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Abstract. Let X and Y be `-connected Jordan domains, ` ∈ N, with
rectifiable boundaries in the complex plane. We prove that any bound-
ary homeomorphism ϕ : ∂X onto−−→ ∂Y admits a Sobolev homeomorphic
extension h : X onto−−→ Y in W 1,1(X,C). If instead X has s-hyperbolic
growth with s > p−1, we show the existence of such an extension lies in
the Sobolev class W 1,p(X,C) for p ∈ (1, 2). Our examples show that the
assumptions of rectifiable boundary and hyperbolic growth cannot be re-
laxed. We also consider the existence of W 1,2-homeomorphic extensions
subject to a given boundary data.

1. Introduction

Throughout this text X and Y are `-connected Jordan domains, ` =
1, 2, . . . , in the complex plane C. Their boundaries ∂X and ∂Y are thus
a disjoint union of ` simple closed curves. If ` = 1, these domains are
simply connected and will just be called Jordan domains. In the simply
connected case, the Jordan-Schönflies theorem states that every homeomor-
phism ϕ : ∂X onto−−→ ∂Y admits a continuous extension h : X→ Y which takes
X homeomorphically onto Y. In the first part of this paper we focus on a
Sobolev variant of the Jordan-Schönflies theorem. The most pressing de-
mand for studying such variants comes from the variational approach to
Geometric Function Theory [4, 18, 32] and Nonlinear Elasticity [2, 5, 8].
Both theories share the compilation ideas to determine the infimum of a
given energy functional

(1.1) EX[h] =

∫
X

E(x, h,Dh) dx ,

among orientation preserving homeomorphisms h : X onto−−→ Y in the Sobolev
space W 1,p(X,Y) with given boundary data ϕ : ∂X onto−−→ ∂Y. We denote such

a class of mappings by H 1,p
ϕ (X,Y). Naturally, a fundamental question to

raise then is whether the class H 1,p
ϕ (X,Y) is non-empty.
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Question 1.1. Under what conditions does a given boundary homeomor-
phism ϕ : ∂X onto−−→ ∂Y admit a homeomorphic extension h : X onto−−→ Y of
Sobolev class W 1,p(X,C)?

A necessary condition is that the mapping ϕ is the Sobolev trace of some
(possibly non-homeomorphic) mapping in W 1,p(X,C). Hence to solve Ques-
tion 1.1 one could first study the following natural sub-question:

Question 1.2. Suppose that a homeomorphism ϕ : ∂X → ∂Y admits a
Sobolev W 1,p-extension to X. Does it then follow that ϕ also admits a
homeomorphic Sobolev W 1,p-extension to X?

Our main results, Theorem 1.8 and its multiply connected variant (Theo-
rem 1.11), give an answer to these questions when p ∈ [1, 2). The construc-
tion of such extensions is important not only to ensure the well-posedness
of the related variational questions, but also for example due to the fact
that various types of extensions were used to provide approximation results
for Sobolev homeomorphisms, see [15, 17]. We touch upon the variational
topics in Section 7, where we provide an application for one of our results.
Apart from Theorem 1.11 and its proof (§6), the rest of the paper deals with
the simply connected case.

Let us start considering the above questions in the well-studied setting
of the Dirichlet energy, corresponding to p = 2 above. The Radó [31],
Kneser [25] and Choquet [7] theorem asserts that if Y ⊂ R2 is a convex
domain then the harmonic extension of a homeomorphism ϕ : ∂X → ∂Y is
a univalent map from X onto Y. Moreover, by a theorem of Lewy [28], this
univalent harmonic map has a non-vanishing Jacobian and is therefore a real
analytic diffeomorphism in X. However, such an extension is not guaranteed
to have finite Dirichlet energy in X. The class of boundary functions which
admit a harmonic extension with finite Dirichlet energy was characterized
by Douglas [9]. The Douglas condition for a function ϕ : ∂D onto−−→ ∂Y reads
as

(1.2)

∫
∂D

∫
∂D

∣∣∣∣ϕ(ξ)− ϕ(η)

ξ − η

∣∣∣∣2 |dξ| |dη| <∞ .

The mappings satisfying this condition are exactly the ones that admit an
extension with finite W 1,2-norm. Among these extensions is the harmonic
extension of ϕ, which is known to have the smallest Dirichlet energy among
all extensions.

Note that the Dirichlet energy is also invariant with respect to a conformal
change of variables in the domain X. Therefore thanks to the Riemann
Mapping Theorem, when considering Question 1.1 in the case p = 2, we may
assume that X = D without loss of generality. Now, there is no challenge to
answer Question 1.1 when p = 2 and Y is Lipschitz. Indeed, for any Lipschitz
domain there exists a global bi-Lipschitz change of variables Φ: C → C for
which Φ(Y) is the unit disk. Since the finiteness of the Dirichlet energy
is preserved under a bi-Lipschitz change of variables in the target, we may
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reduce Question 1.1 to the case when X = Y = D, for which the Radó-
Kneser-Choquet theorem and the Douglas condition provide an answer. In
other words, if Y is Lipschitz then the following are equivalent for a boundary
homeomorphism ϕ : ∂D→ ∂Y

(1) ϕ admits a W 1,2-Sobolev homeomorphic extension h : D onto−−→ Y
(2) ϕ admits W 1,2-Sobolev extension to D
(3) ϕ satisfies the Douglas condition (1.2)

In the case when 1 6 p < 2, the problem is not invariant under a conformal
change of variables in X. However, when X is the unit disk and Y is a convex
domain, a complete answer to Question 1.1 was provided by the following
result of Verchota [38].

Proposition 1.3. Let Y be a convex domain, and let ϕ : ∂D onto−−→ ∂Y be
any homeomorphism. Then the harmonic extension of ϕ lies in the Sobolev
class W 1,p(D,C) for all 1 6 p < 2.

This result was further generalized in [19] and [23]. The case p > 2 will
be discussed in Section 2.3. Our main purpose is to provide a general study
of Question 1.1 in the case when 1 6 p < 2.

Considering now the endpoint case p = ∞, we find that Question 1.1
is equivalent to the question of finding a homeomorphic Lipschitz map ex-
tending the given boundary data ϕ. In this case the Kirszbraun extension
theorem [24] shows that a boundary map ϕ : ∂D onto−−→ ∂Y admits a Lipschitz
extension if and only if ϕ is a Lipschitz map itself. In the case when X is the
unit disk, a positive answer to Question 1.2 is then given by the following
recent result by Kovalev [26].

Theorem 1.4. (p =∞) Let ϕ : ∂D→ C be a Lipschitz embedding. Then ϕ
admits a homeomorphic Lipschitz extension to the whole plane C.

