. Since ~(-) is non-explosive, there is a . -null set
Ay C Eg. (M) such that for every v ¢ Ao, there exists m;(y) € NT satisfying

v(t) € Dpp,—1, forall te€[0,T}],

where D,,,_; is introduced by (2.8)). Hence l,,, 1,(t,7) = 1 for all t € [0,7;]. Combining
this with (2.15]) we know

<q>(7)7 h’z>H+ = 0, 1> 1,'7 ¢ Az U AQ,

which implies that ®(vy) =0,V v ¢ A = U2 A;. So @ = 0, pf,-a.s., and (&g, FCY)
is closable. By the standard method, we show easily that its closure (2., Z(&g,)) is
a Dirichlet form.

(b) Quasi-Regularity: In order to prove the quasi-regularity of (&g, , Z(&%.)), we
need to verify conditions (i)-(iii) in [51, Definition IV-3.1].

It is easy to see that each G € FC} is continuous in (Polish space) (E2, (M), d),
and .7 Cj is dense in 2(&g, ) under the (&2, |)'/*-norm with

R ( ) = &g () + | - ||2L2(ED§+(M)7MD§+)-

So (ii) of [51l Definition IV-3.1] holds.

Since the metric space (Eg., (M), J) is separable, we can choose a fixed countable
dense subset {,,|m € Nt} C Wg, (M). Next, we prove the tightness of the capacity
for (&, 2(&3.)) which ensures (i) of [5I], Definition IV-3.1].

Let ¢ € C;°(R) be an increasing function satisfying with

pt)y=t, Vite[-1,1] and [|¢]e < 1.
For each m > 1, the function v, : E§. (M) — R is given by
vm(7) = o(d(7,6m)), 7 € B (M),
with d defined in (ZI). By Lemma 23 below v,, € 2(£2,). We claim that

(2.16) wy := #zrifk Um, k € NT, converges &5+ — quasi-uniformly to zero on E%, (M).

11



Then for every i € N* there exists a closed set K; such that Cap(K¢) < 1 and wy, — 0
uniformly on K; as k — oo. Here Cap is the capacity associated to (&3, Z(6g:)) (see
[51], Section I11.2]). Hence for every 0 < & < 1 there exists k € NT such that wy, < ¢ on
K;, by using the definitions of v,, and wy, we obtain that K; C UF _ B(&m, €), where
B(&m,e) == {y € Egy (M);d(&m,v) < €}. Consequently, for every i > 1, K; is totally
bounded, hence compact. Combining this with the fact lim;_,o, Cap(Kf) = 0 we know
the capacity for (%, , Z(6g.)) is tight.

Now it only remains to show the claim (ZI6). For each fixed m > 1, by (2I9) in
Lemma 2.9 below we obtain

Dum(3)(s) = ¢'(d(7,6n)) (ng U V1a(1(5), €m(5) L1 (5) ).

where V1 is the gradient of p with respect to the first variable. By the definition (2.6])
of the quadratic form &%, , we have

(2.17)
o 1 2 °
£R+(Umuvm) = 5 /O o) ‘Dvm(V)}H+dMR+(’7)
R+
1= 1 . k ) ) )

- 52 T / s o ' (d(, &) - ( /k . \vlp(v(s),gm(s»}TW(S)Mds)dﬂw(y)

k=1 R+

) = 1
<ol (D ) SC VmeNt,

k=1

where C' > 0 is a constant independent of m, and in the first inequality above we
applied the property that |Vip| < 1. )

Since {&n|m € N} is dense in (Eg (M);d), it is easy to verify that wy | 0 pg.-a.s.
on EZ, (M) hence in L*(E%, (M); u,). By [2I7) we arrive at

<§]§+(wk,wk) <C, Vke N+,

where C' is independent of k.

Based on this and [51], 1.2.12, II1.3.5] we obtain that a subsequence of the Cesaro
mean of some subsequence of wy, converges to zero &%, -quasi-uniformly. But since
{wg }ren+ is decreasing, ([2I6]) follows. Now tightness in (i) of [51], Definition IV-3.1]
follows.

For any 7,7} € Eg. (M) with € := d(v,m) > 0, there exists certain &y such that

d(én,m) < = < and d(fN, v) > 5. Take {F,(v) = ©(d(Em, 7)), m € N} for ¢ as above,
(iii) of [51] Deﬁnition IV-3.1] follows.
O

For a locally Lipschitz continuous function g : M — R, by Radamacher’s theorem,
it is well known that the gradient Vg(x) of ¢ exists for all x € M /S with some Lebesgue

12



null set S C M. For convenience, let us define Vg(z) = 0 for any € S. Also note
that pg. (y(s) € S) = 0 for each s > 0, hence Vg(7(s)) is pg.-a.s. well defined for
every s > 0.

Let Ch,1ip([0, 00) x M) be the set of all functions f on the product space [0, 00) x M
and each function ¢(¢,z) is bounded and continuous with respect to the first variable
t € [0,00), and uniformly Lipschitz continuous with respect to the second variable
x € M.

Lemma 2.9. (1) For each fized function F(v) := f(f(fg(s,v(s))ds) with some fired
t>0,9 € Chrip([0,00) x M) and f € C}(R). Then F € 2(&g.) and we have

219 DFO)) = £ ([ atrao)ar ) (0700 V(s 2(610 ()

for ds x pg, —a.s.(s,v) €[0,00) x B, (M).

(2) For a fived o € W, (M), let G(v) := f(d(y,0)) with f € CL(R) and d defined
by @I). Then G € 2(&3.) and we have

[e.e]

(219)  DG() = F(dr,0)) - (3 oxUs ()Va(1(5), o) Lora(5))
k=1
fords x p2. —a.s.(s,v) € [0,00) x B2, (M), where V1p(-, ) denotes the gradient

with respect to the first variable of p(-,-).

Proof. Step (i) First we suppose that g € Cp, 1i([0, 00) x M) and there exist a constant
L € RT and a compact set K C M such that

(s, 2) —g(s,y)| < Lp(z,y), Ya,y € M,s € [0,00)
and supp(g(s,-)) C K, Vs € [0,00).

Consider a local coordinate system {U, ¢y} on M, ie. for any x € M, there exists
a (bounded) neighborhood U of x and a C'* diffeomorphism ¢y : U — V', where V
is a (bounded open) subset in R™. Without loss of generality, we may assume that
suppg C [0,00) x K. According to the unit decomposition theorem on manifold,
there exist N € NT, U; € {U,¢pp},1 < i < N, and non-negative smooth functions
a;,1 < i < N such that

N N
(2.20) Za N CUU and supp(o;) C U i

i=1 i=1

Define g; := ga; for each 1 < ¢ < N. Then, from [220), we know supp(g;) C
[0,00) x U;. Let V; := ¢y, (U;) C R" and g; : [0,00) x V; — R denoted by g(s,y) :=
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gi(s, oy (y)) for s € [0,00),y € Vi. We can easily check that g;(s,-) is Lipschitz
continuous with support contained in V; for all s € [0, c0).

Let ¢ € C*(R™) be a polishing function satisfying that supp(¢) C B;(0) and
Jgn #(z)dz = 1, where By (0) is the O-centered unit ball in R”. Note that supp(g;(s,-)) C
Vi, then for each 1 < i < N, there exists a constant €; > 0 such that for every ¢ € (0, ¢;),
the following g:(s, ) is well defined on V;,

i) 1= 5ix 6.(s,0) = [ G, 0)on(u = o)du, ¥ (5,) € 0,00) x 1
R4
and suppgs (s, ) C V;, where ¢.(u) := 5_%5(%). It is easy to verify

(2.21) lim sup |g; (s,v) — Gi(s,v)| =0, s€[0,00).
el0 yev;

Since the Lipschitz constant of g;(s,-) is independent of s, we also have for any p > 0,

sup IVii(s,v)| <C;, 1<i<N\,
c€(0,&;),v€V;,5€[0,00)

(2.22)
ligl/ Vi (s,v) — Vgi(s,v)[Pdv =0, V s € [0, 00)
& Vi

for some constants C; > 0, 1 < ¢ < N, where V is the gradient w.r.t. the second
variable.

Define ¢¢ := g5 o py,, and we extend g7 to the whole product space [0,00) x M
by letting g |0,00)xve = 0. Since supp(g;) C [0,00) x V; for all € € (0,¢;) implies that
suppg; C [0,00) x U; for every € € (0, ¢;), it is not difficult to see g5 € C’l?’l([(), 00) X M).
Taking €¢ := infi<;<x &;, then for every ¢ € (0,g9) we could define g° := Zf\il g;. By

220), @2I) and [2:22]) we know for all p > 0,
lim sup [g°(s,y) — g(s,y)[ =0, s € [0,00),
&0 yenm

sup Vg (s,y)| < C,
e€(0,e0),yeM,s€[0,00)

lim / Vo (s, ) — Vg(s,y)Pdy = 0, s € [0, 00)
el0 M

(2.23)

for some constant C' > 0.
Define F¢(v) := f(f(f g°(s,7(s))ds) € FC}, then from (27 it is easy to obtain

DFO)E) =1 ([ #0a)as) - (07 91D 109, € 0.50)
Combining this and ([2.23)) we have
sup &(F¢,F°) < o0,

e€(0,e0)
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and ,
Eﬂg#&+(\ﬁw(v)—-ﬁKv)\> = 0.

