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On Cherny’s results in infinite dimensions: A theorem dual to

Yamada-Watanabe

Marco Rehmeier
∗

Abstract

We prove that joint uniqueness in law and the existence of a strong solution imply pathwise
uniqueness for variational solutions to stochastic partial differential equations of the form

dXt = b(t,X)dt+ σ(t,X)dWt, t ≥ 0,

and show that for such equations uniqueness in law is equivalent to joint uniqueness in law. Here
W is a cylindrical Wiener process in a separable Hilbert space U and the equation is considered in
a Gelfand triple V ⊆ H ⊆ E, where H is some separable (infinite-dimensional) Hilbert space. This
generalizes the corresponding results of A. Cherny for the case of finite-dimensional equations.

Keywords: Stochastic differential equations; Yamada-Watanabe theorem; pathwise uniqueness; unique-
ness in law; joint uniqueness in law; variational solutions
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1 Introduction

The connection between existence and uniqueness of weak and strong solutions is fundamental to
the research area of stochastic differential equations. A starting point was the celebrated paper [14]
by Yamada and Watanabe in 1971, in which the authors prove that weak existence and pathwise
uniqueness yield the existence of a unique strong solution for finite-dimensional stochastic differential
equations. Later several authors worked on a dual statement of this seminal result, i.e. on the
implication

Joint uniqueness in law + existence of strong solution ⇒ pathwise uniqueness. (Dual)

A proof of (Dual) can be found in the works of Jacod ([5]) and Engelbert ([4]). Unfortunately, verifying
joint uniqueness in law turns out to be rather difficult in applications. In 2001, Cherny contributed
a substantial improvement to this dual result by showing the equivalence of uniqueness in law and
joint uniqueness in law for finite-dimensional equations in [2]. This striking result provides further
structural insight into the interplay of the aforementioned notions of existence and uniqueness.

Recently the study of stochastic partial differential equations, which are necessarily infinite-dimensional
equations, attracted much attention and nurtured extensive research activity in this direction. In [13],
Röckner, Schmuland and Zhang extended the classical Yamada-Watanabe theorem to the framework
of variational solutions for infinite-dimensional equations in Hilbert spaces. Naturally this brings up
two questions, namely “Does the dual result (Dual) also hold in this infinite-dimensional framework?”
and “Can Cherny’s result on the equivalence of uniqueness and joint uniqueness in law be generalized
to this setting?”.
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In this paper we give affirmative answers to both question: We prove (Dual) in the framework of
the variational approach for solutions to stochastic partial differential equations of the form

dXt = b(t,X)dt+ σ(t,X)dWt, t ≥ 0,

in a (infinite-dimensional) Gelfand triple V ⊆ H ⊆ E with a separable Hilbert space H , where W is
a cylindrical Wiener process in another separable Hilbert space U . Further we prove the equivalence
of uniqueness and joint uniqueness in law for deterministic initial conditions to such equations. We
point out that both statements have also been stated in [12] by Qiao. For a comparison to this work,
see Remark 3.6.

We stress that (Dual) and the equivalence of uniqueness and joint uniqueness in law have also been
discussed for other types of equations and notions of solutions: Ondrejat provided affirmative answers
to both questions in the setting of mild solutions for Banach space-valued equations in [11]. See Re-
mark 3.5 for a more detailed comparison to his work. In [8], Kurtz deals with a more general type of
stochastic equations and in particular considers (Dual) in this more general framework. However, the
equivalence of uniqueness and joint uniqueness in law is not discussed in his setting.

This paper is organized as follows: In the second section we clarify notation and introduce the general
framework, including the relevant notions of existence and uniqueness of solutions. The third section
contains both main theorems. We present an outline of both proofs in order to render a better un-
derstanding of the detailed proofs later on. An explanation on why we have to restrict the second
main theorem to deterministic initial conditions is also included. The final section contains the proofs
of the main results as well as necessary preparations. Appendix A contains further preparations and,
for the convenience of readers, who are not familiar with stochastic integration in detail, Appendix B
reviews stochastic integration with respect to Hilbert space-valued martingales, since this will be of
great importance within our proofs.

2 Preliminaries

2.1 Notation

The set of all probability measures on a σ-algebra A will be denoted by M+
1 (A). Given a measure

space (Ω,F ,P), the σ-algebra F
P

denotes the completion of F with respect to P. For I = [0, T ] for
T > 0 or I = R+ we call (Ω,F , (Ft)t∈I ,P) a stochastic basis, if F is complete with respect to P and
(Ft)t∈I is a right-continuous filtration such that every zero set is contained in F0. In this case we
denote the corresponding predictable σ-algebra by PT (if I = [0, T ]) or P∞ (if I = R+). We say that
a process X = (Xt)t∈I on a stochastic basis is (Ft)-predictable, if X is predictable and we want to
stress the dependence on the underlying filtration (Ft)t∈I .

Given two separable Hilbert spaces U and H , Lin(U,H) denotes the set of linear maps between U
and H and L(U,H) is the subset of all such operators, which are bounded and defined on the whole of
U . For the adjoint of A ∈ L(U,H) we write A∗. L2(U,H) is the set of all Hilbert-Schmidt-operators, i.e.

the subset of elements A of L(U,H) such that ||A||L2(U,H) :=
(∑∞

k=1 ||Aek||
2
H

) 1
2 <∞ for some (hence

every) orthonormal basis (ek)k∈N of U . Equipped with the inner product (A,B) 7→
∑∞

k=1〈Aek, Bek〉H ,
L2(U,H) becomes a separable Hilbert space. The subset L1(U) of L(U) denotes the set of all nuclear
operators on U and L+

1 (U) is the set of all nuclear operators, which are symmetric and non-negative.
Every A ∈ L1(U) has finite trace (i.e. tr(A) :=

∑∞
k=1〈Aek, ek〉U < +∞) and A ∈ L+

1 (U) if and only if
A is symmetric, non-negative and of finite trace.
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2.2 Basic Setting

Large parts of the framework presented in this subsection are as in Appendix E of [9]. Let (H, 〈· , ·〉H)
and (U, 〈·, ·〉U ) be real separable (infinite-dimensional) Hilbert spaces with norms || · ||H and || · ||U ,
respectively. Further let V and E be real separable Banach spaces with norms ||·||V , ||·||E , respectively,
such that V ⊆ H ⊆ E continuously and densely. Then Kuratowski’s theorem [7, p.487] implies

V ∈ B(H), B(V ) = B(H) ∩ V and H ∈ B(E), B(H) = B(E) ∩H.

For x ∈ H the map

x 7→ ||x||V :=

{

||x||V , x ∈ V

+∞, x ∈ H\V

is B(H)-measurable and lower semicontinuous on H . Thus the path space

B :=

{

ω ∈ C(R+;H)
∣
∣

∫ T

0

||ω(s)||V ds <∞ for all T ≥ 0

}

is well-defined. We define a filtration on B by Bt(B) := σ(πs|0 ≤ s ≤ t) for any t ≥ 0. Further
(B+

t (B))t≥0 denotes the corresponding right-continuous filtration. Here πt : B → H is the canonical
projection, i.e. πt(ω) = ω(t) for ω ∈ B. Note that (B, ρ) is a complete separable metric space, with
metric ρ defined through

ρ(ω1, ω2) :=

∞∑

k=1

2−k

[(∫ k

0

||ω2(s)− ω1(s)||V ds+ sup
t∈[0,k]

||ω2(t)− ω1(t)||H

)

∧ 1

]

.

We denote the Borel σ-algebra of (B, ρ) by B(B).

The stochastic differential equation under investigation

We consider stochastic differential equations of the form

dXt = b(t,X)dt+ σ(t,X)dWt, t ≥ 0, (1)

which is a formal notation for the integral equation Xt = X0 +
∫ t

0
b(s,X)ds+

∫ t

0
σ(s,X)dWs, t ≥ 0,

where the first integral is a pathwise E-valued Bochner-integral and the second one is an H-valued
stochastic Itô-integral. We assume that b : R+ × B → E , σ : R+ × B → L2(U,H) and W = (Wt)t≥0

fulfill the following properties.

Assumption 1.

(i) b is B(R+)⊗ B(B)/B(E)-measurable and b(t, ·) is Bt(B)/B(E)-measurable for all t ≥ 0,

(ii) σ is B(R+)⊗ B(B)/B(L2(U,H))-measurable and σ(t, ·) is Bt(B)/B(L2(U,H))-measurable for all
t ≥ 0,

(iii) W is an (Ft)-R
∞-Wiener process on U with covariance idU on a stochastic basis (Ω,F , (Ft)t≥0,P),

i.e. formally Wt =
∑∞

k=1 βk(t)ek, where (ek)k∈N is an orthonormal basis of U and (βk)k∈N is a
family of independent real-valued (Ft)-Brownian motions on Ω. We also write W = (βk)k∈N and
call W a standard R∞-Wiener process.

The stochastic integral in (1) is defined through
∫ t

0
σ(s,X)dWs :=

∫ t

0
σ(s,X) ◦ J−1dW̄s. Here J :

U → Ū is a one-to-one Hilbert-Schmidt-map with values in a separable Hilbert space (Ū , 〈·, ·〉Ū ) and
W̄t :=

∑∞
k=1 βk(t)Jek, t ≥ 0, is the cylindrical Wiener process associated to W . The orthonormal

basis (ek)k∈N is the same as in Assumption 1 above, which we fix from now on. Such J and Ū always
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exist and the definition of the stochastic integral does not depend on the choice of J or Ū . Further W̄
is a Q̄-Wiener process with Q̄ := JJ∗ ∈ L+

1 (Ū). We fix such J , Ū and Q̄ from now on. For technical
details about stochastic integration with respect to cylindrical Wiener processes we refer to [9, Section
2.5.].

The paths of W̄ are elements of the space W0 := {ω ∈ C(R+, Ū)
∣
∣ω(0) = 0}. Define a metric on

W0 through

ζ(ω1, ω2) :=

∞∑

k=1

2−k
(
||ω1 − ω2||L∞([0,k];Ū) ∧ 1

)

and observe that (W0, ζ) is a complete separable metric space. We define a filtration on (W0,B(W0))
through Bt(W0) := σ(πs|0 ≤ s ≤ t), where as before πt denotes the canonical projection. Note
B(W0) = σ(πt|t ≥ 0) and that this implies the F/B(W0)-measurability of W̄ : Ω → W0, ω 7→
(W̄ (ω)t)t≥0 due to the (Ft)-adaptedness of (W̄t)t≥0.

Strong, weak solutions and notions of uniqueness

We now present the relevant notions of solutions and uniqueness for our considerations and clarify the
relations between them.

Definition 2.1. A pair (X,W ) is called a weak solution to Eq. (1), if X = (Xt)t≥0 is an (Ft)-
adapted process with paths in B and W is a standard (Ft)-R

∞-Wiener process on some stochastic
basis (Ω,F , (Ft)t≥0,P) such that the following holds true:

(i)
∫ T

0
||b(s,X)||E ds+

∫ T

0
||σ(s,X)||2L2(U,H)ds < +∞ P-a.s. for every T ≥ 0.

(ii) Xt = X0 +
∫ t

0
b(s,X)ds+

∫ t

0
σ(s,X)dWs for every t ≥ 0 P-a.s. as an equation on E.

We call X a solution process of Eq. (1) or simply solution. Note that such X is F/B(B)-measurable.

Definition 2.2. (i) Weak uniqueness (also uniqueness in law) holds for Eq. (1), if for any two
solutions (X,W 1) and (Y,W 2) on (possibly different) stochastic bases (Ω,F , (Ft)t≥0,P) and
(Ω′,F ′, (F ′

t)t≥0,P
′), respectively,

P ◦X−1
0 = P′ ◦ Y −1

0 (2)

implies P ◦X−1 = P′ ◦ Y −1 as measures on (B,B(B)).

(ii) Weak uniqueness given µ ∈ M+
1 (B(H)) holds, if the implication in (i) is at least valid for all

weak solutions (X,W 1), (Y,W 2) with initial distribution µ.

(iii) Eq. (1) has joint uniqueness in law (also joint weak uniqueness), if in the setting of (i) (2) implies
P◦ (X, W̄ 1)−1 = P′ ◦ (Y, W̄ 2)−1 as measures on B(B)⊗B(W0). The definition of joint uniqueness
in law given µ ∈ M+

1 (B(H)) is analogue to (ii).

(iv) δ-weak uniqueness and δ-joint weak uniqueness hold, if the respective implications in (i) and (iii)
hold at least when (2) is restricted to

P ◦X−1
0 = δx = P′ ◦ Y −1

0

for every x ∈ H , i.e. to arbitrary deterministic initial conditions. δx denotes the Dirac-measure
in x.

Definition 2.3. (i) Pathwise uniqueness holds for Eq. (1), if for any two weak solutions (X,W ),
(Y,W ) on a common stochastic basis (Ω,F , (Ft)t≥0,P) with a common standard R∞-Wiener
process W , X0 = Y0 P-a.s. implies Xt = Yt for all t ≥ 0 P-a.s.
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(ii) For µ ∈ M+
1 (B(H)), pathwise uniqueness given µ means that the implication in (i) holds at least

for all weak solutions as in (i), which additionally satisfy P ◦X−1
0 = µ = P ◦ Y −1

0 .

(iii) δ-pathwise uniqueness holds, if the implication in (i) holds at least for all solutions X and Y
with X0 = x = Y0 for any x ∈ H .

