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SERRE DUALITY FOR THE COHOMOLOGY OF

LANDAU-GINZBURG MODELS

MU-LIN LI

Abstract. Let V and F be holomorphic bundles over a complex manifold M ,
and s be a holomorphic section of V . We study the cohomology associated
to the Koszul complex induced by s, and prove a generalized Serre duality
theorem for them.

1. Introduction

The Serre duality theorem is a fundamental result in complex manifold, which
establishes a duality between the cohomology of a complex manifold and the coho-
mology of with compact supports, provided that the ∂ operator has closed range in
appropriate degrees. In this paper we extend the Serre duality to the cohomology
of Landau-Ginzburg models.

Let V be a holomorphic bundle over a complex manifold (usually noncompact)
M with rankV = dimM = n, and s be a holomorphic section of V with compact
zero loci Z := (s−1(0)). Let V ∨ be the dual bundle of V , then s induced the
following Koszul complex

(1.1) 0 → ∧nV ∨ ιs−→ · · · ιs−→ ∧2 V ∨ ιs−→V ∨ ιs−→C → 0,

where ιs is the contraction operator induced by s.
Let F be another holomorphic bundle over M , we have the following complex

from (1.1)

(1.2) 0 → ∧nV ∨ ⊗ F
ιs⊗1−→ · · · ιs⊗1−→ ∧2 V ∨ ⊗ F

ιs⊗1−→ V ∨ ⊗ F
ιs⊗1−→ F → 0.

Denote by H•(M ;V, F ) the hypercohomology associated to the above complex. We
will, somewhat abusively, write ιs ⊗ 1 as ιs. Because (1.2) is exact outside the
compact set Z, the cohomology H•(M ;V, F ) is finite dimensional over C. The
study of this type cohomology origins to the mathematical interpretation of the
Landau-Ginzburg models, which had been widely studied in the following papers
[1–3, 5, 7–9].

Let ψ ∈ Γ(M, detV ⊗ det ΩM ) be a holomorphic section, where ΩM is the holo-
morphic cotangent bundle of M . There is a canonical pairing

(−,−)ψ : H•(M ;V, F )×H
•(M ;V, F∨) → C,

see (3.24). Then we have the following duality theorem.

Theorem 1.1. Let V, F be holomorphic bundles over the complex manifold M
with rankV = dimM = n, and s be a holomorphic section of V with compact zero
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loci Z = s−1(0). Assume that ψ ∈ Γ(M, detV ⊗ detΩM ) is nowhere vanishing.
Then the above pairing (−,−)ψ is non-degenerate. Thus for −n ≤ k ≤ n,

H
k(M ;V, F ) ∼= H

−k(M ;V, F∨)∨.

This is a generalization of the non-degenerate theorem of [5, Theorem A] and
[10, Theorem 1.2].

Let V = TM be the holomorphic tangent bundle of the compact complex mani-
fold M , and F be a holomorphic bundle over M . Let s be the zero section of TM
and ψ = c ∈ Γ(M,OM ) ∼= Γ(M, detTM ⊗ detΩM ) be a nonzero constant, then we
recover the classical Serre duality theorem.

Corollary 1.2. Let F be a holomorphic bundle over a compact complex manifold
M , then

Hp,q(M,F ) ∼= Hn−p,n−q(M,F∨)∨.

Let V = ΩM be the holomorphic cotangent bundle of a small open ball M =
{z ∈ Cn||z| < ǫ}, and F = OM . Let s = df be a holomorphic section of V , where
f is a holomorphic function on M . Let ψ = dz1 ∧ · · · ∧ dzn ⊗ e1 ∧ · · · ∧ en, where
{zi} is the coordinate of Cn and {ei} is the holomorphic frame of ΩM . Assume
that s = df = f1e1 + · · ·+ fnen and Z = s−1(0) = 0, then using Theorem 1.1 and
the proof of [10, Theorem 1.3] we have

H
0(M ;V, F ) ∼= Γ(M,OM )/(f1, · · · , fn); H

k(M ;V, F ) = 0, k 6= 0.

