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Abstract

We present a new formulation of the hyperbolic singular value decomposition
(HSVD) for an arbitrary complex (or real) matrix without hyperexchange
matrices and redundant invariant parameters. In our formulation, we use
only the concept of pseudo-unitary (or pseudo-orthogonal) matrices. We
show that computing the HSVD in the general case is reduced to calculation
of eigenvalues, eigenvectors, and generalized eigenvectors of some auxiliary
matrices. The new formulation is more natural and useful for some applica-
tions. It naturally includes the ordinary singular value decomposition.
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1. Introduction

This paper contains two new results. The first result is the presenta-
tion of a new formulation of the HSVD for an arbitrary complex (or real)
matrix (see Theorems 2 or 3) without hyperexchange matrices and redun-
dant invariant parameters. We use only the concept of pseudo-unitary (or
pseudo-orthogonal) matrices. In the standard formulation of the HSVD (see
Theorem 1), the matrix V is hyperexchange with five parameters j, l, t, k,
and s, some of which, as it turns out in this paper, are redundant. We obtain
a new formulation of the HSVD (with three parameters j, l, and t) without
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the use of hyperexchange matrices for the general case. The second result is
the presentation of the relation between the HSVD and the generalized eigen-
value problem. Namely, we prove that computing the HSVD in the general
case is reduced to calculation of eigenvalues, eigenvectors, and generalized
eigenvectors of some auxiliary matrices (see Theorem 4).

The paper is organized as follows. In section 2, we present the well-
known formulation of the HSVD with some remarks. In section 3, we discuss
that replacing hyperexchange matrices by corresponding pseudo-unitary (or
pseudo-orthogonal) matrices in the standard formulation of the HSVD is not
correct for the general case of an arbitrary complex (or real) matrix. However,
this is correct in the particular case of full column rank matrices. In section 4,
we present a new formulation of the HSVD without hyperexchange matrices
and redundant invariant parameters in the general case. In section 5, we
discuss relation between the HSVD and the generalized eigenvalue problem.
Also we show that the new formulation of the HSVD naturally includes
the ordinary singular value decomposition (SVD). The conclusions follow in
section 6.

2. On the standard formulation of the HSVD with some remarks

We denote the identity matrix of size n by I = In = diag(1, . . . , 1) and
the diagonal matrix with +1 appearing p times followed by −1 appearing q

times on the diagonal by J = Jm = diag(Ip,−Iq), p+ q = m. In the current
paper, we give all statements for the complex case. All statements will be
correct if we replace complex matrices by the corresponding real matrices,
the operation of Hermitian conjugation H by the operation of transpose T,
the following unitary-like groups (m = p+ q)

U(n) = {A ∈ C
n×n, AHA = I}, U(p, q) = {A ∈ C

m×m, AHJA = J} (1)

by the corresponding orthogonal-like groups

O(n) = {A ∈ R
n×n, ATA = I}, O(p, q) = {A ∈ R

m×m, ATJA = J}.

One calls the group O(p, q) a pseudo-orthogonal group, an indefinite orthogo-
nal group, or a group of J-orthogonal matrices [6], [8]. There are also various
names of the group U(p, q): a pseudo-unitary group, an indefinite unitary
group, a group of J-unitary matrices, a group of hypernormal matrices [2].

The most general version of the hyperbolic singular value decomposition
(HSVD) is given in [22] by H. Zha.
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Theorem 1 ([22]). Assume J = diag(Ip,−Iq), p+ q = m. For an arbitrary
matrix1 A ∈ Cn×m, there exist matrices U ∈ U(n) and V ∈ Cm×m,

V HJV = Ĵ := diag(−Ij , Ij,−It, Il−t, Is,−Ik−s), (2)

such that

A = UΣV H, Σ =





Ij Ij 0 0
0 0 Dl 0
0 0 0 0



 ∈ R
n×m, (3)

where Dl ∈ Rl×l is a diagonal matrix with all positive diagonal elements,
which are uniquely determined. Here we have

j = rank(A)− rank(AJAH), l = rank(AJAH),

t is the number of negative eigenvalues of the matrix AJAH.

