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INJECTIVE LINEAR SERIES OF ALGEBRAIC CURVES ON

QUADRICS

EDOARDO BALLICO AND EMANUELE VENTURA

Abstract. We study linear series on curves inducing injective morphisms to pro-
jective space, using zero-dimensional schemes and cohomological vanishings. Albeit
projections of curves and their singularities are of central importance in algebraic
geometry, basic problems still remain unsolved. In this note, we study cuspidal pro-
jections of space curves lying on irreducible quadrics (in arbitrary characteristic).

1. Introduction

Projections and singularities of curves are of central importance in algebraic geometry.
The projective geometry of singular curves is a delightful chapter of classical algebraic
geometry that remains active even up to this date: many questions await to be settled,
and in turn they inspire the introduction of tools entailing deformation theory, zero-
dimensional schemes, and combinatorics, among other techniques.

A natural direction of research is the classification of singularities that may arise on a
curve X, in some specific ranges of the numerical invariants attached to X. An approach
to this classification issue, relying on osculating spaces and combinators of semigroups
of valuations, has been recently employed in [4]. Other classification results, leveraging
the structure of free resolutions of certain ideals, have been achieved in [7].

In this note, we employ to some extent the standpoint of Greuel, Lossen, and Shus-
tin [12], using the geometry of zero-dimensional schemes and the cohomology of their
ideal sheaves, to study cuspidal (or unibranch) singularities. These types of singular
points are usually related to some tangency conditions and so carry interesting geometric
information about the curve.

Let k be an algebraically closed field. Let X be a complete smooth curve of genus
g over k, i.e., an integral scheme of dimension one, smooth and proper over k. Every
such X is projective and can be embedded in projective 3-space, independently of the
characteristic of k. A natural question to wonder about is whether every X admits a
projection to P2 with only cuspidal singularities, i.e. X admits a cuspidal projection.
Ferrand [10] showed that, when char(k) > 0, if X admits a cuspidal projection then X
is a set-theoretic complete intersection.

Thereafter, back to characteristic zero, Piene [24] proved that every X ⊂ P3 of degree

d and genus g, when
(d−1

2

)

− g ≤ 3, admits a cuspidal projection. However, a general

canonical curve X ⊂ P3 of genus 4 does not admit a cuspidal projection [24, Theorem
2]. (Note that the latter curve is a complete intersection, so Ferrand’s result does not
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hold in char(k) = 0.) Sacchiero [26] showed that, in the range
(d−1

2

)

− g ≥ 4, a generic
projection of an X ⊂ Pn (n ≥ 4), without inflection points and without hyperosculating
planes, is not cuspidal.

For cuspidal curves, a classical open problem is to determine the maximum number
of cusps realizable on a plane curve of degree d; recent asymptotic results were proven
by Calabri, Paccagnan, and Stagnaro [6]. Interestingly, Koras and Palka [20] showed
that complex plane rational cuspidal curves possess at most four singular points.

Cuspidal projections play an important role in the theory of X-ranks. Let X ⊂ P3 be
a smooth curve and p ∈ P3 \X. Then the X-rank of p satisfies rkX(p) > 3 if and only
if the projection of X away from p is cuspidal. See [2] for more results in this direction.

What originally triggered this work has a topological source. Motivated by the study
of regular topological maps [5] in the case of smooth curves, Micha lek posed the problem
[22]:

Question 1.1. For any X over a field k as above, does there exist an injective morphism
ϕ : X → P2?

This is also studied for other projective varieties by Görlach [11]. The curve ϕ(X)
is then an integral plane curve possibly with only cuspidal singularities. The map
ϕ : X −→ ϕ(X) is a closed bijection and so a homeomorphism in Zariski topology;
cuspidal projections of X to P2 are instances of injective morphisms.

The aim of this note is to study base-point free (not necessarily complete) two-
dimensional linear series g2d on some smooth algebraic curves X inducing separable and
injective morphisms to P2; we call these linear series injective. In this article, these are
usually constructed by cuspidal projections of X to P2 with the help of zero-dimensional
schemes and their cohomology, which will let us give positive instances to Question 1.1.

In this context, we propose the following conjecture:

Conjecture 1.2. For large g, a very general smooth curve of genus g has no injective
linear series g2d.

We spell out the meaning of “very general” in the statement of Conjecture 1.2. Let Y
be an integral quasi-projective variety. Fix a property ℘ that a point p ∈ Y may satisfy.
We say that ℘ is true for a very general point of Y if the set of all p ∈ Y for which
p fails ℘ is contained in a countable family of proper subvarieties of Y . In Conjecture
1.2, the generality is applied to the moduli scheme Mg (g ≥ 2) of all smooth curves of
genus g (over some fixed algebraically closed field). We guess that more should be true:
for large g and for every positive integer d, the set of all X ∈ Mg with an injective g2d
sits inside a proper subvariety of Mg.

We now clarify the meaning of “large g” in the statement of Conjecture 1.2: this
refers to the existence of an integer g0(k) (depending on the fixed algebraically closed
ground field k) such that, for all g ≥ g0(k), a very general curve of genus g has no
injective linear series g2d.

We believe it would be interesting to have partial results on Conjecture 1.2, for non-
complete g2d, i.e., for g2d inducing a non-degenerate injective map j : X −→ Pn, n > 2,
composed with a linear projection. This is the setting of Piene [24] and Sacchiero [26],
except that they require j to be an embedding. Furthermore, we ask the following
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Question 1.3. Let X be a smooth curve of genus g. Are there infinitely many integers
d such that X has injective g2d?

Even if Conjecture 1.2 fails, we ask whether, for all sufficiently large g, there exists
an X ∈ Mg with no injective g2d. In such a case, one may still wonder whether, for
infinitely many genera g, a very general curve of genus g has no injective g2d.

Most of our results arise from looking at the quadric Q = P1 × P1. Let X be a
smooth projective curve of genus g. By the universal property of the fibered product
of schemes, giving a morphism f : X −→ P1 × P1 is equivalent to prescribing two
morphisms ui : X −→ P1, i = 1, 2, i.e., two base-point free linear series g1d1 and g1d2 ,

where d1 = deg u∗1(OP1(1)) and d2 = degu∗2(OP1(1)). (Here we assume d1, d2 6= 0, as
otherwise f(X) is contained in a line of P3.) The morphism f is birational onto its
image if and only if there is no 4-tuple (D,h, v1, v2), where D is a smooth projective
curve, h : X −→ D is a finite morphism with deg(h) > 1, vi : D −→ P1, i = 1, 2, are
morphisms and ui = vi ◦ h, i = 1, 2. In classical terminology, f is birational onto its
image if and only if g1d1 and g1d2 are not composed with the same involution. The pair
(d1, d2) is defined to be the bidegree of f .

Question 1.4. For which (X, d1, d2), is there an f of bidegree (d1, d2) that is injective
and separable? For which X, are there infinitely many (d1, d2) such that there is an
injective and separable f? For which pair (X, d1), with d1 > 1, are there infinitely
many integers d2, such that there exists an injective and separable f : X −→ P1 × P1 of
bidegree (d1, d2)?

Main result. Let X be a complete smooth curve of genus g over k. An injective linear
series on X is a (not necessarily complete) series g2d inducing a separable and injective
morphism ϕ : X → P2. We organize injective linear series into natural types:

Definition 1.5. Let L = ϕ∗(OP2(1)) be the line bundle on X associated to g2d, i.e. for
a divisor D ∈ g2d one has L = OX(D). An injective g2d on X has one of the following
types:

(I) a complete g2d, i.e. h0(L) = 3;
(II) an incomplete g2d, i.e. h0(L) ≥ 4, with L very ample line bundle;

(III) an incomplete g2d with L not very ample.

(See Proposition 2.1 for some geometric remarks about them.) This is our main result:

Main Theorem (Theorems 4.8 and 4.16). Let k be an algebraically closed field of
arbitrary characteristic and let d2 ≥ d1 ≥ 1. Then there exists a smooth genus g curve
with an injective g2d1+d2

of type II with g = d1d2 − d1 − d2 + 1.
Let k be an algebraically closed field of characteristic zero. Let d2 ≥ d1 ≥ 16 and

h > 0 such that 3h + 2 ≤
(d1−1

2

)

. Fix an integer κ such that 0 < κ ≤ 2h and set
g = d1d2 − d1 − d2 + 1 − κ. Then there exists a smooth genus g curve with an injective
g2d1+d2

of type III.

More contributions and structure of the paper. In §2, we work in char(k) = 0.
We first record some observations about the geometry behind the types of linear series
in Proposition 2.1. In Theorem 2.5, we use an existence result of Barkats [3] to show
that in every genus there exist curves equipped with type I injective linear series. We
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recall an important (existence and smoothness) result of Greuel, Lossen, and Shustin
about the variety V (d, κ), parametrizing plane curves of given degree d and with κ
ordinary cusps as their only singularities; see Theorem 2.6. In Remark 2.7, we point
out that the curves from this result are essentially different from those arising in our
Theorems 4.8 and 4.16.

In §3, we offer a study of injective linear series on hyperelliptic curves. Surprisingly,
this material seems new and it is interesting on its own right. We explicitly describe
2g+ 2 families of ∞1-many injective linear series g2g+3 of degree g+ 3, see Theorem 3.1.
These families are in correspondence to the Weierstrass points of a given hyperelliptic
curve along with a double cover of P1. Although the statement of Theorem 3.1 is in
characteristic zero, we point out that the result holds in any characteristic with suitable
modifications of the arguments; this is observed in Remark 3.2. Proposition 3.4 and
Proposition 3.5 give a characterization of injective (non-special) linear series of degree
g + 3. Proposition 3.6 provides a description of injective linear series of degree g + 2.