For g, h ∈ Γ(M,OM ), let ψ′ = ghψ. By (3.31), we have

(g, h)ψ = (−1)⌊
n+3
2 ⌋+n(n+1)

2 (−2πi)nRes
ψ′

s
,

where Res ψ
′

s
is the virtual residue associated to ψ′ and s, the symbol ⌊n+3

2 ⌋ is

the greatest integer less than or equal to n+3
2 . The virtual residue, which had been

constructed by Chang and the author in [3], coincides with the Grothendieck residue

up to a sign. Therefore Res ψ
′

s
equals to the Grothendieck residue ress(g, h) =∫

|fi|=ǫi

ghdz1∧···∧dzn
f1···fn

up to a sign, see formula (4.6). Thus we recover the following

local duality theorem, see [6, Page 659].

Corollary 1.3. Let V = ΩM be the holomorphic cotangent bundle of a small open
ballM = {z ∈ Cn||z| < ǫ}, and F = OM . Let s = df be a holomorphic section of V ,
where f is a holomorphic function onM . Let ψ = dz1∧· · ·∧dzn⊗e1∧· · ·∧en, where
{zi} is the coordinate of Cn and {ei} is the holomorphic frame of ΩM . Assume that
s = df = f1e1 + · · ·+ fnen and Z = s−1(0) = 0. Then

ress : Γ(M,OM )/(f1, · · · , fn)× Γ(M,OM )/(f1, · · · , fn) → C

is non-degenerate.

Acknowledgment: The author thanks C. I. Lazaroiu and Wanmin Liu for inspired
discussion. He also thanks the IBS Center for Geometry and Physics for hospitality
during his visit on May, 2018. This work was supported by the Start-up Fund of
Hunan University.
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2. Cohomology with compact support

In this section, we study different types of hypercohomology associate to the
exact sequence (1.2). It is similar to Section 2 in [10]. As before let V, F be
holomorphic bundles over a complex manifold M with rankV = dimM = n, and
s is a holomorphic section of V with compact zero loci Z = s−1(0). Let V ∨ be the
dual bundle of V .

Let Ai,j(∧lV ∨ ⊗ F ) be the sheaf of smooth (i, j) forms on M with value in
∧lV ∨ ⊗ F . Let Ω(i,j)(∧lV ∨ ⊗ F ) := Γ(M,Ai,j(∧lV ∨ ⊗ F )) and assign its element
α to have degree ♯α = i + j − l. Let

Ω(i,j)
c (∧lV ∨ ⊗ F ) := {α|α ∈ Γ(M,Ai,j(∧lV ∨ ⊗ F )) with compact support}.

Then
B := ⊕i,j,lΩ(i,j)(∧lV ∨ ⊗ F )

is a graded commutative algebra with the (wedge) product uniquely extending
wedge products in Ω•,∧•V ∨ and mutual tensor products. Denote

CkM = ⊕
i−j=k

Ci,jM ⊂ B with Ci,jM := Ω(0,i)(∧jV ∨⊗F ) = Γ(M,A0,i(∧jV ∨⊗F )),

and

Ckc,M = ⊕
i−j=k

Ci,jc,M with Ci,jc,M := {α ∈ Ci,jM | α has compact support}.

Let CM := ⊕kCkM and Cc,M := ⊕kCkc,M . For α ∈ CM we denote αi,j to be its com-

ponent in Ci,jM . Clearly, CM is a bi-graded C∞(M)-module. Under the operations

∂ : Ci,jM −→ Ci+1,j
M and ιs : C

i,j
M −→ Ci,j−1

M

the space C•,•
M becomes a double complex and C•,•

c,M is a subcomplex. We shall
study the cohomology of C•

M and C•
c,M with respect to the following coboundary

operator
∂s := ∂ + ιs.