Remark 1. Note that the statement of Theorem 1 contains parameters j,
l, t, k, and s. Prof. H. Zha in his work [22] (see Remark 6) says that there
are four important HSVD parameters j, l, k, s and does not concretize who
k and s are in (2). In our opinion, it is more correct to say about three (not
four) invariants j, l, and t (or, alternatively, j, l, and s), which we mention
in Theorem 1. The numbers k and s are uniquely determined by j, l, and t:

k = m− 2j − l = m− 2rank(A) + rank(AJAH), (4)

s = p− j − l + t = p− rank(A) + t. (5)

Because of the law of inertia the number p of +1 and the number q of −1 in
the matrices J and Ĵ are the same. Using j + l − t+ s = p, we get (5). For
determining k, we have 2j + l + k = m and obtain (4).

Later we will see that a new formulation of the HSVD (Theorems 2 and
3) does not contain parameters k and s. Thus there are three important
HSVD parameters: j, l, and t, which depend on A and J . The numbers j,
l and t with the diagonal elements of the matrix D uniquely determine the
HSVD for fixed p, m, and n. At the same time, the matrices U and V are
not uniquely determined in the HSVD.

1Note that in Theorems 1, 2, and Lemma 1, we use the same notation for the dimension
n×m (not more standard m× n) of a rectangular matrix as in Zha’s work.
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Positive numbers on the diagonal of the matrix Dl (the number of them
equals l) and zeros on the continuation of this diagonal in the matrix Σ
(the number of such zeros equals min(m − 2j, n − j) − l) are called hyper-
bolic singular values. Thus the number of hyperbolic singular values equals
min(m− 2j, n− j) in the general case.

The first formulation of the HSVD was presented by R. Onn, A. O. Stein-
hardt and A. W. Bojanczyk in [12] for the particular casem ≥ n, rank(AJAH) =
rank(A) = n (the notation as in Theorem 1). In this particular case, j = 0
and the matrix Σ is diagonal with all positive diagonal elements. In [13], the
same three authors formulate the statement for a slightly more general case
of arbitrary m and n, rank(AJAH) = rank(A) = min(m,n). In the third
work of the same authors [2], there is a generalization of the HSVD to the
case rank(AJAH) < rank(A). This generalization uses complex entries of the
matrix Σ. H. Zha [22] indicated that this generalization seems rather unnatu-
ral and presented another generalization using only real entries of the matrix
Σ. We discuss this generalization above (see Theorem 1). B. C. Levy [10]
presented the statement of Zha’s result in another form using another proof.
At the same time, Levy’s statement is weaker than Zha’s statement: there
are additional arbitrary diagonal matrices instead of the identity matrices Ij
in the matrix Σ; there is no explicit form of the matrix Ĵ (like (2) in Theorem
1); only the case m ≥ n is considered. Note interesting results of S. Hassi
[7], B. N. Parlett [14], and V. Šego [17], [16] on other generalizations of SVD
to the hyperbolic case. In this paper, we give a generalization of Theorem 1
without using matrices of type (2), which are called hyperexchange matrices.

3. On hyperexchange matrices and the HSVD

In [12], a complex matrix A with the condition

AHJA = Ĵ , (6)

where J = Jm = diag(Ip,−Iq), p + q = m, and Ĵ = Ĵm is a diagonal
matrix with entries ±1 in some order, is called a hyperexchange matrix2.

2One can find another definition of a hyperexchange matrix: AJAH = Ĵ (see [10]).
The second definition is not equivalent to the first one (6). Multiplying both sides of (6)
on the left by AĴ , and on the right by A−1J , we get AĴAH = J , which differs from the
second definition. Note that the matrix B = A−1 satisfies BJBH = Ĵ .
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In the particular case J = Ĵ , A becomes a J-unitary matrix AHJA = J

(or, equivalently, AJAH = J). J-unitary matrices are more natural and
useful for different applications. In the next section, we give a generalization
of Theorem 1 using only J-unitary matrices, without using hyperexchange
matrices. Let us note the following fact.