Let us return to the case of the Dirichlet energy, see (1)-(3) above. The
equivalence of a W 1,2-Sobolev extension and a W 1,2-Sobolev homeomor-
phic extension for non-Lipschitz targets is a more subtle question. In this
perspective, a slightly more general class of domains is the class of inner
chordarc domains studied in Geometric Function Theory [16, 30, 34, 36, 37].
By definition [36], a rectifiable Jordan domain Y is inner chordarc if there
exists a constant C such that for every pairs of points y1, y2 ∈ ∂Y there
exists an open Jordan arc γ ⊂ Y with endpoints at y1 and y2 such that the
shortest connection from y1 to y2 along ∂Y has length at most C · length(γ).
For example, an inner chordarc domain allows for inward cusps as oppose to
Lipschitz domains. According to a result of Väisälä [36] the inner chordarc
condition is equivalent with the requirement that there exists a homeomor-
phism Ψ: Y onto−−→ D, which is C 1-diffeomorphic in Y, such that the norms of
both the gradient matrices DΨ and (DΨ)−1 are bounded from above.

Surprisingly, the following example shows that, unlike for Lipschitz tar-
gets, the answer to Question 1.2 for p = 2 is in general negative when the
target is only inner chordarc.
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Example 1.5. There exists an inner chordarc domain Y and a homeomor-
phism ϕ : ∂D onto−−→ ∂Y satisfying the Douglas condition (1.2) which does not

admit a homeomorphic extension h : D onto−−→ Y in W 1,2(D,Y).

In [3] it was, as a part of studies of mappings with smallest mean dis-
tortion, proved that for C 1-smooth Y the Douglas condition (1.2) can be

equivalently formulated in terms of the inverse mapping ϕ−1 : ∂Y onto−−→ ∂D,

(1.3)

∫
∂Y

∫
∂Y

∣∣ log|ϕ−1(ξ)− ϕ−1(η)|
∣∣ |dξ| |dη| <∞ .

It was recently shown that for inner chordarc targets this condition is neces-
sary and sufficient for ϕ to admit a W 1,2-homeomorphic extension, see [27].
We extend this result both to cover rectifiable targets and to give a global
homeomorphic extension as follows.

Theorem 1.6. (p = 2) Let X and Y be Jordan domains, ∂Y being rectifiable.

Every ϕ : ∂X onto−−→ ∂Y satisfying (1.3) admits a homeomorphic extension

h : C→ C of Sobolev class W 1,2
loc (C,C).

Without the rectifiability of ∂Y, Question 1.2 will in general admit a
negative answer for all p 6 2. This follows from the following example of
Zhang [39].

Example 1.7. There exists a Jordan domain Y and a homeomorphism
ϕ : ∂D onto−−→ ∂Y which admits a W 1,2-Sobolev extension to D but does not
admit any homeomorphic extension to D in the class W 1,1(D,C).

We now return to the case when 1 6 p < 2. In this case it is natural
to ask under which conditions on the domains X and Y does any homeo-
morphism ϕ : ∂X onto−−→ ∂Y admit a W 1,p-Sobolev homeomorphic extension.
Proposition 1.3 already implies that this is the case for X = D and Y convex.
Example 1.7, however, will imply that this result does not hold in general
for nonrectifiable targets Y. A general characterization is provided by the
following two theorems.

Theorem 1.8. (1 6 p < 2) Let X and Y be Jordan domains in the plane

with ∂Y rectifiable. Let ϕ : ∂X onto−−→ ∂Y be a given homeomorphism. Then
there is a homeomorphic extension h : X onto−−→ Y such that

(1) h ∈ W 1,1(X,C), provided ∂X is rectifiable, and
(2) h ∈ W 1,p(X,C) for 1 < p < 2, provided X has s-hyperbolic growth

with s > p− 1.

Definition 1.9. Let X be a domain in the plane. Choose and fix a point
x0 ∈ X. We say that X has s-hyperbolic growth, s ∈ (0, 1), if the following
condition holds

(1.4) hX(x0, x) 6 C

(
dist(x0, ∂X)

dist(x, ∂X)

)1−s
for all x ∈ X .
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Here hX stands for the quasihyperbolic metric on X and dist(x, ∂X) is the
Euclidean distance of x to the boundary. The constant C is allowed to
depend on everything except the point x.

It is easily verified that this definition does not depend on the choice of
x0. Recall that if Ω is a domain, the quasihyperbolic metric hΩ is defined
by [13]

(1.5) hΩ(x1, x2) = inf
γ∈Γ

∫
γ

1

dist(x, ∂X)
|dx| , x1, x2 ∈ Ω

where Γ is the family of all rectifiable curves in Ω joining x1 and x2.
Definition 1.9 is motivated by the following example. For s ∈ (0, 1) we

consider the Jordan domain Xs whose boundary is given by the curve

Γs = {(x, y) ∈ C : −1 6 x 6 1, y = |x|s} ∪ {z ∈ C : |z − i| = 1, Im(z) > 1}.

Figure 1. The Jordan domain Xs.

In particular, the boundary of Xs is locally Lipschitz apart from the origin.
Near to the origin the boundary of Xs behaves like the graph of the function
|x|s. Then one can verify that the boundary of Xs has t-hyperbolic growth
for every t > s. Note that smaller the number s sharper the cusp is.

The results of Theorem 1.8 are sharp, as described by the following result.

Theorem 1.10.

(1) There exists a Jordan domain X with nonrectifiable boundary and a
homeomorphism ϕ : ∂X→ ∂D such that ϕ does not admit a contin-
uous extension to X in the Sobolev class W 1,1(X,C).
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(2) For every p ∈ (1, 2) there exists a Jordan domain X which has s-
hyperbolic growth, with p− 1 = s, and a homeomorphism ϕ : ∂X →
∂D such that ϕ does not admit a continuous extension to X in the
Sobolev class W 1,p(X,C).

To conclude, as promised earlier, we extend our main result to the case
where the domains are not simply connected. The following generalization
of Theorem 1.8 holds.

Theorem 1.11. Let X and Y be multiply connected Jordan domains with
∂Y rectifiable. Let ϕ : ∂X onto−−→ ∂Y be a given homeomorphism which maps
the outer boundary component of X to the outer boundary component of Y.
Then there is a homeomorphic extension h : X onto−−→ Y such that

(1) h ∈ W 1,1(X,C), provided ∂X is rectifiable, and
(2) h ∈ W 1,p(X,C) for 1 < p < 2, provided X has s-hyperbolic growth

with s > p− 1.

Acknowledgements. We thank Pekka Koskela for posing the main ques-
tion of this paper to us.

2. Preliminaries

2.1. The Dirichlet problem. Let Ω be a bounded domain in the complex
plane. A function u : Ω → R in the Sobolev class W 1,p

loc (Ω), 1 < p < ∞, is
called p-harmonic if

(2.1) div|∇u|p−2∇u = 0.

We call 2-harmonic functions simply harmonic.
There are two formulations of the Dirichlet boundary value problem for

the p-harmonic equation (2.1). We first consider the variational formulation.

