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GAUSSIAN RANDOM FIELDS ON THE SPHERE AND
SPHERE CROSS LINE

N. H. BINGHAM and Tasmin L. SYMONS

In memory of Larry Shepp

Abstract
We review the Dudley integral for the Belyaev dichotomy applied to Gaus-

sian processes on spheres, and discuss the approximate (or restricted) conti-
nuity of paths in the discontinuous case. We discuss also the spatio-temporal
case, of sphere cross line. In the continuous case, we investigate the link
between the smoothness of paths and the decay rate of the angular power
spectrum, following Tauberian work of the first author, Malyarenko, and
Lang and Schwab.

Key words. Belyaev dichotomy, Dudley integral, Gaussian processes, spheres,
ultraspherical polynomials, Schoenberg’s theorem, Tauberian theorems, spher-
ical functions, multiplication theorem, Feldheim-Vilenkin integral.
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1. Introduction
Motivated by the mathematics of Planet Earth, we consider several as-

pects of Gaussian processes (Gaussian random fields) on spheres. We begin
(§2) with path-continuity: Belyaev’s dichotomy and the Dudley integral, and
the link between continuity and restricted measurability of the process. In
§3 we combine the Karhunen-Loève expansion for a general Gaussian process
with the spherical harmonics needed for the sphere, and deal also with the
spatio-temporal case (sphere cross line). In §4 we give a short proof of Mal-
yarenko’s theorem [Mal1,2], by Tauberian methods deriving from [Bin5,6],
linking the asymptotics of ultraspherical series to the spherical case of the
Dudley integral, and treat the infinite-dimensional case (the Hilbert sphere).
We also complement this by using Tauberian methods from [Bin6] to study
integrability rather than asymptotics, as in the work of Lang and Schwab
[LangS].
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2. Belyaev’s dichotomy and the Dudley integral

Let X = {Xt : t ∈ M} be a real-valued zero-mean Gaussian process, on
(defined on, indexed by) M . Here, M will be the d-sphere Sd ⊂ Rd+1 of
radius 1; the motivating example is d = 2, with M = S2 as Planet Earth.
The law of X is determined by either of the covariance or the incremental
variance:

c(s, t) := cov(Xs, Xt) = E[XsXt], i(s, t) := E[(Xt −Xs)
2]

(respectively positive and negative definite, or of positive and negative type);
we can pass between them by

i(s, t) = c(s, s) + c(t, t)− 2c(s, t), c(s, t) =
1

2
(i(s, o) + i(t, o)− i(s, t)),

with o some base point (North Pole). We restrict attention to isotropic
processes (those with stationary increments), where these are functions only
of the geodesic distance d(s, t), or of x := cos d(s, t) ∈ [−1, 1] (s, t ∈ M):

c(s, t) = C(x), i(s, t) = I(x).

We assume also that the covariance is continuous. We can then use reproducing-
kernel Hilbert spaces and the Karhunen-Loève expansion, which we will need
below ([MarR, p.203-207], [Adl, III.2, III.3]).

We need the Gegenbauer (ultraspherical) polynomials Cλ
n(x) [Sze, §4.7],

normalised to take the value 1 at 1; for these we use Bochner’s notation
W λ

n (x) (see e.g. [Bin2]):

W λ
n (x) := Cλ

n(x)/C
λ
n(1) = Cλ

n(x).n!Γ(2λ)/Γ(n+ 2λ).