By [51, Chap. I Lemma 2.12] we know that F' € Z(&,). Moreover, (223)) ensures

iy DF()(5) = 7 [ atra(r)as) - (U7 0)Fat62(6) 1)

el0

for ds x pg.-as. (s,7) € [0,00) x EZ,(M). Combining this with the dominated
convergence theorem yields

m/ /uW€ (s) — lim DF*(7)(s)[*dsdpg. =0,
el0 Eo ( M) el0

which implies (ZI8) immediately.

Step (ii) Now we consider the general case : g € Cy 1;,(]0,00) x M). By the Greene-
Wu approximation theorem in [39], there exists a smooth function n : M — R™ such
that for every R > 0, {x € M;n(x) < R} is compact and sup,.,, |Vn(z)| < C. Choose
hr: Rt — [0,1], hg € C°(R") with

hr(z) =1,V 2 €[0,R], hg(x) =0,V z > R+1, and ||h}y|e < 2.

For each (s, z) € [0,00)xM, define gr(s, z) := g(s,x)hr(n(x)), Fr(v) := f(f(f gr(s,v(s))ds).
Based on the fact that sup,c,, |Vn(z)| < C it is easy to verify that gp(s,) : M — R
is Lipschitz continuous and with uniform compact support and with uniform Lipschitz
constant.

From Step (i) of the proof we know Fp € Z(&g.) and it is not difficult to show

wr (Fr: Fr) < ClFIRNIVRlE < CIFIRIVgllw + lglls)?,

o, 2

Jim g (|Fr(y) = F()[F) =0,

}%i_r& DFg(7)(s) = DF(vy)(s) for ds X ug+ — a.s.(s,7) € [0,00) x Egy (M).

Combining this with the same arguments as in Step (i) we know F' € (&g, ) with

DF given by (2I8).
Step (iii) By similar arguments as above we can easily check that for I’ given as

in (2.3) with g; as in (1) the results in (1) follow. Let Gy (7v) := f(cZN (7,0)), where
dy (v,0) = 25:1 o fkk—l p(7(s),0(s))ds. Hence according to the conclusion in Step

(i),(ii) we obtain G € (&g, ) and
DGx()(s) = f'(dx (3.0 )(22%5 V1p(1(5), () Le-1.40(5)

15



for ds x pgy — a.s.(s,y) € [0,00) x Eg. (M). By this and the same arguments as in
Step (i) (by the dominated convergence theorem) it is easy to prove

dim g (IGN(7) = GO)I°) =0,
lim 5. (|DGx (7) = DG, ) =0,
which implies G € 2(6%,) and DG has the expression (2.19). O

Remark 2.10. (Finite Volume Case) Let pg be the distribution of the Brownian
motion starting from o on C([0,T]; M). Similar to the above argument, we can obtain
Theorems [ZZ2H{2.7]] and Lemma [Z8 hold with ug, be replaced by pg. These extend the
results in [58, Section 2] to general Riemannian manifold.
3 The case of whole line
Fix o € M, the path space Wg(M) over M is defined by

Wg(M) = {y € C(R; M) : 7(0) = o}.

Then WE(M) is a separable metric space with respect to the distance d., as follows

(3.1 de(1,0) =3 o s (P(5)0(5). 7.0 € W)

where p = p A 1. Similar as in Section 2, we define the following L!-distance:
(3.2)

k —k+1
o = (3¢ [ AsheDds+ 5 [ (s)hn(e)ds), e W),

ok k
2\t [, 2 ),

Obviously we have d < 2d.. Let E3(M) be the closure of W2(M) with respect to the
distance d, then Eg(M) is a Polish space.

Let W be an n-dimensional Brownian motion independent of W and let U be the
solution to (22)) with W replaced by W. Set Z; := w(U). Then Z. is a Brownian motion
with initial point 0 on M , and independent of x. Define

i"_ T, tZO
R t<0

Denote by u the distribution of & on W2(M), then u§ is also a probability measure
on Eg (M) whose support is contained in Wg(M). Moreover, we can easily check that ug
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is the unique probability measure such that for F(y) = f(y(=tx), ..., v(—=t1), y(t1), ... v(tm)),
f c Cb(Mk+m),

k m
F(vy)dpg :/ PaE(Tio1,0i) | | pac(yiz1, i)
/Eﬁi(M) YO 11 1}
f(gk7 A} gl’yl? "'7ym>dy1"'dgkdy1"'dym7 yo == yo == 07

where p; is the heat kernel corresponding to %A and —1t, < ... < —t1 <ty =0=1, <
t < ... <t AZt =t —t;1 and Azt =t —ti—1.

Similar to Section 2, in order to construct Dirichlet forms associated to stochastic
heat equations in Riemannian path space, we consider the collection .# C}, of all cylinder
functions on E% (M) as follows: for every F' € .F# (), there exist some m,k € N, f €
CHR™*) g, € CPH[0,00) x M), g; € Cy'((—00,0] x M), T, Ty € [0,00), 4 = 1,...,m,
J=1,...,k, such that
(3.3)

Ty Tm 0 0
F(y) = ds, ... (s v(s)ds, | Gi(s,v(s)ds, s | Gils,v(s))ds ) .
=1 ([ aters [T outsanis [ atsa@sn [ ais )
For v € Eg(M), define 5(s) := 7(s),s > 0 and 4(s) := y(—s), s > 0 respectively, then

3,5 € E¢ (M). Thus we could decompose v = (¥,7), in particular, under ug, (-)
and 7(-) are two independent Brownian motions on M. We also define

{80,120

where Uy (%) : R® — T, M is the stochastic horizontal lift along ¥(-) defined via ([2Z.2).
By the above argument, for F' € %}, with form (B3] we have

[ Foys
E§ (M)
T T,
(3.5) :/£+(M) [E§+(M)f(/o 91(8,7(8))(18,...,/0 gm(s,7(s))ds,
0

[ atsnteas e [ autsa-ods )iz () (),

-1 —T

where i, is introduced in Section 2. It is easy to see that .# Cy, is dense in L*(Eg (M); pg).
Set:

H:= L*(R — R";ds) = {h:R—HR“;/

—00

h(s)fas < oo
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For every h € H and each F' € .# (), of the form (B3], the directional derivative of F
with respect to h is (ug-a.s.) given by

(3.6)
Dy F(v) :Zéjf(ﬂ ; J (U7 (v)Vg;(s,7(s)), h(s)) ds
Jj= - 0
+Zam+jf(7)/_‘ (U7 ()Vg(s,7(s)), h(s))ds, ~€Eg(M), heH,
where
0 f(y) = 0;f (/0 1g1(s,v(s))ds,..,,/0 gm(S,y(s))ds,/_T gl(s,v(s))ds,...,/_T_ gk(s,v(s))ds),

Us(y) is defined by (B4), and Vg; denotes the gradient w.r.t. the second variable.
By the Riesz representation theorem, there exists a gradient operator DF(y) € H
such that (DF(v),h)m = DpF(v) for every h € H. In particular, for the above F,
v € Wg(M)

~

DF(y)(s) = -f(V)U_l( )Vg;(s,7(8)) 0.1, (s)

?‘Ms

(3.7)
Z jsm [ (VU (V)VGi(s,7(8)1[1,,0)(5)-

h(0) = O,/R|h’(s)\2ds < oo} :

Fix a sequence of elements {h;} C H* such that it is an orthonormal basis in H, we
define the following symmetric quadratic form

Set
H>® := {h € C(R;R")

1
éaﬁg(F, G) = 5 /O(M)<DF, DG>HdILL?R, F.G e ZC,.

Remark 3.1. We deduce the integration by parts formula by using the above stochastic
horizontal lift U below. There are other ways to define the stochastic horizontal lift such
that it is adapted to the filtration generated by ~v. However, as mentioned in Section 2,
the L?-Dirichlet form is independent of the stochastic horizontal lift, which can be seen
as a tool to obtain the integration by parts formula and the closablity of the associated
bilinear form.

Set B., f3. as the anti-development of 4 and 7 respectively (whose distribution under
i are two independent R™-valued Brownian motions). Let [, 7 : [0,00) x Wg, (M) —
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[0, 1] be the vector fields constructed in Lemma 28 and we define [, 7 : R x W2(M) —
0, 1] as follows,

7 o lm,T(t,’?), t e [O, OO),
(3.8) Lo (t,7) = { A

Proposition 3.2. For each F € #C, and h € H*, and for each lAm,T defined by (B.8)),

we have
(3.9) / (DF, Ly phyudpg = / FOTdug,
(M) E9 (M)
where
m,T m. T/~ Foo ]. . ~
O77(0) = €7 (1) = [ GRicuonr(s3) + 570,05
(3.10) 0

+o0 1 B
+ [ < Ricur oy o1 (5, 9) + Ky (5 7). dﬁs>-
0

Here hyr(s,%) == h(s)lmr(s,7) and hpr(s,7) = h(=$)lnr(s,7) for all s € [0,00).
Proof. By [B.1), (3:6) we have

(3.11)

<DF ZmTh>Hd:u]?§

\

/ / Zajmm / (U (3) V955, 3(5)), (5, T)R(s)) dsdpes (3)dp (7)

k 7,
/ : <M/ a2 O f G [ AU VG (5,305 b5, A(=9)) ddie ()i ()
= I+ 11,

where 0, f(7,7) = 0;f(7).
According to (ZI1)) of Lemma 2.8, we get

- [T/ > 0 (27110 (=
= [ L EGA) [ R+ Ha (e, 05 ) i () )
o (M) JE, (M) 0

o T /1 - 0 /- o
7= / / F(3,7) / < Ricu, oy hmz(5,3) + Kz (5, 7), dﬁs>duR+<v>duR+<v>,
O+(M O+(M 0

where F(%,%) = F(v). Combining this and (B.I1), we finish the proof.
U
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Similar to the arguments as in the proof of Theorem and based on the above
integration by parts formula ([B.9), we obtain the following:

Theorem 3.3. The quadratic form (&g, FCy) is closable and its closure (&%, Z(&8))
is a quasi-reqular Dirichlet form on L*(ES(M); ug).