In order to define the notion of a strong solution, let Ê denote the set of all maps F : H ×W0 → B

such that for each µ ∈ M+
1 (B(H)) there is a B(H)⊗ B(W0)

µ⊗P
Q̄

/B(B)-measurable map Fµ such that
for µ-a.a. h ∈ H

F (h, ω) = Fµ(h, ω) for P
Q̄-a.a. ω ∈ W0

holds. PQ̄ denotes the distribution of the Q̄-Wiener process W̄ on (W0,B(W0)). Obviously each Fµ is

uniquely determined up to a µ⊗ PQ̄-zero set.

Definition 2.4. Eq. (1) has a strong solution, if there exists F ∈ Ê such that for all h ∈ H ,

ω 7→ F (h, ω) is Bt(W0)
P
Q̄

/Bt(B)-measurable for every t ≥ 0 and for every standard (Ft)-R
∞-Wiener

process W on any stochastic basis (Ω,F , (Ft)t≥0,P) and any F0/B(H)-measurable map ξ : Ω → H ,
the B-valued process X := FP◦ξ−1(ξ, W̄ ) is such that (X,W ) is a weak solution to Eq. (1) with X0 = ξ
P-a.s. We will conventionally call F the strong solution.

3 Main Results

We present the two main theorems of this paper. We give outlines of their proofs and point out why
we have to restrict the second theorem to deterministic initial conditions. The sketch of a simple proof
for a very special case of the second theorem is included as well in order to demonstrate the idea we
follow for the general version. We assume the framework of the previous section to be in force.

Theorem 3.1. Consider the stochastic evolution equation

Xt = X0 +

∫ t

0

b(s,X)ds+

∫ t

0

σ(s,X)dWs, t ≥ 0,

where we assume that b, σ and W fulfill Assumption 1. If this equation has a strong solution and joint
uniqueness in law given µ holds for some µ ∈ M+

1 (B(H)), then pathwise uniqueness given µ holds
as well. In particular, the existence of a strong solution and joint uniqueness in law imply pathwise
uniqueness.

Theorem 3.2. Consider the stochastic evolution equation

Xt = X0 +

∫ t

0

b(s,X)ds+

∫ t

0

σ(s,X)dWs, t ≥ 0, (3)

where we assume that b, σ and W fulfill Assumption 1. For any x ∈ H, weak uniqueness given δx
is equivalent to joint uniqueness in law given δx. In particular, δ-uniqueness in law is equivalent to
δ-joint uniqueness in law.

In particular, we obtain the following corollary, which we interpret as a dual statement to the
Yamada-Watanabe theorem.

Corollary 3.3. Assume b, σ and W fulfill Assumption 1. Then for the stochastic differential equation
above the existence of a strong solution and δ-weak uniqueness imply δ-pathwise uniqueness.

Scheme of proof of Theorem 3.1:
The proof is similar to the one presented by Cherny for the finite-dimensional case in [2, Thm.
3.2]. Assume there exists a strong solution F and joint uniqueness in law given µ holds for some
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µ ∈ M+
1 (B(H)). We want to prove that every weak solution is given by the strong solution F .

The main idea is to consider the regular conditional distribution of Z with respect to a suitable
sub-σ-algebra of F , namely the P-completion of σ(ξ0, W̄ ), which in the proof will be called GW̄

0 . We
will prove that the regular conditional distribution of X with respect to the same σ-algebra coincides
with that of Z. This step will heavily rely on the assumption on joint uniqueness in law given µ. From
here the definition of regular conditional distributions will imply E[g(X)|GW̄

0 ] = g(Z) for any R-valued,
bounded, measurable g. By joint uniqueness in law given µ, we will easily derive g(X) = g(Z) for all
g as above and from there the result is immediate. The “in particular”-statement of the theorem then
follows directly, because joint uniqueness in law is, by definition, equivalent to joint uniqueness in law
given µ for all µ ∈ M+

1 (B(H).

Scheme of proof of Theorem 3.2:
First of all we would like to point out that the proof would be straightforward, if we assumed the
operator σ(t, y) to be one-to-one for all (t, y) ∈ [0,+∞[×B. Indeed, in this case σ−1(t, y) is well-

defined on Imσ(t, y) and for a weak solution (X,W ) we can, setting Nt := Xt − X0 −
∫ t

0 b(s,X)ds

(=
∫ t

0 σ(s,X)dWs P-a.s.) for t ≥ 0, consider the equation

∫ t

0

Jσ(s,X)−1dNs =

∫ t

0

Jσ(s,X)−1d
(
∫ s

0

σ(r,X)dWr

)
=

∫ t

0

JJ−1dW̄s = W̄t.

Here we used Proposition B.21 (ii) from Appendix B to obtain the well-definedness of the second (hence
also the first) term and to deduce the equality of the second and third integral. Thus we have expressed
the Wiener process as a measurable functional of the solution X , which yields the desired statement.
Although this simple reasoning does not work in the general case we consider, one will recognize the
same idea in our proof below. For the general case we basically follow the ideas of Theorem 3.1. in
[2] and Theorem 1.6 in [12]. The majority of techniques used for the finite-dimensional case has to be
modified for our infinite-dimensional variational approach.

Fix a deterministic initial condition x ∈ H for which uniqueness in law given δx holds and for which
Eq. (3) has at least one weak solution. We prove that P◦ (X, W̄ )−1 is uniquely determined by P◦X−1

for every weak solution (X, W̄ ) with X0 = x P-a.s. Since we assume uniqueness in law given δx, this
implies the desired statement. Roughly speaking, we will express the Wiener process W̄ as a functional
of X and a process independent of X . We will arrange the proof in the following steps:

(i) Let (X,W ) be a weak solution on a stochastic basis (Ω,F , (Ft)t≥0,P) such that X0 = x P-a.s.,
let (Ω′,F ′, (F ′

t)t≥0,P
′) be a second stochastic basis and W 1, W 2 two independent R∞-Wiener

processes on it. Consider the product space Ω̃ := Ω × Ω′ with P̃ := P ⊗ P′ and the obvious σ-
algebra and filtration such that we obtain a stochastic basis. We define the processes X̃, W̃ , W̃ 1

and W̃ 2 on this product space in an obvious way via projections and check that (X̃, W̃ ) is also
a weak solution subject to the initial condition x.

(ii) For a linear subspace V ⊆ U , let prV denote the orthogonal projection onto V . We define the
processes φ and ψ : R+ × B → L(U) via φ(t, y) := prkerσ(t,y)⊥ and ψ(t, y) := prkerσ(t,y), which

we will use to split up the integral ¯̃Wt =
∫ t

0 J ◦ idU ◦ J−1d ¯̃Ws later on. We further introduce the
processes

V̄ 1
t :=

∫ t

0

Jφ(s, X̃) dW̃s +

∫ t

0

Jψ(s, X̃) dW̃ 1
s and V̄ 2

t :=

∫ t

0

Jφ(s, X̃) dW̃ 2
s +

∫ t

0

Jψ(s, X̃) dW̃s

and verify that these are independent Wiener processes on Ω̃, for which we will need a Hilbert
space version of Lévy’s characterization of Brownian motion. Next we show that the pair (X̃, V 1)
is a weak solution to Eq. (3).
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(iii) In this crucial step we prove the independence of X̃ and V̄ 2. We will heavily use Lemma 4.4 as
well as the assumption on uniqueness in law given δx. More precisely, we will even show that X̃
is independent of F̃0 ∨ σ(V̄ 2

t |t ≥ 0).

(iv) We introduce the pseudo inverse of the diffusion term σ, i.e. we define χ(t, y) : Imσ(t, y) →
kerσ(t, y)⊥ through χ(t, y) := σ(t, y)−1 for every (t, y) ∈ [0,+∞[×B. Now we can, as mentioned
above, split up the Wiener process in the following way:

¯̃Wt =

∫ t

0

Jχ(s, X̃)d

(

X̃s − x−

∫ s

0

b(r, X̃)dr

)

+

∫ t

0

Jψ(s, X̃)J−1dV̄ 2
s .

Due to Step (iii) we know that X̃ is independent of V̄ 2. The first summand is a measurable
functional of X̃ . This will imply the result. The “in particular”-statement of the theorem is then
obvious, because δ-(joint) uniqueness in law is by definition equivalent to (joint) uniqueness in
law given δx for all x ∈ H .

Remark 3.4. With our techniques, Theorem 3.2 cannot be generalized to non-deterministic initial
conditions. Why is this so? Within the proof of Theorem 3.2 we crucially use Lemma 4.4, as outlined in
Step (iii) above. The main point is to obtain — using the notation of Lemma 4.4 — that Pω◦Π1(0)

−1 =
P ◦X−1

0 = δx holds for P-a.a. ω ∈ Ω. We achieve this through

{0, 1} ∋ P(X0 ∈ A) = P
(
(X, W̄ ) ∈ {Π1(0) ∈ A}

)
=

∫

Ω

Pω

(
{Π1(0) ∈ A}

)
P(dω),

(c.f. (17)), which implies Pω

(
{Π1(0) ∈ A}

)
= P(X0 ∈ A) for P-a.a. ω ∈ Ω for every A ∈ B(H).

Unfortunately we cannot drop the condition P(X0 ∈ A) ∈ {0, 1} for each A ∈ B(H), because else we
could not conclude that the integrand ω 7→ Pω

(
{Π1(0) ∈ A}

)
is constant P-a.s. for every A ∈ B(H).

Hence a necessary and sufficient condition is that any weak solution X fulfills

P ◦X−1
0 (A) ∈ {0, 1} for all A ∈ B(H).

Due to the separability of H , this is equivalent to P ◦X−1
0 = δx for some x ∈ H .

Remark 3.5. In [11], M. Ondrejat considers, among other statements, the assertions of both Theorem
3.1 and Theorem 3.2 in the setting of mild solutions to Banach space-valued stochastic differential
equations (c.f. Theorem 1 and Theorem 4 in [11], respectively). To retrieve the type of equations we
consider, X needs to be a separable Hilbert space. Further, necessarily X = X1 in order to choose
St = idX , which is requisite to obtain our type of equations. This shows that the situation in [11] does
not contain our approach via a generalized Gelfand triple. Above that one notices that the drift and
diffusion term of his type of equations do not depend on entire solutions paths, but only on its current
time value.

Remark 3.6. In [12] H. Qiao states both main theorems of this paper for the same type of equations
and within the same framework. Two rather short proofs are given, which mostly follow the same
arguments as in Cherny’s proofs in [2] for the finite-dimensional setting. In doing so, central techni-
cal issues arising from the infinite-dimensional framework are not properly adjusted to the proof of
Theorem 1.6. in [12]. In particular this includes (assuming the notation of [12]) the proof of the inde-
pendence of V 1 and V 2 and the calculation of the covariation of JV i, i ∈ {1, 2} (note that the reference
Proposition 3.13. given for this argument does not apply to the situation on p.372 in [12], because the
stochastic integrals φ(·, X̃).W̃ and ψ(·, X̃).W̃ 1 are not necessarily independent processes). Further the
well-definedness of V 1 and V 2 is not discussed and there is no justification for the computations of
stochastic integrals on p.373. The final conclusion of the proof is rather imprecise. Furthermore, the
important technical preparations in [12], namely Lemma 2.2. and Lemma 2.3., seem to rely heavily on
arguments presented in [13] (c.f. Lemmas 2.4, 2.5 and 2.6 and the arguments inbetween). However,
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the situation there is, albeit quite similar in nature, technically a different one. Hence we believe it is
valuable to present detailed proofs for these technical preparations as well for the main theorem.

Concerning the proof of Theorem 1.7. in [12], note that the situation considered there is less gen-
eral then our setting in terms of the definition of a strong solution. Below we give a proof considering
this more general notion of a strong solution, which is also more precise and detailed.

4 Proofs of the main results

The first subsection contains the main technical preparations for the proofs of our main results, which
are presented in the second subsection.

4.1 Preparations

As before, let H and U be separable, infinite-dimensional Hilbert spaces. We start by recalling the
definition and basic properties of regular conditional distributions, since these will be a key tool within
the main proofs below.

Definition 4.1. Let X be a random variable on (Ω,F ,P) taking values in a Polish space (E,B(E))
and G ⊆ F a sub-σ-algebra. A family of probability measures (Qω)ω∈Ω on B(E) is called regular
conditional distribution (often abbreviated r.c.d.) of X with respect to G, if

(i) ω 7→ Qω(A) is G-measurable for each A ∈ B(E),

(ii) E[1D · 1{X∈A}] = E[1D ·Qω(A)] holds for all D ∈ G and A ∈ B(E).

The statements of the following remark are well-known results. Thus we omit their proofs.

Remark 4.2. (i) For A ∈ B(E), ω 7→ Qω(A) is a version of E[1{X∈A}|G] with exception set possibly
depending on A.

(ii) For X , G and E as above a unique regular conditional distribution exists.

(iii) If X itself is G-measurable, then
(
δX(ω)(·)

)

ω∈Ω
is the (unique) r.c.d. of X with respect to G.

(iv) Let h : E → R be B(E)-measurable. If h ≥ 0 or h(X) ∈ L1(Ω,F ,P), then we have EQω
[h] =

E[h(X)|G](ω) P-a.s., where EQω
[·] denotes expectation with respect to Qω for fixed ω ∈ Ω.