Lemma 1. If we replace V HJV = Ĵ by V HJV = J in Theorem 1, then
the statement of Theorem 1 will not be correct in the general case. In other
words, we can not change the condition for matrix V from hyperexchange to
J-unitary in the formulation of Theorem 1 in the general case.

Proof. Let us give a counterexample for the real case A ∈ Rn×m:

A1×2 =
(
0 1

)
, J = diag(1,−1), n = 1, m = 2.

We have rank(A) = 1 and rank(AJAT) = 1. Let us prove that there are no
matrices D, U , and V of the following form

D =
(
d 0

)
∈ R

1×2, U =
(
u
)
∈ R

1×1, UTU = 1,

V =

(
v11 v12
v21 v22

)

∈ R
2×2, V TJV = J

such that A = UDV T.
The condition V TJV = J is equivalent to

v211 = 1 + v221, v212 = 1 + v222, v11v12 = v21v22.

We obtain
(
0 1

)
=
(
u
) (

d 0
)
(

v11 v21
v12 v22

)

,

i.e. udv11 = 0 and udv21 = 1. Using d 6= 0 and u 6= 0, we get v11 = 0, which
is a contradiction to v211 = 1 + v221. �
Remark 2. If we add condition that An×m is a full column rank matrix (we
have also n ≥ m and j = 0 in this case) to the formulation of Theorem 1,
then we can replace condition V HJV = Ĵ by V HJV = J and the statement
of the theorem will be correct. This particular case is usually considered
in the literature (see, for example, [21, 11, 15]). In this section, we try to
distinguish the general case and the particular cases for the convenience of
the reader.
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The counterexample above shows us that we must use the concept of
hyperexchange matrices in the formulation of Theorem 1. However, in the
next section, we give a generalization of Theorem 1 without using the concept
of hyperexchange matrices for the general case.

4. A new formulation of the HSVD

Theorem 2. Assume J = diag(Ip,−Iq), p+q = m. For an arbitrary matrix
A ∈ Cn×m, there exist U ∈ U(n) and V ∈ U(p, q) such that

A = UΣV H, (7)

where

Σ =

︸ ︷︷ ︸

p

︸ ︷︷ ︸

q







Pl−t 0 0 0 0 0
0 0 0 Qt 0 0
0 Ij 0 0 Ij 0
0 0 0 0 0 0







∈ R
n×m, (8)

where the first block has p columns and the second block has q columns, Pl−t

and Qt are diagonal matrices of corresponding dimensions l − t and t with
all positive uniquely determined diagonal elements (up to a permutation).

Moreover, choosing U , one can swap rows of the matrix Σ. Choosing V ,
one can swap columns in individual blocks but not across blocks. Thus we can
always arrange diagonal elements of the matrices Pl−t and Qt in decreasing
(or ascending) order3.

Here we have

j = rank(A)− rank(AJAH), l = rank(AJAH),

and t is the number of negative eigenvalues of the matrix AJAH (note that
l − t is the number of positive eigenvalues of the matrix AJAH).

Proof. Let us use the statement of Theorem 1 with hyperexchange matrix
V satisfying

V HJV = Ĵ = diag(−Ij , Ij,−It, Il−t, Is,−Ik−s). (9)

3Alternatively, we can change the order of the first l rows of the matrix Σ and obtain
all nonzero elements of the first l rows of the matrix Σ in decreasing (or ascending) order.
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It is not difficult to show that hyperexchange matrices and J-unitary matrices
are closely connected: for an arbitrary hyperexchange matrix V , there exists
a permutation matrix ST = S−1 such that F := V S is J-unitary.

From the law of inertia, it follows that matrices J and Ĵ have the same
numbers of 1 and −1 on the diagonal. It means that these two matrices
are connected with the aid of some permutation matrix S: Ĵ = SJST. Let
us remind the reader that a permutation matrix has exactly one nonzero
element, equal to 1, in each column and in each row. A permutation matrix
is orthogonal STS = I. We get SJST = V HJV , i.e. (V S)HJ(V S) = J and
F = V S is J-unitary.