In §4, we study more closely space curves lying on irreducible quadrics in P3. With
the help of zero-dimensional schemes in arbitrary char(k), we prove Theorem 4.1 and
Theorem 4.7, showing the existence of smooth curves on smooth quadrics and cones
admitting cuspidal projections; these two results yield Theorem 4.8.

In order to establish Theorem 4.16, we employ results of Roé and of Greuel, Lossen,
and Shustin, extending them to smooth quadrics Q ⊂ P3; this is achieved in Lemmas
4.12, 4.13, 4.14, and 4.15.

In §5, we introduce two sets A and B, naturally attached to a (inner smooth) cuspidal
projection of a curve from a point. Theorem 5.3 and Theorem 5.4 provide a characteri-
zation of curves in P3, lying on smooth quadrics and quadric cones, with only cuspidal
singularities in terms of A and B.

Acknowledgements. The first author is partially supported by MIUR and GNSAGA
of INdAM (Italy). The second author is supported by the grant NWO Den Haag no.
38-573 of Jan Draisma.

2. Types and Castelnuovo’s bound

In this section, we work in char(k) = 0. We start formulating a proposition recording
some geometric remarks behind the types of injective linear series:

Proposition 2.1. Keep the notation from Definition 1.5. Then the following hold:

(i) If g2d has type II, then there exists g3d ⊆ |L| with g3d ⊃ g2d; the latter g3d induces an
embedding j(X) −→ P3 such that the morphism ϕ is the composition of j with a
linear projection of P3 from a point of P3 \ j(X) [24, p. 110, parts 4) and 5)].

(ii) If g2d is of type III, then for any 3 ≤ s ≤ h0(L) − 1, any gsd ⊆ |L| containing
g2d is base-point free and it induces a morphism u : X −→ Ps birational onto its
image, but not an embedding; the curve ϕ(X) is obtained from u(X) by a linear
projection from an (s − 3)-dimensional linear subspace of Ps not intersecting
u(X).
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Remark 2.2. Since a cuspidal g2d has no base points and it induces an injective mor-
phism, a necessary condition for the existence of a g2d of type II or III on X is that X
has a degree d and genus g = pa(X) non-degenerate birational model in P3.

Fix integers d, g such that g ≥ 0 and d ≥ 3. Define:

π(d, 3) = m(m− 1) +mε, where ε ∈ {0, 1} and d = 2m + 1 + ε.

Halphen and later Castelnuovo proved that if there is a non-degenerate space curve
X ⊂ P3 of degree d and arithmetic genus g, then g ≤ π(d, 3) [16, Theorem 3.7]. Not
all the possible integers g ≤ π(d, 3) arises as arithmetic genera, even allowing singular
curves.

Thus the question of existence of the possible pairs (g, d) is natural:

Question 2.3. For which g and d, does there exist a smooth curve of genus g with an
injective g2d of types I or II?

Remark 2.4. Question 2.3 was partially answered by Ephraim and Kulkarni, who
proved that for each genus g ≥ 0 and each integer d > 2g there exists a curve of genus
g with a type II injective g2d [9, Corollary 3.9].

Theorem 2.5. For each integer g ≥ 0 there exists a smooth curve of genus g with a
type I injective linear series.

Proof. Let d be the minimal integer ≥ 2 such that g ≤ (d − 1)(d − 2)/2. If g =
(d − 1)(d − 2)/2 it is sufficient to take as X a smooth degree d plane curve. Thus we
may assume d ≥ 4 and (d− 2)(d− 3)/2 < g < (d− 1)(d − 2)/2. Define:

κ = (d− 1)(d − 2)/2 − g.

Note that 1 ≤ κ ≤ d − 3 and hence 5κ ≤ 5(d − 3) ≤ (d + 2)(d + 1)/2 − d − 1. Since
5κ ≤ (d + 2)(d + 1)/2 − d − 1, there exists an integral plane curve Y ⊂ P2 of degree d
with κ ordinary cusps as its only singularities by the work of Barkats [3] for d ≥ 5 (for
d = 4 there exists a plane curve with a unique cusp, i.e. the projection of a curve of
genus g = 2).

Thus there exists an injective g2d on a smooth genus g curve. Now we discuss why we
may find some complete g2d. If g = 0 (resp. g = 1, resp. g = 3) we take a smooth plane
curve of degree 2 (resp. 3, resp. 4). If g = 2, we take a degree 4 plane curve with an
ordinary cusp as its unique singular point; this linear series g24 is complete, because no
genus 2 curve has a g34 (see e.g. [17, Corollary IV.6.2]).

Assume d ≥ 5 and 1 ≤ κ ≤ d − 3. Let Y ⊂ P2 be any integral plane curve with
exactly κ ordinary cusps as singularities. Let u : X −→ Y be the normalization map
and let ϕ : X −→ P2 denote the composition of u with the inclusion Y ⊂ P2. Define
L = ϕ∗(OP2(1)).

We need to prove that h0(L) = 2. Letting g = pa(X), by Riemann-Roch, it is
enough to show that 2 − h1(L) = d + 1 − g, i.e. h1(L) = g + 1 − d. Let S = Sing(Y ).
Since each singular point of of X is an ordinary cusp, the classical Plücker formulas
affirm that g = (d − 1)(d − 2)/2 − κ [15, page 280]. The equality is in fact derived
from the cohomological equality H0(X,ωX) = ϕ∗(H0(P2,IS(d− 3)). By Serre duality,
h1(L) = h0(ωX⊗L∗). SinceH0(X,ωX ) = ϕ∗(H0(P2,IS(d−3)), we have h1(L) = g+1−d
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if and only if h1(P2,IS(d − 4)) = 0. For a general S we have h1(P2,IS(d − 4)) = 0,
because #S = κ ≤ (d− 3)(d − 2)/2 = h0(OP2(d− 4)). �

Besides Barkats’ results [3] on the existence of curves with prescribed singularities,
another more recent result is due to Greuel, Lossen, and Shustin [13, Corollary 2.4].
(Here we explicitly state a special case of the latter for cuspidal curves.)

Theorem 2.6 (Greuel, Lossen, Shustin). Let V (d, κ) denote the set parametrizing
all irreducible plane curves X ⊂ P2 with deg(X) = d and κ ordinary cusps as its only
singularities. Assume 9κ < d2 + 6d+ 8. If V (d, κ) 6= ∅, then V (d, κ) is smooth of pure
dimension (d2 + 3d)/2 − 2κ.

Remark 2.7. Irreducibility of V (d, κ) 6= ∅ requires 18κ < d2, see [13, Corollary 3.2].
The non-emptyness V (d, κ) 6= ∅ was proven over R by Shustin [27, Theorem 3.3]. For
all positive integers d > 0, let κ(d) denote the maximal integer such that for all 0 ≤
κ ≤ κ(d) there exists Y ∈ V (d, κ) defined over R with Sing(Y ) ⊂ P2(R). One sees
κ(1) = κ(2) = 0, κ(4) = 3, κ(5) = 5 and κ(6) = 7 [27, page 851]. More generally: for all
d ≥ 7, one has κ(d) ≥ (d2 − 3d+ 4)/4 if d ≡ 0, 3 (mod 4) and κ(d) ≥ (d2 − 3d+ 2)/4 if
d ≡ 1, 2 (mod 4) [27, Theorem 3]. Concerning the smoothness of varieties parametrizing
plane curves (not necessarily with only unibranch singularities) see the results in [12,
§4.3]. The beautiful book [12] contains an extensive bibliography about this venerable
subject; in particular, more information about singular curves on more surfaces other
than the projective plane are discussed.

Remark 2.8. The plane curves X realized in Theorem 2.6 do not come from injective
linear series g2d of type II or III whenever

pa(X) = (d− 1)(d − 2)/2 − κ > π(d, 3).

Hence such injective linear series g2d must be complete and so of type I. Therefore, the
curves from Theorem 2.6 are different from those arising in our Theorems 4.8 and 4.16.

3. Injective linear series on hyperelliptic curves

From the classical analytic definition of complex hyperelliptic curves, i.e., as the
Riemann surface of the algebraic function y =

√

(x− a1) · · · (x− a2g+2) [1, §2], it is

clear that they admit a cuspidal model in P2 (the cuspidal point being at infinity) and
therefore they carry an injective linear series from their very definition. However, we
describe other natural injective linear series on any hyperelliptic curve in any character-
istic. Their construction is highlighted in the course of the proof of the next Theorem
3.1; to our knowledge this is new and interesting on its own right. The result is stated
in proven first in characteristic zero, and in the subsequent Remark 3.2 the general case
is treated.

Theorem 3.1. Let X be a smooth hyperelliptic curve of genus g ≥ 2 over a field k
with char(k) = 0. Then there is a base-point free g2g+3 inducing an injective morphism

ϕ : X −→ P2. The image ϕ(X) has exactly two singular points: one ordinary cusp
and one unibranch singularity. Moreover, X has ∞1-many such g2g+3, each of them

being a sublinear series of a different complete and very ample g3g+3; X has 2g+ 2 such

one-dimensional families of g2g+3 and g3g+3.
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Proof. Let W be the set of Weierstrass points of X, i.e., the support of the ramification
divisor of the 2 : 1 cover u2 : X → P1, induced by the linear series g12 on X. (This exists
on X, as it is hyperelliptic.)