For the next two lemmatas we fix the following framework. Let (X,W ) be a weak solution of Eq.
(1) on a stochastic basis (Ω,F , (Ft)t≥0,P) with initial condition X0 = x P-a.s. for some x ∈ H and let
(Pω)ω∈Ω be the regular conditional distribution of the random variable (X, W̄ ) : Ω →

(
B×W0,B(B)⊗

B(W0)
)
with respect to F0 (by the remark above such a r.c.d. exists, because B ×W0 is a complete

separable metric space when equipped with the product metric of ρ and ζ as introduced in Subsection
1.2). For ω ∈ Ω define a stochastic basis through

Ω̄ := B×W0, F̄
ω := B(B)⊗ B(W0)

Pω

, F̄ω
t :=

⋂

ǫ>0

σ
(
Bt+ǫ(B) ⊗ Bt+ǫ(W0),Nω

)
,

where Nω := {N ∈ F̄ω|Pω(N) = 0}. Further Π1 : Ω̄ → B, Π2 : Ω̄ → W0 denote the canonical
projections on the first and second variable, respectively. Note that, as pointed out in Remark 3.6
above, the following two statements are in spirit of Lemmata 2.4, 2.5 and 2.6 in [13] and also that
Lemma 4.4 below is reminiscent to Lemma 3.3. in [2].

Lemma 4.3. Let Q̄ and Ū be as in Subsection 1.2. Then Π2 is a Ū -valued (F̄ω
t )-Q̄-Wiener process

on (Ω̄, F̄ω, (F̄ω
t )t≥0,Pω) for P-a.a. ω ∈ Ω.
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Proof. Since Π2 : B×W0 → W0 and due to the definition of W0, the paths of Π2 trivially start in zero
and are continuous. The (F̄ω

t )-adaptedness of (Π2(t))t≥0 is obvious for every ω ∈ Ω, so it remains to
verify that there exists N0 ∈ F with P(N0) = 0 such that for ω ∈ N c

0 we have

Π2(t)−Π2(s) is Pω -independent of F̄ω
s and P ◦ (W̄t − W̄s)

−1 = Pω ◦ (Π2(t)−Π2(s))
−1 (4)

for all s, t ∈ Q with 0 ≤ s < t, because then the assertion follows by an approximation of arbitrary
s, t ∈ R through suitable sn, tn ∈ Q. To prove (4) we fix 0 ≤ s < t with s, t ∈ Q, choose A1 ∈
Bs(B), A2 ∈ Bs(W0), A0 ∈ F arbitrary and obtain for y ∈ Ū :
∫

A0

EPω

[
exp(i〈y,Π2(t)−Π2(s)〉Ū )1A1×A2

]
P(dω) =

∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )1A1

(X)1A2
(W̄ )|F0

]
P(dω)

=

∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
EP

[
1A1

(X)1A2
(W̄ )|F0

]
P(dω)

=

∫

A0

EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
Pω(A1 ×A2)P(dω).

Above we used Remark 4.2 (iv) for the first and last equality and the independence of W̄t − W̄s and
Fs in the second equation. By varying A0 in F , we obtain P-a.s.:

EPω

[
exp(i〈y,Π2(t)−Π2(s)〉Ū )1A1×A2

]
= EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
Pω(A1 ×A2)

= EPω
[exp(i〈y,Π2(t)−Π2(s)〉Ū )]Pω(A1 ×A2). (5)

The last equality follows by the independence of W̄t − W̄s from F0 and again Remark 4.2 (iv). In
particular, choosing A1 = B and A2 = W0, we obtain for all y in a countable, dense subset of Ū :

EPω

[
exp(i〈y,Π2(t)−Π2(s)〉Ū )

]
= EP

[
exp(i〈y, W̄t − W̄s〉Ū )

]
for P -a.a. ω ∈ Ω,

which by the uniqueness of the Fourier-transform implies that for P-a.a. ω ∈ Ω

Pω ◦ (Π2(t)− Π2(s))
−1 = P ◦ (W̄t − W̄s)

−1 for all s, t ∈ Q as above.

Further note that the exception set in (5) can, for fixed 0 ≤ s < t, be chosen independently of A1, A2,
because both Bs(B) and Bs(W0) are countably generated. Then the usual monotone class argument,
together with Lemma A.1, shows that Π2(t)−Π2(s) is Pω-independent of F̄ω

s for P-a.a. ω ∈ Ω for all
s, t as above.

The following statement will be crucial for the proof of Theorem 3.2. A similar result for the
finite-dimensional setting is a main tool for Cherniy’s result in [2] (c.f. Lemma 3.3. therein). Due to
its importance for our main proof below, we decided to give a detailed proof of this lemma for our
infinite-dimensional framework. Below Π̂2 denotes the formal standard R∞-Wiener process associated
to Π2.

Lemma 4.4. (Π1, Π̂2) is a weak solution to Eq. (1) on (Ω̄, F̄ω, (F̄ω
t )t≥0,Pω) with Pω ◦Π1(0)

−1 = δx =
P ◦X−1

0 for P-a.a. ω ∈ Ω.

The proof is split into two steps. We work with a sequence of elementary processes (pn)n∈N, which
approximates σ in L2(L2(U,H);PX), because only for elementary integrands we have a pathwise
definition of the stochastic integral. This pathwise definition is necessary in order to allow us to “put
ω in the integrand as well as in the integrator” and thereby “put Π1 and Π2 in the right places”. This
step becomes apparent in (12) and in the definition of the set B̄t.

Proof. Of course Π1 is B-valued and (F̄ω
t )-adapted for every ω ∈ Ω. By the previous lemma, Π2 is an

(F̄ω
t )-Q̄-Wiener process on (Ω̄, F̄ω, (F̄ω

t )t≥0,Pω) for P-a.a. ω ∈ Ω. Let Π̂2 be the associated standard
R∞-Wiener process. Concerning integrability, fix t ≥ 0 and note that

Āt :=

{

(y, w) ∈ B×W0

∣
∣
∣
∣

∫ t

0

||b(s, y)||E ds+

∫ t

0

||σ(s, y)||2L2(U,H)ds < +∞

}
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is contained in B(B)⊗B(W0) and that 1 = P
(
(X, W̄ ) ∈ Āt

)
=

∫

Ω Pω(Āt)P(dω) holds, because (X,W )
is a weak solution to (1). Consequently Pω(Āt) = 1 for P-a.a. ω ∈ Ω, which implies

∫ t

0

||b(s,Π1)||E ds+

∫ t

0

||σ(s,Π1)||
2
L2(U,H)ds < +∞ Pω-a.s.

for P-a.a. ω ∈ Ω and all zero sets can obviously be chosen independently of t. Hence we only need to
verify the following: For T > 0 there exists a P-zero-set N2 ∈ F such that for all ω ∈ N c

2 :

(I) Π1(t) = Π1(0) +
∫ t

0
b(s,Π1)ds+

∫ t

0
σ(s,Π1)dΠ̂2(s) Pω-a.s. for all t ∈ [0, T ] on E;

(II) Pω ◦Π1(0)
−1 = δx.

We prove assertion (I) in two steps.

(i) Here we assume

EPX

[ ∫ T

0

||σ(s, ·)||2L2(U,H)ds

]

< +∞ for all T ≥ 0, (6)

where PX denotes the distribution of X : Ω → B. Now fix T > 0. Since L2(U,H) is a separable
Hilbert space and σ : R+ × B → L2(U,H) is measurable and (B+

t (B))-adapted, by [13, Lemma
2.5.] we obtain the existence of a sequence (pn)n∈N of L2(U,H)-valued (B+

t (B))-predictable,
elementary processes on [0, T ]× B such that

EPX

[ ∫ T

0

||σ(s, y)− pn(s, y)||
2
L2(U,H)ds

]

→
n→∞

0,

i.e. in particular each pn is of the form pn(s, y) =
∑jn−1

m=0 Φn
m(y)1]tnm,tn

m+1
](s), (s, y) ∈ [0, T ]× B,

where Φn
m : B → L2(U,H) is strongly B+

tm
(B)-measurable for every m ∈ {0, ..., jn − 1}, has finite

image and 0 = tn0 < ... < tnjn = T is a finite partition of [0, T ]. We immediately observe

E

[ ∫ T

0

||σ(s,X)− pn(s,X)||2L2(U,H)ds

]

→
n→∞

0 (7)

and that pn(·, X) is still elementary and (Ft)-predictable. Thus pn(·, X)◦J−1 ∈ Λ2
T (W̄ , Ū ,H,PT )

and by the isometry stated in Proposition B.16, (7) yields

∫ ·

0

pn(s,X)dWs →
n→∞

∫ ·

0

σ(s,X)dWs in M2
c(T ;H),

thus in particular

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

pn(s,X)dWs −

∫ t

0

σ(s,X)dWs

∣
∣
∣
∣
2

H

]

→
n→∞

0. (8)

Since conditional expectation is an Lp-contraction for p ≥ 1, we obtain

∣
∣
∣
∣

∣
∣
∣
∣
E

[ ∫ T

0

||σ(s,X)− pn(s,X)||2L2(U,H)ds
∣
∣F0

]∣
∣
∣
∣

∣
∣
∣
∣
L1(Ω)

≤ E

[ ∫ T

0

||σ(s,X)− pn(s,X)||2L2(U,H)ds

]

.

Hence, by (7), there exists a subsequence (nk)k∈N such that

E

[ ∫ T

0

||σ(s,X)− pnk
(s,X)||2L2(U,H)ds

∣
∣F0

]

→
k→∞

0 P-a.s.
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and thereby even E

[
∫ t

0
||σ(s,X)− pnk

(s,X)||2L2(U,H)ds
∣
∣F0

]

→
k→∞

0 P-a.s. for all t ∈ [0, T ]. As a

consequence, by Remark 4.2 (iv), we obtain that for every t ∈ [0, T ] we have

EPω

[ ∫ t

0

||σ(s,Π1)− pnk
(s,Π1)||

2
L2(U,H)ds

]

→
k→∞

0 P-a.s. (9)

Applying the isometry for stochastic integrals once more (this time for the Wiener process Π̂2

and the admissible integrands pnk
(·,Π1) and σ(s,Π1)) we conclude by (9): For every t ∈ [0, T ],

for P-a.a. ω ∈ Ω we have

∫ t

0

pnk
(s,Π1)dΠ̂2(s) →

k→∞

∫ t

0

σ(s,Π1)dΠ̂2(s) in L
2(Ω̄,Pω;H). (10)

Now we consider (8) only along the same subsequence (nk)k∈N. Then there is a further subse-
quence (nkl

)l∈N, for which for every t ∈ [0, T ]

∫ t

0

pnkl
(s,X)dWs →

l→∞

∫ t

0

σ(s,X)dWs = Xt −X0 −

∫ t

0

b(s,X)ds (11)

P-a.s. Note that since (pn)n∈N is a sequence of elementary processes, the stochastic integral on
the left hand side in (11) is defined pathwise, i.e.

(∫ t

0

pnkl
(s,X)dWs

)

(ω) =

jnkl
−1

∑

m=0

Φ
nkl
m (X(ω))J−1

(
W̄

t
nkl
m+1

∧t
(w) − W̄

t
nkl
m ∧t

(w)
)
.

For t ∈ [0, T ] the set

B̄t :=

{

(y, w) ∈ B×W0|

jnkl
−1

∑

m=0

Φ
nkl
m (y) ◦ J−1(w

t
nkl
m+1

∧t
− w

t
nkl
m ∧t

) →
l→∞

yt − y0 −

∫ t

0

b(s, y)ds

}

,

is obviously contained in B(B) ⊗ B(W0) and (10) implies P
(
{(X, W̄ ) ∈ B̄c

t }
)
= 0. For every

t ∈ [0, T ], we conclude 0 = P
(
(X, W̄ ) ∈ B̄c

t

)
=

∫

Ω
Pω(B̄

c
t )P(dω), which gives Pω(B̄

c
t ) = 0 P-a.s.

and thus in turn for P-a.a. ω ∈ Ω:

∫ t

0

pnkl
(s,Π1)dΠ̂2 →

l→∞
Π1(t)−Π1(0)−

∫ t

0

b(s,Π1)ds Pω-a.s. (12)

But now (10) especially holds along the same subsequence (nkl
)l∈N. Choosing a further sub-

sequence (possibly depending on ω and t) for which the convergence in (10) holds Pω-a.s., we
conclude together with (12): For every t ∈ [0, T ] there is Nt ∈ F with P(Nt) = 0 such that for
all ω ∈ N c

t

Π1(t) = Π1(0) +

∫ t

0

b(s,Π1)ds+

∫ t

0

σ(s,Π1)dΠ̂2(s) Pω-a.s.

By the continuity in E of all terms, the zero set Nt can be chosen independently of t ∈ [0, T ].
Hence this case is settled.

(ii) In the second step we only assume

∫ T

0

||σ(s, y)||2L2(U,H)ds < +∞ PX -a.s. for all T ≥ 0, (13)
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which is automatically true, since
∫ T

0 ||σ(s,X)||2L2(U,H)ds < +∞ P-a.s. by assumption for all
T ≥ 0. Fix T > 0. We work with the following maps for k ∈ N.

τTk : B → R+, τ
T
k (y) := inf

{
s ≥ 0

∣
∣

∫ s

0

||σ(r, y)||2L2(U,H)dr > k
}
∧ T,

which, by Fubini’s theorem, is an (B+
t (B))-stopping time for every k ∈ N. We continue with the

following observations.

(a) For every k ∈ N and T > 0, (6) is fulfilled when one replaces σ by 1]0,τT
k
]σ and 1]0,τT

k
]σ :

R+ × B → L2(U,H) is measurable and (B+
t (B))-adapted.