From A = UΣV H (3), we obtain A = UΣSFH. Multiplying the matrix Σ
on the right by S, we change the order of its columns. Using STĴS = J and
the explicit form of the matrix Ĵ (9), we get the explicit form of the matrix
S:

S =

︸ ︷︷ ︸

p

︸ ︷︷ ︸

q











0 0 0 0 Ij 0
0 Ij 0 0 0 0
0 0 0 It 0 0

Il−t 0 0 0 0 0
0 0 Is 0 0 0
0 0 0 0 0 Ik−s











.

Then we calculate the explicit form of the matrix ΣS, where Σ is from (3):

ΣS =

︸ ︷︷ ︸

p

︸ ︷︷ ︸

q







0 Ij 0 0 Ij 0
0 0 0 Qt 0 0

Pl−t 0 0 0 0 0
0 0 0 0 0 0







, (10)

where Dl = diag(Qt, Pl−t).
We can multiply the matrix (10) by an arbitrary permutation matrix S ′

on the left S ′Σ because S ′ ∈ O(n). Thus we can swap rows of the matrix (10).
We can multiply the matrix (10) on the right by an arbitrary permutation
matrix of the form (

S1 0
0 S2

)

∈ O(p, q),

where S1 and S2 are arbitrary permutation matrices of order p and q respec-
tively. Thus we can swap columns in individual blocks but not across blocks.
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Finally, we obtain the explicit form of the new matrix Σ (8), where Pl−t

and Qt are diagonal matrices with all positive uniquely determined diagonal
elements in decreasing (or ascending) order. �

Note that there are no indices k and s in the formulation of Theorem 2
(but they are in the formulation of Theorem 1, see Remark 1). These indices
do not have any important information on the HSVD.

Note that we can change V H to V in (7), because if V ∈ U(p, q), then
V H ∈ U(p, q). Since analogous reasoning is not correct for hyperexchange
matrices, we can not do the same in (3).

For the convenience of the reader, let us give a reformulation of Theorem
2 to the case when a J-unitary matrix is on the left side and a unitary matrix
is on the right side (as in [10] but now without using hyperexchange matrices
and for the general case).

Theorem 3. Assume J = diag(Ip,−Iq), p+q = m. For an arbitrary matrix
B ∈ Cm×n, there exist U0 ∈ U(n) and V0 ∈ U(p, q) such that

V H
0 BU0 = Σ, (11)

where

Σ =











Pl−t 0 0 0
0 0 Ij 0
0 0 0 0
0 Qt 0 0
0 0 Ij 0
0 0 0 0
















p






q

∈ R
m×n, (12)

where the first block has p rows and the second block has q rows, Pl−t and Qt

are diagonal matrices of corresponding dimensions l−t and t with all positive
uniquely determined diagonal elements (up to a permutation).

Moreover, choosing U0, one can swap columns of the matrix Σ. Choosing
V0, one can swap rows in individual blocks but not across blocks. Thus we can
always arrange diagonal elements of the matrices Pl−t and Qt in decreasing
(or ascending) order4.

4Alternatively, we can change the order of the first l columns of the matrix Σ and obtain
all nonzero elements of the first l columns of the matrix Σ in decreasing (or ascending)
order.
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Here we have

j = rank(B)− rank(BHJB), l = rank(BHJB),

and t is the number of negative eigenvalues of the matrix BHJB (note that
l − t is the number of positive eigenvalues of the matrix BHJB).

Proof. Using A = UΣV H (3), we get AH = V ΣTUH. Multiplying both sides
on the left by V −1, and on the right by U , we get V −1AHU = ΣT. Using
the notation B = AH, V H

0 = V −1 ∈ U(p, q), U0 = U ∈ U(n), we obtain the
statement of the theorem. �

5. Computing the HSVD

The new formulation of the HSVD allows us to compute the HSVD in the
general case. In Theorem 4, we show that computing the HSVD is reduced
to calculation of eigenvalues, eigenvectors, and generalized eigenvectors of
some auxiliary matrices.