Fix a point o ∈ W. Then o ∈ W if and only if 2o ∈ g12 by definition of ramification
divisor. Thus 2 = h0(g12) = h0(OX(2o)). For each p ∈ X \ W, set Np := OX(2o+ (g +
1)p). We now split the proof into four claims.

Claim 1: For a general p ∈ X \W, we have h0(OX(gp)) = 1, h0(OX(g+
1)p)) = 2 and h0(Np) = 4.

Proof of Claim 1: By Riemann-Roch, we have h0(OX(gp)) = 1 +
h1(OX(gp)), h0(OX(g + 1)p)) = 2 + h1(OX((g + 1)p)) and h0(Np) =
4 + h1(Np). Notice that h1(OX(2o + (g + 1)p)) ≤ h1(OX((g + 1)p)) ≤
h1(OX(gp)). Hence, in order to finish the proof of Claim 1, it is suffi-
cient to prove that h1(OX(gp)) = 0. Indeed, under this assumption, as
char(k) = 0, for any invertible sheaf N on X and for a general p ∈ X,
one has h0(N (−tp)) = max{0, h0(N ) − t}, for any positive integer t.
Letting N = ωX and t = g, we obtain h0(ωX(−gp)) = 0. Finally, Serre
duality gives h1(OX(gp)) = 0.

Claim 2: For a general p ∈ X, Np is very ample.

Proof of Claim 2: The base locus of |OX((g + 1)p)| is contained in {p}.
Since h0(OX(gp)) < h0(OX((g+1)p)) by Claim 1, it follows that p is not
a base point of |OX((g+1)p)|, as subtracting a base point from a divisor
does not decrease dimension of global sections. Thus OX((g + 1)p) is
base-point free and so its linear series |OX((g + 1)p)| defines a degree
g + 1 morphism u1 : X −→ P1. As above, denote u2 : X −→ P1 the
degree 2 cover of P1 induced by g12 on X. The pair (u1, u2) induces
a morphism w : X −→ P1 × P1. Now since u2 is a degree 2 cover,
either w is birational onto its image or it factors through u2. The latter
case is not possible, because u1 cannot factor through u2. Indeed, for
the sake of contradiction, assume that u1 factors through u2. Then
OX((g + 1)p) would be isomorphic to the invertible sheaf (g12)⊗(g+1)/2.
Since the dimension of the linear series of the latter is (g+ 1) and g ≥ 2,
this isomorphism implies h0(OX((g+1)p)) > 2, which contradicts Claim
1 above. Hence w is birational onto its image.

Recall that the canonical sheaf of P1 × P1 is ωP1×P1
∼= OP1×P1(−2,−2). For D ∈

|OP1×P1(2, g + 1)|, by adjunction, ωD
∼= ωP1×P1 ⊗ OP1×P1(2, g + 1). (For singular D,

replace ωD with the dualizing sheaf ω◦
D and every later statement holds as well.) This

implies that the arithmetic genus of each D ∈ |OP1×P1(2, g + 1)| is pa(D) = g.
Since w is birational onto its image, w(X) has bidegree (2, g + 1) and so w(X) ∈

|OP1×P1(2, g+1)|. Since w(X) has arithmetic genus g, the morphism w is an embedding.
The linear series |OP1×P1(1, 1)| embeds P1 × P1 as a quadric surface in P3. Call f

the composition of w and the inclusion P1 × P1 →֒ P3. By construction, f is the map
induced by |Np|; hence Np is very ample.
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Take a very ample divisor of the form Np with associated embedding f : X −→ P3

and, as in the proof of Claim 2, regard f(X) ⊂ P1×P1 as a divisor of bidegree (2, g+1)
on the quadric surface P1×P1. Let q ∈ P1×P1 be the point (u1(p), u2(o)). For a general
p, we may assume u1(p) 6= u2(o). With this assumption, we show the next

Claim 3: We have q /∈ f(X).

Proof of Claim 3: Assume q ∈ f(X). The line L1 := P1×{u2(o)} is tan-
gent to f(X) at f(o) because it intersects f(X) at f(o) with multiplicity
two. The line L2 := {u1(p)}×P1 is tangent to f(X) at u2(p), because it
intersects f(X) at f(p) with multiplicity g+ 1. Since L1, L2 are lines in
a different ruling of the quadric surface P1 ×P1, L1 6= L2 and L1 ∩L2 is
a single point. Note that {q} = L1 ∩ L2. Since f(X) is smooth at q, it
has a unique tangent line at q. Thus L1 = L2, which is a contradiction.

Let πq : P3 \ {q} −→ P2 denote the linear projection from q. Since q /∈ f(X), πq|f(X)

induces a morphism ϕ : X −→ P2. Since deg(u2) = 2 and u1 does not factor through
u2, ϕ is birational onto its image. To conclude the proof of the theorem, it is sufficient
to prove the following claim.

Claim 4: The morphism ϕ is injective, o and p are the only ramification
points of ϕ, and ϕ(o) is an ordinary cusp of ϕ(X).

Proof of Claim 4: Since f is an embedding and ϕ is induced by the
linear projection from q ∈ P1 × P1 \ f(X), it is sufficient to prove that
|L∩ f(X)| ≤ 1 for each line L ⊂ P3 containing q. Fix a line L ⊂ P3 such
that q ∈ L and deg(f(X)∩L) ≥ 2. Since q /∈ f(X) and f(X) ⊂ P1×P1,
Bézout’s theorem gives L ⊂ P1 × P1. Thus L is one of the two lines
of the smooth quadric P1 × P1 passing through q. One of these lines
meet f(X) only at f(o) (with multiplicity two), whereas the other one
meets f(X) only at f(p) (with multiplicity g + 1). In both cases, the
set-theoretic intersection L ∩ f(X) consists only of one point. Thus ϕ
is injective. Moreover, by the discussion above, o and p are the only
ramification points. Since ϕ−1(o) is a curvilinear double point, f(o) is a
double point with one branch and so an ordinary cusp.

In conclusion, X has ∞1-many g2g+3 base-point free linear series, corresponding to

the morphism ϕ : X → P2, as p varies in X \ W. (The degree of the linear series is
indeed g + 3, as ϕ is an injective morphism.) They sit inside a very ample g3g+3, given

by Np. Again, there are ∞1-many of such, as p varies in X \W. Moreover, X has 2g+2
such one-dimensional families of g2g+3 and g3g+3, given by the choice o ∈ W. �

Let σ : X −→ X be the hyperelliptic involution and let R ∈ Pic2(X) be the hyperel-
liptic divisor of degree two, i.e., g12 = |R| = {a+ σ(a)}a∈X .

Remark 3.2 (Arbitrary characteristic). We summarize the ingredients providing
a similar proof of Theorem 3.1 in arbitrary characteristic. Unless otherwise stated,
the statements used in the proof are valid for any algebraically closed field k and any
char(k).
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Assume k to be algebraically closed and char(k) = 2. Then 1 ≤ deg(W) ≤ g + 1,
where each integer in this interval may occur for some hyperelliptic curve of genus g
(see, e.g., [21, 7.4.24], [28, §6.2]). In particular, in any characteristic, there is at least
one ramification point.

Independently of char(k), we show that if p ∈ X \W, then h1(OX(gp)) = 0. Since
X is hyperelliptic, the canonical map η : X −→ Pg−1 has as its image the degree
g − 1 rational normal curve and its fibers are the elements of |R|. Thus we have the
following recipe to see if an effective divisor D on X is special. Let D′ ⊃ D be the
following effective divisor: for each o ∈ W, let mo denote the multiplicity of o in W; the
multiplicity of o ∈ D′ is the minimal even integer ≥ mo. If a ∈ X \ W and m1,m2 ∈ N
are the multiplicities of a and σ(a) in D, then both a and σ(a) appears in D′ with
multiplicity max{m1,m2}. By construction, D′ has even degree and it is the minimal
divisor containing η−1(η(D)), where, given D =

∑

mipi, we set η(D) :=
∑

miη(p1).
Let k := deg(D′)/2. Note that D′ ∈ |R⊗k|. By Serre duality H1(D) ∼= H0(KX ⊗D∨)∨

and the latter is isomorphic to H0(R⊗(g−1) ⊗ D∨). Hence h1(D) > 0 if and only if
k ≤ g − 1. In particular, let p ∈ X \W and D = OX(gp). Hence D′ = OX(gp+ gσ(p))
and so deg(D′) = 2g. Thus h1(OX(gp)) = 0.

Remark 3.3. Take f(X) as in the proof of Theorem 3.1. Call S the set of all q ∈
P3 \ f(X) such that the linear projection πq : P3 \ {q} −→ P2 induces an injective
map ϕq : f(X) −→ P2. Call Q the quadric surface containing f(X) as an element of
|OQ(2, g + 1)|.

(i) We describe the set S∩Q. Fix q = (q1, q2) ∈ Q\f(X) and set L1 := P1×{q2} ∈
|OQ(0, 1)| and L2 := {q1} × P1 ∈ |OQ(1, 0)|. Let L ⊂ P3 be a line such that q ∈ L and
deg(L∩f(X)) ≥ 2. Since q /∈ f(X), Bézout’s theorem gives L ⊂ Q. Hence L ∈ {L1, L2}.
Thus q ∈ S if and only if both L1 and L2 contain a unique point of f(X). By definition
of f , given in the proof of Theorem 3.1, L1 meets f(X) at a unique point, a1, if and
only if a1 = f(p1) for some p1 ∈ W. Recall that h0(OX((g + 1)p)) = 2, w = (u1, u2)
where u1 is induced by the linear series |OX((g+ 1)p))|. By definition of f given in the
proof of Theorem 3.1, L2 meets f(X) at a unique point, a2, if and only if a2 = f(p2)
for some p2 ∈ X such that OX((g + 1)p2) ∼= OX((g + 1)p). The number of these
points may depend on g, X and p. However, there is at least one such pair of points
(p1, p2) ∈ X ×X, i.e., the pair (o, p) (W 6= ∅ in any characteristic).