(b) Due to the continuity of t 7→
∫ t

0
||σ(s, y)||2L2(U,H)ds and (13), we have τTk (X) ր T P−a.s.

for k → ∞ and hence, since
{
y ∈ B|τTk (y) →

k→∞
T
}
∈ B(B)⊗ B(W0) :

P({τTk (X)) →
k→∞

T }) =

∫

Ω

Pω({(y, w) ∈ B×W0|τ
T
k (y) →

k→∞
T }) dP(ω),

which yields τTk (Π1) →
k→∞

T Pω-a.s. for P-a.a. ω ∈ Ω.

Hence, as in the previous step, we find elementary, (B+
t (B))-predictable functions (q

T,k
n )n∈N with

E

[ ∫ T

0

||1]0,τT
k
(X)]σ(s,X)− qT,k

n (s,X)||2L2(U,H)ds

]

→
n→∞

0

and therefore, by the isometry for stochastic integrals, also

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0

qT,k
n (s,X)dWs −

∫ t

0

1]0,τT
k
(X)]σ(s,X)dWs

∣
∣
∣
∣
2

H

]

→
n→∞

0. (14)

As in (9), we find a subsequence (nm)m∈N such that

EPω

[ ∫ T

0

||1]0,τT
k
(Π1)]σ(s,Π1)− qT,k

nm
(s,Π1)||

2
L2(U,H)ds

]

→
m→∞

0 P-a.s.

Similarly to (10) we obtain for P-a.a. ω ∈ Ω :

∫ T

0

qT,k
nm

(s,Π1)dΠ̂2(s) →
m→∞

∫ T

0

1]0,τT
k
(Π1)]σ(s,Π1)dΠ̂2(s) =

∫ τT
k (Π1)

0

σ(s,Π1)dΠ̂2(s) (15)

in L2(Ω̄,Pω;H). Considering (14) along the same subsequence (nm)m∈N yields a further subse-
quence (nml

)l∈N with

∫ T

0

qT,k
nml

(s,X)dWs →
l→∞

∫ τT
k (X)

0

σ(s,X)dWs = XτT
k
(X) −X0 −

∫ τT
k (X)

0

b(s,X)ds P-a.s.

Proceeding along the same steps as in part (i) up to (12) with the necessary technical adjustments,
we arrive at

∫ T

0

qT,k
nml

(s,Π1)dΠ̂2 →
l→∞

Π1(τ
T
k (Π1))−Π1(0)−

∫ τT
k (Π1)

0

b(s,Π1)ds Pω-a.s.

for P-a.a. ω ∈ Ω. Comparing with (15), we observe Pω-a.s.

Π1(τ
T
k (Π1)) = Π1(0) +

∫ τT
k (Π1)

0

b(s,Π1)ds+

∫ τT
k (Π1)

0

σ(s,Π1)dΠ̂2(s) (16)
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for P-a.a. ω ∈ Ω. Now consider (16) for all k ∈ N simultaneously and pass to the limit of τTk (Π1)
for k → ∞, which, as we stated above, is Pω-a.s. equal to T for P-a.a. ω ∈ Ω. By the continuity
of all terms involved, for P-a.a. ω ∈ Ω

Π1(T ) = Π1(0) +

∫ T

0

b(s,Π1)ds+

∫ T

0

σ(s,Π1)dΠ̂2(s) Pω-a.s.

Repeating this procedure for every T > 0 and using the continuity of both sides of the equation
as E-valued processes, we obtain the statement.

Finally consider (II). Due to X0 ≡ x, we have for each A ∈ B(H):

{0, 1} ∋ P(X0 ∈ A) = P
(
(X, W̄ ) ∈ {Π1(0) ∈ A}

)
=

∫

Ω

Pω

(
{Π1(0) ∈ A}

)
P(dω) (17)

and thereby Pω

(
{Π1(0) ∈ A}

)
= P(X0 ∈ A) for P-a.a. ω ∈ Ω. Since H is a separable Hilbert space, we

can choose a ∩-stable, countable generator of B(H). Then the above equality holds for all elements A of
this generating set outside one common P-zero set and from there we conclude Pω ◦Π1(0)

−1 = P◦X−1
0

for P-a.a. ω ∈ Ω as measures on B(H), which finishes the proof.

Throughout the proof of our main results we will work with stochastic integrals, which involve
certain projection-valued operators as integrands. The next lemma states that these integrals are
well-defined.

Lemma 4.5. Let (X,W ) be a weak solution to Eq. (1) on a stochastic basis (Ω,F , (Ft)t≥0,P). For
(t, y) ∈ R+ × B define the operators φ(t, y), ψ(t, y) ∈ L(U) through

φ(t, y)(u) := prkerσ(t,y)⊥(u) and ψ(t, y)(u) := prkerσ(t,y)(u),

where prV (·) denotes the orthogonal projection onto a closed linear subspace V ⊆ U . Then the following
holds:

(i) As processes in (t, y) ∈ R+ × B, φ and ψ are L2(U,H)-valued, measurable and (Bt(B))-adapted
with respect to the strong Borel σ-algebra on L2(U,H).

(ii) For any R∞-Wiener process W ′ on (Ω,F , (Ft)t≥0,P), the stochastic integrals
∫ t

0 J ◦ φ(s,X)dW ′
s

and
∫ t

0 J ◦ ψ(s,X)dW ′
s are well-defined, Ū-valued continuous processes for t ≥ 0. Further for

every T > 0, both processes are square-integrable on [0, T ] in the sense that J ◦ φ(·, X) ◦ J−1, J ◦
ψ(·, X) ◦ J−1 ∈ Λ2

T (W̄
′, Ū , Ū ,PT ) for every T > 0.

Proof. (i) Due to the obvious identity φ(t, y) = idU − ψ(t, y), it suffices to prove the assertion for
(t, y) 7→ ψ(t, y). Hence we fix u ∈ U and must prove that ψ(u) : R+ × B → H , ψ(u)(t, y) :=
ψ(t, y)(u) is measurable and (Bt(B))-adapted. But this can be done as in [11, Lemma 9.2].

(ii) By (i) and because J ∈ L(U, Ū), both J ◦ φ(·, X) and J ◦ ψ(·, X) are strongly measurable,
(Bt(B))-adapted and L2(U, Ū)-valued. Now fix (t, y) ∈ R+ × B. For A ∈ L2(U, Ū) the value

||A||L2(U,Ū) =
(∑∞

k=1 ||Afk||
2
Ū

) 1
2 is independent of the orthonormal basis {fk}k∈N. Hence we

may choose {fk}k∈N such that either fk ∈ kerσ(t, y) or fk ∈ kerσ(t, y)⊥ for every k ∈ N. Then
we obtain

||Jφ(t, y)||2L2(U,Ū) =
∑

fk∈ kerσ(t,y)⊥

||Jfk||
2
Ū
≤ ||J ||2L2(U,Ū) < +∞

for all (t, y) ∈ R+ × B since J is Hilbert-Schmidt. Hence for each t ≥ 0

E

[ ∫ t

0

||Jφ(s,X)||2L2(U,Ū)ds

]

≤ E

[ ∫ t

0

||J ||2L2(U,Ū)ds

]

= t||J ||2L2(U,Ū) <∞,

which completes the proof of (ii), because the ψ-integral can be treated similarly.
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Our next goal is to prove that the quadratic cross variation of two stochastic integrals is additive,
if the integrators are independent Wiener processes (c.f. (18) below). We will need this result along
the proof of our second main theorem. We start with a technical lemma. Its proof is postponed to the
appendix.

Lemma 4.6. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis, Q ∈ L+
1 (U) and W 1,W 2 two independent

U -valued (Ft)-Q-Wiener processes on Ω. Then for every φ1, φ2 : R+ × Ω → Lin(U,R) with φk ∈
Λ2
T (W

k, U,R,PT ) for every T > 0 and k ∈ {1, 2}, the following holds:

E

[ ∫ τ

0

φ1(s)dW
1(s) ·

∫ τ

0

φ2(s)dW
2(s)

]

= 0

for every bounded (Ft)-stopping time τ : Ω → R+. In particular the covariation process of the two
stochastic integrals above is constantly zero P-a.s.

Now we can straight forward prove the desired result:

Proposition 4.7. Let φk ∈ Λ2
T (W

k, U,H,PT ) for every T > 0 for k ∈ {1, 2} and W 1, W 2 as above.
Then we have P-a.s.:

≪

∫ ·

0

φ1(s)dW
1(s) +

∫ ·

0

φ2(s)dW
2(s) ≫t =≪

∫ ·

0

φ1(s)dW
1(s) ≫t + ≪

∫ ·

0

φ2(s)dW
2(s) ≫t (18)

for every t ≥ 0.

Proof. Let (fk)k∈N be an orthonormal basis of H . Lemma 4.6 and the fact that bounded linear
operators interchange with stochastic integrals imply for every i, j ∈ N :

〈〈 〈

∫ ·

0

φ1(s)dW
1(s), fi〉H , 〈

∫ ·

0

〈φ2(s)dW
2(s), fj〉H 〉〉t = 0 for all t ≥ 0 P-a.s.,

because by assumption on φk, the integrands 〈φk(·), fi〉H obviously fulfill the assumption of the previous
lemma for every k ∈ {1, 2} and i ∈ N. Hence the assertion follows by Corollary B.7.

Finally we present a definition, which will be useful within the proof of Theorem 3.2.

Definition 4.8. Let H be a separable Hilbert space with inner product 〈·, ·〉H . The Hilbert space (H⊕
H, 〈·, ·〉H⊕H) is defined as the Cartesian productH×H with the inner product 〈(h1, h2), (h3, h4)〉H⊕H :=
〈h1, h3〉H + 〈h2, h4〉H . When no confusion is possible, we abbreviate 〈·, ·〉H⊕H by 〈·, ·〉⊕.

Remark 4.9. It is obvious that the Hilbert space (H⊕H, 〈·, ·〉H⊕H) is separable and that B(H⊕H) =
B(H) ⊗ B(H). The latter holds, because the metric induced by 〈·, ·〉⊕ induces the product topology
on H ⊕H .

4.2 Proofs of the main results

Now we give proofs for the two main results of this paper.

Proof of Theorem 3.1: Fix a measure µ ∈ M+
1 (B(H)) for which joint uniqueness in law given

µ holds, a stochastic basis (Ω,F , (Ft)t≥0,P), an (Ft)-R
∞-Wiener process W and an F0-measurable

map ξ0 : Ω → H with P ◦ ξ−1
0 = µ. Let Z := FP◦ξ0−1(ξ0, W̄ ) be a strong solution with respect to this

data. We prove
Zt = Xt for all t ≥ 0 P-a.s. (19)

for every weak solution X with respect to the same data. To do so, let F , Z and X be as above and

set GW̄
0 := σ(ξ0, W̄ )

P

. As before, W̄ denotes the Ū -valued (Ft)-Q̄-Wiener process associated to W .
We make the following observations:
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(i) EW̄
0 := {

(
ξ−1
0 (G) ∩ W̄−1(B)

)
∪N |G ∈ B(H), B ∈ B(W0), P(M) = 0} is a ∩-stable generator of

GW̄
0 .

(ii) Since by definition of the strong solution F , (h, y) 7→ F
P◦ξ−1

0

(h, y) is B(H)⊗ B(W0)
µ⊗P

Q̄

/B(B)-

measurable, the map ω 7→ F
P◦ξ−1

0

(ξ0(ω), W̄ (ω)) = Z(w) is GW̄
0 /B(B)-measurable. Indeed, as ξ0

is F0-measurable and hence P-independent of W̄ , we obtain P ◦ (ξ0, W̄ )−1 = µ⊗PQ̄ and thereby

the claim follows by the GW̄
0 /B(H)⊗ B(W0)

µ⊗P
Q̄

- measurability of (ξ0, W̄ ) : Ω → H ×W0. Here
PQ̄ denotes the measure P ◦ W̄−1 on B(W0).

Since (B,B(B)) is Polish there exists a unique regular conditional distribution of Z : Ω → B with respect
to GW̄

0 , which we denote by (QZ
ω )ω∈Ω. Since Z is GW̄

0 -measurable, Remark 4.2 implies QZ
ω = δZ(w)

P-a.s.
As we assume joint uniqueness in law given µ and we have X0 = ξ0 = Z0 P-a.s. and P ◦ ξ−1

0 = µ, we
obtain

P ◦ (X, W̄ )−1 = P ◦ (Z, W̄ )−1. (20)

By the same arguments as above there exists a unique regular conditional distribution of X : Ω → B

with respect to GW̄
0 , which we denote by (QX

ω )ω∈Ω. Clearly ω 7→ δZ(w)(A) is G
W̄
0 -measurable for every

A ∈ B(B). Further, due to (20), we have P({X ∈ A}∩{W̄ ∈ B}) = P({Z ∈ A}∩{W̄ ∈ B}) for all A ∈
B(B), B ∈ B(W0). Since {π0 ∈ G} ∈ B(B) for G ∈ B(H) and X0 = ξ0 = Z0 P-a.s., we obtain

P({ξ0 ∈ G} ∩ {X ∈ A} ∩ {W̄ ∈ B}) = P({ξ0 ∈ G} ∩ {Z ∈ A} ∩ {W̄ ∈ B}) (21)

for arbitrary G ∈ B(H), A ∈ B(B), B ∈ B(W0). For fixed A ∈ B(B) set PX
A (·) := P({X ∈ A} ∩ ·) and

PZ
A(·) := P({Z ∈ A}∩·) on GW̄

0 . Then (21) yields PX
A (E) = PZ

A(E) for all E ∈ EW̄
0 , whence we conclude

PX
A = PZ

A for all A ∈ B(B) as measures on GW̄
0 , i.e. P({X ∈ A}∩C) = P({Z ∈ A}∩C) for all C ∈ GW̄

0 .
We conclude QX

ω = δZ(w) P-a.s. Hence for every A ∈ B(B)

E[1{X∈A}|G
W̄
0 ](ω) = δZ(ω)(A) = 1{Z∈A}(ω) P-a.s.,

where the exception set may depend on A. Thus E[g(X)|GW̄
0 ] = g(Z) P-a.s. for every bounded and

B(B)/B(R)-measurable g : B → R by a simple monotone class argument. For each such g we note
E[(g(X) − g(Z))2] = 2E[g(Z)2] − 2E

[
E[g(X)g(Z)|GW̄

0 ]
]
= 2E[g(Z)2] − 2E[g(Z)g(Z)] = 0. The first

equality follows by the equality in law of X and Z. Thus we obtain

g(X) = g(Z) P-a.s. (22)

for each bounded, measurable g : B → R. Now we can finally verify (19): Fix an orthonormal basis
{fi}i∈N of H and set σj : H → R, σj = 〈·, fj〉H . For q ∈ Q+ and j, n ∈ N, define gj,nq : B → R through

gj,nq (y) :=
(
σj(πq(y)) ∧ n

)
∨ −n, y ∈ B

and note that these functions are clearly bounded and B(B)/B(R)-measurable. As above, πq : B → H
denotes the canonical projection from B to H at time q. We have lim

n→∞
gj,nq (X(ω)) = 〈Xq(w), fj〉H for

every ω ∈ Ω. Applying (22) to gj,nq for every q, j, n, we obtain Xq = Zq for all q ∈ Q+ P-a.s. and the
path-continuity of X and Z in H completes the proof.