One checks ∂
2

s = 0 using Leibniz rule of ∂ and ∂s = 0. Denote by

H
k(M ;V, F ) = Hk(C•

M ),

and
H
k
c (M ;V, F ) = Hk(C•

c,M ).

Fix a Hermitian metric hV on V . For a nonzero s on U :=M \ Z, we can form
the following smooth section

s̄ :=
(∗, s)hV

(s, s)hV

∈ Γ(U,A0,0(V ∨ ⊗ F )).

It associates a map

s̄∧ : Γ(U,A0,i(∧jV ∨ ⊗ F )) → Γ(U,A0,i(∧j+1V ∨ ⊗ F )).

To distinguish it in later calculation, we denote Ts := s̄∧ : C•,•
U −→ C•,•+1

U , where
C•,•
U := Γ(U,A0,•(∧•V ∨ ⊗ F )).
The injection j : U → M induces the restriction j∗ : C•,•

M → C•,•
U . Let ρ be a

smooth cut-off function onM such that ρ|U1 ≡ 1 and ρ|M\U2
≡ 0 for some relatively

compact open neighborhoods U1 ⊂ U1 ⊂ U2 of Z in M .
We define the degree of an operator to be its change on the total degree of

elements in CM (CU ). Then ∂ and Ts are of degree 1 and −1 respectively, and
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[∂, Ts] = ∂Ts + Ts∂ is of degree 0. Consider two operators introduced in [3, (3.1),
(3.2)] or [12, page 11]

(2.1) Tρ : CM → Cc,M Tρ(α) := ρα+ (∂ρ)Ts
1

1 + [∂, Ts]
(j∗α)

and

(2.2) Rρ : CM → CM Rρ(α) := (1 − ρ)Ts
1

1 + [∂, Ts]
(j∗α).

Here as an operator

1

1 + [∂, Ts]
:=

∞∑

k=0

(−1)k[∂, Ts]k

is well-defined since [∂, Ts]k(α) = 0 whenever k > n. Clearly Tρ is of degree zero
and Rρ is of degree by −1. Also Rρ(Cc,M ) ⊂ Cc,M by definition.

Lemma 2.1. [∂s, Rρ] = 1− Tρ as operators on CM .

Proof. It is direct to check that 1

(2.3) [ιs, Ts] = 1 on CU .

Moreover,

[P, [∂, Ts]] = 0

for P being ιs, ∂ or Ts. Therefore, we have

[∂s, Rρ] = [∂s, 1− ρ]Ts
1

1 + [∂, Ts]
j∗ + (1− ρ)[∂s, Ts]

1

1 + [∂, Ts]
j∗

= −(∂ρ)Ts
1

1 + [∂, Ts]
j∗ + (1− ρ)j∗

= −(∂ρ)Ts
1

1 + [∂, Ts]
j∗ + (1− ρ) = 1− Tρ.

�

Proposition 2.2. The embedding (Cc,M , ∂s) → (CM , ∂s) is a quasi-isomorphism.
Thus for −n ≤ k ≤ n,

H
k
c (M ;V, F ) ∼= H

k(M ;V, F ).

Proof. By Lemma 2.1 H∗(CM/Cc,M , ∂s) ≡ 0, and thus the proposition follows. �

1 As a notation convention, we always denote [, ] for the graded commutator, that is for
operators A,B of degree |A| and |B|, the bracket is given by

[A,B] = AB − (−1)|A||B|BA.
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3. Non-dengeneracy

First we recall the definition of operators on wedge products of vector bundles
overM , see [3, Appendix]. Let Ω(i,j)(∧kV ⊗∧lV ∨) := Γ(M,Ai,j(∧kV ⊗∧lV ∨)) be
the smooth differential forms valued in ∧kV ⊗ ∧lV ∨. Let

B := ⊕i,j,k,lΩ(i,j)(∧kV ⊗ ∧lV ∨)

be a graded commutative algebra extending the wedge products of Ω•,∧•V and
∧•V ∨. The degree of α ∈ Ω(i,j)(∧kV ⊗ ∧lV ∨) is ♯α := i + j + k − l. We briefly
denote A0(∧kV ⊗ ∧lV ∨) = Ω(0,0)(∧kV ⊗ ∧lV ∨).