These are the orthogonal polynomials generated by the probability measure

Gλ(dx) :=
Γ(λ+ 1)√
πΓ(λ+ 1

2
)
.(1− x2)λ−

1

2dx (x ∈ [−1, 1]) :

∫ 1

−1

W λ
m(x)W

λ
n (x)Gλ(dx) = δmn/ω

λ
n, ωλ

n :=
(n+ λ)

λ
.
Γ(n+ 2λ)

Γ(2λ)
.
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Half-integer values of the Gegenbauer index λ correspond to (integer)
values of the Euclidean dimension d as above by

λ =
1

2
(d− 1);

we will also need the Hilbert-space case λ = ∞) [Bin4].
From the Bochner-Schoenberg theorem of 1940-42 ([Sch]; see [BinS1] for

further references), C is then, to within a scale factor c ∈ (0,∞) (reflecting
physical units), a mixture (with mixing law a = (an)

∞
n=0, an ≥ 0,

∑

an = 1)
of ultraspherical polynomials W λ

n (x) with λ := 1
2
(d− 1):

C(x) = c
∞
∑

0

anW
λ
n (x), I(x) = c

∞
∑

0

an(1−W λ
n (x)). (BS)

The behaviour of the process is governed by the decay of the sequence a =
(an) above: the faster the decay, the better the behaviour (the smoother the
paths, etc.) The term angular power spectrum (APT) is used ([MariP]: see
below) for a variant on (an); we shall use the term here too, for convenience.

We recall Belyaev’s dichotomy for Gaussian processes ([Bel]; [MarR, Th.
5.3.10]): Gaussian paths are either very nice (continuous), or very nasty
(pathological: unbounded above and below on any interval, or set of positive
measure). Much is known, by way of necessary conditions for continuity
[MarR, §6.2], and sufficient conditions [MarR, §6.1]; see e.g. [MarS1,2], [Gar].
One uses the Dudley metric (actually a pseudo-metric)

dX(s, t) :=
√

E[(Xs −Xt)2] (s, t ∈ M).

For u > 0, write N(u) for the minimum number of dX -balls of radius u needed
to cover the parameter-space M ; then if H(u) := logN(u), H := {H(u) :
u > 0} is called the metric entropy. The Dudley integral is

∫ ǫ

0

√

H(u)du (ǫ > 0). (Dud)

One obtains a clean necessary and sufficient condition for continuity, finite-
ness of (Dud) [Dud1,2], only for X isotropic [MarR], which is why we restrict
to this here. If φ is a non-negative function increasing near 0 with

dX(s, t) ≤ φ(|s− t|) (s, t ∈ M),
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then the Dudley integral is finite if

∫ ∞

M

φ(e−x2

)dx < ∞ :

∫ ǫ

0

φ(u)√
− log u

.
du

u
< ∞.

For isotropic processes on spheres, take

φ(u) := sup{
√

I(cosv) : v ≤ u} :

the condition for path continuity of X becomes ([Gar]; [Dud2, §7])

∫ 1

0

√

supv≤u I(cos v)

− log u

du

u
< ∞ :

∫ 1

0

√

supv≤u(1−
∑∞

0 anW λ
n (cos v))

− log u

du

u
< ∞. (DudSph)

Despite the ‘pathological’ behaviour of the sample paths of the process in
the discontinuous case of Belyaev’s dichotomy, there is a sense in which they
are ‘nearly continuous’: a ‘localisation of pathology’. For, by the Karhunen-
Loève expansion,

X(t, ω) =

∞
∑

0

φn(t)Zn(ω), (KL)

with the Zn independent standard normal random variables and the φn con-
tinuous functions (a.s.: see [MarR, Remark 5.3.3]). In particular, a.s. (we
may exclude the exceptional P -null ω-set from our sample space and so
omit this restriction), X(t) = X(t, ω) is a measurable function of t. So, by
Lusin’s continuity theorem (or Lusin’s restriction theorem, of 1912: [Dud3,
Th. 7.5.2], [Rud, §2.24]), X(t) becomes continuous in t when restricted to a
time-set of t avoiding a set of arbitrarily small measure.

Remarks.
1. The oscillation function.