Remark 4.10. The theorem and its proof remain valid if one replaces the assumption on the existence
of a strong solution by the following

Generalized assumption :
For every triple

(
(Ω,F , (Ft)t≥0,P),W, ξ0

)
for which at least one weak solution X exists (i.e. the pair

(X,W ) is a weak solution on this stochastic basis with X0 = ξ0 P-a.s.), there also exists a solution
Z : Ω → B subject to this triple, which is GW̄

0 /B(B)-measurable.
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We now turn to the proof of Theorem 3.1. We will heavily need several properties and computation
rules of stochastic integrals with respect to arbitrary square-integrable, continuous martingales. These
properties are well-known to experts on stochastic integration in infinite dimensions. Nevertheless, for
the convenience of the reader, we review the construction and properties of such stochastic integrals
in Appendix B.

Proof of Theorem 3.2: Fix x ∈ H and assume uniqueness in law given δx holds. We prove the
following: For any weak solution (X,W ) to

Xt = x+

∫ t

0

b(s,X)ds+

∫ t

0

σ(s,X)dWs, t ≥ 0 (23)

on a stochastic basis (Ω,F , (Ft)t≥0,P), the joint distribution P ◦ (X, W̄ )−1 is uniquely determined by
P◦X−1. Here and for the rest of the proof, for a R∞-Wiener processW we denote by W̄ the Ū -valued
Q̄-Wiener process associated to W . As we pointed out in the recap on cylindrical Wiener processes in
the second section, we have Q̄ = JJ∗. Let us fix a weak solution (X,W ) to Eq. (23).

Let (Ω′,F ′, (F ′
t)t≥0,P

′) be another stochastic basis and W̄ 1, W̄ 2 two independent Ū -valued (F ′
t)-

Q̄-Wiener processes on this basis, i.e.

W̄ 1 =

∞∑

k=1

β1
kJek, W̄

2 =

∞∑

k=1

β2
kJek,

where (βi
k){k∈N, i∈{1,2}} is an independent family of R-valued (F ′

t)-Brownian motions on Ω′ and (ek)k∈N

is the orthonormal basis of U we fixed in Subsection 1.2. The R∞-Wiener processes associated to W̄ 1

and W̄ 2, i.e. the families (β1
k)k∈N and (β2

k)k∈N, will be denoted by W 1 and W 2, respectively.

Define (Ω̃, F̃ , (F̃t)t≥0, P̃) := (Ω×Ω′,F ⊗ F ′ P⊗P
′

, (F̃t)t≥0,P⊗P′), (where F̃t :=
⋂

ǫ>0 σ(Ft+ǫ⊗F ′
t+ǫ, Ñ )),

which is a stochastic basis. Here we set Ñ := {A ∈ F̃|P̃(A) = 0}. Define the processes X̃, ˜̄W, ˜̄W 1, ˜̄W 2 on

(Ω̃, F̃ , (F̃t)t≥0, P̃) through X̃((ω1, ω2)) := X(ω1),
˜̄W ((ω1, ω2)) := W̄ (ω1),

˜̄W i((ω1, ω2)) := W̄ i(ω2), i ∈

{1, 2}, for (ω1, ω2) ∈ Ω̃ and analogously for the R∞-Wiener processes W,W 1 and W 2. Clearly ˜̄W, ˜̄W i

are independent Ū -valued (F̃t)-Q̄-Wiener processes on Ω̃ and W̃ , W̃ 1, W̃ 2 are independent R∞-Wiener
processes. Note that we also have

˜̄W = ¯̃W =
∞∑

k=1

β̃kJek. (24)

We obtain that (X̃, W̃ ) is a weak solution to Eq. (23) on (Ω̃, F̃ , (F̃t)t≥0, P̃) with X̃0 ≡ x P̃-a.s., be-

cause the (F̃t)-adaptedness of (X̃t)t≥0 is trivial and all properties, which hold P-a.s. for X also hold

P̃-a.s. for X̃ .

For t ≥ 0 and y ∈ B, let φ(t, y) ∈ L(U) be the orthogonal projection onto ker σ(t, y)⊥ ⊆ U and
ψ(t, y) ∈ L(U) the orthogonal projection onto ker σ(t, y). By Lemma 4.5 the stochastic integrals of
J ◦ φ(s, X̃) and J ◦ ψ(s, X̃) with respect to W̃ , W̃ 1, W̃ 2 are well-defined. For t ≥ 0 we define the
processes

V̄ 1
t :=

∫ t

0

Jφ(s, X̃)dW̃s +

∫ t

0

Jψ(s, X̃)dW̃ 1
s , V̄

2
t :=

∫ t

0

Jφ(s, X̃)dW̃ 2
s +

∫ t

0

Jψ(s, X̃)dW̃s,
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which are clearly continuous, Ū -valued local (F̃t)-martingales on (Ω̃, F̃ , (F̃t)t≥0, P̃). We collect the
following properties of φ and ψ: For each (t, y) ∈ R+ × B we have

φ(t, y) = φ(t, y)∗ and ψ(t, y) = ψ(t, y)∗, (25)

φ(t, y)2 = φ(t, y) and ψ(t, y)2 = ψ(t, y), (26)

φ(t, y)+ψ(t, y) = idU , (27)

σ(t, y) = σ(t, y) ◦ φ(t, y) and σ(t, y) ◦ ψ(t, y) = 0U , (28)

φ(t, y) ◦ ψ(t, y) = 0U = ψ(t, y) ◦ φ(t, y). (29)

We will now verify that V̄ 1 and V̄ 2 are P̃-independent Ū -valued (F̃t)-Q̄-Wiener processes on Ω̃.

1. V̄ 1, V̄ 2 are (F̃t)-Q̄-Wiener processes on (Ω̃, F̃ , (F̃t)t≥0, P̃):
For every T > 0, both processes are clearly square-integrable, continuous martingales on [0, T ]
and thus V̄ 1, V̄ 2 ∈ M2

c(T ; Ū). Hence by the Lévy-characterization (c.f. Proposition B.8), applied
to arbitrarily large T > 0, it suffices to prove ≪ V̄ i ≫t= tQ̄ P̃-a.s. for all t ≥ 0 for i ∈ {1, 2}.
We calculate:

≪ V̄ 1 ≫t =

∫ t

0

(Jφ(s, X̃)J−1Q̄
1
2 )(Jφ(s, X̃)J−1Q̄

1
2 )∗ds

∫ t

0

(Jψ(s, X̃)J−1Q̄
1
2 )(Jψ(s, X̃)J−1Q̄

1
2 )∗ds

=

∫ t

0

Jφ(s, X̃)J−1Q̄(Jφ(s, X̃)J−1)∗ds+

∫ t

0

Jψ(s, X̃)J−1Q̄(Jψ(s, X̃)J−1)∗ds

=

∫ t

0

Jφ(s, X̃)φ(s, X̃)∗J∗ + Jψ(s, X̃)ψ(s, X̃)∗J∗ds

=

∫ t

0

J
(
φ(s, X̃) + ψ(s, X̃)

)
J∗ds = tQ̄, t ≥ 0 P̃-a.s.

In the above calculation we used Proposition 4.7 together with Proposition B.18 in the first, Q̄ =
JJ∗ and elementary computation rules for adjoint operators in the second and third, (25) and
(26) in the fourth and (27) in the fifth equation. Likewise we obtain ≪ V̄ 2 ≫t= tQ̄, t ≥ 0 P̃-a.s.
and therefore V̄ 1 and V̄ 2 are (F̃t)-Q̄-Wiener processes.

2. V̄ 1 and V̄ 2 are P̃-independent:
Define Q̄⊕ ∈ L+

1 (Ū⊕Ū) through Q̄⊕
(
(ū1, ū2)

)
:= (Q̄ū1, Q̄ū2). Note that (V̄

1, V̄ 2) is clearly a con-

tinuous local Ū⊕Ū -valued (F̃t)-martingale. We want to prove≪ (V̄ 1, V̄ 2) ≫t= tQ̄⊕ P̃-a.s. for all t ∈
[0, T ] for every T ≥ 0. By Proposition B.4 this is equivalent to

〈(V̄ 1
t , V̄

2
t ), (a1, b1)〉⊕ · 〈(V̄ 1

t , V̄
2
t ), (a2, b2)〉⊕ − 〈tQ̄⊕(a1, b1), (a2, b2)〉⊕

being an (F̃t)-martingale for all a1, a2, b1, b2 ∈ Ū and on every [0, T ]. By definition of 〈·, ·〉⊕ and
since both

〈V̄ 1
t , a1〉Ū · 〈V̄ 1

t , a2〉Ū − 〈tQ̄a1, a2〉Ū and 〈V̄ 2
t , b1〉Ū · 〈V̄ 2

t , b2〉Ū − 〈tQ̄b1, b2〉Ū

are martingales for all a1, a2, b1, b2 ∈ Ū , this holds if and only if

〈V̄ 1
t , a1〉Ū · 〈V̄ 2

t , b2〉Ū + 〈V̄ 2
t , b1〉Ū · 〈V̄ 1

t , a2〉Ū

is an (F̃t)-martingale for all a1, a2, b1, b2 ∈ Ū on [0, T ] for all T > 0. Hence fix T > 0, a, b ∈ Ū and
consider

(
〈V̄ 1

t , a〉Ū ·〈V̄
2
t , b〉Ū

)

t∈[0,T ]
. After multiplying out and interchanging the linear functionals

〈·, a〉Ū and 〈·, b〉Ū with the stochastic integrals, it is clear by definition of V̄ 1 and V̄ 2 and due to
Lemma 4.6 that every summand but

∫ t

0

〈Jφ(s, X̃)J−1(·), a〉Ū d ¯̃Ws ·

∫ t

0

〈Jψ(s, X̃)J−1(·), b〉Ū d ¯̃Ws (30)
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is an (F̃t)-martingale on [0, T ]. Using Lemma 2.4.5 in [9] we further express the stochastic
integrals in (30) through

∫ t

0

〈J ◦ φ(s, X̃) ◦ J−1(·), a〉Ū d ¯̃Ws =
∞∑

k=1

∫ t

0

〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s), (31)

t ∈ [0, T ] P̃-a.s., where the limit is taken in L2
(
Ω̃, F̃ , P̃;C([0, T ],R)

)
and analogously for the

second integral. Here β̃k and ek are as in (24). We calculate as follows.

〈〈
∞∑

k=1

∫ ·

0

〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s),

∞∑

l=1

∫ ·

0

〈Jψ(s, X̃)J−1(Jel), b〉Ū dβ̃l(s)〉〉t

=

( ∞∑

k=1

∞∑

l=1

〈〈

∫ ·

0

〈Jφ(s, X̃)J−1(Jek), a〉Ū dβ̃k(s),

∫ ·

0

〈Jψ(s, X̃)J−1(Jel), b〉Ū dβ̃l(s)〉〉

)

t

=

( ∞∑

k=1

∫ ·

0

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

)

t

(32)

=

∫ t

0

∞∑

k=1

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds =

∫ t

0

∞∑

k=1

〈ek, φ(s, X̃)J∗(a)〉U · 〈ek, ψ(s, X̃)J∗(b)〉U ds

=

∫ t

0

〈φ(s, X̃)J∗(a), ψ(s, X̃)J∗(b)〉U ds =

∫ t

0

〈J∗(a), φ(s, X̃)ψ(s, X̃)J∗(b)〉U ds = 0 P̃-a.s.