In this section, we use the formulation of the HSVD from Theorem 3.
For arbitrary matrix B ∈ Cm×n, we can easily find matrices V0 ∈ U(p, q),
U0 ∈ U(n), Σ ∈ R

m×n of the form (12) such that V0, B, and U0 satisfy (11).

Theorem 4. For the matrices B, V0, U0, and Σ from Theorem 3, we have
the following equations:

(BHJB)U0 = U0(Σ
TJΣ), (JBBH)V0 = V0(JΣΣ

T). (13)

The hyperbolic singular values of the matrix B are square roots of the modules
of the eigenvalues of the matrix BHJB. The columns of the matrix U0 are
corresponding eigenvectors of the matrix BHJB. The columns of the matrix
V0 are corresponding eigenvectors of the matrix JBBH (in the case j = 0), or
corresponding eigenvectors and generalized eigenvectors of the matrix JBBH

(in the case j 6= 0).

Proof. From (11), we obtain

UH
0 B

HV0 = ΣT. (14)

Multiplying on the left by U0, and on the right by JΣ, we get

BHV0JΣ = U0Σ
TJΣ. (15)
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Using (15) and (11), we obtain the first equation from (13).
Multiplying (11) on the left by V0J , and on the right by ΣT, we get

JBU0Σ
T = V0JΣΣ

T. (16)

Using (16) and (14), we obtain the second equation from (13).
If we denote

Pl−t = diag(p1, . . . , pl−t), Qt = diag(q1, . . . , qt),

then it can be easily verified that

ΣTJΣ = diag(P 2
l−t,−Q2

t , 0) = diag(p21, . . . , p
2
l−t,−q21 , . . . ,−q2t , 0, . . . , 0).

From this equation and the first equation (13), it follows that hyperbolic
singular values of the matrix B are square roots of the modules of the eigen-
values of the matrix BHJB. The columns of the matrix U0 are eigenvectors
of the matrix BHJB.

We have

JΣΣT =

︸ ︷︷ ︸

p

︸ ︷︷ ︸

q











P 2
l−t 0 0 0 0 0
0 Ij 0 0 Ij 0
0 0 0 0 0 0
0 0 0 −Q2

t 0 0
0 −Ij 0 0 −Ij 0
0 0 0 0 0 0
















p






q

.

Using this equation and the second equation (13), we can find the matrix
V0. In the case j = 0, the columns of the matrix V0 are eigenvectors of
the matrix JBBH. In the case j 6= 0, the columns of the matrix V0, which
correspond to the blocks P 2, Q2, and zero blocks, are eigenvectors of the
matrix JBBH. The remaining columns vi, wi, i = 1, . . . , j of the matrix V0,
which correspond to the two blocks Ij, satisfy the conditions

(JBBH)vi = (JBBH)wi = vi − wi, i = 1, . . . , j,

and therefore

(JBBH)(vi − wi) = 0, (JBBH)2vi = (JBBH)2wi = 0, i = 1, . . . , j,
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i.e. vi, wi, i = 1, . . . , j are generalized eigenvectors of the matrix JBBH. �
Example 1. (j = 0) Let us consider the following example

B =

(
1
2

)

, J = diag(1,−1), m = 2, p = q = 1, n = 1.

In this case, we have

BTJB = −3, rank(B) = rank(BTJB) = 1, j = 0, l = 1.

Since eigenvalue of the matrix BTJB equals −3, it follows that t = 1 and the
hyperbolic singular value of the matrix B is

√
3. We can choose the following

matrix U0 ∈ O(1), the matrix Σ is determined uniquely:

Σ =

(
0√
3

)

, U0 =
(
1
)
.

Using (JBBT)V0 = V0(JΣΣ
T), we get

(
1 2
−2 −4

)

V0 = V0

(
0 0
0 −3

)

.

Note that 0 and −3 are eigenvalues of the matrix JBBT. Calculating eigen-
vectors of the matrix JBBT and choosing correct multipliers (taking into
account V T

0 JV0 = J), we get

V0 =

(
−2√
3

−1√
3

1√
3

2√
3

)

∈ O(1, 1).