Proof. (a) Closablity: (I) Suppose that {F;}22, C .ZC) is a sequence of cylinder
functions with

(3.12) Jim g (F) =0, lm &8 (B — Fo, By = F) = 0.

Thus {DF,,}°_, is a Cauchy sequence in L* (Eg (M) — H; pg) for which there exists
a limit ®. It suffices to prove that & = 0. Given an orthonormal basis {h}, C

C*(R; R™")NH®™ of H, by the integration by parts formula ([9), for every G € .ZCy, hy,
and k,i,m,T € NT we have

~

ui«Dmﬁﬂwwmﬁ:q@(@mmeymﬁmﬁg—uﬁgpaQJMhJQ

(3.13) 12 (E’GGZZT> — 15 ((DG, Zm,Thk>HE> -

Since G and DG are bounded and @ZZT € L*(EQ(M); pg) (due to (Z9) and the fact
hy € CHR;R?)), by BIZ) we could take the limit i — oo under the integral in (B.13)
to conclude

,%«Qmﬂmmﬁza VG e FCy, kym, T e N,
therefore we could find a pg-null set A, C WE(M), such that

(314) <(I)(7)a Zm,T(’y)hk>H = O> v maT € Z-H Y ¢ Ak

For a fixed hy, we could find a T}, € N* (which may depend on hy) satisfying
supp(hy) C [Tk, Ty]. Since the coordinate process () is non-explosive, for every
v ¢ A¢ with some pg-null set Ag, there exists mg(y) € Z,, such that 3(t) € D, 1
and y(t) € D,,, 1 for all t € [0,T}], hence lAmk,Tk(t,v) =1 for all t € [T}, T}|. Here
D,,, 1 is defined in (2.8)). Combining this with (8.14) we know

<q>(’y)>hk>H :Oa k > 1>7 ¢ AOUAka
which implies that ®(7) =0,V v € A 1= U2 Ay So @ =0, a.s., and (&g, F () is
closable. By standard procedure, it is not difficult to show that its closure (&g, Z2(&g))

is a Dirichlet form.
(b) Quasi-Regularity:
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In order to prove the quasi-regularity, we need to verify conditions (i)-(iii) in [51]
Definition 1V-3.1]. By the same arguments as in the proof of Theorem 22 we could
check (ii) and (iii) of [5I, Definition IV-3.1] for (&g, Z(&g)), so we omit the proof here.

Since the metric space (E§(M);d) is separable, we can choose a fixed countable
dense subset {{,|m € Nt} € WE(M). Let ¢ € C°(R) be an increasing function
satisfying with

pt)y=t, Vite[-1,1] and [|¢]e < 1.

For each m > 1, the function v, : E4(M) — R is given by

Un(7) = @(d(1.6n)), 7 € Bg(M),

where d is defined by 33). According to the same procedures as in the proof of Lemma,
2.9 we have v, € Z(&g) and

> 1

(U G)V1503(5), €m(5) 110 (5)

\)

Dun(7)(s) = ' (d(7,6m)) - (

+ U= () Vip(5(—s), ém(s>>1[—k7—k+l><5>))

for ds x pf —a.s.(s,v) € RxEg(M), where V;p(-, z) denotes the gradient with respect
to the first variable of p(-,-). By such expression we arrive at

SUp &g (Vm, V) < 00.

m>1
Then based on this and repeating the arguments as in the proof of Theorem we
can show

(3.15)  wy = irifk Um, k € NT | converges &5 — quasi-uniformly to zero on Eg (M),

therefore the capacity associated with (&g, 2(&g)) is tight. So (i) of [51l Definition
IV-3.1] holds. By now we have finished the proof.
U

Remark 3.4. By the theory of the Dirichlet form, for the case of the whole line, we
also derive similarly Theorems[2.3 and[2.4] in Section 2.

As explained in the introduction, the invariant measure for the stochastic heat
equation on the whole line could be the distribution of a two-sided Brownian motion
with a shift given by Lebesgue measure, which may not be finite measure. So in our
setting it is also natural to consider the reference measure given by [, u&(dy)v(dz)
with some Randon measure v (which may not be finite measure). The support of the
measure is the paths on M with initial point not fixed.
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Let Wgr(M) := C(R; M) be the free path space, then (Wgr(M),d) is also a sepa-
rable metric space with d,, defined by (B1]). Let CZ be the L!-distance defined by (3.2),
and let Eg(M) be the closure of Wr(M) under d. It is easy to see that Egx(M) is a
Polish space.

For any fixed Radon measure v (not necessarily finite) on M, we could introduce
a measure (not necessarily finite) ui(dy) = [,, pk(dy)v(de) on Eg(M), where puf is
the probability measure defined as pf with o replaced by x. Then we have that for

F(y) = f(y(=tr), s v(=t1), v (t0), ¥ (t1), ..., v(tm)) with f € Co(M*F™H) it holds

dILL —/ pA yz 17y7, pAt yl 17y2
(3.16) /ER<M> ‘ H ' H

f(yk, s U1 Y0, YLy e ym)dyl...dykdyl...dymu(dyo),

where the variable yy = 9o and p; is the heat kernel corresponding to %A and —t;, <
< —1?1 < 1?0 =0=t <t1 < .. < tm, Alt =t; — t;_; and Alt_ = t_l — Ei—l- Here
C.(M*™+1) denote continuous functions on M*+™+1 with compact support.

Remark 3.5. When M 1is compact and v is the normalized volume measure, then
i corresponds to the distribution of stationary M-valued Brownian motion. In the
case that v is given by the volume measure, the Markov process we construct below
corresponds to stochastic heat equation on R with values in M without any boundary
conditions.

Remark 3.6. Ifv is the volume measure (M could be either compact or non-compact),
then by expression [B.16) we know that 0%k = uk for any s € R, where 0% denotes the
push forward measure for uk by the map 05 : Ex(M) — Eg(M) as 05(7)(t) == y(t+s).
This means that ug is invariant under any translation on R.

Remark 3.7. In [9, [42], the authors studied (LIl) with solutions taking values in
free loop space L(M) := {~ € C([0,1]; M);7(0) = ~v(1)}. In this case we could also
construct the L2-Dirichlet form (&%, 2(&%)) as follows

GUFF) = / o (DF.DE i)
(3.17) L0
/ / (DF, DF)gp”(dy)v(dz),

where L, (M) := {~v € C([0,1]; M);v(0) = v(1) = =}, @ denotes the Brownian bridge
measure on L, (M).

For the free loop measure ji above, if v(dx) = pi(x,z)dz, then i is invariant
under any rotation on S*. In [53], the quasi-reqularity of (&%, 2(&4)) has been studied
under the assumption that M is compact. As explained in Remarks[3.11 and[3.14), by
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the method of this paper, we could also obtain the corresponding results for the case
that M s non-compact.

The state space L(M) corresponds to the spatial variable with values in finite vol-
ume, while Eg(M) and E§ (M) correspond to the case that the spatial variable in infinite
volume.

Here we only consider the case that v is an infinite measure, since when v is a finite
measure, the case is simpler and it may be handled similar as in Theorem [4.1]

Next, we assume that v is infinite, then pf is also an infinite measure on Eg(M)
with support contained in Wr(M). In this case 1 ¢ L*(uk%) and we need to introduce
a new class of cut-off functions Eg(M). Let .#CL;, be the space of bounded Lipschitz
continuous functions on Eg(M), i.e. for every F' € #(Cp;,, there exist some m,k €
N, f € CLR™H), g € CVL([0,00) x M), g; € CY}((—00,0] x M), T;,T; € [0,00),

Lip Lip
1=1,....m, 7 =1,..., k, such that
(3.18)
Ty Tm 0 0
Fo) = £ ([ ontsrhdseee [ antanis, [ atsaehdsn [ asanas).
0 0 ~Ty ~ Ty,
where 02;.;([0, 00) x M) denotes the collection of functions ¢ : [0,00) x M — R such

that g is continuous on [0, 00) and Lipschitz continuous (not necessarily bounded) on
M with the associated Lipschitz constants independent of s € [0,00). Now we fix a
point o € M. Let

FC, ::{F € FClLp; there exists R > 0 such that F'(y) = 0 for all
1
v € Eg(M) satisfying / p(0,7v(s))ds > R }
0

Lemma 3.8. Suppose that for every R > 0, it holds

(3.19) /MMHEU( sup p(z,7(s)) > p(o,z) — R) v(dz) < oo,

s€[0,1]
then FC. is a dense subset of L*(Eg(M); u%).

Proof. Step (i) We first show .ZC, C L*(Eg(M); %). For every F € Z#C,, without
loss of generality we may assume that there exist R > 0, such that F(y) = 0 for all
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v € Eg(M) satisfying fol p(0,7(s))ds > R. Then we have

L, e dv//z|F\()()
~ o g ORI [ [ IO

< ||F||2O(V(B<o, 2R)) + /B o B (821[10% p(z,7(5)) > plo,2) — R) Jw(dr) < oo

where the third step is due to the fact when x ¢ B(o,2R), F(y) = 0 for all v €
Eg (M) with SuPse[O 1y P((s),x) < plo,x) = R (if supyeoqy p(7(s),2) < plo,x) — R,
then fo p(0,7(s))ds > inf,e017 p(7(s),0) > R, hence F(vy) = 0).