Lemma 2.1. Let u◦ ∈ W 1,p(Ω) be a given Dirichlet data. There exists

precisely one function u ∈ u◦ + W 1,p
◦ (Ω) which minimizes the p-harmonic

energy: ∫
Ω
|∇u|p = inf

{∫
Ω
|∇w|p : w ∈ u◦ + W 1,p

◦ (Ω)

}
.

The variational formulation coincides with the classical formulation of the
Dirichlet problem.

Lemma 2.2. Let Ω ⊂ C be a bounded Jordan domain and u◦ ∈ W 1,p(Ω) ∩
C (Ω). Then there exists a unique p-harmonic function u ∈ W 1,p(Ω)∩C (Ω)
such that u|∂Ω

= u◦|∂Ω
.

For a reference for proofs of these facts we refer to [17].
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2.2. The Radó-Kneser-Choquet Theorem.

Lemma 2.3. Consider a Jordan domain X ⊂ C and a bounded convex
domain Y ⊂ C. Let h : ∂X onto−−→ ∂Y be a homeomorphism and H : U → C
denote its harmonic extension. Then H is a C∞-diffeomorphism of X onto
Y.

For the proof of this lemma we refer to [11, 20]. The following p-harmonic
analogue of the Radó-Kneser-Choquet Theorem is due to Alessandrini and
Sigalotti [1], see also [21].

Proposition 2.4. Let X be a Jordan domain in C, 1 < p < ∞, and
h = u + iv : X → C be a continuous mapping whose coordinate functions
are p-harmonic. Suppose that Y is convex and that h : ∂X onto−−→ ∂Y is a
homeomorphism. Then h is a diffeomorphism from X onto Y.

2.3. Sobolev homeomorphic extensions onto a Lipschitz target.
Combining the results in this section allows us to easily solve Question 1.2
for convex targets.

Proposition 2.5. Let X and Y be Jordan domains in the plane with Y
convex, and let p be given with 1 < p < ∞. Suppose that ϕ : ∂X onto−−→ ∂Y is
a homeomorphism. Then there exists a continuous g : X→ C in W 1,p(X,C)
such that g(x) = ϕ(x) on ∂X if and only if there exists a homeomorphism
h : X→ Y in W 1,p(X,C) such that h(x) = ϕ(x) on ∂X.

Now, replacing the convex Y by a Lipschitz domain offers no challenge.
Indeed, this follows from a global bi-Lipschitz change of variables Φ: C→ C
for which Φ(Y) is the unit disk. If the domain in Proposition 2.5 is the
unit disk D, then the existence of a finite p-harmonic extension can be char-
acterized in terms of a Douglas type condition. If 1 < p < 2, then such
an extension exists for an arbitrary boundary homeomorphism (Proposi-
tion 1.3) and if 2 6 p < ∞ the extension exists if and only the boudary

homeomorphism ϕ : ∂D onto−−→ ∂Y satisfies the following condition,

(2.2)

∫
∂D

∫
∂D

∣∣∣∣ϕ(ξ)− ϕ(η)

ξ − η

∣∣∣∣p |dξ| |dη| <∞ .

For the proof of the latter fact we refer to [33, p. 151-152].

2.4. A Carleson measure and the Hardy space Hp. Roughly speaking,
a Carleson measure on a domain G is a measure that does not vanish at the
boundary of G when compared to the Hausdorff 1-measure on ∂G. We will
need the notion of Carleson measure only on the unit disk D.

Definition 2.6. Let µ be a Borel measure on D. Then µ is a Carleson
measure if there is a constant C > 0 such that

µ(Sε(θ)) 6 Cε

for every ε > 0. Here

Sε(θ) = {reiα : 1− ε < r < 1, θ − ε < α < θ + ε} .
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Carleson measures have many applications in harmonic analysis. A cele-
brated result by L. Carleson [6], also see Theorem 9.3 in [10], tells us that
a Borel measure µ on D is a bounded Carleson measure if and only if the
injective mapping from the Hardy space Hp(D) into a the measurable space
Lpµ(D) is bounded:

Proposition 2.7. Let µ be a Borel measure on the unit disk D. Let 0 <
p <∞. Then in order that there exist a constant C > 0 such that(∫

D
|f(z)|p dµ(z)

) 1
p

6 C||f ||Hp(D) for all f ∈ Hp(D)

it is necessary and sufficient that µ be a Carleson measure.

Recall that the Hardy space Hp(D), 0 < p < ∞, is the class of holomor-
phic functions f on the unit disk satisfying

||f ||Hp(D) := sup
06r<1

(
1

2π

∫ 2π

0
|f(reiθ)|p dθ

) 1
p

<∞ .

Note that || · ||Hp(D) is a norm when p > 1, but not when 0 < p < 1.

3. Sobolev integrability of the harmonic extension

At the end of this section we prove our main result in the simply connected
case, Theorem 1.8. The proof will be based on a suitable reduction of the
target domain to the unit disk, and the following auxiliary result which
concerns the regularity of harmonic extensions.

Theorem 3.1. Let X be a Jordan domain and ϕ : ∂X→ ∂D be an arbitrary
homeomorphism. Let h denote the harmonic extension of ϕ to X, which is
a homeomorphism from X to D. Then the following hold.

(1) If the boundary of X is rectifiable, then h ∈ W 1,1(X,C).
(2) If X has s-hyperbolic growth, then h ∈ W 1,p(X,C) for p = s− 1.

This theorem will be a direct corollary of the following theorem and the
two propositions after it.

Theorem 3.2. Let X be a Jordan domain, and denote by g : D → X a
conformal map onto X. Let 1 6 p < 2. Suppose that the condition

(3.1) sup
ω∈∂D

∫
D

|g′(z)|2−p

|ω − z|p
dz 6M <∞

holds. Then the harmonic extension h : X → D of any boundary home-
omorphism ϕ : ∂X → ∂D lies in the Sobolev space W 1,p(X,C), with the
estimate

(3.2) ||h||W 1,p(X,C) 6 cM.

Proposition 3.3. Let X be a Jordan domain with rectifiable boundary. Then
the condition (3.1) holds with p = 1.
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Proposition 3.4. Let X be a Jordan domain which has s-hyperbolic growth,
with s ∈ (0, 1). Then condition (3.1) holds for all p > 1 with p− 1 < s.

Proof of Theorem 3.2. First, since X is a Jordan domain according to the
classical Carathéodory’s theorem the conformal mapping g : D→ X extends
continuously to a homeomorphism from the unit circle onto ∂X. Second,
since a conformal change of variables preserves harmonicity, we find that
the map H := h ◦ g : D → D is a harmonic extension of the boundary
homeomorphism ψ := ϕ ◦ g|∂D.

We will now assume that H is smooth up to the boundary of D. The
general result will then follow by an approximation argument. Indeed, for
each r < 1, we may take the preimage of the disk B(0, r) under H, and
letting ψr : D→ H−1(B(0, r)) be the conformal map onto this preimage we
may define Hr := H ◦ψr. Then Hr is harmonic, smooth up to the boundary
of D, and will converge to H locally uniformly along with its derivatives
as r → 1. Hence the general result will follow once we obtain uniform
estimates for the Sobolev norm under the assumption of smoothness up to
the boundary.