The local behaviour of the paths of X(t, ω) is governed by the oscillation
function, a deterministic function, α(t) say [MarR, p.209-211]. The contin-
uous case of Belyaev’s dichotomy has α ≡ 0, the discontinuous case has
α ≡ ∞. Despite the ‘pathological’ appearance of this case, it is as well to
note that a measurable function can have oscillation function ≡ ∞, as here.
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2. Approximate limits and limsups.
The Lusin argument above from (KL) says that the paths, when slightly

restricted, become continuous in some sense. The concepts of approximate
limit, ap− lim (and so of approximate limsup, ap− limsup, and approximate
derivative) and approximate continuity go back to Denjoy in 1916 and Khint-
chine in 1927 (see e.g. Saks [Sak, IX.10]). An approximate limit at a point t
becomes an actual limit when the approach to t is made through a Borel set
having t as a density point (in the sense of the Lebesgue density theorem, see
e.g. [Rud, §7.2], [Dud3, p.422], [BinO2, Th. L], and of the density topology,
below). For a number of probabilistic results on ap − limsup, see Geman
and Horowitz [GemH, §13] (cf. [Adl, IV.6]). For the relevant real-variable
theory, see e.g. [GemH, §14], and the earlier paper by Smallwood [Sma].
3. The density topology.

The density topology takes as its open sets the measurable sets all of
whose points are density points. That this gives a topology, and the intimate
link with Denjoy’s approximate continuity (and so with ap − lim), are due
to Haupt and Pauc [HauP]. It has been much studied, by C. Goffman and
others; for references see e.g. [BinO1,3].

3. The Karhunen-Loève expansion; the spatio-temporal case

Spherical harmonics
For Gaussian processes on (parametrised by) spheres, as here, one ap-

propriate system to use for spectral expansions as in (KL) is the spherical
harmonics ([AndAR, Ch. 9]; [SteW, IV.2]). These are the restrictions to
the d-sphere Sd ⊂ Rd+1 of homogeneous harmonic polynomials – solutions to
Laplace’s equation in Rd+1. For each degree ℓ = 0, 1, 2, · · ·, there are

c(ℓ, d) :=
2ℓ+ d− 1

d− 1

(

ℓ+ d− 2

ℓ

)

linearly independent spherical harmonics of degree ℓ. Furthermore, the usual
time parameter of a stochastic process is replaced by a space parameter,
x ∈ Sd. Using now T = T (x) for the process, now a random field, it has a
KL expansion of the form

T (x) =

∞
∑

ℓ=0

c(ℓ,d)
∑

m=0

aℓmYℓm(x) =
∑

ℓm

aℓmYℓm(x),=
∑

ℓm

〈T, Yℓ,m〉Yℓm(x),
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say. Here the randomness is in the random Fourier coefficients

aℓm = 〈T, Yℓ,m〉.

By (KL), they are independent if the process T is Gaussian, and conversely
([LusP], above). Baldi and Marinucci [BalM] derive the converse from the
Skitovich-Darmois theorem, one of many characterization theorems for nor-
mality (Gaussianity); see e.g. [KagLR].

Spherical harmonics and Gegenbauer polynomials
The link between the spherical harmonics Yℓm above and the (normalized)

Gegenbauer polynomials Wn is the addition theorem for spherical harmonics
([AndAR, Th. 9.6.3]; [Yad, I.5.1]):

c(ℓ,d)
∑

m=1

Yℓm(x)Yℓm(y) = W λ
ℓ (cos〈x, y〉).c(ℓ, d)/ωd, (Add)

with 〈x, y〉 the inner product of x and y in R
d+1 (so cos〈x, y〉 is the geodesic

distance between x and y in Sd), and ωd the surface area of Sd.
The isotropy of T is reflected in that the laws of the aℓm depend only on

the degree ℓ of the spherical harmonic and not on m:

aℓm ∼ N(0, vl),

say (‘v for variance’). The covariance is calculated by

C(x, y) := cov(T (x), T (y)) = E[(
∑

ℓm

aℓmYℓm(x))(
∑

ℓ′m′

aℓ′m′Yℓ′m′(y))]

=
∑

ℓm

∑

ℓ′m′

E[aℓmaℓ′m′ ]Yℓm(x)Yℓ′m′(y)]

=
∑

ℓm

∑

ℓ′m′

δℓℓ′δℓ′m′vℓYℓm(x)Yℓ′m′(y)]