The first equality is due to the convergence on the right-hand side in (31) in L2
(
Ω,F ,P;C([0, T ],R)

)

and due to the uniqueness of the covariation process of continuous martingales. For the third
equality, consider (32) along a subsequence (Nl)l∈N for which

Nl∑

k=1

∫ ·

0

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

converges uniformly to

(
∑∞

k=1

∫ ·

0
〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

)

t∈[0,T ]

on [0, T ] P-a.s.

for l → +∞. Then we clearly have for all t ∈ [0, T ]

( ∞∑

k=1

∫ ·

0

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

)

t

= lim
l→∞

Nl∑

k=1

∫ t

0

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ū ds

=

∫ t

0

lim
l→∞

Nl∑

k=1

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ūds =

∫ t

0

∞∑

k=1

〈Jφ(s, X̃)ek, a〉Ū · 〈Jψ(s, X̃)ek, b〉Ūds

P-a.s., since we can interchange the limit with the integral, because for fixed ω ∈ Ω the func-
tion t 7→ ||φ(t, X̃(ω))J∗a||U · ||ψ(t, X̃(ω))J∗b||U is, by Cauchy-Schwarz-inequality, a dominating
L1([0, T ], dt;R)-function of the sequence

( Nl∑

k=1

〈Jφ(s, X̃(ω))ek, a〉Ū · 〈Jψ(s, X̃(ω))ek, b〉Ū

)

l∈N

,

so that Lebesgue’s dominated convergence theorem applies. The last expression equals zero
because of (29). Hence (V̄ 1, V̄ 2) is an (F̃t)-Q̄

⊕-Wiener process. Consequently we have the
following expression P̃-a.s. independently of t ≥ 0:

(V̄ 1
t , V̄

2
t ) =

∞∑

i=1

√

λ̄iβ
′
i(t)f̄i, (33)
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where f̄i is defined through f̄i := (f i+1

2

, 0) for i ∈ 2N0 + 1 and f̄i := (0, f i
2
) for i ∈ 2N and

the series converges in L2(Ω,F ,P;C([0, T ], Ū ⊕ Ū)) for every T > 0. Here {fn|n ∈ N} denotes
an orthonormal basis of Ū consisting of eigenvectors of Q̄. It is obvious that {f̄n|n ∈ N} is an
orthonormal basis of Ū ⊕ Ū consisting of eigenvectors of Q̄⊕. Further λ̄n is the corresponding
eigenvalue of f̄n and {β′

n|n ∈ N} is an independent family of real-valued (F̃t)-Brownian motions
on Ω̃. From the definition of f̄n and (33) we immediately obtain P-a.s.:

V̄ 1
t =

∑

i∈N

√

λ̄2i−1β
′
2i−1(t)fi and V̄

2
t =

∑

i∈N

√

λ̄2iβ
′
2i(t)fi, t ≥ 0.

Since the σ-algebras σ(β′
n(t)|t ≥ 0, n ∈ 2N0 + 1) and σ(β′

n(t)|t ≥ 0, n ∈ 2N) are P̃-independent
and clearly σ(V̄ 1

t |t ≥ 0) ⊆ σ(β′
n(t)|t ≥ 0, n ∈ 2N0 + 1), σ(V̄ 2

t |t ≥ 0) ⊆ σ(β′
n(t)|t ≥ 0, n ∈ 2N),

we have proved the independence of (V̄ 1
t )t≥0 and (V̄ 2

t )t≥0.

In the sequel we will use the notation V i for the formal R∞-Wiener process associated to V̄ i. The
next step is to prove that (X̃, V 1) is a weak solution to (23) on (Ω̃, F̃ , (F̃t)t≥0, P̃) (in fact even with

respect to the bigger filtration (G+
t )t≥0 as we shall see below) and that X̃ and V̄ 2 are P̃-independent.

1. (X̃, V 1) is a weak solution to (23) on (Ω̃, F̃ , (F̃t)t≥0, P̃):

We prove
∫ t

0
σ(s, X̃)dW̃s =

∫ t

0
σ(s, X̃)dV 1

s , t ≥ 0 P̃-a.s. Applying (28), (29) and for the second
equality Proposition B.21 (i), we get

∫ t

0

σ(s, X̃)dW̃s =

∫ t

0

σ(s, X̃)J−1Jφ(s, X̃)J−1d ˜̄Ws =

∫ t

0

σ(s, X̃)J−1d

(∫ s

0

Jφ(r, X̃)J−1d ˜̄Wr

)

=

∫ t

0

σ(s, X̃)J−1d

(∫ s

0

Jφ(r, X̃)J−1d ˜̄Wr +

∫ s

0

Jφ(r, X̃)ψ(r, X̃)J−1d ˜̄W 1
r

)

=

∫ t

0

σ(s, X̃)J−1d

(∫ s

0

Jφ(r, X̃)J−1Jφ(r, X̃)J−1d ˜̄Wr +

∫ s

0

Jφ(r, X̃)J−1Jψ(r, X̃)J−1d ˜̄W 1
r

)

.

Note that we can indeed apply Proposition B.21 due to Lemma 4.5. Applying Proposition B.20,
we can further rewrite the integrator of the last term in the upper chain of equations as follows:

∫ s

0

Jφ(r, X̃)J−1Jφ(r, X̃)J−1d ˜̄Wr +

∫ s

0

Jφ(r, X̃)J−1Jψ(r, X̃)J−1d ˜̄W 1
r

=

∫ s

0

Jφ(r, X̃)J−1d

(∫ r

0

Jφ(α, X̃)J−1d ˜̄Wα

)

+

∫ s

0

Jφ(r, X̃)J−1d

(∫ r

0

Jψ(α, X̃)J−1d ˜̄W 1
α

)

=

∫ s

0

Jφ(r, X̃)J−1dV̄ 1
r .

Finally, let us again apply Proposition B.21 (i) and the two chains of equations above to obtain
the following:

∫ t

0

σ(s, X̃)dW̃s =

∫ t

0

σ(s, X̃)J−1d

(∫ s

0

Jφ(r, X̃)J−1dV̄ 1
r

)

=

∫ t

0

σ(s, X̃)φ(s, X̃)J−1dV̄ 1
s =

∫ t

0

σ(s, X̃)dV 1
s ,

which holds P̃-a.s. for each t ≥ 0 with zero set independent of t ≥ 0.

2. X̃ and V̄ 2 are independent on Ω̃ with respect to P̃ :
We first show that (X̃, V̄ 1) remains a weak solution when replacing the filtration (F̃t)t≥0 by
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(G+
t )t≥0, which is the right-continuous filtration associated to Gt := F̃t ∨ σ(V̄ 2

s |s ≥ 0), t ≥ 0. By
Lemma A.1 we only need to show that V̄ 1 is a (Gt)-Q̄-Wiener process. Obviously

Gt = F̃t ∨ σ(V̄
2
s |s > t) = F̃t ∨ σ(V̄

2
s − V̄ 2

t |s ≥ t).

Since (V̄ 1, V̄ 2) is an (F̃t)t≥0-Q̄
⊕-Wiener process on (Ω̃, F̃ , (F̃t)t≥0, P̃), Lemma A.2 implies the

independence of F̃t and σ(V̄ 1
s − V̄ 1

t |s ≥ t) ∨ σ(V̄ 2
s − V̄ 2

t |s ≥ t) for t ≥ 0. Therefore for At ∈
F̃t, D ∈ σ(V̄ 2

s − V̄ 2
t |s ≥ t), B ∈ σ(V̄ 1

s − V̄ 1
t |s ≥ t) we have

P̃(B ∩D ∩ At) = P̃(B ∩D) · P̃(At) = P̃(B) · P̃(D) · P̃(At) = P̃(B) · P̃(D ∩ At).

Since sets of the form At ∩D for At and D as above form a ∩-stable generator of Gt, we obtain
the independence of σ(V̄ 1

s − V̄ 1
t |s ≥ t) and Gt, which yields that V̄ 1 is a (Gt)-Q̄-Wiener process

on Ω̃.

To obtain the desired independence of X̃ and V̄ 2, we now apply Lemma 4.4 to the weak so-
lution (X̃, V̄ 1) on (Ω̃, F̃ , (G+

t )t≥0, P̃) and obtain that for P̃-a.a. ω̃ ∈ Ω̃ the pair (Π1, Π̂2) is a weak

solution on (Ω̄, F̄ ω̃, (Ḡ+ω̃
t )t≥0,Pω̃) with Pω̃ ◦Π1(0)

−1 = δx = P̃◦X̃−1
0 . Here (Pω̃)ω̃∈Ω̃ is the regular

conditional distribution of (X̃, V̄ 1) : Ω → B ×W0 with respect to G+
0 . All other notations are

as in Lemma 4.4. By assumption, uniqueness in law given δx holds for the stochastic equation.
Hence the measures Pω̃ ◦Π−1

1 on B(B) are the same for P̃-a.a. ω̃ ∈ Ω̃. Therefore we have for all
D ∈ G+

0 and A ∈ B(B):

P̃(D ∩ {X̃ ∈ A}) =

∫

D

1{(X̃,V̄ 1)∈Π−1

1
(A)}dP̃(ω̃) =

∫

D

Pω̃(Π
−1
1 (A))dP̃(ω̃) = Pω̃(Π

−1
1 (A)) · P̃(D)

=

∫

Ω̃

Pω̃(Π
−1
1 (A))dP̃(ω̃) · P̃(D) = P̃

(
(X̃, V̄ 1)−1(Π−1

1 (A))
)
· P̃(D) = P̃(X̃ ∈ A) · P̃(D).

The third equality holds because the map ω̃ 7→ Pω̃(Π
−1
1 (A)) is P̃-a.s. constant for every A ∈ B(B).

But this shows that X̃ and G+
0 are P̃-independent. By definition of the filtration (G+

t )t≥0, then

also X̃ and V̄ 2 are P̃-independent.

For the final step of the proof define χ : R+ × B → Lin(H,U) with domain D(χ(t, y)) := Imσ(t, y)
for every (t, y) ∈ [0, T ] × B through χ(t, y) := σ(t, y)−1

ker⊥
. Here σ(t, y)−1

ker⊥
denotes the inverse of

σ(t, y) from Imσ(t, y) to kerσ(t, y)⊥. We note χ(t, y) ◦ σ(t, y) = φ(t, y) for all (t, y) ∈ R+ × B. Using
Proposition B.21 (ii) for the second equality below, we obtain

∫ t

0

Jφ(s, X̃)dW̃s =

∫ t

0

Jχ(s, X̃)σ(s, X̃)dW̃s =

∫ t

0

Jχ(s, X̃)dNs, t ≥ 0 (34)

P̃-a.s., where Nt := X̃t − X̃0 −
∫ t

0
b(s, X̃)ds. We continue with

¯̃Wt =

∫ t

0

J idUJ
−1d ¯̃Ws =

∫ t

0

J(φ(s, X̃) + ψ(s, X̃))J−1d ¯̃Ws

=

∫ t

0

Jχ(s, X̃)dNs +

∫ t

0

Jψ(s, X̃)J−1Jφ(s, X̃)dW̃ 2
s +

∫ t

0

Jψ(s, X̃)J−1Jψ(s, X̃)dW̃s

=

∫ t

0

Jχ(s, X̃)dNs +

∫ t

0

Jψ(s, X̃)J−1dV̄ 2
s , t ≥ 0 P̃-a.s. (35)

For the third equality, (34) and the identities (29) and (26) are applied. The last one holds due to
the linearity in the integrator and Proposition B.20. As the first summand of (35) is a measurable

functional of X̃ and V̄ 2 is independent of X̃ , we conclude that P̃ ◦ (X̃, ¯̃W ) is uniquely determined
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by P̃ ◦ X̃. We elaborate this step in more detail at the end of Appendix A. Since X̃ = X ◦ π1 and
˜̄W = W̄ ◦ π1 we obtain

P(X ∈ A, W̄ ∈ B) = P̃(X̃ ∈ A, ˜̄W ∈ B) for all A ∈ B(B), B ∈ B(W0),

where π̃1 : Ω̃ → Ω, π̃1((ω, ω
′)) := ω for (ω, ω′) ∈ Ω̃. Therefore also P◦(X, W̄ )−1 is uniquely determined

by P◦X−1, because clearly P̃◦X̃−1 = P◦X−1. Hence we have proved joint uniqueness in law given δx.
The “in particular”-assertion of the statement is now a trivial consequence of what we just proved.

Appendix

A Auxiliary lemmata and proofs

Again, let H be a separable, (infinite-dimensional) real Hilbert space.

Lemma A.1. Let M be a continuous H-valued stochastic process on a probability space (Ω,F ,P),
which is adapted to a not necessarily right-continuous filtration (Ft)t≥0. If Mt −Ms is independent
of Fs for all 0 ≤ s < t, then Mt −Ms is also independent of F+

s for all 0 ≤ s < t, where (F+
t )t≥0

denotes the right-continuous filtration associated to (Ft)t≥0.

Proof. It suffices to prove the following claim: For 0 ≤ s < t, X := Mt − Ms, O ⊆ H open and
As ∈ F+

s we have E[1X∈O ·1As
] = E[1X∈O] ·E[1As

]. For such O ⊆ H there exist continuous functions
(fn)n∈N such that fn(H) ⊆ [0, 1] for every n ∈ N and fn ր 1O pointwise. Hence, by Lebesgue’s
dominated convergence theorem it suffices to verify

E[f(X) · 1As
] = E[f(X)] · E[1As

] (36)

for every continuous f : H → [0, 1]. By assumption, f ◦ (Mt −Ms+ 1
n
) is independent of Fs+ 1

n
for any

n ∈ N. Hence we get

E[f ◦ (Mt −Ms+ 1
n
) · 1As

] = E[f ◦ (Mt −Ms+ 1
n
)] · E[1As

] (37)

and the continuity of M implies f ◦ (Mt −Ms+ 1
n
) →
n→∞

f ◦X P-a.s. Hence, and since every f ◦ (Mt −

Ms+ 1
n
) is bounded by 1 allows to apply Lebesgue on both sides of (37). Hence taking limits on both

sides in this equation, we obtain (36), which proves the assertion.