Step (11) Now we are going to show .ZC, is dense in L*(Eg(M);pu%). Tt suf-

fices to prove that for every G(v) := f(v(tl), e ,v(tm)> with some m € Nt #; <

ty -+ < t,, and f € CH(M™), there exists a sequence {Gjr}trr C FC. such that
limy, gsoo 115 (|Gr,r — G|?) = 0. Here C2(M™) denotes the C* functions on M™ with
compact support.

By Nash isometric imbedding theorem, there is a smooth isometric imbedding 7 :
M — RY with some N € N* and we can extend f € C}H(M™) to f € CH(RN™)
satisfying f(n(z)) = f(z) for all z € M. Choose pr € C}(R,R), ¢ € CH(R,R)
satisfying

x, if |z| < R,
vr(r) = R+1, ife>R+1,
“R-1, ifo < —R—1,
1, if |z| <R,
or(r) = € (0,1), if R<|z|<R+1,
0, if 2| > R+ 1.

We set prn(z) := HlNzl or(x;) for © = (x1,...,xN).

Grnl) = on( | ontenas) ik [

1

ti+4

tm+%
ernon(y(s))ds, - ,k‘/ SDR,NOU(V(S))dS)’
tm

then it is easy to verify that Gpr € FC, for all k > 0 and R large enough, and
limy, gsoo 15 (|Gr,r — G|?) = 0 ( (since f € CHRN™), this could be shown by the
dominated convergence theoem). By now we have finished the proof.

]

Now we give some sufficient conditions on the curvature of M for (B.19).
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Lemma 3.9. Suppose that
(3.20) Ric, (X, X) > —=Ci(1+ p(o,2)*), Yz e M, X € T,M,|X|=1,

for some C; > 0, a € (0,2) and o € M, where Ric, denotes the Ricci curvature
operator at v € M. Then for every Radon measure v(dx) = v(x)dz (here dz denotes
the volume measure on M ) such that

(3.21) lv(x)| < Cyexp(Csp(o,x)?), VYo e M
with some Cq,C3 > 0 and § € (0,2), BI9) holds.
Proof. Note that (320) implies that

(322> R’lcy(}/? Y) Z _Kl (p(Ov y))v v /S M7 Y e TyM7 |Y| = 17
with Ky (r) := C1(1 4 r®). It is easy to verify that we could find a ¢; > 0 such that

(3.23) ¢ = sup (ty/(n — 1)K;(t) — 2¢1t%) < oo.

t>0

Then according to [60, Lemma 2.2] we know that for every N > 0 and 7" > 0,
(3.24) uﬁ%+< sup p(0,7(s)) > N ) < entermrMN
s€[0,T
where k(T := sme~ 17297,
Also note that ([3.22]) implies for every z € M,

Ric, (YY) > —2K1(p(x,y)) — 2K1(p(o,2)), Vye M, Y € T,M,

Then taking ¢; = 1 and using 2K(t) + 2K, (p(o,x)) to replace K(t) in (B23), we
have ¢o < ¢3(1 4 p(o,x)*). Therefore according to (3:24) we know for all R > 0 and
x & B(o,2R),

u&( sup p(z,7(s)) > plo,x) — R)
s€[0,1]

(3.25) < exp (” +e3(1+ plo, 2)*) — w(1)(p(0, ) — 3)2)

< exp (n + c3(1 + plo,x)Y) — %P(O, x)2)

2
—csp(o,x
< cqe” P00

where ¢4, ¢5 are positive constants independent of z € M and R > 0. Denote by Cut(o)
the cut-locus of 0 in M and the exponential map from o € M by exp, : T,M — M. It
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is well known that exp,’ : M \ Cut(o) — exp,* (M \ Cut(o)) C T,M ~ R" x S"! is
a diffeomorphism, which induces the geodesic spherical coordinates of M (see e.g. [14]
Section I11.1] for details). Let (r,0) € RT x S"~! be the element in geodesic spherical
coordinates, then for every f € C.(M) we have (see e.g. [14, Theorem III 3.1})

/J‘/If(ac)alaﬁ:/R+ /Snlf((r, 0)) ||« (r,0)||drdo,

where o7 (r,0) is a n X n matrix, |.<7| denotes the determinant of <7, and &7 satisfying
the following equation

" (t,0) +R(t,0)(t,0) =0, </(0,6)=0, o'(0,0) =1.

Here Z(t,0) € L(R™;R") ~ R™"™ and 2(t,0)¢ := U7 'R(v)(t), Up&)v4(t) for all £ € R"
with vy(t) = exp, ((t, 9)), Uy : R" — T,,)M is the parallel translation along geodesic
7(+), R denotes the Riemannian curvature operator on M.

Moreover, we have the following estimates for |&7| (see e.g. [14, Theorem IIT 4.3]),

(326> “”Q{On’ Q)H < ( 2_(,:) Sil’lh( i(l(rl)’r‘>)n_l < 066077"17”1/27 r> O,
1 _

where cg, ¢7 are positive constants independent of r, K;(r) is the function in ([3.22]) and
the last step is due to 222¢ < cosha and (3:20).

Combining (3.21]), (325 and (B.26]) yields

/B(OQR)C Mﬁ+< sup p(z,7(s)) > plo,z) — R) v(dz)

s€[0,T

(3.27) < Cs/ / _exp (Csr? + cr*2/2 — c5r?)dodr
2R Jsn-

o0
_ 2 _ 2
< 09/ e~y < ¢qpe 12
2R

Here in the second step of inequality we have applied the fact o € (0,2) and 5 € (0, 2).
Based on this estimate we could obtain (B.I9) immediately. O

Remark 3.10. By Lemma we know that under curvature condition (B.20), the
property [BI9) holds if v is the volume measure of M.

Remark 3.11. For the free loop measure i defined by BIT) on L(M), by carefully
tracking the proof of Lemmal3.8 we know if for every R > 0,

(3.28) /M[ﬁ< sup p(z,7(s)) > plo,z) — R) v(dx) < oo,

36[0,%]
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then FC.. is dense in L*(L(M); i").
When we choose v(dx) = py(z, x)dz, it holds.

[ (s oea(9) > plo.) = R) ()

56[0,%}

(3-29> :/ ,u]w <1{supse[0 ]p(oc,'y(s))>p(om) R}(fy)p% (7(_) ))dx

/\//QL]R+ suplpxy())>p0:c \//plxy3dydx
s€[0,5]

where the last step is due to Cauchy-Schwartz inequality.

If the curvature condition ([B.20) holds, then we know that (3.23)) is true. Moreover,
suppose [B.20) holds and the following lower bound of volume [B30Q) is satisfied (, which
could be viewed as an local volume non-collapsed condition)

1

(3.30) inf m(B(:c,—)) > Ce R VR > 1,
z;p(0,2)<R 2

where € (0,2),C1,Cy are constants, m denotes the volume measure on M and

B(z,r) = {y € M;p(y,x) < r} is the geodesic ball on M. Then according to the

proof of [7, Corollary 3] (here our curvature condition [B20) is a little different from

[7]), we have

pi(z,y) < Csexp < — Cup(x,y)* + Cs (p(0, z)™ ™5 4 p(o, y)maX(a,B)))_

p1
2

Putting this into ([3.29) and by the same arguments as in the proof of Lemma[3.9 we
could prove (B.28).

As a result, combining all the above estimates we could prove that if B20) and
B3Q) are true, then FC. is dense in L*(L(M); i¥).

For F' € FC,, we still define the directional derivative D,F () along h € H :=
L*(R — R™;ds) and the gradient operator DF € H as in ([3.6) and (B.71), respectively.
Here as explained before Lemma we know that D, F and DF' are well-defined for
Hp-a.e. 7.

Now for the fixed o € M, as in Lemma (although here the initial point will
not be fixed, see e.g. [58] or [16]) we could construct a series of relatively compact
subset {D,,}>°_, of M (with o € D,, for all m), and a series of adapted vector fields
{Um,1 } oy =1 such that ,, 7 : [0,00) x Wg+(M) — [0, 1], items (1)-(2) in Lemma 26 and
the following estimates hold

t
sup [ ()P (@) < oo, k> p>0
E®, (M) Jo

(EGDm
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In particular, by (1) in Lemma 2.6 we have
lnr(5,7) =0, pgs —a.s. v € Ege (M) if x ¢ D,,.
As before, we split v € Eg(M) into 7,75 € Eg+(M) by

Y(s) :=7(s),s 20, A(s) :==(=s),5 20,

and following the procedures of ([B.8]) we could extend [, r to an adapted vector field

~

L1 : R X Eg(M) — [0, 1]. Moreover, it holds that

~

lnr(8,7) =0, pg —a.s. vy € Eg(M) if o ¢ D,,.

rEDm

t
(3.31) sup / / |l (s,7)[Pdspg(dy) < oo, VEk>m, p>0.
r(M) /0

By the proof of Theorem 2.8 in [16] (see also appendix), ([3.9) holds for uf with every
x € D, with ¢ < m, which yields immediately for every F' € .#C., h € H*, m,k,T €
N* with & > m (note that h(0) = 0 for every h € H*>),

(3.32) / / (DF, I, ph)yadpdv(dz) = / / FOPTduzv(dr),

where ©F" is defined by (BI0).
Fix a sequence of elements {h;} C H> such that it is an orthonormal basis in H,
we define the following symmetric quadratic form

o0

1
52 /E . Dy, FD, Gduy; F,G e ZC..
k=1 R

1
&(R.G)=3 [ PRCLECIE
R

In particular, by the same arguments as in the proof of Lemma[B.8 we know &% (F, F) <
oo for every F € .Z#C..