=
∑

ℓ

vℓ
∑

m

Yℓm(x)Yℓm(y) :

C(x, y) =
1

ωd

∑

ℓ

vℓc(ℓ, d)W
λ
ℓ (cos〈x, y〉),

which (to within notation) is Schoenberg’s theorem. We write

aℓ := vℓc(ℓ, d)/ωℓ,

6



and call a = (aℓ) the angular power spectrum (APS). The covariance and the
KL expansion then become

C(x, y) =
∑

ℓ

aℓW
λ
ℓ (cos〈x, y〉), (APS)

T (x) =
∑

ℓm

aℓmYℓm(x), aℓm ∼ N(0, vℓ), (T (x))

with the aℓm independent.
Note. Some authors (e.g. [MariP]) use the term angular power spectrum for
v = (vℓ) instead. For the case d = 2, conversion between the two becomes
especially simple: c(ℓ, 2) = 2ℓ+ 1, so

aℓ := vℓ.(2ℓ+ 1)/4π.

Spatio-temporal version
The covariance calculation above can be extended to the spatio-temporal

setting. We already know the form of the general covariance, from the Berg-
Porcu theorem [BerP] (see (BP ) below). The spatio-temporal covariances
here have a very similar structure to the Bochner-Schoenberg form (BS) in
the spatial case,

c
∞
∑

0

anW
λ
n (cos〈x, y〉), c > 0, an ≥ 0,

∑

an = 1 (BS)

(to within a constant multiple, a mixture of ultraspherical polynomials), but
now as

c

∞
∑

0

anW
λ
n (cos〈x, y〉)φn(t− s), c > 0, an ≥ 0,

∑

an = 1, (BP )

with the φn characteristic functions of probability laws on the line. The
role of the Bochner-Schoenberg theorem in (BS) is played in (BP ) by the
Bochner-Godement theorem ([AskB], [BinS1]; the result is also derived in
[Ma2]). Many results proved for the class P(Sd) thus carry over to P(Sd×R).
So we need a choice of expansion (KL) that will lead to this. We generalise
(T (x)) above in the result below. Note that for a centred Gaussian process,
the covariance is canonical (it determines the process), but the Karhunen-
Loève expansion is not (it depends on the complete orthonormal system).
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What one needs is a KL expansion that generates the required covariance.

Theorem (Karhunen-Loève expansion for sphere cross line). The
Karhunen-Loève expansion

T (x, t) =
∑

ℓm

aℓmcℓφℓ(t)Yℓm(x), aℓm ∼ N(0, vℓ), (T (x, t))

with Yℓm(x) the spherical harmonics, φℓ(t) a characteristic function and cℓ
constants with

∑

ℓ vℓc(ℓ, d)c
2
ℓ < ∞, has covariance the Berg-Porcu form (BP )

above. It thus generates the most general Gaussian random field on Sd × R

isotropic on Sd and stationary on R.

Proof. The covariance calculation now becomes

C((x, s), (y, t)) = cov(T (x, s), T (y, t))

= E[(
∑

ℓm

aℓmcℓφℓ(s)Yℓm(x))(
∑

ℓ′m′

aℓ′m′cℓ′φℓ′(t)Yℓ′m′(y))]

=
∑

ℓm

∑

ℓ′m′

E[aℓmaℓ′m′ ]cℓcℓ′φℓ(s)φℓ(t)Yℓm(x)Yℓ′m′(y)

=
∑

ℓm

∑

ℓ′m′

δℓℓ′δℓ′m′vℓcℓcℓ′φℓ(s)φℓ(t)Yℓm(x)Yℓ′m′(y)

=
∑

ℓ

vℓc
2
ℓφℓ(s)φℓ(t)

∑

m

Yℓm(x)Yℓm(y) :