Set κ : B → Ω• which sends ω(e ⊗ e′)(for ω ∈ Ω(i,j), e ∈ ∧kV, e′ ∈ ∧lV ∨) to
ω〈e, e′〉, where 〈·, ·〉 is the dual pairing between ∧kV and ∧kV ∨, and 〈e, e′〉 = 0
when k 6= l. We further extend the pairing by setting 〈α, β〉 := κ(αβ) for α, β ∈ B.
It is direct to verify

(3.1) ∂〈α, β〉 = 〈∂α, β〉 + (−1)♯α〈α, ∂β〉.
We now define different types of contraction maps. Given u ∈ Ω(i,j)(∧kV ) and

k ≥ l, we define

(3.2) uy : Ω(p,q)(∧lV ∨) −→ Ω(p+i,q+j)(∧k−lV )

where for θ ∈ Ω(p,q)(∧lV ∨), the uyθ is determined by

〈uyθ, ν∗〉 = (−1)(i+j)l+(p+q)♯u+ l(l−1)
2 〈u, θ ∧ ν∗〉, ∀ν∗ ∈ A0(∧k−lV ∨).

Given α ∈ A0(V ), we define

(3.3) ια : Ω(i,j)(∧kV ∨) −→ Ω(i,j)(∧k−1V ∨)

where for w ∈ Ω(i,j)(∧kV ∨), the ια(w) is determined by

(3.4) 〈ν, ια(w)〉 = 〈α ∧ ν, w〉, ∀ν ∈ A0(∧k−1V ).

For above α, θ and w one has ια(w ∧ θ) = ια(w) ∧ θ + (−1)♯ww ∧ ια(θ).
Given γ ∈ A0(V ∨), we define

(3.5) ιγ : Ω(i,j)(∧kV ) −→ Ω(i,j)(∧k−1V )

where for ν ∈ Ω(i,j)(∧kV ), the ιγ(ν) is determined by

(3.6) 〈ιγ(ν), w〉 = 〈ν, γ ∧ w〉, ∀w ∈ A0(∧k−1V ∨).

We have the following identities.

Lemma 3.1 ([3]). Given u ∈ Ω(i,j)(∧nV ), and θ, α, γ as above, one has

α ∧ (uyθ) = uy(ια(θ)), ιγ(uyθ) = uy(γ ∧ θ).

Lemma 3.2 ([3]). For u ∈ Ω(i,j)(∧kV ), θ ∈ Ω(p,q)(∧lV ∨), k ≥ l and a smooth
form α ∈ Ω(a,b)(M), we have

α ∧ (uyθ) = uy(αθ) and ∂(uyθ) = (−1)♯θ(∂u)yθ + uy(∂θ).

Denote by Dp,q(∧lV ⊗ F∨) the space of ∧lV ⊗ F∨-valued (p, q)-current, which
is the dual of the space Ωn−p,n−qc (∧lV ∨ ⊗ F ). There is a naturally pairing

(3.7) (−,−)N : D
n,n−i(∧jV ⊗ F∨)× Ω0,i

c (∧jV ∨ ⊗ F ) → C,

where

(α, β)N :=

∫

M

〈α, β〉.
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Denote

Dk
M = ⊕

i+j−n=k
Di,j
M with Di,j

M := D
(n,i)(∧jV ⊗ F∨).

The coboundary map δs of D•
M is defined as follows

(3.8) δsα = ∂α+ (−1)l+1s ∧ α, for α ∈ D
p,q(∧lV ⊗ F∨).

By (3.1) and (3.4),

(3.9) (α, ∂sβ)N + (−1)♯α(δsα, β)N = 0.