Lemma A.2. Let Q ∈ L+
1 (H) and Q′ ∈ L+

1 (H⊕H). Let W 1 and W 2 be two H-valued (Ft)-Q-Wiener
processes on a stochastic basis (Ω,F , (Ft)t≥0,P) such that (W 1,W 2) is an H ⊕ H-valued (Ft)-Q

′-
Wiener process on (Ω,F , (Ft)t≥0,P). Then Fs is independent of σ(W

1
t −W

1
s |t ≥ s)∨σ(W 2

t −W
2
s |t ≥ s)

for all s ≥ 0.

Proof. Since by assumption (W 1,W 2) is a Wiener process with respect to (Ft)t≥0, the independence
of Fs and σ

(
(W 1

t ,W
2
t )− (W 1

s ,W
2
s )|t ≥ s

)
for all s ≥ 0 follows. Hence it suffices to show

σ
(
(W 1

t ,W
2
t )− (W 1

s ,W
2
s )|t ≥ s

)
⊇ σ(W 1

t −W 1
s |t ≥ s) ∨ σ(W 2

t −W 2
s |t ≥ s).

Indeed, for t ≥ s: (W 1
t −W

1
s )

−1(A) =
(
(W 1

t ,W
2
t )−(W 1

s ,W
2
s )
)−1

(A×H) ∈ σ
(
(W 1

t ,W
2
t )−(W 1

s ,W
2
s )|t ≥

s
)
for all A ∈ B(H). Proceeding in the same way for W 2, we obtain the assertion.

Proof of Lemma 4.6: Fix φ1 and φ2 as above and let τ : Ω → R+ be an (Ft)-stopping time such
that P(τ ≤ T ) = 1 for some T > 0. By [9, Lemma 2.3.9], we obtain

E

[ ∫ τ

0

φ1(s)dW
1(s) ·

∫ τ

0

φ2(s)dW
2(s)

]

= E

[ ∫ T

0

1]0,τ ]φ1(s)dW
1(s) ·

∫ T

0

1]0,τ ]φ2(s)dW
2(s)

]
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and clearly 1]0,τ ]φk ∈ Λ2
T (W

k, U,R,PT ) for k ∈ {1, 2}. By the construction of the stochastic integral
(see Proposition B.16), it is sufficient to prove

E

[ ∫ T

0

Φ1(s)dW
1(s) ·

∫ T

0

Φ2(s)dW
2(s)

]

= 0 (38)

for all Φk ∈ ET (U,R). To this end let 0 = t0 < ... < tN = T be a finite partition of [0, T ] and set

Φk :=
∑N−1

l=0 Bk
l 1]tl,tl+1] for k ∈ {1, 2}. Recall that each Bk

l is a map from Ω to L(U,R), which takes

finitely many values {βk
l1
, ..., βk

lKk
} and is Ftl-measurable. We may assume that Φ1 and Φ2 have the

same partition. Then

E

[ ∫ T

0

Φ1(s)dW
1(s) ·

∫ T

0

Φ2(s)dW
2(s)

]

=

N−1∑

l,m=0

E

[

B1
l (W

1
tl+1∧T −W 1

tl∧T ) · B
2
m(W 2

tm+1∧T −W 2
tm∧T )

]

=

N−1∑

l,m=0

K1∑

i=1

K2∑

j=1

E

[

E
[
1B1

l
=β1

li

1B2
m=β2

mj
β1
li
(W 1

tl+1∧T −W 1
tl∧T ) · β

2
mj

(W 2
tm+1∧T −W 2

tm∧T )
∣
∣Ftl∨tm

]
]

=
N−1∑

l,m=0,l 6=m

K1∑

i=1

K2∑

j=1

E

[

E[β1
li
(W 1

tl+1∧T −W 1
tl∧T )]

︸ ︷︷ ︸

=β1
li
(E[W 1

tl+1∧T
−W 1

tl∧T
])=0

E
[
1B1

l
=β1

li

1B2
m=β2

mj
· β2

mj
(W 2

tm+1∧T −W 2
tm∧T )

∣
∣Ftl∨tm

]
]

+
N−1∑

l=0

K1∑

i=1

K2∑

j=1

E

[

E
[
1B1

l
=β1

li

1B2
l
=β2

lj

β1
li
(W 1

tl+1∧T −W 1
tl∧T )] · β

2
lj
(W 2

tl+1∧T −W 2
tl∧T )

∣
∣Ftl

]
]

=

N−1∑

l=0

K1∑

i=1

K2∑

j=1

E

[

E[β1
li
(W 1

tl+1∧T −W 1
tl∧T ) · β

2
lj
(W 2

tl+1∧T −W 2
tl∧T )]

︸ ︷︷ ︸

=E[β1
li
(W 1

tl+1∧T
−W 1

tl∧T
)]·E[β2

lj
(W 2

tl+1∧T
−W 2

tl∧T
)]=0

·E
[
1B1

l
=β1

li

1B2
l
=β2

lj

∣
∣Ftl

]
]

= 0.

For the third equality we used thatW 1 andW 2 are (Ft)-Wiener processes and the Ftl∨tm-measurability
of 1B1

l
=β1

li

and 1B2
m=β2

mj
and assumed (w.l.o.g.; else reverse the roles) tl > tm. In the fourth equality

we once more used {B1
l = β1

li
}, {B2

l = β2
lj
} ∈ Ftl and the independence of β1

li
(W 1

tl+1∧T −W 1
tl∧T ) ·

β2
lj
(W 2

tl+1∧T − W 2
tl∧T ) from Ftl , which follows from the independence of W 1 and W 2. This gives

(38).

Finally, we elaborate the conclusion of the proof of Theorem 3.2 in detail. Consider the situation
of the final step of the proof.

Conclusion of proof of Theorem 3.2: Consider a bounded B(B) ⊗ B(W0)-measurable function
F : B ×W0 → R, which is continuous with respect to the topology of pointwise convergence in W0.

We show that for every such F the integral
∫

Ω̃
F (X̃, ¯̃W )dP̃(ω̃) only depends on the distribution of X̃
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under P̃. Indeed, we can calculate as follows:

∫

Ω̃

F (X̃, ¯̃W )dP̃(ω̃) =

∫

Ω̃

F
(
X̃,G(X̃) +

∫ ·

0

Jψ(s, X̃)J−1dV̄ 2
s

)
dP̃(ω̃)

=

∫

Ω̃

F

(

X̃,G(X̃) +

∞∑

l=1

∞∑

k=1

∫ ·

0

〈Jψ(s, X̃)J−1(Jek), ūl〉Ūdβk(s) · ūl

)

dP̃(ω̃)

= lim
n→∞

lim
m→∞

∫

Ω̃

F

(

X̃,G(X̃) +

n∑

l=1

m∑

k=1

[

lim
j→∞

Nj−1
∑

i=0

〈Jψ(ti, X̃)ek, ūl〉Ū
(
βk(ti+1 ∧ ·)− βk(ti ∧ ·)

)
]

ūl

)

dP̃(ω̃)

= lim
n→∞

lim
m→∞

lim
j→∞

∫

Ω̃

F

(

X̃,G(X̃) +

n∑

l=1

m∑

k=1

Nj−1
∑

i=0

〈Jψ(ti, X̃)ek, ūl〉Ū
(
βk(ti+1 ∧ ·)− βk(ti ∧ ·)

)
ūl

)

dP̃(ω̃)

︸ ︷︷ ︸

=:F (n,m,j)

.

All limits are understood in the sense of pointwise convergence in t ≥ 0 for fixed ω̃ ∈ Ω̃ taken out of a
set of full P̃-measure. For an orthonormal basis (ūl)l∈N of Ū , the second equality follows directly from
Proposition 2.4.5. in [9] and V̄ 2 =

∑∞
k=1 Jekβk P̃-a.s. (where (ek)k∈N denotes the fixed orthonormal

basis of U and (βk)k∈N is a family of independent, real-valued (F̃t)-Brownian motions on Ω̃). The third
equality holds due to [6, Remark 2.8.7] for suitable (Nj)j∈N and an increasing sequence (ti)i∈N ⊆ R+.
All limits can be interchanged with F due to the continuity of F in the aforementioned sense and can
be taken out of the integral, since F is bounded. For (n,m, j) ∈ N3 we continue, using Proposition
2.2.2. of [9] for the second equality (note βk(t) = 〈V̄ 2(t), Jek〉Ū and recall the independence of X̃ and
V̄ 2):

F (n,m, j) =

∫

Ω̃

E

[

F

(

X̃,G(X̃) +

n∑

l=1

m∑

k=1

Nj−1
∑

i=0

〈Jψ(ti, X̃)ek, ūl〉Ū
(
βk(ti+1 ∧ ·)− βk(ti ∧ ·)

)
ūl

)∣
∣
∣
∣
σ(X̃)

]

dP̃(ω̃)

=

∫

Ω̃

E

[

F

(

X̃(ω̃), G(X̃(ω̃)) +

n∑

l=1

m∑

k=1

Nj−1
∑

i=0

〈Jψ(ti, X̃(ω̃))ek, ūl〉Ū
(
βk(ti+1 ∧ ·)− βk(ti ∧ ·)

)
ūl

)]

dP̃(ω̃)

=

∫

B

E

[

F

(

y,G(y) +

n∑

l=1

m∑

k=1

Nj−1
∑

i=0

〈Jψ(ti, y)ek, ūl〉Ū
(
βk(ti+1 ∧ ·)− βk(ti ∧ ·)

)
ūl

)]

dP̃ ◦ X̃−1(y).

Finally, we rewrite the last term on the right-hand side as

∫

B

∫

W0

F

(

y,G(y) +
n∑

l=1

m∑

k=1

Nj−1
∑

i=0

〈Jψ(ti, y)ek, ūl〉Ū
(
〈wti+1∧·, Jek〉Ū − 〈wti∧·, Jek〉Ū

)
ūl

)

dP̃V̄ 2(w)dP̃X̃(y).

Since V̄ 2 is a Q̄-Wiener process, each F (n,m, j) only depends on the distribution of X̃ under P̃, which

yields this also for
∫

Ω̃
F (y, w)dP̃◦ (X̃, ¯̃W )−1(y, w). Since the set of all integrals over such F determines

a measure on B(B) ⊗ B(W0) uniquely, the joint distribution of X̃ and ¯̃W under P̃ only depends on
P̃ ◦ X̃−1.

B The stochastic integral for Hilbert space-valued martingales

In this section we briefly recall the construction of the stochastic integral with respect to continuous,
square-integrable Hilbert space-valued martingales as integrators and state its most important proper-
ties. Most parts of this section are standard and can be found in Section 3.4 of [3] and Section 14 in [10].
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Let (Ω,F , (Ft)t∈[0,T ],P) be a stochastic basis and U a separable Hilbert space with an orthonormal
basis {en}n∈N. We introduce the Banach space

M2
c(T ;U) := {M : Ω → C([0, T ];U)

∣
∣M continuous (Ft)-martingale, ||M ||M2

T
<∞},

where the norm || · ||M2
T
on M2

c(T ;U) is defined by ||M ||M2
T
:= (E[||MT ||2U ])

1
2 = sup

t∈[0,T ]

(E[||Mt||2U ])
1
2 .

By the maximal inequality, || · ||M2
T
is equivalent to the L2(Ω,F ,P;L∞([0, T ];U))-norm on M2

c(T ;U).

The quadratic variation of a Hilbert space-valued, square-integrable continuous martin-

gale

It is well-known that for M ∈ M2
c(T ;U) (with M0 = 0) there exists a unique real-valued, increasing,

(Ft)-adapted, continuous process (〈M〉t)t∈[0,T ] (with 〈M〉0 ≡ 0) such that ||Mt||2−〈M〉t is a continuous
(Ft)-martingale. Let αM := P(dω) ⊗ 〈M〉(ω, dt) as a measure on B([0, T ]) ⊗ F . Now we define the
quadratic variation of M .

Definition B.1. The L1(U)-valued process (≪M ≫t)t∈[0,T ], defined through

≪M ≫t =

∞∑

i,j=1

〈〈Mi,Mj〉〉tei ⊗ ej

in L1(U) is the quadratic variation (process) of M . Here Mi denotes the real-valued martingale
〈M, ei〉U , t ∈ [0, T ] and we set ei ⊗ ej(u) := ei〈ej , u〉U , where 〈〈·, ·〉〉 denotes quadratic covariation for
real-valued martingales.

Proposition B.2. There exists a (up to an αM -zero set) unique predictable process QM : [0, T ]×Ω →
L+
1 (U) such that

≪M ≫t =

∫

[0,t]

QM (s)d〈M〉s.

The integral above is a pathwise Bochner-integral, taking values in the separable Banach space L1(U).

Definition B.3. An L(U)-valued process (Bt)t∈[0,T ] with Bt non-negative for every t is called increas-
ing, if for every 0 ≤ s ≤ t ≤ T and ω ∈ Ω the operator Bt(ω)−Bs(ω) is non-negative.

Proposition B.4. An L1(U)-valued process V is the quadratic variation of M ∈ M2
c(T ;U) with

M0 = 0 if and only if it is increasing, continuous, (Ft)-adapted with V0 = 0 and such that the process

〈Mt, a〉U 〈Mt, b〉U − 〈Vta, b〉U , t ∈ [0, T ]

is an R-valued (Ft)-martingale for all a, b ∈ U.

Next we define the notion of the quadratic cross variation for two Hilbert space-valued martingales
and draw a connection to the quadratic variation reminiscent to the real-valued case.

Definition B.5. LetM,N ∈ M2
c(T ;U). The quadratic cross variation ofM and N is defined through

≪M,N ≫t :=
∑∞

i,j=1〈〈Mi, Nj〉〉tei ⊗ ej , t ∈ [0, T ].