C((x, s), (y, t)) =
1

ωd

∑

ℓ

vℓc(ℓ, d)c
2
ℓ .φℓ(s)φℓ(t)Wℓ(〈x, y〉),

by (Add).
We are assuming isotropy in time (stationarity) as well as in space. So

the covariance depends only on the difference of the two times s and t. So
we may replace s by 0 (so φn(0) = 1) and t by t − s. This now reduces
to (BP ) above, the Berg-Porcu form [BerP]. As we know that this form for
the covariance is the most general one, and a (centred) Gaussian process
(random field here) is specified by its covariance, this shows that no gener-
ality has been lost by the above choice for the Karhunen-Loève expansion. �

Note. 1. The earliest work of this kind that we are aware of is the pioneering
paper of Jones [Jon] in 1963. This was recently extended from S2 to Sd by
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Clarke De la Cerda, Alegria and Porcu [ClaAP]. Both approaches deal with
the space and time aspects asymmetrically, and neither has the randomness
in the simplest form possible: a sequence of independent standard normals,
as in (KL) above (we recommend [MarR §5.3] for a treatment of Karhunen-
Loève expansions). Our approach above is both symmetrical and simpler;
this enables us to avoid the difficulties touched on at the end of [ClaAP,
§3.1].
2. In [ClaAP], distance on sphere cross line is taken under the cartesian rule
s2 = s21 + s22 for a product of metric spaces, whereas above we use the differ-
ential cartesian rule ds2 = ds21+ds22 for a product manifold. The difference is
not important here, but can be crucial. For an instance, see [BinMS]: Brow-
nian motion exists on sphere cross line in the first case (and under Hamming
distance s = s1 + s2), but not the second.

4. Malyarenko’s theorem; the Hilbert sphere

What (DudSph) above says is that the paths are continuous if and only if
the coefficients an in the mixture law a in (BS) – the angular power spectrum
– decay fast enough. Slow decay means wild behaviour of the paths, but if
the decay is fast enough, the paths become very smooth. As we shall see, if
an = O(1/n1+α) for α > 0, the paths are continuous (and become smoother
with increasing α).

While the condition (DudSph) resolves the matter completely in princi-
ple, in practice implementing it is formidable, for the obvious three reasons:
passage between the mixing law (an) and the ultraspherical series

∑

anW
λ
n ,

the supremum, and the integration. The nub here is the first: the link be-
tween the decay of an for large n, and the growth of 1−

∑∞

0 anW
λ
n (cos v) for

small v > 0.
While there is no definitive answer to this question (any more than there

is in the classical case of Fourier series [Zyg]), there is an answer in the prin-
cipal case of practical interest, that when the angular power spectrum (an) is
regularly varying (see e.g. [BinGT]). Here the results (whose proofs we sketch
below) are due to Malyarenko [Mal1,2], based on early work of the first au-
thor [Bin5] (itself based on earlier work of Askey and Wainger [AskW]):

9



Theorem (Malyarenko). For ℓ slowly varying,

An :=
∞
∑

n

ak ∼ ℓ(n)/nγ (n → ∞) (γ ∈ (0, 2))

iff

I(v) = 1−
∞
∑

0

anW
λ
n (cos v) ∼ Γ(λ+

1

2
).

Γ(1− 1
2
γ)

2γΓ(λ+ 1
2
− 1

2
γ)

.vγℓ(1/v) (v ↓ 0).

Proof. The implication from An to I(v) is Abelian; the converse is Tauberian.
One has

I(v) =
∞
∑

0

an(1−W λ
n (v) =

∞
∑

0

(An −An+1)(1−W λ
n (v)),

and writes this by partial summation as

I(v) =
∑

An+1(W
λ
n (v)−W λ

n+1(v)).

The difference of ultraspherical polynomials here may be expressed as one
Jacobi polynomial (Erdélyi et al. [ErdMOT, Vol. II, 10.8(32)]. Recall that

the Jacobi polynomials are a two-index family P
(α,β)
n (α, β ≥ −1

2
; we take

α ≥ β). When α = β, the Jacobi polynomials reduce to the ultraspherical
polynomials, with (as above)

α = β = λ− 1

2
=

1

2
(d− 2).