The harmonic extension H := h ◦ g : D → D of ψ := ϕ ◦ g|∂D is given by
the Poisson integral formula [11],

(h ◦ g)(z) = H(z) =
1

2π

∫
∂D

1− |z|2

|z − ω|
ψ(ω) dω .

Differentiating this, we find the formula

(h ◦ g)z =

∫
∂D

ψ(ω)

(z − ω)2
dω =

∫ 2π

0

ψ(eit)

(z − eit)2
ieit dt =

∫ 2π

0

ψ′(eit)

z − eit
ieit dt,

where we have used integration by parts to arrive at the last equality. The
change of variables formula now gives∫

X
|hz(z̃)|p dz̃ =

∫
D
|(h ◦ g)z(z)|p|g′(z)|2−p dz

=

∫
D

∣∣∣∣∫ 2π

0

ψ′(eit)

z − eit
ieit dt

∣∣∣∣p |g′(z)|2−p dz,
We now apply Minkowski’s integral inequality to find that(∫

D

∣∣∣∣∫ 2π

0

ψ′(eit)

z − eit
ieit dt

∣∣∣∣p |g′(z)|2−p dz)
1
p

6
∫ 2π

0
|ψ′(eit)|

(∫
D

|g′(z)|2−p

|z − eit|p
dz

) 1
p

dt

6M
∫ 2π

0
|ψ′(eit)| dt

= 2πM

This gives the uniform bound ||hz||Lp(X) 6 2πM . An analogous estimate for
the Lp-norm of hz now proves the theorem. �
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Proof of Proposition 3.3. Since ∂X is rectifiable, the derivative g′ of a con-
formal map from D onto X lies in the Hardy space H1(D) by Theorem 3.12
in [10]. By rotational symmetry it is enough to verify condition (3.1) for
ω = 1 and g : D → X an arbitrary conformal map. By Proposition 2.7, it
suffices to verify that the measure µ(z) = dz

|1−z| is a Carleson measure, see

Definition 2.6, to obtain the estimate∫
D

|g′(z)|
|1− z|

dz 6 C||g′||H1(D),

which will imply that the proposition holds. Let us hence for each ε define
the set Sε(θ) = {reiα : 1− ε < r < 1, θ − ε < α < θ + ε}. We then estimate
for small ε that

µ(Sε(0)) 6 µ(B(1, 2ε)) =

∫
B(1,2ε)

dz

|1− z|
=

∫ 2π

0

∫ 2ε

0

1

r
r drdα = 4πε.

It is clear that for any other angles θ the µ-measure of Sε(θ) is smaller than
for θ = 0. Hence µ is a Carleson measure and our proof is complete. �

Proof of Proposition 3.4. Recall that g denotes the conformal map from D
onto X. Since X has s-hyperbolic growth, we may apply Definition 1.4 with
x0 = g(0) to find the estimate

(3.3) hX(g(0), g(z)) 6 C

(
1

dist(g(z), ∂X)

)1−s
for all z ∈ D,

Since X is simply connected, the quasihyperbolic distance is comparable
to the hyperbolic distance ρX. By conformal invariance of the hyperbolic
distance we find that

C1hX(g(0), g(z)) > ρX(g(0), g(z)) = ρD(0, z) = log
1

1− |z|2
.

Now by the Koebe 1
4 -theorem we know that the expression dist(g(z), ∂X)

is comparable to (1 − |z|)|g′(z)| by a universal constant. Combining these
observations with (3.3) leads to the estimate

log
1

1− |z|2
6 C

(
1

(1− |z|)|g′(z)|

)1−s
,

which we transform into

(3.4) |g′(z)| 6 C

(1− |z|) log1/(1−s) 1
1−|z|

,
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Let us denote β = (2 − p)/(1 − s) so that β > 1 by assumption. We now
apply the estimate (3.4) to find that∫

D

|g′(z)|2−p

|1− z|p
dz 6 C

∫
D\ 1

2
D

1

(1− |z|)2−p|1− z|p logβ 1
1−|z|

dz(3.5)

+

∫
1
2
D

|g′(z)|2−p

|1− z|p
dz.

It is enough to prove that the quantity on the right hand side above is finite
as then rotational symmetry will imply that the estimate (3.1) holds for all
ω. The second term is easily seen to be finite, as the integrand is bounded
on the set 1

2D. To estimate the first integral we will cover the annulus D\ 1
2D

by three sets S1, S2 and S3 defined by

S1 = {1 + reiθ : r 6 3/4, 3π/4 6 θ 6 5π/4}

S2 = {(x, y) ∈ D : −1/
√

2 6 y 6 1/
√

2, x 6 1, x > 1− |y|}

S3 = {reiθ : 1/2 6 r 6 1, π/4 6 θ 6 7π/4}
See Figure 2 for an illustration of these sets. Since the sets S1, S2 and S3

cover the set in question, it will be enough to see that the first integral on the
right hand side of equation (3.5) is finite when taken over each of these sets.
On the set S1, one may find by geometry that the estimate 1−|z| > c|1− z|

Figure 2. The sets Si, i = 1, 2, 3.

holds for some constant c. Hence we may apply polar coordinates around
the point z = 1 to find that∫

S1

1

(1− |z|)2−p|1− z|p logβ 1
1−|z|

dz 6 C
∫ 5π/4

3π/4

∫ 3/4

0

1

r logβ 1
r

drdθ <∞.

On the set S3, the expression |1 − z| is bounded away from zero. Hence
bounding this term and the logarithm from below and changing to polar
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coordinates around the origin yields that∫
S3

1

(1− |z|)2−p|1− z|p logβ 1
1−|z|

dz 6 C
∫ 7π/4

π/4

∫ 1

1/2

r

(1− r)2−p drdθ <∞.

On the set S2, we change to polar coordinates around the origin. For each
angle θ, we let Rθ denote the intersection of the ray with angle θ starting
from the origin and the set S2. On each such ray, we find that the expression
|1 − z| is comparable to the size of the angle θ. Since 1 − |z| < |1 − z|, we
may also replace 1 − |z| by |1 − z| inside the logarithm, in total giving us
the estimate

(3.6)
1

|1− z|p logβ 1
1−|z|

6
C

|θ|p logβ 1
|θ|
, z ∈ Rθ.

On each of the segments Rθ and small enough θ, the modulus r = |z| ranges
from a certain distance ρ(θ) to 1. This distance is found by applying the sine
theorem to the triangle with vertices 0, 1 and ρ(θ)eiθ, giving us the equation

ρ(θ)

sin(π/4)
=

1

sin(π − π/4− θ)
=

1

sin(π/4 + θ)
.