(ii) Fix q /∈ Q and take a line L such that q ∈ L and deg(L ∩ f(X)) ≥ 2. Since
q /∈ Q, we have L * Q. Thus deg(L ∩ f(X)) = 2, by Bézout’s theorem. In particular,
each line L through q which is tangent to f(X), say at a point q′, has order of vanishing
two with f(X) at q′, and L∩ (f(X) \ {q′}) = ∅. Thus any unibranch point of πq(f(X))
is an ordinary cusp. If the degree g + 3 curve πq(f(X)) is unibranch, then it has
(g + 2)(g + 1)/2 − g cusps. Tono [29, Theorem 1.1] showed that a cuspidal plane curve
has at most (21g + 17)/2 cusps. Thus, since (g + 2)(g + 1)/2 − g > (21g + 17)/2 for
g ≫ 0, one has S ⊂ Q for g ≫ 0. A generalization of Tono’s result to Hirzebruch
surfaces was found by Moe [23].

Proposition 3.4. Let X be a hyperelliptic curve of genus g ≥ 3. Take any non-special
and base-point free N ∈ Picg+3(X) inducing an injective map ϕ : X −→ P3. Either ϕ is
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an embedding and its image ϕ(X) is contained in a smooth quadric Q as a divisor of
bidegree (2, g + 1) or (g + 1, 2), or ϕ(X) is contained in a quadric cone.

Proof. Since N is non-special, h1(N) = 0. Thus Riemann-Roch gives h0(N) = 4.
Set M = N ⊗ R∨ ∈ Picg+1(X). Fix a ∈ X. Since h0(N) = 4, we have h0(N(−a −

σ(a))) ≥ 2 and so h0(M) ≥ 2. Since ϕ is injective, we have ϕ(a) 6= ϕ(σ(a)) for
a ∈ X \W. Thus h0(M) = h0(N) − 2 = 2.

Since deg(M) = g+ 1, and h0(M) = 2, Riemann-Roch implies that M is non-special.
Assume that M has a base point, say b ∈ X. Since h0(M(−b)) = 2 and deg(M(−b)) =

g, M(−b) is a special, with h0(M(−b)) = 2. Thus |M(−b)| = R⊗E for a fixed effective
divisor E with deg(E) = g − 2 > 0. Note that M ∼= R(E + b). Since by definition
M = N ⊗R∨, tensoring by R both sides yields N ∼= R⊗2(E + b).

Note that the divisor E is a fixed component for the linear series associated to N(−b).
Indeed, this holds if and only if h0(N(−b−E)) = h0(N(−b)). Moreover, N(−b−E) ∼=
R⊗2 and so h0(N(−b−E)) = h0(R⊗2) = 3. Furthermore, h0(N(−b)) = 3 = h0(N) − 1,
as N is base-point free. Since N(−b − E) is base-point free and h0(N(−b − E)) = 3,
this induces a map from X to P2, which factor through ϕ (the morphism induced by
N). More precisely, N(−b−E) induces πϕ(b) ◦ϕ : X → P2, where πϕ(b) is the the linear

projection with center the point ϕ(b). On the other hand, R⊗2 has deg(R⊗2) = 4 and
induces a 2 : 1 cover X → P1 ⊂ P2, where P1 ⊂ P2 is a smooth conic. As ϕ is injective,
πϕ(b) is a 2 : 1 cover of a smooth conic. This is possible only if ϕ(X) is contained in a
quadric cone such that ϕ(b) is a vertex.

The map πϕ(b) ◦ϕ sends all the points in the support Supp(E) of E to ϕ(b) (because
E is a fixed component of N(−b)) and since ϕ is injective, Supp(E) ⊆ {b}. Since
deg(E) = g − 2, then E = (g − 2)b. Hence N = R⊗2 ⊗OX((g − 1)b).

Conversely for a general b ∈ X, the linear series |R⊗2((g − 1)b)| is non-special by
Remark 3.2 and gives an injective map with image contained in a quadric cone.

Suppose M is base-point free and call ψ : X −→ P1 the morphism induced by |M |.
Since M is base-point free, h0(M(−b)) = h0(M) − 1 = 1 for every b ∈ X. Then
Riemann-Roch gives h1(M(−b)) = 0 for every b ∈ X. As in the proof of Theorem 3.1,
we see that N induces an embedding with image contained in a smooth quadric Q as a
divisor of bidegree (2, g + 1) or (g + 1, 2). �

Proposition 3.5. Keep the notation from Proposition 3.4. Assume ϕ(X) is contained
in a quadric cone. Then ϕ is an embedding if and only if g = 2.

Proof. Recall that in this case M = N ⊗R∨ has b as base point.
Suppose g = 2, then deg(N) = g + 3 = 2g + 1 and so N is very ample, and hence an

embedding. Suppose g > 2, then E = (g − 2)b is non-zero. Recall that E is the fixed
component of N(−b). Hence h0(N(−b)) = h0(N(−2b)). Thus ϕ is not an embedding,
as N does not divide tangent directions, i.e., the differential of ϕ is not injective at b.
(Note that for g = 2, ϕ(X) has degree 5 [17, Example V.2.9].)

Assume g ≥ 3 and that ϕ(X) is contained in a quadric cone C with vertex v = ϕ(b)
and take q ∈ C \ϕ(X). Here we check that the linear projection from q does not induce
an injective map X −→ P2. Call Rq the unique line on C containing q. By Bézout’s
theorem, for each line L containing q and with deg(L∩ϕ(X)) ≥ 2, we have L ⊂ C. Recall
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that v = ϕ(b) is the vertex of C. Since the vertex ϕ(b) ∈ ϕ(X), the projection πq of
ϕ(X) from q is a cuspidal projection if and only if Rq ∩ϕ(X) = {ϕ(b)} set-theoretically.

We show this is not the case. The linear projection πv of ϕ(X) from v is a 2 : 1
morphism (away from v ∈ ϕ(X)), whose image is a smooth conic, i.e., the base of
the cone C. Thus the ramification points of πv are the images of the Weierstrass points
ϕ(W), the image of the ramification points of the covering map induced by R. However,
since b /∈ W, the point ϕ(b) is not a ramification point. Thus Rq cannot intersect ϕ(X)
only at ϕ(b), i.e., πq is not a cuspidal projection. �

Recall that σ : X −→ X denotes the hyperelliptic involution and R ∈ Pic2(X) is the
hyperelliptic divisor of degree two, i.e., g12 = |R| = {a+ σ(a)}a∈X . With this notation,
we are ready to prove the next result.

Proposition 3.6. Let X be a hyperelliptic curve of genus g ≥ 3. There is an injective
morphism f : X −→ P2 with deg(f(X)) = g + 2 and each such map f is induced by
a complete linear series |N | with h1(N) = 0 and N ∼= R(gp) with p ∈ X such that
h1(OX(gp)) = 0 (e.g., with p general in X).

Proof. Since every special base-point free linear series on X is composed with the g12 ,
each injective morphism X −→ P2 must be induced by a non-special base-point free
linear series g2d. By Riemann-Roch this linear series is complete if and only if d = g+ 2,
whereas if d > g + 2 this g2d is a linear subspace of a base-point free and non-special

complete gd−g
d .

Claim 1: For every N ∈ Picg+2(X), g ≥ 3, with h1(N) = 0 and N
base-point free there is a degree g effective divisor B with N ∼= R(B)
and h1(B) = 0.

Proof of Claim 1: Fix a ∈ X. Since every degree two effective divisor
of X is contained in a prescribed g2k, there is a degree g effective divisor
B such that a + σ(a) + B ∈ |N |. Note that a + σ(a) ∈ g12 . Hence
h0(N⊗R∨) > 0. Take B ∈ |N⊗R∨|. If h1(B) > 0, then B is special and
so B = R⊗N ′, where N ′ is some effective divisor of degree g− 2. Thus
N ∼= R⊗2 ⊗N ′. Since deg(N ′) = g − 2 > 0, and h0(R⊗2) = 3 = h0(N),
every point in the support of a divisor of N ′ is a base point of N , a
contradiction.

Thus, so far we have shown thatN ∼= R(B) for some effective divisor B with deg(B) =
g and h1(B) = 0. Since by assumption R ⊗ B induces a map to P2, it is base-point
free. Note that R(B) is base-point free if and only if h0(R(B − p)) = 2 for each p in
the support of B; indeed, since R is base-point free, the base locus of R(B) has to be
contained in the support of B. Moreover, since by assumption N induces an injective
morphism and h0(R(B − p)) = 2 = h0(R), |R(B)| maps all the points in the support
of B to the same point of P2. Therefore B = gp for some p ∈ X (and such that
h1(OX(gp)) = 0).

Conversely, assume h1(OX(gp)) = 0 and set N := R(gp). Call ϕ : X −→ P2 the
morphism induced by the non-special and base-point free linear series |N |. We claim
that ϕ is injective. Fix a, b ∈ X with a 6= b. First assume ϕ(a) = ϕ(p). Thus
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|R(gp−a)| = |R((g− 1)p)|, with h0(R(g− 1)p) = 2 = h0(R). Hence (g− 1)p is the base
locus of R((g − 1)p) and so of R(gp − a). This implies a = p.