We use the normalisation [Mal2, 4.3.1]

R(α,β)
n (x) := P (α,β)

n (x)/P (α,β)
n (1).

Then ([Mal2, p.127], [ErdMOT II 10.8(32)])

Rα,β
n (cos θ)− Rα,β

n+1(cos θ) =
(2n+ α + β + 2)

(α + 1)
sin21

2
θ Rα+1,β

n (cos θ).

So

I(cos θ) =
2sin2 1

2
θ

(α+ 1)

∑

(n + α + 1)AnR
α+1,β
n (cos θ). (∗)
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The sin2 1
2
θ (equivalently, θ2/4) term on the right of (∗) accounts for the up-

per limit 2 on γ in the result; that the incremental variance is non-negative
accounts for the lower limit of 0. The results of [Bin5] now apply to the
sequence (n+ α+1)An = (n+ α+1)

∑∞

n ak with the σ there as 1− γ. The
Tauberian conditions needed follow from an ≥ 0 (so An is non-negative and
non-decreasing). �

Malyarenko’s theorem is very similar to that of [Bin3] (proved more sim-
ply in [Bin7]) on Hankel transforms, the link being provided by Szegő’s Hilb-
type asymptotic formula for the Jacobi polynomials [Sze, Th. 8.21.12].

The Belyaev integral is of course convergent in all these cases, and so
Malyarenko’s theorem provides us with an ample range of examples of the
continuous case in the Belyaev dichotomy (the pathological case being of
course less common in practice). For, the supremum operation in (DudSph)
(a reflection of the great mathematical difficulties in bridging the gap be-
tween the necessary and the sufficient conditions for finiteness of the Dudley
integral) is harmless here: any regularly varying function of non-zero index
is asymptotically monotone [BinGT, §1.5.2]).

One can extend to γ = 0 here, when the tail An of the mixing law is slowly
varying, but convergence of the Dudley integral now hinges on the behaviour
of ℓ at infinity. This is shown by familiar examples such as

∑

1/(n(logn)k),
∑

1/(n logn(log log n)k), each convergent if k > 1, divergent if k ≤ 1. One
can also extend to the case γ = 2 [Bin5].

O-versions of these results are straightforward (cf. Korevaar [Kor, IV.10]).

The Hilbert sphere.
The Hilbert sphere S∞ is not locally compact, and because of this one

may expect very different behaviour for it from that on Euclidean spheres.
Gaussian processes on S

∞ are discontinuous (Lévy [Lev]; Berman [Berm1,2];
Dudley [Dud2, §5]). More is true: such processes are locally deterministic
(see [Lev, p.355], [Berm1, p.950] for the definition): the behaviour of the
process locally determines it everywhere. This sounds reminiscent of the
great smoothness shown by holomorphic functions in complex analysis, but
is in fact diametrically opposite: the process is extremely wild, and ‘gets
everywhere it will go immediately’.

The ultraspherical polynomials may be defined for λ = ∞ byW∞
n (x) = xn

11



(see e.g. [Bin1]). But, as

Γ(λ+
1

2
+

1

2
γ)/Γ(λ+

1

2
) ∼ λ

1

2
γ → ∞ (λ → ∞),

this case does not follow formally from Malyarenko’s theorem by letting
λ → ∞. Instead, we have here:

Proposition. In the notation of Malyarenko’s theorem,

An :=
∞
∑

n

ak ∼ ℓ(n)/n
1

2
γ (n → ∞) (γ ∈ (0, 2))

iff

1−
∑

an(cos v)
n ∼ Γ(1− 1

2
γ)

2
1

2
γ

vλℓ(1/v2) (v ↓ 0).