From this one finds that the expression 1− ρ(θ) = sin(π/4+θ)−sin(π/4)
sin(π/4+θ) , which

also denotes the length of the segment Rθ, is comparable to |θ|. Using this
and (3.6) we now estimate that∫

S2

1

(1− |z|)2−p|1− z|p logβ 1
1−|z|

dz

6 C
∫ π/4

−π/4

1

|θ|p logβ 1
|θ|

∫ 1

ρ(θ)

1

(1− r)2−p drdθ

= C

∫ π/4

−π/4

1

|θ|p logβ 1
|θ|

(1− ρ(θ))p−1

p− 1
drdθ

6 C
∫ π/4

−π/4

1

|θ| logβ 1
|θ|
drdθ

<∞.
This finishes the proof. �

Proof of Theorem 1.8. Since Y is a rectifiable Jordan domain, there exists
a constant speed parametrization γ : ∂D → ∂Y. Such a parametrization is
then automatically a Lipschitz embedding of ∂D to C, and hence Theorem
1.4 implies that there exists a homeomorphic Lipschitz extension G : D→ Y
of γ.

Let now ϕ : ∂X → ∂Y be a given boundary homeomorphism. We define
a boundary homeomorphism ϕ0 : ∂X → ∂D by setting ϕ0 := ϕ ◦ γ−1.
Let h0 denote the harmonic extension of ϕ0 to X, so that by the RKC-
theorem (Lemma 2.3) the composed map h := G ◦ h0 : X → Y gives a
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homeomorphic extension of the boundary map ϕ. If the map h0 lies in
the Sobolev space W 1,p(X,C), then so does the map h since the Sobolev
integrability is preserved under a composition by a Lipschitz map. Hence
Theorem 1.8 now follows from Theorem 3.1. �

4. Sharpness of Theorem 1.8

In this section we prove Theorem 1.10. We handle the two claims of this
theorem separately.

Example (1). In this example we construct a nonrectifiable Jordan domain
X and a boundary map ϕ : ∂X → ∂D which does not admit a continuous
extension in the Sobolev class W 1,1(X,C). The domain X will be defined as
the following “spiral” domain.

Let Rk, k = 1, 2, 3, . . ., be a set of disjoint rectangles in the plane such that
their bottom side lies on the x-axis. Each rectangle has width wk so that∑∞

k=1wk <∞ and the rectangles are sufficiently close to each other so that
the collection stays in a bounded set. The heights hk satisfy limk→∞ hk = 0
and

∑∞
k=1 hk =∞.

We now join these rectangles into a spiral domain as in Figure 3, and add
a small portion of boundary to the bottom end of R1. The exact way these
rectangles are joined is not significant, but it is clear that it may be done in
such a way as to produce a nonrectifiable Jordan domain X for any sequence
of rectangles Rk as described above.

Figure 3. The rectangles Rk joined into the spiral domain X.
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Let us now define the boundary homeomorphism ϕ. The map ϕ shall
map the “endpoint” (i.e. the point on the x-axis to which the rectangles
Rk converge) of the spiral domain X to the point 1 ∈ ∂D. Furthermore, we
choose disjoint arcs A+

k on the unit circle so that the endpoints of A+
k are

given by eiαk and eiβk with

π/2 > α1 > β1 > α2 > β2 > · · ·

and limk→∞ αk = 0. We mirror the arcs A+
k over the x-axis to produce

another set of arcs A−k . The arcs are chosen in such a way that the minimal

distance between A+
k and A−k is greater than a given sequence of numbers

dk with limk→∞ dk = 0. It is clear that for any such sequence we may make
a choice of arcs as described here.

We now define ϕ to map the left side of the rectangle Rk to the arc A+
k ,

and the right side to A−k . On the rest of the boundary ∂X we may define
the map ϕ in an arbitrary way to produce a homeomorphism ϕ : ∂X→ ∂D.

Let now H be a continuous W 1,1-extension of ϕ. Let Ik denote any
horizontal line segment with endpoints on the vertical sides of Rk. Then by
the above construction, H must map the segment Ik to a curve of length at
least dk, as this is the minimal distance between A+

k and A−k . Hence we find
that ∫

Rk

|DH|dz >
∫ hk

0
dkdz = hkdk.

Summing up, we obtain the estimate∫
X
|DH|dz >

∞∑
k=1

hkdk.

We may now choose, for example, hk = 1/k and dk = 1/ log(1 + k) to make
the above sum diverge, showing that H cannot belong to W 1,1(X,C). This
finishes the proof.

Example (2). Let 1 < p < 2. Here we construct a Jordan domain X whose
boundary has (p− 1)-hyperbolic growth and a boundary map ϕ : ∂X→ ∂D
which does not admit a continuous extension in the Sobolev class W 1,p(X,C).
In fact, this domain may be chosen as the domain Xs defined after Definition
1.4 for s = p− 1.

The construction of the boundary map ϕ is as follows.
We set ϕ(0) = 1. Furthermore, we choose two sequences of points p+

k and

p−k belonging to the graph {(x, |x|s) : −1 6 x 6 1} as follows. The points

p+
k all have positive x-coordinates, their y-coordinates are decreasing in k

with limit zero and the difference between the y-coordinates of p+
k−1 and p+

k
is comparable to a number εk, for which

∞∑
k=1

εk <∞.
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In fact, for any sequence of numbers εk satisfying the above conditions one
may choose a corresponding sequence p+

k . We then let p−k be the reflection

of p+
k along the y-axis.

Similarly, we choose points a+
k on the unit circle, so that a+

k = eiθk for a

sequence of angles θk > 0 decreasing to zero. Letting a−k be the reflection

of a+
k along the x-axis, we choose the sequence in such a way that the line

segment between a+
k and a−k has length dk for some decreasing sequence dk

with limk→∞ dk = 0. Again, any such sequence dk gives rise to a choice of
points ak.

Let Γ+
k denote the part of the boundary of Xs between p+

k−1 and p+
k . We

define the map ϕ to map Γ−k to the arc of the unit circle between a−k−1

and a−k with constant speed. We define Γ−k and ϕ|Γ−
k

similarly. Let now H

Figure 4. The portions of height εk get mapped onto slices
with side length dk.

denote any continuous W 1,p-extension of ϕ to X. By the above definition,
any horizontal line segment with endpoints on Γ+

k and Γ−k is mapped into
a curve of length at least dk under H. Such a line segment is of length
at most the distance of p+

k−1 to p−k−1, a distance which is comparable to(∑∞
j=k εj

)1/s
. If Sk denotes the union of all the horizontal line segments

between Γ+
k and Γ−k , this gives the estimate

∫
Sk

|DH|pdz >

(∫
Sk
|DH|dz

)p
|Sk|p−1

>
c
(∫ εk

0 dkdy
)p

εp−1
k

(∑∞
j=k εj

)(p−1)/s
=

cdpkεk∑∞
j=k εj
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Let now, for example, εk = 1/k2. Then
∑∞

j=k εj is comparable to 1/k, so by
summing up we obtain the estimate

(4.1)

∫
⋃

k Sk

|DH|pdz > c
∞∑
k=1

dpk
k
.