Now assume a 6= p and b 6= p. Since ϕ(a) = ϕ(b), by definition b is a base point of
|R(gp−a)|. Thus |R(gp−a)| = {b+E}E∈|R(gp−a−b)|. Since deg(R(gp−a− b)) = g and

h0(R(gp − a − b)) = 2, by Riemann-Roch we obtain h1(R(gp − a − b)) > 0 and hence
R(gp−a− b) is a special divisor. Thus R(gp−a− b) = R⊗F , for some effective degree
g − 2 divisor F on X. So gp − a− b is an effective divisor. This is possible if and only
if a = b = p, which is a contradiction. �

4. Quadrics and cuspidal projections

In this section, we study more closely cuspidal projections of curves lying on irre-
ducible quadrics in P3. In the first results the characteristic of our ground field k is
arbitrary. Only later, we will switch to characteristic zero. We start off considering
curves on smooth quadrics.

Proposition 4.1. Let Q ⊂ P3 be a smooth quadric surface. Fix integers 1 ≤ d1 ≤ d2
such that d2 ≥ 2. Let Y be an integral element of |OQ(d1, d2)| with only unibranch
singularities and let ϕ : X −→ Y be its normalization. Take q ∈ Q \ Y and let L ∈
|OQ(1, 0)| and L′ ∈ |OQ(0, 1)| be the unique lines of Q through q. The linear projection
from q induces an injective map πq : Y −→ P2 (and hence an injective map η = πq ◦ ϕ :
X −→ P2) if and only if each L and L′ contains a unique point of Y . Moreover, the
morphisms πq and η are separable.

Proof. Notice that πq is a morphism, because q /∈ Y . Since ϕ is bijective and separable,
and an isomorphism outside finitely many points of X, πq is injective (resp., separable)
if and only if η has the same property. If η is injective then |L ∩ Y | = |L′ ∩ Y | = 1. To
show the converse, it is sufficient to prove that |L′′ ∩ Y | = 1 for each line L′′ ⊂ P3 such
that q ∈ L′′ and L′′ /∈ {L,L′}.

Now we explain why πq and η are separable morphisms. As mentioned above, η is
separable if and only if πq is separable. Separability must be checked only if char(k) > 0,
as it is immediate in characteristic zero. Fix p ∈ Yreg such that p /∈ L ∪ L′; call
Lp ⊂ P3 the line spanned by {q, p}. Since p /∈ L ∪ L′, we have Lp /∈ {L,L′} and hence
deg(Lp ∩ Q) = 2. Thus the differential of η at p is injective. This shows that the
differential is generically injective, and so η is separable. �

Remark 4.2. The proof of Proposition 4.1 shows that if d1 > 1 there are only finitely
many cuspidal projections. (Note that if (d1, d2) 6= (2, 2), having at least one cuspidal
projection is a closed condition on the smooth curves of bidegree (d1, d2).) For curves of
bidegree (1, d2), which are smooth and rational, if there is a cuspidal projection from a
point o, then any point on Q \ Y and on the line of bidegree (1, 0) containing o induces
a cuspidal projection.

The next result shows how zero-dimensional schemes may naturally provide informa-
tion on the existence of cuspidal projections and therefore injective linear series. (Note
that, for char(k) = 0, its proof may be simplified using the classical Bertini’s theorem
[17, Corollary III.10.9].)
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Theorem 4.3. Fix integers d2 ≥ d1 > 0, a smooth quadric Q ⊂ P3, lines L ∈ |OQ(1, 0)|,
L′ ∈ |OQ(0, 1)| and set {q} := L∩L′. Fix o ∈ L\{q} and o′ ∈ L′ \{q}. Let Z (resp. Z ′)
be the divisor d2 · o = o+ · · · + o ⊂ L (resp., d1 · o

′ ⊂ L′) regarded as a degree d2 (resp.,
degree d1) zero-dimensional scheme. Then there is a smooth divisor Y ∈ |OQ(d1, d2)|
such that Y ∩L = Z and Y ∩L′ = Z ′ (set-theoretically, they intersect at a unique point).

Proof. Since h1(OQ(d1 − 1, d2 − 1)) = 0, from the residual exact sequence

0 −→ OQ(d1 − 1, d2 − 1) −→ IZ∪Z′(d1, d2) −→ IZ∪Z′,L∪L′(d1, d2) −→ 0,

upon taking global sections, it follows h0(IZ∪Z′(d1, d2)) = h0(OQ(d1, d2)) − d1 − d2 =
d1d2 +1. Similarly, one can directly check that h0(IZ′(d1−1, d2)) = d1(d2 +1)−d1, and
h0(IZ(d1, d2 − 1)) = (d1 + 1)d2 − d2. (This is the stabilization of the Hilbert function
to the Hilbert polynomial.) It is sufficient to prove that a general Y ∈ |IZ∪Z′(d1, d2)| is
smooth. Since h0(IZ′(d1−1, d2)) = d1(d2+1)−d1 and h0(IZ(d1, d2−1)) = (d1+1)d2−d2,
neither L nor L′ is an irreducible component of Y , by dimensional count.

First, assume d1 > 1. Since |IZ∪Z′(d1, d2)| contains all curves of the form F ∪L∪L′,
where F ∈ |OQ(d1 − 1, d2 − 1)|, and OQ(d1 − 1, d2 − 1) is very ample, the linear series
|IZ∪Z′(d1, d2)| separates points and tangent vectors of Q \ (L ∪ L′), i.e., it induces an
embedding ψ : Q \ (L ∪ L′) −→ Pd1d2 . For any point p ∈ Q, let 2p denote the degree 3
zero-dimensional subscheme of Q whose ideal sheaf is (Ip,Q)2. Since |IZ∪Z′(d1, d2)| is
irreducible, its general element is smooth outside the locus L ∪ L′. Therefore, in order
to establish the result, it is sufficient to prove the following statements:

(i) h0(IZ∪Z′∪2o(d1, d2)) ≤ d1d2;
(ii) h0(IZ∪Z′∪2o′(d1, d2)) ≤ d1d2;
(iii) h0(IZ∪Z′∪2q(d1, d2)) ≤ d1d2;
(iv) for each m ∈ L \ {q, o} we have h0(IZ∪Z′∪2m(d1, d2)) ≤ d1d2 − 1;
(v) for each m′ ∈ L′ \ {q, o′} we have h0(IZ∪Z′∪2m′(d1, d2)) ≤ d1d2 − 1.

To show (i) and (ii), fix F ∈ |OQ(d1 − 1, d2 − 1)| such that o /∈ F and o′ /∈ F .
Notice that F ∪ L ∪ L′ ∈ |IZ∪Z′(d1, d2)|. Since L ∩ Z ∪ Z ′ ∪ 2o has degree d2 + 1,
h0(IZ∪Z′∪2o(d1, d2)) = h0(IZ∪Z′(d1, d2 − 1), as every global section in IZ∪Z′∪2o contains
L. Similarly for L′ with o′. Now, h0(IZ∪Z′(d1, d2 − 1), h0(IZ∪Z′(d1 − 1, d2) ≤ d1d2 and
so (i) and (ii) are proven.

To show (iii), let G ∈ |IZ∪Z′∪2q(d1, d2)|. Since deg(L ∩ Z ∪ Z ′ ∪ 2q) = d1 + 2, L is a
component of G. Since deg(L′ ∩ Z ∪ Z ′ ∪ 2q) = d1 + 2, L′ is a component of G. Thus
h0(IZ∪Z′∪2q(d1, d2)) = h0(OQ(d1 − 1, d2 − 1)) = d1d2.

For (iv), fix m ∈ L \ {q, o}. Since (Z ∪Z ′ ∪ 2m) ∩L is the union of Z and the degree
two effective divisor of L with m as its support, we have ResL(2m∪Z ∪Z ′) = {m}∪Z ′.
Thus we have the following residual exact sequence of L in Q:

(1) 0 −→ IZ′∪{m}(d1 − 1, d2) −→ IZ∪Z′∪2m(d1, d2) −→ I(Z∪2m)∩L,L(d1, d2) −→ 0

Since deg(Z ∪ 2m) ∩ L) = d2 + 2, we have h0(L,I(Z∪2m)∩L,L(d1, d2)) = 0. Thus,

taking global sections, the exact sequence of sheaves (1) gives h0(IZ∪Z′∪2m(d1, d2)) =
h0(IZ′∪{m}(d1−1, d2)) = d1(d2 + 1)−d1 −1. Similarly, (v) is derived using the residual
exact sequence of L′.

Now assume d1 = 1. Take any Y ∈ |OQ(1, d2)| and assume that Y has a singular
point z ∈ Y . Let Rz be the element of |OQ(1, 0)| passing through z. Since Y is singular
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at z and d1 = 1, Bézout’s theorem gives Y = Rz ∪ G, for some G ∈ |OQ(0, d2)|. If
Y ∈ |IZ∪Z′(1, d2)| and Rz ∩{o, o′} = ∅ (this condition holds for a general Y ), we obtain
G ∈ |IZ∪Z′(0, d2)|. Notice that h0(IZ∪Z′(0, d2)) ≤ d2. Thus a general Y ∈ |IZ∪Z′(1, d2)|
is smooth outside {o, o′}. As it was shown for (i) and (ii), one verifies that the general
Y is smooth at o and o′. �

Remark 4.4. Let d1 = 1, d2 = d − 1 ≥ 2 and Y be a smooth rational curve. By
Proposition 4.1 and Theorem 4.3, we obtain that for each integer d ≥ 3 there is a
smooth rational curve Y ⊂ P3 with deg(Y ) = d and admitting ∞1 cuspidal projections
to P2. Compare this observation with the statement [24, (a) of Remark, p. 102] saying
that, for d ≥ 5, no smooth degree d rational curve has a cuspidal projection with as its
image a plane curve with only ordinary cusps.