Thus (D•
M , (−1)•+1δs) is the dual complex of (C•

c,M , ∂s). Let

(3.10) Hk(M ;V, F∨) :=
Ker(δs : Dk

M → Dk+1
M )

Im (δs : Dk−1
M → Dk

M )
.

Because the complex (D•
M , (−1)•+1δs) is quasi-isomorphic to the complex (D•

M , δs),
the pairing (3.7) induces a pairing on the hypercohomologies which we denote by

(3.11) (−,−)N : H•(M ;V, F∨)×H
•
c(M ;V, F ) → C.

Theorem 3.3. Let V, F be holomorphic bundles over the complex manifold M
with rankV = dimM = n and s be a holomorphic section of V with compact
zero loci Z = s−1(0). Then the above pairing (3.11) is non-degenerate. Thus for
−n ≤ k ≤ n

H
k
c (M ;V, F ) ∼= H−k(M ;V, F∨)∨.

Proof. BecauseHkc (M ;V, F ) is finite dimensional and the complex (D•
M , (−1)•+1δs)

is the dual complex of (C•
c,M , ∂s), by applying [11, Theorem 1.6] and [11, Corollary

1.7], we obtain the theorem. �

Remark 3.4. By the Dolbeault-Grothendieck Lemma [4, 3.29] for current, H•(M ;V, F∨)
(up to a shift on degree) is the hypercohomology of the following complex,
(3.12)
0 → detΩM⊗F∨ −s−→ detΩM⊗V ⊗F∨ (−1)2s∧−→ · · · (−1)ns∧−→ detΩM⊗∧nV ⊗F∨ → 0,

which is quasi-isomorphic to the complex

(3.13) 0 → detΩM⊗F∨ s−→ detΩM⊗V⊗F∨ s∧−→ · · · s∧−→ detΩM⊗∧nV⊗F∨ → 0.

Let (D•

M , δ̃s) be the complex with

Dk

M = ⊕
i−j=k

D
i,j

M where D
i,j

M := D
(0,i)(∧jV ∨ ⊗ F∨),

and the coboundary map δ̃s is defined as follows

(3.14) δ̃sα = ∂α+ (−1)n−l+1ιsα, for α ∈ D
p,q(∧lV ∨ ⊗ F∨).

By the Dolbeault-Grothendieck Lemma [4, 3.29] for current, the complex (D•

M , δ̃s)
is the Dolbeault resolution of the following complex

(3.15) 0 → ∧nV ∨ ⊗ F∨ −ιs−→ · · · (−1)nιs−→ V ∨ ⊗ F∨ (−1)nιs−→ F∨ → 0.

Denote by

(3.16) Hk(D•

M ) :=
Ker(δ̃s : D

k

M → Dk+1

M )

Im (δ̃s : D
k−1

M → Dk

M )
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the cohomology of the complex (D•

M , δ̃s).
Let ψ ∈ Γ(M, detV ⊗ detΩM ) be a holomorphic section which is nowhere van-

ishing. It induces a bundle isomorphism

ψy : ∧lV ∨ ⊗ F∨ → detΩM ⊗ ∧n−lV ⊗ F∨.

Thus

(3.17) D
0,q(∧lV ∨ ⊗ F∨) ∼= D

n,q(∧n−lV ⊗ F∨).

By Lemma 3.1, Lemma 3.2 and (3.8), the map

ψy : D•

M → D•
M

is a complex isomorphism. Therefore for −n ≤ k ≤ n

(3.18) Hk(D•

M ) ∼= Hk(M ;V, F∨).

The complex (3.15) is quasi-isomorphic to

(3.19) 0 → ∧nV ∨ ⊗ F∨ ιs−→ · · · ιs−→V ∨ ⊗ F∨ ιs−→F∨ → 0,

and we denote this quasi-isomorphism by Φ. It induces the following hypercoho-
mology isomorphism

(3.20) H•(Φ) : H•(M ;V, F∨) ∼= H•(D•

M ).