Choosing a suitably slowly converging sequence dk such as dk = (log(1 +

k))−1/p, we find that the right hand side of (4.1) diverges. It follows that H
cannot lie in the Sobolev space W 1,p(Xs,C), which completes our proof.

5. The case p = 2

In this section we address Theorem 1.6 as well as Examples 1.5 and 1.7.

Example 1.5. For this example, let first Φτ for any τ ∈ (0, 1] denote
the conformal map

Φτ (z) = log−τ
(

1− z
3

)
defined on the unit disk and having target Yτ := Φτ (D). In fact, the domain
Yτ is a domain with smooth boundary apart from one point at which it has
an outer cusp of degree τ/(1 + τ) (i.e. it is bilipschitz-equivalent with the
domain Xτ/(1+τ) as pictured in Figure 1).

Since Φτ is conformal and maps the unit disk into a set of finite mea-
sure, it lies in the Sobolev space W 1,2(D,C). However, it does not admit a

homeomorphic extension to the whole plane in the Sobolev class W 1,2
loc (C).

The reason for this is that there is a modulus of continuity estimate for any
homeomorphism in the Sobolev class W 1,2

loc (C). Indeed, let ω(t) denote the
the modulus of continuity of g : C→ C; that is,

ω(t) = osc
B(z,t)

g = sup{|g(x1)− g(x2)| : x1, x2 ∈ B(z, t)} .

If g is a homeomorphism in W 1,2
loc (C,C), then

(5.1)

∫ r

0

ω(t)2

t
dt <∞.

Proof of (5.1). Since g is a homeomorphism we have

osc
B(z,t)

g 6 osc
∂B(z,t)

g .

According to Sobolev’s inequality on spheres for almost every t > 0 we
obtain

osc
∂B(z,t)

g 6 C
∫
∂B(z,t)

|Dg| .

These together with Hölder’s inequality imply

ω(t) = osc
B(z,t)

6 osc
∂B(z,t)

g 6 C

(
t

∫
∂B(z,t)

|Dg|2
) 1

2
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and, therefore, for almost every t > 0 we have

ω(t)2

t
6 C

∫
∂B(z,t)

|Dg|2 .

Integrating this from 0 to r > 0, the claim (5.1) follows. �

Now, since the map Φτ for τ 6 1 does not satisfy the modulus of continuity
estimate (5.1) at the boundary point z = 1, it follows that it is not possible
to extend Φτ even locally as a W 1,2-homeomorphism around the point z = 1.

To address the exact claim of Example 1.5, we now define an embedding
ϕ : ∂D→ C as follows. Fixing τ ∈ (0, 1], in the set {z ∈ ∂D : Re(z) > 0} we
let ϕ(z) = Φτ (z). We also map the complementary set {z ∈ ∂D : Re(z) < 0}
smoothly into the complement of Yτ , and in such a way that ϕ(∂D) becomes

the boundary of a Jordan domain Ỹ. See Figure 5 for an illustration. It

Figure 5. The Jordan domains Yτ and Ỹ.

is now easy to see that the map ϕ satisfies the Douglas condition (1.2).
Indeed, since the map Φτ is in the Sobolev space W 1,2(D,C) its restric-
tion to the boundary must necessarily satisfy the Douglas condition. Since
the map ϕ aligns with this boundary map in a neighborhood of the point
z = 1, verifying the finiteness of the integral in (1.2) poses no difficulty in
this neighborhood. On the rest of the boundary of ∂D we may choose ϕ
to be locally Lipschitz, which shows that (1.2) is necessarily satisfied for ϕ.
Hence we have found a map from ∂D into the boundary of the chord-arc
domain Ỹ which admits a W 1,2-extension to D but not a homeomorphic one.

Example 1.7. In [39], Zhang constructed an example of a Jordan do-
main, which we shall denote by Y, so that the conformal map g : D → Y
does not admit a W 1,1-homeomorphic extension to the whole plane. We
shall not repeat this construction here, but will instead briefly show how it
relates to our questions.

The domain Y is constructed in such a way that there is a boundary arc
Γ ⊂ ∂Y over which one cannot extend the conformal map g even locally as
a W 1,1-homeomorphism. The complementary part of the boundary Y \ Γ
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is piecewise linear. Hence we may employ the same argument as in the
previous example. We choose a Jordan domain Ỹ in the complement of Y
whose boundary consists of the arc Γ and, say, a piecewise linear curve.
We then define a boundary map ϕ : ∂D → ∂Ỹ so that it agrees with g in
a neighborhood of the set g−1(Γ) and is locally Lipschitz everywhere else.
With the same argument as before, this boundary map must satisfy the
Douglas condition (1.2). Hence this boundary map admits a W 1,2-extension
to D but not even a W 1,1-homeomorphic extension. Naturally the boundary
of the domain Ỹ is quite ill-behaved, in particular nonrectifiable (though the
Hausdorff dimension is still one).

Proof of Theorem 1.6. Let γ : ∂D→ ∂Y denote a constant speed parametriza-
tion of the rectifiable curve ∂Y. Let G : C→ C be the homeomorphic Lips-
chitz extension of γ given by Theorem 1.4. Denoting f := ϕ−1 ◦ γ, we find
by change of variables that∫
∂Y

∫
∂Y

∣∣log|ϕ−1(ξ)− ϕ−1(η)|
∣∣ |dξ||dη| = ∫

∂D

∫
∂D
|log|f(z)− f(ω)|| |dz||dω|.

Now the result of Astala, Iwaniec, Martin and Onninen [3] shows that the
inverse map f−1 : ∂X → ∂D satisfies the Douglas condition (1.2). Thus
f−1 extends to a harmonic W 1,2-homeomorphism H1 to D by the RKC-
Theorem (Lemma 2.3). Letting h := G ◦H1, we find that h lies in the space
W 1,2(X) since G is Lipschitz. Moreover, the boundary values of h are equal
to γ ◦ (ϕ−1 ◦ γ)−1 = ϕ, giving us a homeomorphic extension of ϕ in the
Sobolev space W 1,2(X).

To further extend ϕ into the complement of X, assume first without loss of
generality that 0 ∈ X and 0 ∈ Y. We now let τ(z) = 1/z denote the inversion
map, which is a diffeomorphism in C \ {0}. The map ψ := τ ◦ϕ ◦ τ is then a
homeomorphism from ∂τ(X) to ∂τ(Y), and must also satisfy the condition
(1.3) due to the bounds on τ . The earlier part of the proof shows that

we may extend ψ as a W 1,2-homeomorphism h̃ from the Jordan domain
bounded by ∂τ(X) to the Jordan domain bounded by ∂τ(Y). Hence the

map τ ◦ h̃ ◦ τ is a W 1,2
loc -homeomorphism from the complement of X to the

complement of Y and equal to ϕ on the boundary. This concludes the proof.
�

6. The multiply connected case, Proof of Theorem 1.11

In this section we consider multiply connected Jordan domains X and Y of
the same topological type. Any such domains can be equivalently obtained
by removing from a simply connected Jordan domain the same number, say
0 6 k < ∞, of closed disjoint topological disks. If k = 1, the obtained
doubly connected domain is conformally equivalent with a circular annulus
A = {z ∈ C : r < |z| < 1} with some 0 < r < 1. In fact, if k > 1 every (k+1)-
connected Jordan domain can be mapped by a conformal mapping onto a
circular domain, see [14]. In particular we may consider a (k+ 1)-connected
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circuilar domain consisting of the domain bounded by the boundary of the
unit disk D and k other circles (including points) in the interior of D. The
conformal mappings between multiply connected Jordan domains extends
continuously up to the boundaries.