Since the reference measure pp has infinite mass, we use a cut-off technique to prove
the quasi-regularity of the associated L2-Dirichlet form.

Theorem 3.12. Suppose that [3.19) holds. Then the quadratic form (&%, FC,) is clos-
able and its closure (&%, 2(&Y)) is a quasi-reqular Dirichlet form on L*(Eg(M); 11%).

Proof. (a) Closablity: The proof is similar to that of Theorem 3.3l Suppose { Fj}72, C
FC. is a sequence of cylinder functions with

(3.33) lim p (Fp) =0, lim & (F — Fp, B, — F,) = 0.

m—o0 k,m—00
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Thus {DF,,}5°_; is a Cauchy sequence in L? (Egx(M) — H; %) for which there exists
a limit ®. It suffices to prove that & = 0.

Combining ([B.33) with (331)) and ([B.32)) yields that for all m, k, T € N*, G € ZC.
and the orthonormal basis {h;}°, C H* of H with k£ > m,

/ / G(®, Iy rh;)udpdv(dz) = 0,
m JEE (M)

which ensures the existence of a pf-null set A; such that for all m,k, T € NT with
k> m,

(3.34) L (V(®(), hiyu = 0, ¥ v ¢ Ay, v(0) € Dy,

For a fixed h; € H®, we could find T; € N* (which may depend on h;) satisfying
supphy, C [T, T;]. Since (-) is non-explosive, for every v ¢ Ay with some pg-null set
Ao, there exist m;, k; € Z, (which may depend on ), such that k; > m;, v(0) € D,,.,
Y(t) € Dy, for all t € [T}, T}, hence Iy, 1,(t,~) = 1 for all t € [T}, T;]. By this and

[B34) we know

which implies that ®(y) = 0, V v ¢ A := U®,A;. So & = 0, a.s., and (&F,.ZC.)
is closable. By standard methods, we show easily that its closure (&f, Z(&¥)) is a
Dirichlet form.

(b) Quasi-Regularity:

We first verify (i) of [51, Definition IV-3.1]: Since the metric space (Eg(M);d)
(d is defined by (B2)) is separable, we can choose a fixed countable dense subset
{&nlm € Nt} € Wr(M). Let ¢ € Cp°(R) such that ¢ is an increasing function
satisfying

p(t)=t, Vitel-1,1 and [¢']|. <1

Let ¢r € C°(R) such that ||¢;||cc < 2 and

1, if |z| <R,
or(z) = €(0,1), ifR<|z|]<R+1,
0, if 2| > R+ 1.

For fixed 0 € M and each m, R € N*, we define v,, g : Er(M) — R by

) = on( [ o7 ()l €))7 € B

Then by similar argument as in the proof of Lemma [2.9] it is easy to see that v, r €

P(&%).-

29



Define for closed set A C Eg(M)
Da(&R) ={ue D(F)|lu=0 ug— ae on A},

which is a closed subspace of Z(&F). This implies that (&%, .@A(g ”)) is a Dirichlet
form. Now we have v, g € Zp,,, (&%), with B := {y € Eg(M fo ))ds < R}.

Still according to the same procedures as that in the proof of Lemma Vl.l (2) we
have for every m, R € NT,

D, r(7)(s)

[e.9]

=on( / p(o,v(S))d8>s0’(J(%€m))-( S (U GIV1(3(5), 6l Lo (5)

k=1

FUSA)Vap(3(-s), »zm<s>>1[_k,-k+1><s>)>

([ 0(69,0105) . 60) (U7 B V1351 0)) Lo )

for dsx uf —a.s.(s,v) € RxE§(M). Such expression yields that for every fixed R € N*,

/sup | Dvpn |5 it < 0.

m>1

Based on this and [51, Lemma [-2.12, Proposition I1I-3.5, Lemma IV-4.1] we obtain
that for every fixed R > 0,

(3.35) Wk R 1= hifk Um, g converges &g — quasi-uniformly to zero on Eg(M).

Therefore for each R, N € N* there exists a closed set Fy z C Eg(M) with

(3.36) Cap((Fv,r)%) < %

and wy z converges uniformly on Fyp to zero as k — oco. Here Cap denotes the
capacity associated to the Dirichlet form (&F, Z(&F)). In particular, for every open
set U C Egx(M)

Cap(U) := inf{&g, (w,w)|w € Z(&),w > G1¥  pg-a.e. on U},

where ¢ € L*(Eg(M), k) with ¢ > 0 is arbitrarily chosen, for f € R™, w € 2(&%),
Eg g(w,w) = Hf{(w w)+ B4 (w?) and (G4 )aso is the resolvent associated to the Dirich-
let form (&F, Z(&Y)) (we refer readers to [51L Chapter III. Defi. 2.4] for more details).
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Set Fy.p := Fy g N Bg. Since by definition of .ZC, and 2(&Y), it is easy to verify
that FC. C Upy Z5,(&E) C 2(&F), which implies that (5, Z5,(&x) is dense in
P(&5) (with respect to g, norm). Then according to [51, Theorem I1I-2.11] we obtain

(3.37) }%im Cap(B%) = 0.

Note that by (3.36)
Cap((F,r)") <Cap((Fy.z)°) + Cap(BY,)

1 C
SN + Cap(By).

Combining this with (337)) yields
(3.38) lim Cap((Fy.r)°) =0.

N,R—00
Moreover, we have wy p — 0 uniformly on Fiy g C Bg as k — oo and ngR(fol plo,v(s))ds) =

1 on Bpg, therefore due to the definition of wy, g it is not difficult to verify for every
fixed N, R € N*,

dm sup il @ (dy, &m)) = 0.

Hence for every 0 < ¢ < 1 there exists k& € N such that wyp < € on Fy g, which
implies that Fyp C UE_B(&n,€), where B(én,e) == {y € Er(M);d(&n,7) < €}
denotes the ball in (Egr(M),d). Consequently, for every N, R € N, Fy g is totally
bounded, hence compact.

By now we have shown that {Fy r}% r—; is a compact &-nest. So (i) of [51), Defi-
nition IV-3.1] holds

For any 7,7 € Eg(M) with € := d(y,n) > 0, then there exist R € N and certain
£ such that d(&a,m) < 5 and d(&a,7y) > Taking a R large enough such that

on( Jy p(1(5),0)ds) = ér( Jy pln(s), 0)ds)
varr(n). Hence {v,, r(7), m, R € Nt} separate points and (iii) of [51], Definition IV-
3.1] follows. Following the same procedures as in the proof of Theorem 2.2]and Theorem
41 above, we could check (ii) in [51 Definition IV-3.1]. By now we have finished the
proof. O

£
1

1, then it is easy to see vy r(7y) #

By using the theory of Dirichlet form (refer to [51]), we obtain the following asso-
ciated diffusion process. Furthermore, we also obtain that the process is conservative
in the sense that the lifetime of the process is infinity. If the reference measure is
finite, it is easy to see 1 € Z(&F) and &F(1,1) = 0, which implies the processes are
conservative and recurrent. However, in this case 1 ¢ Z(&}). Motivated by [2I] for
the finite dimensional case, we construct suitable approximation functions and obtain
that the processes are conservative under mild assumptions.
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Theorem 3.13. Suppose that (BI9) holds. There exists a (Markov) diffusion process
M = (Q,.7, My, (X(1))i=0, (P?).cram)) on Er(M) properly associated with (&g, 2(6%)),
i.e. foru € L*(Egr(M); 1i%)NBy(Er(M)), the transition semigroup Pu(z) := E*[u(X (t))]
15 an &g -quasi-continuous version of Tyu for all t > 0, where T} s the semigroup asso-
ciated with (&§, 2(&%)). Moreover, the results in Theorem[2.4) also hold in this case.

Moreover, if conditions [B20) and B2I) hold, then the diffusion process M =
(0, F, My, (X(1))i=0, (P?).cra(ar)) is conservative in the sense that T;1 = 1 pg-a.e.
for allt >0 (c.f. [37, Section 1.6 P56]).

In particular, for M = R, v being Lebesgue measure, the diffusion process M =
(Q, F, M, (X(1))e>0, (P?).cre(ar)) @5 recurrent in the sense that Gf =0 or oo pg-a.e.
with f € L*(Er(M); pf), f >0 (c.f. [37, Section 1.6 P56]). Here Gf = [[°T,fdt.

Proof. The existence of a diffusion process is the same as that for Theorem 2.4 (due
to quasi-regularity of (&f, Z(&Y))), so we omit it here.

Step (1) We first prove that the process is conservative.