We now establish Proposition 4.1 and Theorem 4.3 for quadric cones in P3.

Proposition 4.5. Let C ⊂ P3 be a quadric cone with vertex v. Fix an integer d ≥ 2. Let
Y ∈ |OY (d)| be an integral curve with only unibranch singularities and let ϕ : X −→ Y
be its normalization. Fix q ∈ C \ Y with q 6= v and let Rq be the line of C containing q.
The linear projection from q induces a cuspidal projection of Y (and hence of X taking
the composition with the injective map ϕ) if and only if |Rq ∩ Y | = 1.

Proof. Take a line L ⊂ P3 such that q ∈ L with deg(Y ∩ L) ≥ 2. Since q ∈ C \ Y , we
have deg(L ∩ C) ≥ 3. Thus L ⊂ C, by Bézout’s theorem. Since q ∈ L, L = Rq. �

Theorem 4.6. Let C ⊂ P3 be a quadric cone with vertex v. Fix an integer d ≥ 2 and
q ∈ C \ {v}. Let Rq ⊂ C be the line spanned by {v, q}. Then there is a smooth divisor
Y ∈ |OC(d)| such that v /∈ Y , q /∈ Y and Rq meets Y at a unique point.

Proof. Fix p ∈ Rq \{v}. Let Z = d ·p be the effective divisor of degree d of Rq supported
at p ∈ C, regarded as a zero-dimensional subscheme of C. It is sufficient to prove that
a general element of |IZ(d)| is smooth and it does not contain the vertex v.

Let η : F2 −→ C be the minimal desingularization of C; here F2 denotes the second
Hirzebruch surface: this is the rational ruled surface P(OP1 ⊕OP1(−2)). Thus we have a
projection map π : F2 −→ P1 and a section H := η−1(v) with self-intersection H2 = −2.
Its Picard group Pic(F2) is freely generated by the Cartier divisors H and a fiber F of
π, with F ·H = 1 and F 2 = 0 [17, Proposition V.2.3].

The linear series |OF2
(H+2F )| is base-point free, induces η and indeed contracts H to

a point. Hence η∗(OC(d)) = OF2
(dH + 2dF ), for every d ≥ 1. In fact, η∗(H0(OC(d))) =

H0(OF2
(dH + 2dF )). Indeed, since C is a quadric and it is projectively normal, one

has h0(OC(d)) = h0(OP3(d)) − h0(OP3(d − 2)) = (d + 1)2. On the other hand, note

that π∗OF2
(dH) ∼= Symd(OP1 ⊕OP1(−2)) ∼=

⊕d
i=0OP1(−2i) by [17, Proposition V.2.8.]

and [17, Exercise III. 8.4]. As F is a fiber of π over P1, OF2
(F ) ∼= π∗(OP1(1)). The

projection formula [17, Exercise II. 5.1] gives the isomorphism π∗(OF2
(dH + 2dF )) ∼=

⊕d
i=0OP1(2d − 2i). Now, the dimension of the space of global sections of the latter

coincides with h0(OC(d)). Thus η∗(H0(OC(d))) = H0(OF2
(dH + 2dF )).

Since p 6= v, the scheme A := η−1(Z) is a degree d zero-dimensional scheme and
h0(C,IZ(d)) = h0(F2,IA(dH + 2dF )). Therefore, to prove the statement it is sufficient
to prove that a general W ∈ |IA(dH + 2dF )| is smooth and H ∩W = ∅.
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Let RA ∈ |OF2
(F )| denote the element containing A (i.e., it is the strict transform of

Rq). The residual exact sequence of RA in F2 gives the exact sequence

(2) 0 −→ OF2
(dH + (2d − 1)F ) −→ IA(dH + 2dF ) −→ IA,RA

(dH + 2dF ) −→ 0.

With analogous computations as above, we have π∗(OF2
(dH+(2d−1)F )) ∼= ⊕d

i=0OP1(2d−
1 − 2i) and so h1(π∗(OF2

(dH + (2d − 1)F )) = 0. By [17, Lemma V.2.4], we have
H1(OF2

(dH+(2d−1)F ))) ∼= H1(P1, π∗(OF2
(dH+(2d−1)F )) = 0 and hence h1(OF2

(dH+
(2d− 1)F )) = 0.

Since RA
∼= P1 and A is a zero-dimensional scheme of degree d, ORA

(dH + 2dF ) has
degree d and so h0(RA,IA,RA

(dH + 2dF )) = 1. Thus W ∈ |IA(dH + 2dF )| containing
RA are of codimension one. Therefore, the general W does not contain RA, which yields
that η(W ) does not intersect Rq outside Z.

The divisor OF2
((d− 1)H + (2d− 1)F ) is very ample. Since H ∪RA ∪G ∈ |IA(dH +

2dF )| for all G ∈ |OF2
(d− 1)H + (2d− 1)F )|, the linear system |IA(dH + 2dF )| induces

an embedding outside H ∪RA. By a characteristic free version of Bertini’s theorem for
embeddings of quasi-projective varieties [18, Th. 6.3, (3)], a general W ∈ |IA(dH+2dF )|
is smooth outside H ∪RA.

We only need to check that a general W is smooth at q = η−1(p), the support of A.
Since smoothness at q is an open condition, it is sufficient to exhibit a W ′ ∈ |IA(dH +
2dF )| that is smooth at q: take W ′ = G∪H ∪RA with G ∈ |OF2

((d−1)H+(2d−1)F )|
and q /∈ G; it is possible to choose such a G as OF2

((d− 1)H + (2d− 1)F ) is very ample
and in particular base-point free.

Moreover, H ∩W = ∅ for a general W ∈ |IA(dH + 2dF )|, as h0(OF2
((d − 1)H +

2dF )) < h0(OF2
(dH + 2dF )) and one has zero intersection index between the two:

W ·H = (dH + 2dF ) ·H = dH2 + 2dF ·H = −2d+ 2d = 0. �

Example 4.7. Let X ⊂ P3 be the canonical model of a smooth and non-hyperelliptic
curve of genus 4. It is known that X is the complete intersection of an integral quadric
C and a cubic surface; moreover, such C is smooth if and only if X has two different g13 ’s
(in this case the g13 ’s are induced by the two rulings of C), whereas if C is a quadric cone
with vertex v, then v /∈ X and X has set-theoretically a unique g13 . This g13 is induced
by the linear projection from v; see [19, §4]. The case C smooth is the one described in
Proposition 4.1 with X = Y and d1 = d2 = 3. By Proposition 4.1 and Proposition 4.3,
we obtain that X has a cuspidal projection if all the g13 on X have a total ramification
point, i.e., 3p ∈ g13 for some p ∈ X. The converse holds if we only consider projections
from points of the quadric surface containing X. Furthermore, [24, Theorem 2] gives a
different and stronger result: the canonical model of a general curve of genus 4 has no
cuspidal projections.

Equipped with the terminology in Definition 1.5, we may state the following result,
which provides positive examples to Question 1.1.

Theorem 4.8. Let k be an algebraically closed field of arbitrary characteristic and let
d2 ≥ d1 ≥ 1. Then there exists a smooth genus g curve with an injective g2d1+d2

of type
II with g = d1d2 − d1 − d2 + 1.

Proof. This is a consequence of Theorem 4.1 and Theorem 4.7 on smooth quadrics and
cones, respectively. �
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Henceforth, we assume char(k) = 0.

Definition 4.9. For each germ (Y, z) of an isolated one-dimensional singularity, the
singularity degree δ(Y, z) is the nonnegative integer such that, given the normalization
ν : X −→ Y , the arithmetic genus of Y is pa(Y ) = pa(X) +

∑

z∈Sing(Y ) δ(Y, z).

Definition 4.10. For each h ≥ 1, a singularity A2h is a plane curve singularity which
is formally equivalent to the singularity y2 = x2h+1 at (0, 0) ∈ A2; see [14, Example 3
at p. 549], [12, Corollary 1.1.41, Lemma 1.1.78].

Its singularity scheme is any degree 3h + 2 connected zero-dimensional Z ⊂ A2 iso-
morphic to the subscheme of A2 with ideal IZ = (y2, yxh+1, x2h+1). An A2h-singularity
scheme is any connected subscheme of a smooth surface isomorphic to the singularity
scheme Z. The singularity degree of an A2h-singularity is h. We use the convention
that the A0-singularity scheme is a smooth point.

We use the following theorem proved by Roé [25, Theorem 1.2]:

Theorem 4.11 (Roé). Fix positive integers h and t ≥ 13. If 3h+2 ≤
(

t+2
2

)

, then there

is an A2h-singularity scheme Z ⊂ P2 such that h1(P2,IZ(t)) = 0.

Lemma 4.12. Fix positive integers h and t ≥ 14. If 3h + 2 ≤
(t+1

2

)

, then there exist

two A2h-singularity schemes A,B ⊂ Q such that h1(Q,IA∪B(t, t)) = 0.