The idea of the proof of Theorem 1.11 is simply to split the multiply
connected domains X and Y into simply connected parts and apply Theorem
1.8 in each of these parts. Let us consider first the case where X and Y are
doubly connected.

6.1. Doubly connected X and Y.
Case 1. p = 1. Suppose that the boundary of X is rectifiable. We split the

domain X into two rectifiable simply connected domains as follows. Take a
line ` passing through any point in the bounded component of C \X. Then
necessarily there exist two open line segments I1 and I2 on ` such that these
segments are contained in X and their endpoints lie on different components
of the boundary of X. These segments split the domain X into two rectifiable
Jordan domains X1 and X2.

For k = 1, 2, let pk denote the endpoint of Ik lying on the inner boundary
of X and Pk the endpoint on the outer boundary. We let qk = ϕ(pk) and
Qk = ϕ(Pk). We would now simply like to connect qk withQk by a rectifiable
curve γk inside of Y such that γ1 and γ2 do not intersect. It is quite obvious
this can be done but we provide a proof regardless.

Let Y+ denote the Jordan domain bounded by the outer boundary of Y.
Take a conformal map g+ : D→ Y+. Then g′+ is in the Hardy space H1 since
∂Y1 is rectifiable, and we find by Theorem 3.13 in [10] that g+ maps the
segment [0, g−1

+ (Qk)] into a rectifiable curve in Y+. Let γ+
k denote the image

of the segment [(1− ε)g−1
+ (Qk), g

−1
+ (Qk)] under g+ for a sufficiently small ε.

Hence we have a rectifiable curve γ+
k connecting Qk to an interior point Q+

k
of Y if ε is small enough. With a similar argument, possibly adding a Möbius
transformation to the argument to invert the order of the boundaries, one
finds a rectifiable curve γ−k connecting qk to an interior point q−k . For small
enough ε the four curves constructed here do not intersect.

If Γ denotes the union of these four curves, we may now use the path-
connectivity of the domain Y\Γ to join the points Q+

1 and q−1 with a smooth
simple curve inside Y that does not intersect Γ. By adding the curves γ+

1

and γ−1 one obtains a rectifiable simple curve γ1 connecting Q1 and q1. Using
the fact that Y \ Γ is doubly connected, we may now join Q+

2 and q−2 with
a smooth curve that does not intersect γ1 nor Γ. This yields a rectifiable
simple curve γ2 connecting Q2 and q2. This proves the existence of the
curves γk with the desired properties. These curves split Y into two simply
connected Jordan domains Y1 and Y2.

We may now extend the homeomorphism ϕ to map the boundary of Xk
to the boundary of Yk homeomorphically. The exact parametrization which
maps the segments Ik to the curves γk does not matter. The rest of the
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claim follows directly from the first part of Theorem 1.8, giving us a home-
omorphic extension of ϕ in the Sobolev class W 1,1(X,C), as claimed.

Case 2. 1 < p < 2. Suppose that X has s-hyperbolic growth. Then we
take an annulus A centered at the origin such that there exists a conformal
map g : A→ X. By a result of Gehring and Osgood [12], the quasihyperbolic
metrics hX and hA are comparable via the conformal map g. This shows
that for any fixed x0 ∈ A and all x ∈ A we have

(6.1) hA(x0, x) 6 ChX(g(x0), g(x)) 6
C

dist(g(x), ∂X)1−s .

Let now A+ denote the simply connected domain obtained by intersecting
A and the upper half plane. We claim that the the domain X+ := g(A+)
has s-hyperbolic growth as well.

To prove this claim, fix x0 ∈ A+ and take arbitrary x ∈ A. Let d =
dist(x, ∂A+). We aim to establish the inequality

(6.2) hA+(x0, x) 6
C

dist(g(x), ∂X+)1−s .

Note that A+ is bi-Lipschitz equivalent with the unit disk, implying that
hA+(x0, x) is comparable to log(1/d). Since the boundary of A+ contains
two line segments on the real line, let us denote them by I1 and I2. Note
that we have the estimate

(6.3) dist(g(x), ∂X+) 6 dist(g(x), ∂X).

If it would happen that d = dist(x, ∂A), meaning that the closest point
to x on ∂A+ is not on I1 or I2, then the hyperbolic distances hA+(x0, x)
and hA(x0, x) are comparable and by the inequalities (6.1) and (6.3) the
inequality (6.2) holds. It is hence enough to prove (6.2) in the case when
d = dist(x, I1 ∪ I2). We may also assume that d is small. Due to the
geometry of the half-annulus A+, the vertical line segment Lx between x
and its projection to the real line lies on either I1 or I2 and its length is d.
Letting D denote the distance of x to ∂A+ \ (I1 ∪ I2), we have that D > d.

We may now reiterate the proof of (3.4) to find that

|g′(z)| 6 C

dist(z, ∂A) log
1

1−s (dist(z, ∂A)−1)

for z ∈ A. We should mention that the simply connectedness assumption
used in the proof of (3.4) may be circumvented by using the equivalence
of the quasihyperbolic metrics under g instead of passing to the hyperbolic
metric. Hence

dist(g(x), ∂X+) 6
∫
Lx

|g′(z)||dz| 6 Cd

D log
1

1−s (1/D)
.
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From this we find that (6.2) is equivalent to

log(1/d) 6 C
D1−s log(1/D)

d1−s ,

which is true since D > d. Hence (6.2) holds, and this implies that X+ has
s-hyperbolic growth by reversing the argument that gives (6.1).

We define X− similarly. Hence we have split X into two simply connected
domains with s-hyperbolic growth. On the image side, we may split Y
into two simply connected domains with rectifiable boundary as in Case 1.
Extending ϕ in an arbitrary homeomorphic way between the boundaries of
these domains and applying part 2 of Theorem 1.8 gives a homeomorphic
extension of ϕ in the Sobolev class W 1,p(X,C) whenever s > p− 1.

6.2. The general case.
Case 3. p = 1. Assume that X and Y are `-connected Jordan domains

with rectifiable boundaries. By induction, we may assume that the result
of Theorem 1.11 holds for (`− 1)-connected Jordan domains. Hence we are
only required to split X and Y into two domains with rectifiable boundary,
one which is doubly connected and another which is (`− 1)-connected.