Lemma B.6. For M,N ∈ M2
c(T ;U) the following formula holds P-a.s. for every t ∈ [0, T ]:

≪M +N ≫t =≪M ≫t + ≪ N ≫t + ≪M,N ≫t + ≪ N,M ≫t .

Proof. The claim follows immediately by Definitions B.1, B.5 and the bilinearity of the cross variation.
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Corollary B.7. (i) Let M,N ∈ M2
c(T ;U) be such that the real-valued continuous martingales

〈M, ei〉U and 〈N, ej〉U have covariation zero for every i, j ∈ N. Then we have for every t ∈ [0, T ]

≪M +N ≫t =≪M ≫t + ≪ N ≫t P-a.s. (39)

(ii) In particular (39) holds, if M and N are independent.

Finally, we state the Hilbert space-version of Lévy’s characterization of Brownian motion, which is
used in the proof of Theorem 3.2.

Proposition B.8. (Generalized Lévy-Characterization)
Let M ∈ M2

c(T ;U) be such that M0 = 0 P-a.s and let Q ∈ L+
1 (U). Then the following are equivalent.

(i) (Mt)t∈[0,T ] is an (Ft)-Q-Wiener process on (Ω,F , (Ft)t∈[0,T ],P) (in particular Mt −Ms is inde-
pendent of Fs for all 0 ≤ s < t ≤ T ).

(ii) ≪M ≫t = tQ P-a.s. for t ∈ [0, T ].

The construction of the stochastic integral

We continue with the construction of the stochastic integral.

Remark B.9. (c.f. [9, Prop. 2.3.4.]) If Q : [0, T ]×Ω → L+
1 (U), then there exists a unique, operator-

valued process Q
1
2 : [0, T ]×Ω → L2(U) such that Q

1
2 (t, ω)◦Q

1
2 (t, ω) = Q(t, ω) for all (t, ω) ∈ [0, T ]×Ω.

The following construction and results are standard. One starts with the construction of stochastic
integral with respect to elementary integrands and then extends this definition through a suitable
isometry. In the sequel H denotes another separable, (infinite-dimensional) Hilbert space.

Definition B.10. A process A : [0, T ]× Ω → L(U,H) is elementary, if it is of the form

A(t, ω) =

N−1∑

k=0

φk(ω)1]tk,tk+1](t),

where φk : Ω → L(U,H) has finite image in L(U,H) and is Ftk -measurable with respect to the strong
Borel σ-algebra for every k ∈ {0, ..., N − 1} and 0 = t0 < t1 < ... < tN = T is a finite partition of
[0, T ]. The set of all such processes is denoted by ET (U,H).

Definition B.11. For A =
∑N−1

k=0 φk1]tk,tk+1] ∈ ET (U,H) and M ∈ M2
c(T ;U) the stochastic integral

of A with respect to M is defined through

∫ t

0

A(s)dMs :=

N−1∑

k=0

φk
(
Mtk+1∧t −Mtk∧t

)
, t ∈ [0, T ].

Proposition B.12. Let A ∈ ET (U,H). Then the stochastic integral process
( ∫ t

0
A(s)dMs

)

t∈[0,T ]
is an

element of M2
c(T ;H).

Now we want to extend this definition through a suitable isometry. We need the following space of
operator-valued processes. In the sequel we abbreviate the Hilbert-Schmidt norm by || · ||2 when no
confusion is possible.

Definition B.13. LetM ∈ M2
c(T ;U) andQM as in Proposition B.2. The vector space Λ2

T (M,U,H,PT )
is defined by containing processes X : [0, T ]× Ω → Lin(U,H), which fulfill

(i) D(X(t, ω)) ⊇ Q
1
2

M (t, ω)(U) for all (t, ω) ∈ [0, T ]× Ω.
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(ii) For every u ∈ U the process X ◦Q
1
2

M (u) : [0, T ]× Ω → H is (Ft)-predictable.

(iii)
∫

[0,T ]×Ω
||X ◦Q

1
2

M ||22dαM < +∞.

Proposition B.14. The bilinear form (X,Y ) 7→
∫

[0,T ]×Ω tr
[
(X ◦ Q

1
2

M )(Y ◦ Q
1
2

M )∗
]
dαM is a scalar

product on Λ2
T (M,U,H,PT ). Equipped with this scalar product, Λ2

T (M,U,H,PT ) is a Hilbert space.

In particular, denoting the corresponding norm by || · ||Λ2
T
, we have ||X ||Λ2

T
=

∫

[0,T ]×Ω ||X ◦Q
1
2

M ||22dαM

for X ∈ Λ2
T (M,U,H,PT ).

For every element of Λ2
T (M,U,H,PT ) the stochastic integral with respect to M can be defined.

This is contained in the following two statements.

Proposition B.15. Λ2
T (M,U,H,PT ) is the closure of ET (U,H) with respect to the norm || · ||Λ2

T
.

Proposition B.16. LetM ∈ M2
c(T ;U). There exists a unique linear isometric map from (Λ2

T (M,U,H,PT ),
|| · ||Λ2

T
) to (M2

c(T ;H), || · ||M2
T
), which extends the linear map ΦM : ET (U,H) → M2

c(T ;H), defined
through

ΦM (A) :=

(N−1∑

k=0

φk
(
Mtk+1∧t −Mtk∧t

)
)

t∈[0,T ]

for A :=
∑N−1

k=0 φk1]tk,tk+1] ∈ ET (U,H). For A ∈ Λ2
T (M,U,H,P) the continuous, (Ft)-adapted, square-

integrable H-valued process ΦM (A) is called stochastic integral (of A with respect to M) and is denoted

by (
∫ t

0 A(s)dMs)t∈[0,T ] or simply by A.M.

The final step of the construction consists of a localization in order to enlarge the class of admissible
integrands. Let M be as before and consider an operator-valued process A, which fulfills (i) and (ii)
of Definition B.13, but instead of (iii) we now only require A to fulfill

P

(∫ T

0

||X ◦Q
1
2

M (s)||22d〈M〉(s)

)

< +∞.

We denote the set of all such A by ΛT (M,U,H,PT ). Clearly Λ2
T (M,U,H,PT ) ⊆ ΛT (M,U,H,PT ).

Reminiscent to Step 4 of Section 2.3.2 in [9], one defines
∫ t

0

A(s)dMs := lim
n→+∞

∫ t

0

1]0,τn]A(s)dMs P-a.s. (40)

for any sequence of (Ft)-stopping times (τn)n∈N, which fulfills

(i) (τn)n∈N is non-decreasing and converges to T P-a.s.,

(ii) 1]0,τn]A ∈ Λ2
T (M,U,H,PT ) for every n ∈ N.

For example, one may choose τn(ω) := inf
{
t ∈ [0, T ]

∣
∣
∫ t

0 ||A ◦ Q
1
2

M (s, ω)||22d〈M〉(s) > n
}
∧ T and one

verifies that (40) does not depend on the particular sequence (τn)n∈N. Clearly for A ∈ ΛT (M,U,H,PT )
the stochastic integral A.M is a continuous, local H-valued martingale.

Finally, we introduce the definition of stochastic integrals with respect to continuous local martin-
gales.

Definition B.17. Let (Mt)t∈[0,T ] be a continuous, (Ft)-adapted U -valued local martingale such
that for every element τn of its localizing sequence (τn)n∈N, the martingale (Mt∧τn)t∈[0,T ] belongs
to M2

c(T ;U). Define

Λ2
T,loc(M,U,H,PT ) :=

⋂

n∈N

Λ2
T (M·∧τn, U,H,PT )

and for A ∈ Λ2
T,loc(M,U,H,PT ) set

∫ t

0 A(s)dMs := lim
n→+∞

∫ t

0 A(s)dMs∧τn , t ∈ [0, T ]. This definition

does not depend on the sequence (τn)n∈N.
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Properties of the stochastic integral

The following proposition and its proof can be found in Section 4.3 of [3].

Proposition B.18. Let Q ∈ L+
1 (U), W ∈ M2

c(T ;U) be a (Ft)-Q-Wiener process and A ∈ Λ2
T (W,U,H,P).

Then

≪ A.W ≫t=

∫ t

0

(A(s) ◦Q
1
2 )(A(s) ◦Q

1
2 )∗ds, t ∈ [0, T ] P-a.s.

It is well known that H1.(H2.M) = (H1 ·H2).M holds in the case of finite-dimensional stochastic
integration. We use the Hilbert space-analogue of this result, stated in Proposition B.20 below, multiple
times within our main proofs. This proposition and Lemma B.19 are taken from [1] (c.f. Lemma 3.6.
and Theorem 3.7. therein). We also need two slight generalizations of this result, which we both
state and prove in Proposition B.21 at the end of this appendix. Let G denote another separable,
infinite-dimensional Hilbert space.

Lemma B.19. Let M ∈ M2
c(T ;U), A ∈ Λ2

T (M,U,H,PT ) and B : [0, T ] × Ω → Lin(H,G). The
following are equivalent:

(i) B ◦A ∈ Λ2
T (M,U,G,PT ) (ii) B ∈ Λ2

T (A.M,H,G,PT ).

In this case B.(A.M) and B ◦A.M are equal in norm in M2
c(T ;G).

From here we can readily obtain the following important statement:

Proposition B.20. Let M,A and B be as in the previous lemma such that the equivalent properties
therein are fulfilled. Then

( ∫ t

0 B ◦ (A)(s)dMs

)

t∈[0,T ]
and

( ∫ t

0 B(s)d(
∫ s

0 A(r)dMr)
)

t∈[0,T ]
are equal in

M2
c(T ;G). In particular we have

∫ t

0

B ◦ (A)(s)dMs =

∫ t

0

B(s)d

(∫ s

0

A(r)dMr

)

, t ∈ [0, T ] P-a.s.

Finally, we generalize the above proposition to elementsA ∈ ΛT (M,U,H,PT ) andB ∈ ΛT (A.M,H,G,PT ).

Proposition B.21. Let W be an (Ft)-Q-Wiener process for Q ∈ L+
1 (U).

(i) Let A ∈ Λ2
T (W,U,H,PT ) and B : [0, T ] × Ω → Lin(H,G) such that B ◦ A ∈ ΛT (W,U,G,PT ).

Then B ∈ ΛT (A.W,H,G,PT ) and

∫ t

0

B(s)d

(∫ s

0

A(r)dWr

)

=

∫ t

0

B ◦A(s)dWs, t ∈ [0, T ] P-a.s.

(ii) Let A ∈ ΛT (W,U,H,PT ) and B : [0, T ] × Ω → Lin(H,G) such that B ◦ A ∈ Λ2
T (W,U,G,PT ).

Then B ∈ Λ2
T,loc(A.W,H,G,PT ) and

∫ t

0

B(s)d

(∫ s

0

A(r)dWr

)

=

∫ t

0

B ◦A(s)dWs, t ∈ [0, T ] P-a.s.

Proof. (i) Since B ◦ A ∈ ΛT (W,U,G,PT ), there exists a sequence of (Ft)-stopping times (τn)n∈N

with properties (i) and (ii), mentioned in the localization step of the construction on the previous
pages, such that

∫ t

0

B ◦A(s)dWs = lim
n→+∞

∫ t

0

1]0,τn]B ◦A(s)dWs, t ∈ [0, T ] P-a.s.
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Using Lemma B.19 and Proposition B.20 we obtain B ∈ ΛT (A.W,H,G,PT ) and that (τn)n∈N is
also a proper localizing sequence for B. Therefore

∫ t

0

1]0,τn]B ◦A(s)dWs =

∫ t

0

1]0,τn]B(s)d

(∫ s

0

A(r)dWr

)

, t ∈ [0, T ] P-a.s.

for every n ∈ N. But since by definition

lim
n→+∞

∫ t

0

1]0,τn]B(s)d

(∫ s

0

A(r)dWr

)

=

∫ t

0

B(s)d

(∫ s

0

A(r)dWr

)

for every t ∈ [0, T ] P-a.s., the assertion follows.

(ii) Since A ∈ ΛT (M,U,H,PT ), there exists a sequence (σn)n∈N of (Ft)-stopping times with prop-
erties (i) and (ii) as above such that

∫ t

0

A(s)dWs = lim
n→+∞

∫ t

0

1]0,σn]A(s)dWs, t ∈ [0, T ] P-a.s.

and 1]0,σn]A ∈ Λ2
T (W,U,H,PT ) for all n ∈ N. Since B ◦A ∈ Λ2

T (W,U,G,PT ), we also have

B ◦ 1]0,σn]A = 1]0,σn]B ◦A ∈ Λ2
T (W,U,G,PT ).

Consequently we conclude that all terms in the following equation are well-defined and fulfill, for
every n ∈ N,

∫ t

0

B(s)d
(
∫ s

0

1]0,σn]A(r)dWr

)
=

∫ t

0

1]0,σn]B ◦A(s)dWs, t ∈ [0, T ] P-a.s. (41)

For n → +∞, the right-hand side of (41) clearly converges P-a.s. to
∫ t

0
B ◦ A(s)dWs with P-

zero set independent of t ∈ [0, T ], while the limit of the left-hand side is by definition equal

to
∫ t

0
B(s)d

( ∫ s

0
A(r)dWr

)
, again with zero set independent of t ∈ [0, T ]. This concludes the

proof.

Finally, we mention that the entire construction and all properties presented in this section im-
mediately carry over to the case T = +∞. We would like to stress, however, that these extended
stochastic integrals on Ω× R+ are in general only continuous local martingales.
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