Choose ¢r € C>X(R) to be the same function as that in the proof of Theorem

BI2 For every R > 0, we define <I>R( = (bR(fO ds) For N > 0, choose
F e LA(Egr(M), %), F > 0 with F(y) = ¢n fo ds) Let (L, 2(L)) denote

the infinitesimal generator assomated Wlth (&8, 2 (@@ ”)) then it holds that u, := T} F €
(L) for all t > 0.
Note that

DO(7)(s) = o / p(1(5),0)ds) (U () Vo1, 0) ) L)

Since D® () = 0 for all v satisfying infieo 1 p(7(s),0) > R+ 1, by ([B26) and (B3:27)
we obtain for all R > 1,

(3.39)
& (Op) = |D<I>R( )[frdpgr(de)

M JEE(M

/ / durtdn)+ [ (sup pl1(9) = plox) — R~ 1)(da)
(0,2R) JEL(M B(0,2R)° s€[0,1]

2R)) + ¢y exp(— 02R2) <3 exp(c4R<)

where ¢; — ¢4 are positive constants independent of R, ¢ := max{1 + §, 8} < 2 with
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a, 5 € (0,1) being the constants in (320) and (32I)). Then we have
(3.40)
t

td
W (Fg) — () = — / i P)ds = - / 15 (Lu,®p)ds
0 0

t t
:/ /(DuS,DCI>R>Hd,uB’§dS :/ /(¢N7RDu5,g0]_V}RD(I>R)Hduﬂ’§dS
0 0

t 1/2 t 1/2
s( / / \@zv,RDusI%dedS) ( / / M‘v,lRD@R\%dedS) :
0 0

where the operator D on uy is the closure of D defined in (B.7) and

1
o)1= exp (B0l | p(3(5).0ds)),
0
for some 6 > 0, R > 2(N + 1) and ¢y r € Cj (R") satisfies |1y glloc < 2, Ynr(t) =1
fort € [R,R+ 1] and ¢y r(t) =0 for t € [0, N + 1]. Define oy gy = onpPuy. It is

obvious that oy ry € FC. and limy o0 YN rM = PN.R Hi-a.s. 7. By [51l, Corollary
1-4.15] we know ¢} p yur € Z(&f). Furthermore we have

%Nﬁ(@?\fﬂ,]\x[“f) = 2#]1”&(@?\7,3,MLW Sup) = =2 /(Duu D(SO?V,R,MUt))HdM[E
=—2 /(Dut> 2uron, R DON R M + @?V,R,MDUQHde@
< - 2/ lon,m.0m Duglgrd ik + 2<)\_1 / lon,m.0 Dug|fpd i + )\/ \“tDSON,R,Mﬁ{dM[E)
<-2 / o, rm Dug|frd g + 2 (A_l / o, m D |3rd i, + 8AO* U (03 g asus)

+ 205 (Rl DO ).

Here the last step is due to the property |Don ralfy < 86°0% ras + 203 gl DP |-
Choosing A = 1 and using Gronwall’s Lemma we obtain that

14 14 1 v
MR(‘P?V,R,MUf) < exp(1692t) (NR(‘P?V,R,MF2) + @AMR(SD?V,R|D®M|%{U?)>~

By the dominated convergence theorem we know limye i (9% gl D®arlfyu7) = 0.
Based on this, choosing A = 2 and letting M — oo we have

t
(3.41) | tenaDufids < 26 (),
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For v with D®g(y) # 0 (ie. R < fo 7(s))ds < R+ 1) it is easy to see
onr(y)™! < e P’ Now combining (B:39), (MII) and (B0 yields

1/2
p(FPR) — pg(u®r) < {2036169 tM]E(SO?V,RF2)e_2GRteC4RC] ,

Choosing 0 = E we have

. 1/2
(3.42) WL (FDr) — i (1) < {csuﬂ%(w?vvRF?)te-fm*%RC] ,

where ¢4, c5 are independent of F', N and R.
We arrive at for all R > 2(N + 1)

1/2
W () — (T (B )Br) < [ st (% B )te T R}

1/2
= [CsﬂR(q)z Jte™ ""t+c4R} ;

where the last equality is due to the fact ®x(y) # 0 only if ¢y r(y) = 1 since R >
2(N +1). Hence letting R — oo we derive for every N > 0 and t > 0 (note that ¢ < 2
here)

[ owai— [ evtindu = [oxaus~ [ @i <o

Since it always hold Ttl <1, the above inequality implies that T;1(7y) = 1 for all
v € Er(M) satisfying fo p(7(s),0)ds < N. Also note that N is arbitrary, we obtain
Ti1(y) = 1 for pj-a.e. v € ER(M ) immediately, therefore the process M is conservative.

Step (ii) Now we prove the recurrence property. Choosing qz~5 r € C°(RT) satisfying

1, if + <R,
dr(z) =< €(0,1), ifR<uz<?2R,
0. if © > 2R,
and [|¢]lec < . We define ®p(y (fo ) Then we have

DiR(v)(S)z%( / p(3(3),0)s) (U () F1(3(5).0) ) Lo ().

Now it holds |D§>R|H < 1—1% and DéR(v) = 0 all v satisfying infcjo17 p(7(s),0) > 2R,

34



then still according to ([B:27) we get

sibn) = [ [ 1D dpi(an
M JEgR(M)

1
<= wm»+/ t/ i (sup plaeA(5)) > plo.x) — 2R 1) v(da)
B(0,3R) B(o3R)e JEZ, (M)

s€[0,1]

< C—Rf + cgexp(—cr R?) — 0, R — o0.

The{efore we have found as series of ® r such that P r — 1 pg-ae. as R — oo and
EF(Pr) — 0 as R — oo, so the recurrence follows by [37, Theorem 1.6.5].
O

Remark 3.14. By integration by parts formula obtained in [18] and carefully tracking
the proof of Theorem [312 and [313, we could verify that if B20) and B30) are
true, then the conclusions of Theorems 312 and 313 still hold for (&%, 2(&Y)) with
v(dz) = py(z, x)dx. Here (&Y, D(EY)) is defined in Remark[374,

Furthermore a similar argument implies that the results in Theorems[3.12 and[3.13
also hold for the reference measure given by eclo Seal(v())ds v (), if (B20) and B30)
are true. Here ¢ € R and Scal denotes the scalar curvature.

Remark 3.15. (Finite Volume Case for the line) For each Ay, As € [0,00), we
could also construct Wiener measure on C'([—Asz, A1}, M). In this case the above results
also hold.

4 FErgodicity/ Non-ergodicity

4.1 Half line

In this section, we study the long time behavior of the Markov process X (t),t > 0,
and the L2-Dirichlet form (&2, 2(62,)) constructed in Section 2. In fact, we establish
some functional inequalities associated with (&g, Z(&g+)), which gives ergodicity or
non-ergodicity of the corresponding Markov process X (t),t > 0.

4.1.1 M has strictly positive Ricci curvature
Theorem 4.1. [Log-Sobolev inequality and Poincaré inequality/
(1) Suppose that Ric > K for K > 0, then the log-Sobolev inequality holds

(4.1) pe (F?log F?) < 2C(K)&2,(F, F), F € .ZC}, us (F?) =1,

where C(K) = 7.
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(2) Suppose that M is compact and there exists ¢ € (0,1) such that

(4.2) 0 = Tes[uoqzo) 0:(T) < o0,

where

(4.3)

1) = (1= e ) [ eonas, o) = sup i [exn (- [ Ka)ar)]

and K(z) := inf{Ric, (X, X); X € T, M,|X| = 1}, x € M. Then the following
Poincaré inequality holds,

(1.4) ios (F?) = 12 (F)? < 0.60.(F F), F e 7C),
where d. is defined by (L2]).
Remark 4.2. Obviously if

(4.5) lim sup ! sup log p+ [exp ( — / K(v(r))drﬂ <0,
tToo t xeM 0
then condition (A2)) holds.
Moreover, as explained in [27, [59], condition (L) is equivalent to the spectral
positwity of the operator Ly = —A + K (here Lof(x) = Af(x) + K(z)f(x)). In
particular, if Ric > K for some constant K > 0, then ([&2) holds.

Remark 4.3. (i) According to [61], the log-Sobolev inequality implies hypercontrac-
tivity of the associated semigroup P, and Poincaré inequality, which derives the
L2-exponential ergodicity of the process: |P.F — [ Fdul||pz < e /CE||F| 2.

(it) Poincaré inequality also implies the irreducibility of the Dirichlet form (&g., 2(&g.)).
It is obvious that the Dirichlet form (5., Z(&g,)) is recurrent. Combining these
two results, by [37, Theorem 4.7.1], for any nearly Borel non-exceptional set B,

P*(opof, <oco,¥n>0)=1, forqe z¢&Eg. (M).

Here o = inf{t > 0: X(t) € B}, 0 is the shift operator for the Markov process
X, and for the definition of any nearly Borel non-exceptional set we refer to
[37]. Moreover by [37, Theorem 4.7.3] we obtain the following strong law of large
numbers: for f € L*(Eg, (M), ug.)

1 0 z
i ¢ [ X@as = [ pauge, P as.

for q.e. z€ Eg. (M).
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Proof of Theorem 4.1l Step (1) By the standard method and the technique in
[31](See also [40] and [55] and references therein), it is not difficult to prove ([@.1]). For
the reader’s convenience, in the following we give a detailed proof.

By [40] we have the martingale representation theorem, that is, for F' € .ZC} with
the form
(4.6)

PO =5 ([ atsronds. [ atontNise [ onlsa(oas) . e B ),

we have

(4.7) F = i (F) + /0 (HF, dB,),

where T' = max T}, f3; is the anti-development of canonical path v(-) (whose distribution
is an R™-valued Brownian motion under 2, ) and

Here and in the following (.%#,) is the natural filtration generated by v(-), ug [-|-Z]
denotes the conditional expectation under pg, and M, is the solution of the equation
st L 0, My=1I
— — icy, = =1
dt t 2 t U ) 0

Let F = G* for G € ZC} being strictly positive and with the form (&8]), consider the
continuous version of the martingale Ny = E[F|.%;]. By the lower bound of the Ricci
curvature it is easy to verify for every 0 < s < r < oo

(4.8) HF —Mw[ / M, (DF(r

(4.9)

(4.10) IM-1M, || < exp ——/ K(y )dt) gexp(—@),

where || - || denotes the matrix norm. Then we can take the conditional expectation

P [-|-Fs] in (@) to obtain

(4.11) Ny = p%+ [F] +/ (HF dB,).
0
Now applying It6’s formula to N, log N, we have
pie (G*log G?) — g+ (G?) log i+ (G?)