Thus we have

(3.21) H
•(M ;V, F∨) ∼= H•(M ;V, F∨).

Combining (3.11) and (3.21), there is a pairing

(3.22) (−,−)′ψ : H•(M ;V, F∨)×H
•
c(M ;V, F ) → C,

where (α, β)′ψ := (ψy(H•(Φ)(α)), β)N .

From (3.21) and Theorem 3.3, we obtain the following statement.

Corollary 3.5. Let V, F be holomorphic bundles over the complex manifold M
with rankV = dimM = n and s be a holomorphic section of V with compact zero
loci Z = s−1(0). Assume that ψ ∈ Γ(M, detV ⊗ det ΩM ) is a holomorphic section
which is nowhere vanishing. Then the pairing (−,−)′ψ is non-degenerate. Thus for
−n ≤ k ≤ n

(3.23) H
k
c (M ;V, F ) ∼= H

−k(M ;V, F∨)∨.

We define the following pairing

(3.24) (−,−)ψ : H•(M ;V, F∨)×H
•(M ;V, F ) → C,

such that (α, β)ψ := ([α], [β])′ψ , where [α] and [β] are the image of α, β under the

isomorphic H•(M ;V, F ) ∼= H•
c(M ;V, F ) and H•(M ;V, F∨) ∼= H•

c(M ;V, F∨). The
pairing (3.24) is well defined because it does not dependent on the compact support
representation. Therefore

Corollary 3.6. Under the conditions as in Corollary 3.5, the pairing (−,−)ψ is
non-degenerate. Thus for −n ≤ k ≤ n

(3.25) H
k(M ;V, F ) ∼= H

−k(M ;V, F∨)∨.
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Let V = ΩM be the holomorphic cotangent bundle of a small open ball M =
{z ∈ Cn||z| < ǫ}, and F = OM . Let s = df be a holomorphic section of V , where
f is a holomorphic function on M . Let ψ = dz1 ∧ · · · ∧ dzn ⊗ e1 ∧ · · · ∧ en, where
{zi} is the coordinate of Cn and {ei} is the holomorphic frame of ΩM . Assume
that s = df = f1e1 + · · ·+ fnen and Z = s−1(0) = 0, then using Corollary 3.6 and
the proof of [10, Theorem 1.3]

H
0(M ;V, F ) ∼= Γ(M,OM )/(f1, · · · , fn); H

k(M ;V, F ) = 0, k 6= 0.

On the other hand s induced the following complex

(3.26) 0 → detΩM
−s−→ detΩM ⊗ V

(−1)2s∧−→ · · · (−1)ns∧−→ detΩM ⊗ ∧nV → 0.

As in the definition of (3.10), let H•(M ;V,OM ) be the hypercohomology of
(3.26), and H•

c(M ;V,OM ) be its hypercohomology with compact support. By [3,
Proposition 3.2]

(3.27) Hk(M ;V,OM ) ∼= Hk
c (M ;V,OM ),

for −n ≤ k ≤ n.
Because ψ = dz1 ∧ · · · ∧ dzn ⊗ e1 ∧ · · · ∧ en is nowhere vanishing. It induces a

bundle isomorphism

ψy : ∧lV ∨ → detΩM ⊗ ∧n−lV.
So is the Dolbeault resolution of the two complex (1.1) and (3.26).

For g, h ∈ Γ(M,OM ), let [g], [h] be the images of g, h under the isomorphism
H0(M ;V, F ) ∼= H0

c(M ;V, F ). By (3.27), (3.22) and (3.24) the pairing

(g, h)ψ =

∫

M

〈(−1)⌊
n+3
2 ⌋gψ, [h]〉

= (−1)⌊
n+3
2 ⌋

∫

M

〈ghψ, [1]〉

= (−1)⌊
n+3
2 ⌋+ n(n+1)

2

∫

M

(ghψ)y[1].