Proof. The functions in P∞ are the probability generating functions (in t,
say), or (putting t = e−s) the Laplace-Stieltjes transforms. We can read
off the relevant tail-behavour here from e.g. [BinGT, Cor. 8.1.7]. Writing
cos v = e−s here, we have s ∼ 1

2
v2 as s, v ↓ 0, which gives the result. �

One must expect the tails in the Hilbert case here (with the sphere
non-compact) to be heavier than in the Euclidean case of Malyarenko’s theo-
rem (with the sphere compact): now, the paths are wild rather than continu-
ous, and there there are ‘more ways of going off to infinity’. Thus the relevant
probability laws (an) here have regularly varying tails with index in (0, 1),
rather than in (0, 2) as Malyarenko’s theorem – that is, they correspond to
infinite mean rather than infinite variance.

The constants introduced (in going between the ‘Abelian’ and ‘Taube-
rian’ sides) in results of this type are the values, for s = γ, of the Mellin
transform

k̂(s) :=

∫ ∞

0

usk(u)du/u (s ∈ C)

of the kernel k in the relevant Mellin-Stieltjes convolution (see e.g. [BinGT,
Ch. 4, 5]). In the Hankel case of [Bin3, 7] the relevant transform is exactly
of convolution type; here and in [Bin5] the ‘ultraspherical transform’ is only
approximately so (cf. [BinGT, §4.2, 4.3, 4.10]). It is interesting to compare
the Mellin transforms in these three cases.
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Remarks.
1. Besov paths.

Kerkyacharian et al. [KerOPP, §7.22] show that if the angular power
spectrum satisfies an = O(1/n1+γ) for γ > 0 (so An :=

∑∞

n ak = O(1/nγ)),
then the sample paths of the process X are a.s. in the Besov space Bα

∞,1 for
all α < γ (see Giné and Nickl [GinN] for the theory of Besov spaces in such
contexts, Fukushima et al. [FukOT] for the necessary theory of Dirichlet
structure on the index set, Sd here). Thus the faster the decay of the angular
power spectrum, the smoother the paths of the process.
2. Fractional calculus on spheres.

Following Askey and Wainger [AskW, Part I Section III], a theory of frac-
tional integration and differentiation on spheres was given by Bavinck [Bav].
This is based on the expansion into spherical harmonics Sl,m above; these
are eigenfunctions of the spherical Laplacian ∆ (Laplace-Beltrami operator
on the sphere), with eigenvalues −l(l+λ) (or −l(l+α+β+1) in the Jacobi
case):

∆Sl,m = −l(l + λ)Sl,m, (1−∆)Sl,m = (1 + l(l + λ))Sl,m.

In terms of the fractional Laplacian (see e.g. [Hor], [Stei, V.1.2]), applying
(1−∆)σ/2 introduces multipliers (1+l(l+λ))σ/2 into the expansion. For σ > 0,
this corresponds to (fractional) differentiation of order σ (∆ being a second-
order differential operator), or (fractional) integration if σ is negative (recall:
the faster the angular power spectrum coefficients decay, the smoother the
paths of the process, and the slower, the rougher).

This has the semigroup property

Iα+β = Iα ◦ Iβ.

This desirable property is not shared by previous definitions of spherical
fractional integration (see [AskW] for references), nor by analogues in the
literature on ‘dimension walks’; see e.g. [BinS3] for references.

Note that λ here may be a continuous parameter, and is not restricted
to the half-integer values implied by λ = 1

2
(d − 1) with d the dimension of

the sphere (as a Riemannian manifold). See [Bin1], [BinS3] for projections
between two different dimensions (parameters).

5. Integrability and path-continuity
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The question of path-continuity of the process is addressed in the work
of Lang and Schwab [LangS] (cf. [AndL]) and Lan, Marinucci and Xiao
[LanMX]. The picture is much as above: the faster the decay of the angular
power spectrum, the better: the more regular the paths of the process (and,
as in Malyarenko’s theorem of §3, the faster the decay of the incremental
variance at the origin).

In [LangS, §4, Assumption 4.1], Lang and Schwab assume a decay con-
dition on the angular power spectrum measured by a summability condition
(rather than by rate of decay as in Malyarenko’s theorem): in our notation,
they assume

∑

ann
γ < ∞ (γ > 0). (Int)

In view of (∗) above, we re-write this by partial summation as

∑

An.n
γ−1 < ∞ :

∑

(n + α+ 1)An.n
γ−2 < ∞.