(4.12) ) , L
= ug+ (Nrlog Np) — pp+ (Nolog Ny) = SHR+ / N H, |*ds]| .
0
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Here and in the following we use | - | to denote the norm in R?. Note that
DF = D(G?) = 2GDG.

Using this relation in the explicit formula ([{8) for H*, we have

T
(4.13) HE =2u8, [GMs‘l / M, DG(r)dr

By Cauchy-Schwarz inequality in (£I3)) and (£I0), we have
< iz ([ ererpanar)
Thus the right hand side of (£.12)) can be controlled by

(4.14) 2415+ { /0 : ( / ' e‘K(T’_S)/2|DG(r)|dr)2ds].

By Holder’s inequality we have

T 2 T T
</ e_K(T_S)/z\DG(T)\dT) §/ e_K(T_S)/zdr/ e_K(T_s)/2\DG(T)\2dr.

Then changing the order of integration we obtain

([ ([ eremvaoar) as) <uee ([ s minoers)

where
Ji(s,T) = / 8 2 (1 — e K=o eK-0rsgy
0
:lz {2(1 - 6_%) B e‘K(EH)} < %, Vsel0,T]
Hence

uﬁ@( /O : K / : e—K“—s)/ﬂDG(r)\dr)Q] ds) < % 0 (G, G).

Combining all above estimates into ([{I2)), we complete the proof for ([EII).

Step (2) Some proof in this step is inspired by that of [59, Theorem 1]. Still
applying It6 formula to N2 (where Ny = u [F|.%;] and F' € Z C} with the form (4.6])
) we arrive at

pig (F?) = pi (F)?
(4.15) ) ) T
— 13 (VD) = e (3) = e ([ I Ps).
0
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By ([A38)), (@I0), Markov property and Cauchy-Schwartz inequality we obtain
9 T T T
HF < g, [ [ ew (— / K(v(t))dt) e-“T-”dr\%} 2 [ / eE<T—’“>|DF<r>|2dr}ﬁs]

T r—s T
< (/ sup g+ {exp (—/ K(y(t))dt)] e_E(T_T)dr) U+ [/ T | DE(r)[dr ﬁs}
s TEM 0 s

T T
- ( / n(r— S)e‘E(T"")dr) Jigt { / ea(T"”’IDF(r)Ier‘%] ,

s

where in the second inequality we used the Markov property of the canonical process
v(+) and 7(t) is defined by [3]). Therefore let ¢(t) := f(f (fsT n(r — s)e‘e(T_T)dr> ds,
t € [0,7] it holds

u?w(/OT |HSF|2ds> < /OT </ST n(r — s)e_a(T_T’)dr) (/ST ea(T_r)uﬁ’R+(|DF(r)|2)dr> ds
= [Coe( [ e apre)ar)as
=i [ oty Par).

Since by elementary calculation it is easy to check sup, o 7y ¢(r)es™ ") < 6.(T), com-
bining all the estimates into ([AIH]) yields (4. O

4.1.2 M=R"

In this subsection we consider the case that M = R"™ and o = 0 € R™ and we use X,
to denote X (t) for simplicity. As mentioned in the introduction, it is easy to see that
the Markov process (X;);>o associated with (&g, Z(&%.)) is the unique solution to the
following stochastic heat equations on Rt x R

OtXt :%AXt + 5, t >0,
(4.16) X,(0) =0, ¢ >0,
Xo(-) =7(+) € Eg+(R")

where ¢ denotes an standard R"-valued space-time white noise on R™ x R (on some
probability (€2, .%, P)). In the Euclidean space, we have the following ergodicity results.
In this case, the exponential ergodicity does not hold any more, which implies that the
L?-spectral gap is zero.

Theorem 4.4. Suppose M = R", then the following statements hold
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(1) For every F € L*(ES. (R™); u%.) we have

. o o 2
(4.17) tlgglo Hp+ (‘PtF(’Y) - MR+(F)} ) =0,
where P,F(y) := B[F(X])], (X])>0 is the solution to [@IB) with initial value
Xo(-) =1

(2) The Poincaré inequality does not hold, i.e. for any C > 0, there exists F €
2(&Z.) such that
(4.15) o (F2) = 13 (F)? > C82. (F, F).
In particular, the spectral gap
£2.(F,F)

Cr+(9G) := inf =0
RJr( ) F#consé%é@(é}@r) ILL?R+ (F2) — M%+(F)2 '

and the exponential ergodicity does not hold in this case.

Proof. Step (1) As explained in [36, Page 315], the solution X; to (416 with initial
value Xo(-) = 7 has the following expression,

Xp@) = [ stz dy+/ [ ot = s.apetas.ay
= Uy (t,x) + Us(t, x),

where p(t, z,y) is the Dirichlet heat kernel on R* with the following expression

[exp(—%)—exp(—%)}, z,y € RT, t>0.

1
pt,z,y) = oz

By [36, Lemma 4.3] and the law of iterated logarithm (which implies lim,_, . % =
0 for pg.-a.s. v € Eg (R")), it is easy to verify that for ug -a.s. v € Eg,(R") and
every x € RT,

lim U (t,z) =0.

t—+00

Note that Us(t,-) = (U (t,-), ..., U3(t,-)) is a centered Gaussian vector on L*(RT; e7"*dz),
and for every x,y € R* it holds

PTmE[U;(t, z)U3 (t,y)]

:limE / / (t —s,2,2)€E (ds, dz / / — 5,y,2)(ds, dz))}
tToo R+ R+

= hm/ / —s,x,2)p(t — s,vy, 2)dzds
tToo R+
. . 1 [2 .

=0 1im/ p(2(t = s),z,y)ds = ¢ lim—/ p(s,z,y)ds =6} (z ANy), 1 <i,j <n,
ttoo Jo ttoo 2 0
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where the last calculation can be found in [20, Section 2.3], 6/ = 1 when i = j and
5f:OWhenz’7éj.

This implies that Us(t, -) converges weakly in L?(R*; e™"®dx) as t 1 co to a Gaussian
random vector whose distribution is .. Combining all the estimates above we know
that for g -a.s. v € Eg, (R"), X/(-) converges weakly on L*(R™; e "*dz) as t T oo to
a Gaussian random vector whose distribution is pg.. Thus for pg,-a.s. v € Eg, (R")
and every F' € .ZC} we have

lim P,F(7) = p-(F).
t—o00

By this and the dominated convergence theorem we obtain ([@IT) holds for F €
ZC} immediately. By approximations we can easily check that (£I7) holds for
F e L*(Eg, (R™); p&. ), which implies that pg. is ergodic.

Step (2) We first suppose the Poincaré inequality holds, i.e. for F' € 2(&%.)

(4.19) g (F?) — uﬁé+(F)2 < C&3.(F,F)

for some C' > 0. For a fixed T" > 0, let Fr(vy fo 71(s)ds, where ~;(s) denotes the
first coordinate of process y(s) := (71( JRER ,%( )). By the proof of Lemma 2.9 it is
not difficult to verify that Frp € Z2(&%,).

At the same time, we have for o =0 € R"

1 (F2) = s / ) / e (t)dsdt)
:/0 /OTMR+ fyl fyl()>dsdt / / (s At)dsdt

T

O\
O\
Va)
o
Va)
o
—
\/

and
Sg+ (Fr) =/ ( )|DFT(7)|%{+dIU?R+ <T
o R?’L

Here we have applied the property that |DFp(v)(s)| < 1z (s). Combining all the
estimates above and putting Fp into ([@IJ) we arrive at %3 < CT. Then letting
T — oo we get C' = 400 and there is a contradiction. So ({.I9) does not hold for any
C' > 0. The results for spectral gap follow from [61]. O

Remark 4.5. By carefully tracking the proof of Theorem[].]], it is not difficult to verify
that the conclusion of Theorem [{] still holds for every initial point o € R™, not only
o=0.
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4.1.3 M is not a Liouville manifold

In this subsection, we prove that when M is not a Liouville manifold, (g, , 2(&5+))
is reducible, which by [I1], Propsition 2.1.6] implies that the Markov semigroup (P;):>o
constructed in Theorem is non-ergodic in the sense that there exists a non-constant
function F' € (&g, ) such that P.F = F pg,-as..

Recall that we call a connected Riemannian manifold M a Louville manifold, if there
does not exist a non-constant bounded harmonic function on M. In particular, if M
is not a Liouville manifold, then there exists a bounded harmonic function u : M — R
which is not a constant.

Theorem 4.6. If M is not a Liowville manifold, then (&g,, Z(&3.)) is reducible.
Hence 1%, is not ergodic for the Markov process associated with (&g, , P(&Eg.)).