Let ρ be a smooth cut-off function on M such that ρ|U1 ≡ 1 and ρ|M\U2
≡ 0 for

some relatively compact open neighborhoods U1 ⊂ U1 ⊂ U2 of 0 in M . By Lemma
2.1, we have

[∂s, Rρ] = 1− Tρ.

Therefore

(3.28)

∫

M

(ghψ)y[1] =

∫

M

(ghψ)y[Tρ1].

For the nonzero s on U :=M \Z, the smooth section s̄ :=
(∗,s)hV

(s,s)hV

∈ Γ(U,A0,0(V ∨))

induces a contraction

ιs̄ : Γ(U,A0,i(∧jV )) → Γ(U,A0,i(∧j−1V )).

Denote

C̃kM = ⊕
i+j=k

C̃i,jM with C̃i,jM := Ω(0,i)(∧jV ) = Γ(M,A0,i(∧jV )),

and

C̃kc,M = ⊕
i+j=k

C̃i,jc,M with C̃i,jc,M := {α ∈ C̃i,jM | α has compact support}.
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Let C̃M := ⊕kC̃kM and C̃c,M := ⊕kC̃kc,M . Let j : U → M be the injection. We can
form the following operator by using the contraction ιs̄

(3.29) T̃ρ : C̃M → C̃c,M T̃ρ(α) := ρα+ (∂ρ)ιs̄
1

1 + [∂, ιs̄]
(j∗α).

Because ψ is holomorphic, by Lemma 3.1

(3.30)

∫

M

(ghψ)y[Tρ1] =

∫

M

T̃ρ(ghψ).

Denote ψ′ = ghψ, and applying [3, Proposition 3.3] to ψ′ and s = df , we have

(g, h)ψ = (−1)⌊
n+3
2 ⌋+n(n+1)

2

∫

M

(ghψ)y[Tρ1](3.31)

= (−1)⌊
n+3
2 ⌋+n(n+1)

2

∫

M

T̃ρ(ghψ)

= (−1)⌊
n+3
2 ⌋+n(n+1)

2 (−2πi)nRes
ψ′

s
,

where Res ψ
′

s
is the virtual residue associated to ψ′ and s, it coincides with the

Grothendieck residue ress(g, h) =
∫
|fi|=ǫi

ghdz1∧···∧dzn
f1···fn

up to a sign, see formula

(4.6). Thus we recover the local duality theorem, see [6, Page 659].

Corollary 3.7. Let V = ΩM be the holomorphic cotangent bundle of a small open
ballM = {z ∈ Cn||z| < ǫ}, and F = OM . Let s = df be a holomorphic section of V ,
where f is a holomorphic function onM . Let ψ = dz1∧· · ·∧dzn⊗e1∧· · ·∧en, where
{zi} is the coordinate of Cn and {ei} is the holomorphic frame of ΩM . Assume that
s = df = f1e1 + · · ·+ fnen and Z = s−1(0) = 0. Then

ress : Γ(M,OM )/(f1, · · · , fn)× Γ(M,OM )/(f1, · · · , fn) → C

is non-degenerate.

4. Appendix

In this appendix we recall the construction of the virtual residue given by Chang
and the author in [3], and prove the relation between the virtual residue and the
Grothendieck residue when the zero loci is zero-dimensional.

Let V be a holomorphic bundle over a compact complex manifold M with
rankV = dimM = n. Let s be a holomorphic section of V , and Z = s−1(0)
be the compact zero loci.

Let U := M \ Z, and let VU be the restriction of V over U . Since s is nowhere
zero over U , the following Koszul sequence is exact over U

0 −→ KU
s−→KU ⊗ VU

s∧−→ · · · s∧−→KU ⊗ ∧n−1VU
s∧−→KU ⊗ ∧nVU −→ 0.

The exact Koszul sequence induces a homomorphism

(4.1) H0(U,KU ⊗ ∧nVU ) −→ Hn−1(U,KU ).