Proof. Fix o ∈ P3 \Q. Let πo : P3 \{o} −→ P2 denote the linear projection from o. Since
o /∈ Q, πo|Q defines a degree 2 finite morphism π : Q −→ P2. The ramification locus
R ⊂ Q of π is a smooth conic which is the intersection of Q with the plane polar to o with
respect to Q. The branch locus π(R) ⊂ P2 is a smooth conic. By Roé’s Theorem 4.11,
there is an A2h-singularity scheme Z ⊂ P2 such that h1(P2,IZ(t−1)) = 0. Applying an
automorphism to P2, we may assume Z ∩ f(R) = ∅. Thus π−1(Z) is the disjoint union
of the A2h-singularity schemes, say A and B. Since π is a degree 2 covering between
smooth varieties and the branch locus of π is a conic, π∗(OQ) ∼= OP2 ⊕OP2(−1). (This
can be checked on a local chart.) Since π is a finite morphism, Riπ∗(F) = 0 for all i > 0
and any coherent sheaf F on Q. So π∗ induces an isomorphism of all cohomology groups.
Since π∗(IZ) = IA∪B, the projection formula gives π∗(IA∪B(t, t)) ∼= IZ(t) ⊕ IZ(t− 1).
Thus h1(IA∪B(t, t)) = h1(P2,IZ(t)) + h1(P2,IZ(t− 1)) = 0. �

Lemma 4.13. Fix positive integers h and d2 ≥ d1 ≥ 15. If 3h + 2 ≤
(d1
2

)

, then there

are two A2h-singularity schemes A,B ⊂ Q such that h1(Q,IA∪B(d1 − 1, d2 − 1)) =
h1(Q,IA∪B(d1, d2)) = 0 and a general Y ∈ |IA∪B(d1, d2)| is irreducible and with exactly
two singular points, Ared and Bred, both of them A2h-singularities.

Proof. Take A and B as in Lemma 4.12 for the integer t = d1 − 1. Set {qA} = Ared and
{qB} := Bred. Lemma 4.12 shows that h1(Q,IA∪B(d1−1, d1−1)) = 0. The Castelnuovo-
Mumford’s lemma for zero-dimensional schemes gives h1(Q,IA∪B(d1, d2)) = 0 and that
IA∪B(d1, d2) is globally generated.

Fix a general D ∈ |IA∪B(d1, d2)|. Since IA∪B(d1, d2) is globally generated and D
is general, D has an A2h-singularity at both qA and qB [12, Lemma 1.1.33]. Since
IA∪B(d1, d2) is globally generated, D is smooth outside {qA, qB} by Bertini’s theorem
in characteristic zero [17, Corollary III.10.9]. Thus, to conclude, it is sufficient to prove
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that D is irreducible. Since D has only finitely many singular points, D has no multiple
components. Since d2 ≥ d1 ≥ 2, OQ(d1, d2) is very ample and hence D is connected.
Thus if D were reducible, there would be irreducible component D′ and D′′ of D,
D′ 6= D′′ and passing both through qA or qB . This is a contradiction, because D has
unibranch singularity A2h, at qA and qB. �

Lemma 4.14. Fix integers t2 ≥ t1 ≥ 16 and h > 0 such that 3h + 2 ≤
(t1−1

2

)

. Fix
L ∈ |OQ(1, 0)|, R ∈ |OQ(0, 1)|, o1 ∈ L \ L ∩ R and o2 ∈ R \ R ∩ L. Let Z1 be
the degree t2 divisor of L supported at o1. Let Z2 be the degree t1 divisor of R sup-
ported at o2. There are two A2h-singularity schemes A,B ⊂ Q \ (L ∪ R) such that
h1(Q,IZ1∪Z2∪A∪B(t1, t2)) = 0 and a general Y ∈ |IZ1∪Z2∪A∪B(t1, t2)| is irreducible with
Sing(Y ) = {qA, qB} and Y has A2h-singularities at {qA} = Ared and at {qB} = Bred.

Proof. We split the proof into two claims.

Claim 1: h1(Q,IZ1∪Z2∪A∪B(t1, t2)) = 0, h1(Q,IZ2∪A∪B(t1 − 1, t2)) = 0,
and h1(Q,IZ1∪A∪B(t1, t2 − 1)) = 0.

Proof of Claim 1: Since L∩{o2, qA, qB} = ∅, the residual exact sequence
with respect to L gives the exact sequence

(3) 0 −→ IZ2∪A∪B(t1 − 1, t2) −→ IZ1∪Z2∪A∪B(t1, t2) −→ IZ1,L(t1, t2) −→ 0.

Since deg(Z1) = t2 and OL(t1, t2) is the degree t2 line bundle on L ∼= P1,
we have h1(L,IZ1,L(t1, t2)) = 0. Thus, by (3), to prove the assertion, it
is sufficient to show the vanishing h1(Q,IZ2∪A∪B(t1 − 1, t2)) = 0. Since
R ∩ {qA, qB} = ∅, the residual exact sequence with respect to R gives
the exact sequence

(4) 0 −→ IA∪B(t1 − 1, t2 − 1) −→ IZ2∪A∪B(t1 − 1, t2) −→ IZ2,R(t1 − 1, t2) −→ 0.

Now, Lemma 4.13, with the choice d1 = t1 − 1 and d2 = t2 − 1, gives
h1(Q,IA∪B(t1− 1, t2− 1)) = 0 . Since deg(Z2) = t1 and OR(t1− 1, t2) is
the degree t1 − 1 line bundle on R, we have h1(R,IZ2,R(t1 − 1, t2)) = 0.
The long cohomology exact sequence of (4) concludes the proof of the
claim.

Claim 2: A general Y ∈ |IZ1∪Z2∪A∪B(t1, t2)| is smooth outside {qA, qB},
has A2h-singularities at {qA} = Ared and at {qB} = Bred, and it is irre-
ducible.

Proof of Claim 2: By Lemma 4.13, the general D ∈ |IA∪B(t1−1, t2−1)|
is smooth outside {qA, qB}. Using the action of Aut(P1) × Aut(P1), we
may assume that L and R are transversal to D. With this assumption,
the curve Y ′ = D ∪ L ∪ R ∈ |IZ1∪Z2∪A∪B(t1, t2)| is smooth at o1 and
o2. Since {o1, o2} is a finite set and smoothness is an open condition, a
general Y ∈ |IZ1∪Z2∪A∪B(t1, t2)| is smooth at o1 and o2.

By Claim 1, we have h1(Q,IZ1∪Z2∪A∪B(t1, t2)) = 0. Thus

h0(Q,IZ1∪Z2∪A∪B(t1, t2)) = (t1 + 1)(t2 + 1) − deg(A) − deg(B) − t1 − t2 =

= t1t2 − deg(A) − deg(B) + 1.



18 EDOARDO BALLICO AND EMANUELE VENTURA

Since h1(Q,IZ2∪A∪B(t1 − 1, t2)) = 0, we have

h0(Q,IZ2∪A∪B(t1 − 1, t2)) = t1(t2 + 1) − deg(A) − deg(B) − t1 =

t1t2 − deg(A) − deg(B) < t1t2 − deg(A) − deg(B) + 1 = h0(Q,IZ1∪Z2∪A∪B(t1, t2).

Thus L is not in the base locus of |IZ1∪Z2∪A∪B(t1, t2)|.
Since h1(Q,IZ1∪A∪B(t1, t2 − 1)) = 0, one has

h0(Q,IZ1∪A∪B(t1, t2 − 1)) = (t1 + 1)t2 − deg(A) − deg(B) − t2 =

t1t2 − deg(A) − deg(B) < t1t2 − deg(A) − deg(B) + 1 = h0(Q,IZ1∪Z2∪A∪B(t1, t2)).

Hence R is not in the base locus of |IZ1∪Z2∪A∪B(t1, t2)|.
The base locus of |IZ1∪Z2∪A∪B(t1, t2)| is then strictly contained in

L ∪ R ∪ {qA, qB}. Take any Y ∈ |IZ1∪Z2∪A∪B(t1, t2)| smooth at o1 and
o2. Since Y · OQ(1, 0) = t2, this curve meets L only at o1. Similarly, Y
meets R only at o2. Thus Y is smooth along L∪R. By Bertini’s theorem
in characteristic zero, Y is smooth outside L∪R∪{qA, qB}. From what
we have just proven, a general Y is smooth outside {qA, qB}.

Recall that [12, Lemma 1.1.33] shows that the general element in
|IA∪B(t1, t2)| has A2h-singularities at qA and qB . Hence the set of all such
curves contains a dense open subset U . Therefore |IZ1∪Z2∪A∪B(t1, t2)| ∩
U ⊂ |IA∪B(t1, t2)| is open inside |IZ1∪Z2∪A∪B(t1, t2)|; this means that
the general Y ∈ |IZ1∪Z2∪A∪B(t1, t2)| has A2h-singularities at qA and at
qB. Since Y is connected and it has only unibranch singularities, Y is
irreducible, sa we argued in the proof of Lemma 4.13.

�

Lemma 4.15. Fix integers t2 ≥ t1 ≥ 16 and h > 0 such that 3h + 2 ≤
(

t1−1
2

)

. Fix
L ∈ |OQ(1, 0)|, R ∈ |OQ(0, 1)|, o1 ∈ L\L∩R and o2 ∈ R\R∩L. Let Z1 be the degree t2
divisor of L supported at o1. Let Z2 be the degree t1 divisor of R supported at o2. There
are an A2α-singularity scheme A′ and an A2β-singularity scheme B′ contained in Q\(L∪
R) such that h1(Q,IZ1∪Z2∪A′∪B′(t1, t2)) = 0 and a general Y ∈ |IZ1∪Z2∪A′∪B′(t1, t2)| is
irreducible with Sing(Y ) = {qA′ , qB′} and Y has A2α-singularity at {qA′} = A′

red and
and A2β-singularity at {qB′} = B′

red.