Finally, we have

V T
0 BU0 = Σ,

(
−2√
3

−1√
3

1√
3

2√
3

)T(
1
2

)
(
1
)
=

(
0√
3

)

. (17)

Note that the matrices V0 and U0 in (17) are not determined uniquely. For
example, we can change the signs of these matrices at the same time.

Example 2. (j 6= 0) Let us consider the following example

B =

(
2
2

)

, J = diag(1,−1), m = 2, p = q = 1, n = 1.

11



In this case, we have

BTJB = 0, l = rank(BTJB) = 0, j = rank(B)− rank(BTJB) = 1.

We have no hyperbolic singular values in this case. We can choose the fol-
lowing matrix U0 ∈ O(1), the matrix Σ is determined uniquely:

Σ =

(
1
1

)

, U0 =
(
1
)
.

We calculate the matrix BΣΣT and its eigenvector a1:

JΣΣT =

(
2 2
−2 −2

)

, a1 :=

(
1
−1

)

.

Calculating corresponding generalized eigenvectors v1 and w1

(JBBT)v1 = (JBBT)w1 = a1

and choosing correct multipliers (taking into account V T
0 JV0 = J), we get

v1 =

(
5

4

−3

4

)

, w1 =

(
−3

4
5

4

)

, V0 =

(
5

4
−3

4

−3

4

5

4

)

∈ O(1, 1).

Finally, we have

V T
0 BU0 = Σ,

(
5

4
−3

4

−3

4

5

4

)T(
2
2

)
(
1
)
=

(
1
1

)

.

The matrices V0 and U0 are not determined uniquely.

Remark 3. In the case J = I (p = m, q = 0), we obtain j = 0, t = 0,
and the ordinary singular value decomposition [4], [5] as the particular case
of Theorem 3 with V0 ∈ U(m), U0 ∈ U(n). In this case, the matrix Σ is
diagonal with all nonnegative diagonal elements. In this case, we obtain
from (13) the well-known formulas

(BHB)U0 = U0(Σ
TΣ), (BBH)V0 = V0(ΣΣ

T)

for finding Σ, U0, and V0. In this case, singular values of the matrix B are
square roots of the eigenvalues of the positive-definite Hermitian matrices
BHB and BBH, the columns of the matrix V0 are eigenvectors of the matrix
BBH, and the columns of the matrix U0 are eigenvectors of the matrix BHB.
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6. Conclusions

In this paper, we present a new formulation of the HSVD for an arbitrary
complex (or real) matrix without hyperexchange matrices and redundant
invariant parameters. We use only the concept of pseudo-unitary (or pseudo-
orthogonal) matrices. The expressions (8) and (12) can be regarded as new
useful canonical forms of an arbitrary complex (or real) matrix. We show that
computing the HSVD is reduced to calculation of eigenvalues, eigenvectors
and generalized eigenvectors of some auxiliary matrices. The new formulation
of the HSVD naturally includes the ordinary SVD.

In the new formulation, we have two diagonal matrices P and Q in (8)
instead of one diagonal matrix D in (3). This fact has physical (or geometri-
cal) meaning. The matrix A may describe some tensor field, the matrices U
and V may describe some (coordinate, gauge) transformations. The matrix
Σ describes the same tensor field, but in some new coordinate system and
with a new gauge fixing. The blocks P and Q of the matrix Σ describe the
contributions of the tensor field to (using physical terminology for the case
p = 1 and q = 3) “time” (the first p) and “space” (the last q) coordinates.
Such contributions depend on the number of positive l − t and negative t

eigenvalues of the matrix AJAH respectively. From the statement of The-
orem 1, it is not clear why there are exactly two blocks Ij in (3) in the
degenerate case j 6= 0. From the new formulation (Theorem 2 or 3), we see
the meaning of this fact: each of two blocks Ij carries information about
degeneration in each of two (“space” and “time”) blocks of the matrix Σ.
We use results of this paper to generalize results on Yang-Mills equations in
Euclidean space Rn [18] to the case of pseudo-Euclidean space Rp,q [19] of an
arbitrary dimension p+ q. We expect further use of the HSVD in computer
science [1], [15], engineering [9], image and signal processing [3], [13], and
physics [20].
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