Proof. The following argument follows essentially from [2, Theorem 4.3] and [60, The-
orem 1.5]. Since M is not Louville manifold, we could find a non-constant harmonic
function w : M — R. For every fixed T" > 0, we define Fr := %IOT u(y(t))dt. Since u
is harmonic, by It6’s formula we obtain

(4.20) u(y(t)) —u(o) = /:(VU(V(S)), Us(7)dBs) 1, o0

where f3; denotes the anti-development of +(+), whose law is an R"-valued Brownian
motion under .. Thus N; := u(y(t)) — u(o) is a bounded martingale, according to
the martingale convergence theorem, there is a non-constant random variable N, such
that

lim i (|N, = Nool) =0,

which implies immediately

o, 2
(4.21) C}“lTrglo U+ (}FT - Noo} ) =0.

On the other hand, set Fff := £ fOT or(p(o,7(s)))u(v(s))ds, where o € M, ¢p is defined
as in the proof of Theorem BI2l Then by LemmaZ0lit is easy to see that Fff € 2(&2.)
for R, T > 0. Note that for fixed ' > 0, Fff — Fyr in L*(E%, (M), u%,), as R — 0.
We also have

T

o 1 ’ (0] 4 (0]
2 (PR <o [ e (VaO@)R)s+ 35 [ i (ula(s))as
1, 2
< (Ju (D) —u()) + 1< €.
where C, C are constants independent of R and the second inequality follows from

([@.20). This by [5I, Lemma I-2.12] implies that Fp € Z(&g,) and

1

DFr(y)(s) = T (Us(n) ' Vu(y(s))) 1jo.z1(s),
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hence

1 T
lim &2, (Fr, Fr) = lim — / pge (| Vu(ry(s))?)ds
(4.22) T T 1% Jo

Af|ull

~ lim 12;%(@ (1))~ u(o)]*) < Jim 0,

Ttoo T Ttoo

where the second equality follows from (.20]).
Combining (A.21]), ({.22) with the closbility of (&%, Z(&g,)) yields that Ny is not
a constant, Ny € 2(&g,) and 6%, (Nso, Noo) = 0. So (634, .@(éﬁ%)) is reducible. [

Note that if M is a Cartan-Hadamard manifold with section curvature —c;(p(o, )V
1) < Sec, (X1, Xo) < —ca(p(o, ) V1)72 for some ¢;, ¢y > 0 and every x € M, X;, X5 €
T, M with | X;| = | X3| = 1, then M is not a Louville manifold (where Sec, denotes the
sectional Curvature tensor at x € M). So we have the following result immediately.

Corollary 4.7. If M is a Cartan-Hadamard manifold with section curvature —cy(p(o, )V
1)? < Sec,(X1,Xs) < —ca(plo,x) V 1)72 for some ci,co > 0 and every v € M,
X1, Xy € T,M with | Xy| = | Xo| = 1, then (5., Z(EZy)) is reducible. Hence i, is not
ergodic for the Markov process associated with (&3,, Z(&E5.)) constructed in Theorem

2.3

4.2 The whole line

In this section, we will study the functional inequality and ergodic property for the
Dirichlet form (&g, Z(&y)) constructed in Section Bl where v(dz) = v(x)dx is a proba-
bility measure on M which is absolutely continuous with respect to volume (Lebesgue)
measure on M. The case for (68, Z(&g)) is similar and we omit the details here.

As in Section [3] for v € Eg(M), we could decompose v = (7,7) with

Y(s) == (s), A(s) :=(=s), =0
. We also set

Ms(f?% S 2 07

M) = { N_,(7), s<0.

Here M,(v) denotes the solution to ([@J) with v € Eg+(M).
Lemma 4.8. Suppose M is compact, for every F' € FCy with the form [B3]) we have

Vo (F ZMR [ 96 (s (5]
(4.23)

+ZMR[ [ s M) 93,250 a).

T;
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where 9; f(v) denotes the same item as that in 36) and Us(7) is defined in ([B3).

Proof. For simplicity, we only prove ([£23) for F = ( fo ds) for some

f € CLR) and g € C'([0,00) x M). Other cases could be tackled similarly (by
decomposing into v = (7,7%)).

For each k € NT_ let F(v) := f(Zle %g(ti,v(ti)» with #; = £, 1 <4 < k. Then
applying [38, Lemma 3.3] we obtain that

k

Vapi(Fr) = pig [ > %5‘fk(7)MnUn (1) 'Vg(t, v(tz))} )

1=1

where éfk( ) = f/<21 1 kg(t2=7(t )))

Based on such expression it is easy to verify that

T 2
Jim / Voni(F) — pi | / OF (1) MU (7)™ Vg (s,7(s))ds] | dw =0,
lim / 15 (Fy) — i (F)[*dz o,
— 00 M
where 0 f(y) == f ( fo ( )ds) According to this we could prove for every

smooth vector fields V' € C>(TM),

[ e[ [ drenmnuicn atsa)as) v), = [ wmanve,

which means
Vo is(F) = / BF () MUL()™ Vg (s.7(s))ds]

Thus ([@23) holds for F' = f ( fo ))ds) and we have finished the proof. O

Theorem 4.9. [Log-Sobolev inequality and Poincaré inequality/

(1) Suppose that Ric > K for K > 0 and the following log-Sobolev inequality holds
forv (on M)

(424) v(flog 1) (P loxn(f) < G [ [VF@Pwda). ¥ S € CYD).

Then the log-Sobolev inequality holds
8 2
(4.25)  p4(F2log F?) < (ﬁ + —1)@@”(F F), FeZC. i4(F?) =1
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(2) Suppose M is compact and the following Poincaré inequality holds
426) ) -nfP G [ Vi@, ¥ f ),
M

and there ezists € € (0,1) such that

(4.27) d. = sup 0.(7T) < o0,

T€[0,00)
and -
Cy:= / n(s)ds < oo,
0

where 0.(T), n(s) are defined by [@3). Then the following Poincaré inequality
holds,

(4.28) pR(F?) — ph (F)? < (6. 4+ CoC) & (F, F), F e FC..

Remark 4.10. As explained by [61, Chapter 5], if M is compact and v(dz) = v(z)dx
is a probability measure such that inf,cp v(z) > 0, then the log-Sobolev inequality

@E24) and Poincaré inequality [E20) hold. In particular, E24) and [E206) hold for

the normalized volume measure when M is compact.

Proof of Theorem [4.9. Step (1) Let

= / / F2(5, ) pigs (A7) pigs (d7) = / V)i (d).
H§+(M) EH§+( E]R
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Then we have for every F' € #C, with form (33,

(4.29)
L, Froes Pz
-/ / . I e PR P23 ) 055 (4702
<20() | / . / [ 1DF Tl e (05 (071
/ / oy R (@0
cu [ | . / [ 1DF 0Tl (05 (070
~200) [ / oy |POO i pe@ptan) + [ 5o i)
cw) [ [ . / [ IPFO D (@i (7t

#2000) [ [ IDG@ ke (r)wlde) + o [ 19000 Prlan) + k(P o ().

Here in the second step we applied (@) to F(-,7) (with 7 fixed) with DF(%,7) de-

noting the L? gradient with respect to the variable ¥ € Eg+(M); in the third step we

applied (@) to G(¥) with DG(¥) denoting L? gradient with respect to the variable

7 € Er+(M) and the property [g, ) G*(7)ug+(dy) = ¢*(x) ; in the last step we
R+

applied ([Z24)) to g(z) and the property [,, ¢*(z)v(dz) = pg(F?). At the same time, it

holds

[DF(F, )], +|DFE. }f{ = [DF ()|

2

} Jee o P9 DF (3 7)1 (47)|
ez, = fEE§+ an 20 g (d7)

|DG(9)

t < / [DF(H,7) |3y, 5+ (d9)-
L (M)

Meanwhile by ([Z.23),

V(e = Pt < IO



where

(4:30) 37 [ B )MV ) Vg (5, 7(5)) s

with T := max{max,<;<,, T}, max;<;< T;}. Based on the expression of .J() above we

arrive at
Vo < ]( [ preiPas) - (f IDF(7)(s)ds ) |

<o [ e reas)ug[IDP) ]

where the last step follow from the estimates || M (7)|| < e~ for all s € R.
Finally, combining all the estimates above into ([£29)) yields (Z.23]).

Step (2) Similar as ([@29]) (and apply (£4])) we obtain
F2(y)p4(d FO)u(dy))
L Fomsan = ([ rem)
(4.31) <9 / / . / IDF ¥ W), 13+ (A7) g (d7)v(dx)
va | [ \D@<w>|%{+uﬂa+<dv> (@) +C [ |V4(o)Pu(ao)

where

Q= [ PG, = [ PO )

Still by the same arguments in Step (1) we could show

2

DQWE, = | [ DFGa @], < [ [DFGAf (),
E: (M E2, (M)

Hy

V@) < iz [Im)]] < uﬂa[ / ][ [ Z|DF<s>|2ds]
<of / n(s)as) i [[DFO)L].
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where J(7) is defined by ([A30) and the last step above is due to

] [ nnieas] =2 | [ 1ereas
<o Cexp(— [ KGunans] <2 [“asas

Then combining all the above estimates into (L31) yields (Z28). O

When M = R", the Markov process constructed in Section 3 corresponds to the
solutions to the stochastic heat equations. The most interesting case is that v is given
by Lebesgue measure, which is related the the stochastic heat equations without any
boundary condition. In this case the reference measure has infinite mass. So we do not
investigate the long time behavior here.

Following the same procedure in Theorem we can still get the following result.
So we omit the proof here.

Theorem 4.11. If M is not a Liouville manifold and v is a probability measure, then

(&%, 2(8F)) is reducible. Hence puy is not ergodic for the Markov process associated
with (6§, 2(&F)).
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