We hence describe how to ’isolate’ a given boundary component X0 from
a `-connected Jordan domain X. Let Xouter denote the outer boundary
component of X. Take a small neighborhood of X0 inside X. Let γ0 be a
piecewise linear Jordan curve contained in this neighborhood and separating
X0 from the rest of the boundary components of X. Let also γ1 be a piecewise
linear Jordan curve inside X and in a small enough neighborhood of Xouter

so that all of the other boundary components of X are contained inside γ1.
Take y0 and y1 on γ0 and γ1 respectively, and connect them with a piecewise
linear curve αy not intersecting any boundary components of X. Choose z0

and z1 close to y0 and y1 respectively so that we may connect z0 and z1 by
a piecewise linear curve αz arbitrarily close to αy but neither intersecting
it nor any boundary components of X. Since the region bounded by Xouter

and γ1 is doubly connected, by the construction in Case 1 we may connect
y1 and z1 with any two given points y2 and z2 on the boundary Xouter via
non-intersecting rectifiable curves βy and βz lying inside this region.

Let now Γ denote the union of the curves βy, βz, αy, αz, and the curve γ′0
obtained by taking the curve γ0 and removing the part between y0 and z0.
By construction Γ contains two arbitrary points on Xouter and separates the
domain X into a doubly connected domain with inner boundary component
X0 and a (n − 1)-connected Jordan domain. Since Γ is rectifiable, both of
these domains are also rectifiable.

Applying the same construction for Y, we may separate the boundary
component ϕ(X0) of Y by a rectifiable curve Γ′. Since the boundary points
y2 and z2 above were arbitrary, we may assume that Γ′ intersects the outer
boundary of Y at the points ϕ(y2) and ϕ(z2). Extending ϕ to a homeomor-
phism from Γ onto Γ′ and applying the induction assumptions now gives a
homeomorphic extension in the class W 1,1(X,C).
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Case 4. 1 < p < 2. We still have to deal with the case where X has s-
hyperbolic growth and is `-connected. By the same arguments as in the
previous case, it will be enough to split X into a doubly connected and
(`− 1)-connected domain with s-hyperbolic growth.

Since X is `-connected, there exists a domain Ω such that every boundary
component of Ω is a circle and there is a conformal map g : Ω → X. Let
Γ ⊂ Ω be a piecewise linear curve separating one of the inner boundary
components of ∂Ω. Hence Ω splits into a doubly connected set Ω1 and
a (` − 1)-connected set Ω2. We claim that the domains X1 = g(Ω1) and
X2 = g(Ω2) have s-hyperbolic growth.

The proof of this claim is nearly identical to the arguments in Case 2, so
we will summarize it briefly. For X2, we aim to establish the inequality

(6.4) hΩ2(x0, x) 6
C

dist(g(x), ∂X2)1−s

for fixed x0 ∈ Ω2 and x ∈ Ω2. For this inequality, it is only essential to
consider x close to ∂Ω2. If x is closer to the boundary of the original set
∂Ω than to Γ, then the hyperbolic distance of x0 and x in Ω2 is comparable
to the distance inside the larger set Ω. Then the s-hyperbolic growth of Ω
implies (6.4) as in Case 2. If x is closer to Γ but a fixed distance away from
the boundary of Ω, then the smoothness of g in compact subsets of Ω implies
the result. If x is closest to a line segment in Γ which has its other endpoint
on ∂Ω, then we may employ a similar estimate as in Case 2, using the bound
for |g′(z)| in terms of dist(z, ∂Ω), to conclude that (6.4) also holds here. This
implies that X2 satisfies (6.4), and hence it has s-hyperbolic growth. The
argument for X1 is the same.

After splitting X into two domains of smaller connectivity and s-hyperbolic
growth, we split the target Y accordingly into rectifiable parts using the ar-
gument from Case 3. Applying induction on n now proves the result. This
finishes the proof of Theorem 1.11.

7. Monotone Sobolev minimizers

The classical harmonic mapping problem deals with the question of whether
there exists a harmonic homeomorphism between two given domains. Of
course, when the domains are Jordan such a mapping problem is always
solvable. Indeed, according to the Riemann Mapping Theorem there is
a conformal mapping h : X onto−−→ Y. Finding a harmonic homeomorphism
which coincides with a given boundary homeomorphism ϕ : ∂X onto−−→ ∂Y is a
more subtle question. If Y is convex, then there always exists a harmonic
homeomorphism h : X onto−−→ Y with h(x) = ϕ(x) on ∂X by Lemma 2.3. For
a non-convex target Y, however, there always exists at least one boundary
homeomorphism whose harmonic extension takes points in X beyond Y. To
find a deformation h : X onto−−→ Y which resembles harmonic homeomorphisms
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Iwaniec and Onninen [22] applied the direct method in the calculus of varia-

tions and considered minimizing sequences in H 1,2
ϕ (X,Y). They called such

minimizers monotone Hopf-harmonics and proved the existence and unique-
ness result in the case when Y is a Lipschitz domain and the boundary data
ϕ satisfies the Douglas condition. Note that by the Riemann Mapping Theo-
rem one may always assume that X = D. Theorem 1.6 opens up such studies
beyond the Lipschitz targets. Indeed, under the assumptions of Theorem 1.6,
the class H 1,2

ϕ (D,Y) is non-empty. Furthermore, if h◦ ∈ H 1,2
ϕ (D,Y), then

h◦ satisfies the uniform modulus of continuity estimate

|h◦(x1)− h◦(x2)|2 6 C
∫
D|Dh◦|

2

log
(

1
|x1−x2|

)
for x1, x2 ∈ D such that |x1 − x2| < 1. This follows from taking the

global W 1,2
loc -homeomorphic extension given by Theorem 1.6 and applying

a standard local modulus of continuity estimate for W 1,2-homeomorphisms,
see [18, Corollary 7.5.1 p.155]. Now, applying the direct method in the cal-

culus of variations allows us to find a minimizing sequence in H 1,2
ϕ (D,Y)

for the Dirichlet energy which converges weakly in W 1,2(D,C) and uni-
formly in D. Being a uniform limit of homeomorphisms the limit mapping
H : D onto−−→ Y becomes monotone. Indeed, the classical Youngs approxima-
tion theorem [35] which asserts that a continuous map between compact
oriented topological 2-manifolds (surfaces) is monotone if and only if it is a
uniform limit of homeomorphisms. Monotonicity, the concept of Morrey [29],
simply means that for a continuous H : X → Y the preimage H−1(y◦) of a
point y◦ ∈ Y is a continuum in X. We have hence just given a proof of the
following result.

Theorem 7.1. Let X and Y be Jordan domains and assume that ∂Y is
rectifiable. If ϕ : ∂X onto−−→ ∂Y satisfies (1.3), then there exists a monotone

Sobolev mapping H : X onto−−→ Y in W 1,2(X,C) such that H coincides with ϕ
on ∂X and ∫

X
|DH(x)|2 dx = inf

h∈H 1,2
ϕ (X,Y)

∫
X
|Dh(x)|2 dx .
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