One also has a canonical Dolbeault isomorphism

(4.2) Hn−1(U,KU) ∼= Hn,n−1

∂̄
(U).
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Applying (4.1) and (4.2) to the holomorphic section ψ ∈ Γ(M,KM ⊗ detV ), and
using that every (n, n− 1) form is ∂-closed, one obtains a (unique) De-Rham coho-
mology class

(4.3) ηψ ∈ H2n−1(U,C).

Then the virtual residue is defined as

(4.4) ResZ
ψ

s
:=

(
1

2π
√
−1

)n ∫

N

ηψ ∈ C,

where N is a real (2n−1)-dimensional piecewise smooth compact subset ofM that
surrounds Z, in the sense that N = ∂T for some compact domain T ⊂ M , which
contains Z and is homotopically equivalent to Z.

When M = {z ∈ Cn||z| < ǫ} is a small open ball, and V = ΩM with the
standard Hermitian metric hV . Let F = OM and s = df , where f is a holomorphic
function on M . Let {zi} be the coordinate of Cn, and {ei} be the holomorphic
frame of ΩM . Assume that s = df = f1e1 + · · · + fnen and Z = s−1(0) = 0.
Let s̄ = 〈s, s〉−1

hV

∑n
i=1 f̄ie

∗
i , where e

∗
i is the dual basis of V ∨. Then we have the

following equalities on U

∂ιs̄ =
∑( ∂f̄i

〈s, s〉hV

− f̄i∂〈s, s〉hV

〈s, s〉2hV

)
ιe∗

i
,

and

(〈s, s〉−1
hV

n∑

i=1

f̄iιe∗
i
)(
∑ f̄i∂〈s, s〉hV

〈s, s〉2hV

ιe∗
i
) = −∂〈s, s〉hV

〈s, s〉hV

(〈s, s〉−1
hV

n∑

i=1

f̄iιe∗
i
)2 = 0.

Let g, h be holomorphic functions onM . Then ψ = ghdz1∧· · ·∧dzn⊗ e1∧· · ·∧en
is a holomorphic section of Γ(M,KM ⊗ detV ). Therefore

ηψ = 〈s, s〉−1
hV

(
∑

f̄iιe∗
i
)(∂ιs̄)

n−1ψ

= 〈s, s〉−1
hV

(
∑

f̄iιe∗
i
)
(∑ ∂f̄i

〈s, s〉hV

ιe∗
i

)n−1
ψ

−(n− 1)〈s, s〉−1
hV

(
∑

f̄iιe∗
i
)
(∑ ∂f̄i

〈s, s〉hV

ιe∗
i

)n−2(∑ f̄i∂〈s, s〉hV

〈s, s〉2hV

)
ιe∗

i
ψ

= (〈s, s〉−1
hV

∑
f̄iιe∗

i
)
(∑ ∂f̄i

〈s, s〉hV

ιe∗
i

)n−1
ψ

= (−1)
n(n−1)

2 +n(n+1)
2 (n− 1)!gh

n∑

i=1

(−1)i−1

f̄i
〈s, s〉nhV

∂f̄1 ∧ · · · ∧ ∂̂f̄i ∧ · · · ∧ ∂f̄n ∧ dz1 ∧ · · · ∧ dzn.

Let N be a small sphere around 0, the virtual residue
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ResZ
ψ

s
=

(
1

2π
√
−1

)n ∫

N

ηψ(4.5)

= (−1)
n(n+1)

2 +n(n−1)
2 (n− 1)!

(
1

2π
√
−1

)n ∫

N

gh
n∑

i=1

(−1)i−1

f̄i
〈s, s〉nhV

∂f̄1 ∧ · · · ∧ ∂̂f̄i ∧ · · · ∧ ∂f̄n ∧ dz1 ∧ · · · ∧ dzn.

By Lemma in [6, Page 651] and the definition of ress(g, h) in [6, Page 659], we have

(4.6) ResZ
ψ

s
= (−1)

n(n+1)
2 ress(g, h).
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