Proof. Take A and B as in Lemma 4.14 and fix an A2α-singularity scheme A′ ⊆ A and
an A2β singularity scheme B′ ⊆ B. Since A′ ⊆ A and B′ ⊆ B, all vanishing occurring
in the proof of Lemma 4.13 holds true as well. Indeed, for A′ ⊆ A we have the exact
sequence:

0 −→ IA −→ IA′ −→ IA′/IA −→ 0.

Taking the long exact sequence in cohomology, for each i > 0, we have

· · · −→ H i(IA) −→ H i(IA′) −→ H i(IA′/IA) = 0,

because the sheaf IA′/IA is supported on a zero-dimensional scheme. So the vanishing
of the left-most implies the vanishing of the middle cohomology group. Then, as in the
proof of Lemma 4.14, we reach the same conclusion for any scheme A′ ∪B′ ⊂ A∪B as
above. �
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Theorem 4.16. Let k be an algebraically closed field of characteristic zero. Fix integers
d2 ≥ d1 ≥ 16 and h > 0 such that 3h+2 ≤

(d1−1
2

)

. Fix an integer κ such that 0 < κ ≤ 2h
and set g = d1d2 − d1 − d2 + 1 − κ. Then there exists a smooth genus g curve with an
injective g2d1+d2

of type III.

Proof. Fix L ∈ |OQ(1, 0)|, R ∈ |OQ(0, 1)|, o1 ∈ L \ L ∩ R and o2 ∈ R \ R ∩ L. Let
Z1 be the degree d2 divisor of L supported at o1. Let Z2 be the degree d1 divisor of
R supported at o2. Any Y ∈ |OQ(d1, d2)| has arithmetic genus pa(Y ) = d1d2 − d1 −
d2 + 1. By an application of Proposition 4.1, it is sufficient to prove the existence of
{qA, qB} ⊂ Q\(L∪R) and an integral Y ∈ |OQ(d1, d2)| with only unibranch singularities
Sing(Y ) ⊆ {qA, qB} and with singularity degree δ(Y, qA) + δ(Y, qB) = κ. (Recall that,
for any A2m-singularity, its singularity degree is m.) So it is enough to fix two positive
integers 0 < β ≤ α ≤ h such that α + β = κ and find a Y that has an A2α-singularity
at qA and an A2β-singularity at qB. This is the content of Lemma 4.15. �

The case κ = 0 is covered by Theorem 4.8. Theorem 4.16 provides positive examples
to Question 1.1.

Remark 4.17. Piene [24] considered only injective linear series g2d of type II. In
char(k) = 0, Proposition 4.1 and Proposition 4.5 provide curves X possessing an in-
jective (and separable) non-complete g2d which cannot occur from [24], since in Piene’s
setting the smooth curve X is required to be embedded in P3. So the same observation
applies to the curves arising from Theorem 4.16.

5. Inner cuspidal projections

In this section, we work in char(k) = 0. We study inner cuspidal projections and
introduce two natural sets A and B attached to them.

Recall that for p ∈ P3, let πp : P3 \{o} −→ P2 denote the linear projection from p. We
look at inner smooth projections, i.e. projection from smooth points of a curve. (We only
allow projection from smooth points of the curve, because projecting from a singular
point of the curve is more complicated and depends on the germ of the singularity.)

Let X ⊂ Pn be an integral and non-degenerate curve with only cuspidal singularities.
For any o ∈ Xreg the restriction πo|X\{o} extends to a unique morphism πo : X −→ P2.
Define:

A =
{

o ∈ Xreg | πo|X\{o} is injective
}

and

B =
{

o ∈ Xreg | πo : X −→ P2 is injective
}

.

It is clear that B ⊆ A and sometimes A 6= B, see Proposition 5.1, Theorem 5.3, and
Remark 5.2.

Proposition 5.1. Le Q ⊂ P3 be a smooth quadric surface. For any o ∈ Q, let L1(o)
(resp. L2(o)) denote the element of |OQ(1, 0)| (resp. |OQ(0, 1)|) containing o. Let
X ∈ |OQ(d1, d2)|, d1 > 0, d2 > 0, (d1, d2) 6= (1, 1), be an integral curve with only
cuspidal singularities. Fix o ∈ Xreg. Then:

(i) o ∈ A if and only if #(L1(o) ∩X)red ≤ 2 and #(L2(o) ∩X)red ≤ 2;
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(ii) o ∈ B if and only if #(L1(o) ∩ X)red = 1 and #(L2(o) ∩ X)red = 1. This is
equivalent to L1(o) (resp. L2(o)) and X having intersection multiplicity b (resp.
a) at o.

Proof. The assumptions on d1, d2 imply X is non-degenerate. Let L ⊂ P3 be a line
containing o and different from L1(o) and L2(o). Since o ∈ Q and L * Q, Bézout’s
theorem implies #(X ∩L)red ≤ 1. If #(X ∩L)red = 1, then L is not tangent to X at o.
Thus to check whether πo is injective, it is sufficient to check the sets #(L1(o) ∩X)red
and (L2(o) ∩X)red. We have #(L1(o) ∩X)red = 1 (resp. #(L2(o) ∩X)red = 1) if and
only if L1(o) and X have intersection multiplicity d2 at o (resp. L2(o) and X have
intersection multiplicity d1 at o). �

Remark 5.2. Note that if L1(o) and X have intersection multiplicity at least d2 − 1
at o and L1(o) and X have intersection multiplicity at least d1− 1 at o, then #(L1(o)∩
X)red ≤ 1 and #(L2(o) ∩X)red ≤ 1 and hence o ∈ B by Proposition 5.1(ii).

Theorem 5.3. Let C ⊂ P3 be a quadric cone with vertex v. Let X ⊂ C be an integral
and non-degenerate curve with only cuspidal singularities. Fix o ∈ Xreg such that o 6= v
and let Lo be the line contained in C and passing through o. The following statements
hold:

(i) o ∈ B if and only if #(Lo ∩X)red = 1.
(ii) o ∈ A if and only if #(Lo ∩X)red ≤ 2.
(iii) Assume v ∈ Xreg. Then:

v ∈ A ⇔ v ∈ B ⇔ X is a rational normal curve.

Proof. The first two statements are verified as the corresponding ones in Proposition
5.2. As in the proof of Theorem 4.7, let F2 denote the second Hirzebruch surface. Let
η : F2 −→ C be the minimal desingularization of the quadric cone C, and let Y ⊂ F2 be
the strict transform of X in F2. Then Y ∈ |OF2

(aH + bF )| for some a > 0 and b ≥ 2a.
The assumption that X is smooth at v is equivalent to b = 2a+ 1.

We show v ∈ B if and only if X is a rational normal curve. If X is a rational normal
curve, one has B = X and so v ∈ B. Conversely, assume v ∈ B. Then the map πv |X is
birational onto its image, which happens if and only if a = 1. Indeed, since the strict
transform of X is Y ∈ |OF2

(aH+bF )|, the degree of πv |X coincides with the intersection
number of Y with the ruling F , i.e. deg(πv |X) = (aH + bF ) · F = a. Since a = 1, one
has b = 3 and hence Y is smooth of genus zero. So X is a rational normal curve.

Finally, by definition v ∈ B implies v ∈ A. Suppose v ∈ A, then again πv|X is
birational onto its image, so X is a rational normal curve and hence v ∈ X = B. This
completes the proof of statement (iii). �

Theorem 5.4. Let X ⊂ P3 be an integral and non-degenerate curve with only cuspidal
singularities. The following conditions are equivalent:

(i) B is infinite;
(ii) B = Xreg;
(iii) deg(X) ∈ {3, 4} and if deg(X) = 4, then pa(X) = 1.

Proof. Let d = deg(X). If d ≤ 4, then X is contained in a quadric surface. Proposition
5.1 and Theorem 5.3 show that (iii) implies (ii). It is clear that (ii) implies (i).
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We show that (i) implies (iii). For any o ∈ A, the map πo has degree one and hence
deg(πo(X)) = d− 1. Thus pa(πo(X)) = (d− 2)(d − 3)/2. By assumption, A is infinite.
Since o ∈ Xreg and πo|X is birational onto its image, we have deg(πo(X)) = d− 1. Since
Sing(X) is finite and each singular point of X has Zariski tangent space of dimension
two, for infinitely many o ∈ B, the morphism πo : X −→ πo(X) is a local isomorphism
at each singular point of X. Since πo is injective, we have πo(Xreg) ∩ πo(Sing(X)) = ∅.
Since char(k) = 0, at all points of Xreg, except finitely many, the order of contact of
ToX with X is two. Hence, for infinitely many o ∈ B, πo(o) is a smooth point of πo(X).

By Zariski’s Main Theorem, the morphism πo : X −→ πo(X) is then an isomorphism
for some o ∈ Xreg. Thus pa(X) = pa(πo(X)) = (d− 2)(d − 3)/2.

Recall from Remark 2.2 that Castelnuovo’s bound gives π(d, 3) = m(m − 1) + mε,
where ε ∈ {0, 1} and d = 2m+ 1 + ε and m > 0. So

pa(X) =
(2m + ε− 1)(2m + ε− 2)

2
=

{

(2m− 1)(m− 1), for ε = 0,

m(2m− 1), for ε = 1.

The inequalities (2m− 1)(m− 1) ≤ π(d, 3) and m(2m− 1) ≤ π(d, 3) both imply m = 1
and so d ≤ 4. Therefore, X is a rational normal curve if d = 3, or pa(X) = 1 if
d = 4. �

Remark 5.5. In particular, X is smooth with A = X if and only if X is either a
rational normal curve or a linearly normal elliptic curve.
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