As above, and in [LangS §4], the case γ ∈ (0, 2) is specially important, so
we begin with that. Then the summability condition (Int) may [Bin6, Th. 1]
be translated into a corresponding integrability condition on the incremental
variance at the origin: (Int) implies

∫ π/2

0+

I(cos θ).θ−γdθ/θ < ∞. (Int′)

As
∫

0+
dθ/θ diverges, this gives in particular that

I(cos θ) = o(θγ) (θ ↓ 0).

This strengthens the result of [LangS, Lemma 2] from O(.) to o(.) (though
in view of the ‘ǫ-gap’ in [LangS, Th. 4.7], where it is used, this does not
matter).

This leads quickly to the path-regularity result ([LangS]; cf. [LanMX]):

Theorem (Lang and Schwab, [LangS Th. 4.7]. Under the summability
condition (Int) on the angular power spectrum, for any δ < γ/2 the process
has a Cδ-valued modification:for k the integer part of γ/2, the modification
is k times continuously differentiable, with kth derivative Hölder continuous
with exponent δ − k.
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The proof involves the following:
(i) For n ∈ N , x, y ∈ Sd

E[|X(x)−X(y)|2n] ≤ Cγ,nd(x, y)
γn,

with d(., .) geodesic distance as before [LangS, Lemma 4.3].
(ii) The Kolmogorov-Chentsov theorem on manifolds [AndL] gives the result
for γ ∈ (0, 2].
(iii) For γ > 2, k-fold fractional differentiation (see §3 Remark 2) reduces to
the range above.
We refer for detail to [LangS], [AndL]. We return to such matters elsewhere.

Remarks.
1. Strong local non-determinism.

Using the concept of strong local determinism, Lan, Marinucci and Xiao
[LanMX] improve the Lang-Schwab result above, obtaining an exact modu-
lus of continuity (and so avoiding an ǫ-gap), for the case d = 2 and with the
angular power spectrum coefficients bounded above and below by constant
multiples of powers. This condition holds, for example, for spherical frac-
tional Brownian motion (Lan and Xiao [LanX]).
2. Vector data.

Often data on spheres are vectors, as several different quantities are mea-
sured (temperature, wind speed, humidity etc.); the relevant covariances are
then matrices. See e.g. [Ma1], where a number of applications are given.
3. Statistics.

One extremely important application for the theory of Gaussian random
fields on spheres is of course the study of cosmic microwave background
(CMB) radiation; see [MariP] for a monograph treatment. For statistical
estimation in this and related areas, see e.g. Durastanti, Lan and Marinucci
[DurLM], Leonenko, Taqqu and Terdik [LeoTT].
4. Stochastic partial differential equations (SPDEs).

For the stochastic heat equation on the sphere, see Lang and Schwab
[LangS, §7].
5. Regular variation and function spaces.

To avoid the ‘ǫ-gap’ in the Lang-Schwab theorem above, one needs a finer
scale of spaces than is provided by the powers (in particular, one that is sen-
sitive to logarithmic factors, etc.) One such is provided by the Orlicz spaces;
see e.g. Krasnoselkii and Rutickii [KraR]. These lead to the Besov-Orlicz
spaces; see e.g. [CieKR].
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6. Integrability theorems for Fourier series.
Much is known about integrability conditions for Fourier series. For de-

tail, see the two monographs on the subject, by Boas [Boa] and Yong [Yon]
(as well as [Bin6] and the references cited there).
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1988, Vol. 1, 172-184).
[Sma] C. V. Smallwood, Approximate upper and lower limits. J. Math. Anal.

Appl. 37 (1972), 223-227.
[Ste] E. M. Stein, Singular integrals and differentiability properties of func-

tions. Princeton University Press, 1970.
[SteW] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Eu-

clidean spaces. Princeton Universit Press, 1971.
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