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FURTHER REMARKS ON THE HIGHER DIMENSIONAL

SUITA CONJECTURE

G.P. BALAKUMAR, DIGANTA BORAH, PRACHI MAHAJAN AND KAUSHAL
VERMA

Abstract. For a domain D ⊂ Cn, n ≥ 2, let F k

D
(z) = KD(z)λ

(

Ik
D
(z)
)

,

where KD(z) is the Bergman kernel of D along the diagonal and λ
(

Ik
D
(z)
)

is the Lebesgue measure of the Kobayashi indicatrix at the point z. This
biholomorphic invariant was introduced by Błocki and in this note, we
study its limiting boundary behaviour on two classes of domains namely,
h-extendible and strongly pseudoconvex polyhedral domains.

1. Introduction

We continue the study of F k
D, a biholomorphic invariant that was defined

by Błocki in his work on Suita’s conjecture [3]. Recall that for a domain
D ⊂ Cn,

F k
D(z) = KD(z)λ

(

IkD(z)
)

where KD(z) is the Bergman kernel of D along the diagonal and λ
(

IkD(z)
)

is the Lebesgue measure of the Kobayashi indicatrix at z ∈ D. As usual, let
kD = kD(z, v) be the infinitesimal Kobayashi metric on D. Błocki–Zwonek
[4] have shown that

1 ≤ F k
D(z) ≤ Cn

where C = 4, 16 accordingly as D is convex or C-convex respectively. Fur-
thermore, their work also contains a detailed discussion of this invariant on
convex egg domains in C2. These results were supplemented in [1] wherein
this invariant was considered on strongly pseudoconvex domains in Cn and
a few other observations were made about its boundary behaviour on egg
domains in C2. In particular, even on the smoothly bounded convex eggs of
the form

E2µ =
{

(z, w) ∈ C
2 : |z|2 + |w|2µ < 1

}

for integers µ > 1, F k
E2µ

does not admit a limit at any of the weakly pseudo-

convex points of ∂E2µ. In fact, the full range of all possible values of F k
E2µ

at
points of E2µ show up as possible limits near any of the weakly pseudoconvex
points on ∂E2µ. By the well known work of Lempert, all invariant metrics
on bounded convex domains D coincide; so in particular for any invariant
metric τ , F k

D ≡ F τ
D, the analogously defined invariant function associated to

τ . While such an identity need not hold on strongly pseudoconvex domains
in general, it was shown in [1] that on any smoothly bounded strongly pseu-
doconvex domain D, the boundary limits of F τ

D exist and give rise to the
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same value: F τ
D(z) → 1 as z approaches ∂D, the boundary of D. A different

approach to this result has been suggested recently in [5], wherein the focus
was the invariant metric τ = a of Azukawa. In this article, Błocki – Zwonek
have also raised questions about the boundary behaviour of F a

D both for
bounded convex domains as well as for smoothly bounded pseudoconvex
domains. While the aforementioned (convex) egg domains settle the non-
existence of boundary limits of F a

D at non-strongly pseudoconvex boundary
points in general, it is possible to make certain definite statements about
the possible limiting boundary values.

The purpose of this note is to record some general properties of F k
D and to

compute its possible limiting boundary values on h-extendible and strongly
pseudoconvex polyhedral domains.

2. Some Observations

(i) Removable Singularities: For a bounded domain G ⊂ Cn and a subvariety
V ⊂ G of codimension at most 2, it is known that kG(z, v) = kG\V (z, v) for
(z, v) ∈ (G\V )×Cn. Further, the Bergman kernels along the diagonal of G
and G \ V are equal since V is a removable singularity for L2-holomorphic
functions. Hence F k

G = F k
G\V .

If V has codimension 1, this is no longer the case despite the fact that
V is still removable for L2-holomorphic functions. In general, kG ≤ kG\V as
can be seen by taking G to be the unit disc D ⊂ C and V = {0}. Thus, the
most that can be said in general is that F k

G ≤ F k
G\V . Examples in higher

dimensions can be constructed by observing that F k
D is multiplicative as a

function of the domain D, that is,

F k
D×G

(

(p, q)
)

= F k
D(p)F

k
G(q)

for D ⊂ Cn, G ⊂ Cm, and hence F k
D×D

≤ F k
D×(D\{0}). Finally, using the

multiplicative property, this invariant for the Hartogs’ triangle Ω ⊂ C2

(which is biholomorphic to D× (D \ {0})) can be computed as

F k
Ω(z, w) = F k

D

(w

z

)

F k
D\{0}(z) = 4

( |z| log |z|
1− |z|2

)2

.

In particular, F k
Ω(z, w) → 0 as (z, w) approaches the origin from within Ω.

(ii) Regularity of F k
G: Let G ⊂ Cn be an arbitrary domain. Then F k

G(z) is
always lower semicontinuous; it is continuous when the Kobayashi metric
kG(z, v) is continuous on G × Cn and non-degenerate in the sense that
kG(z, v) > 0 for all v 6= 0.

It suffices to show lower semicontinuity of the function z 7→ λ(IkG(z)).
For this, fix a z0 ∈ G and let zν be a sequence in G converging to z0. We
claim that

(2.1) IkG(z
0) ⊂ lim inf

ν→∞
IkG(z

ν) = ∪∞
µ=1 ∩∞

ν=µ I
k
G(z

ν).



FURTHER REMARKS ON THE HIGHER DIMENSIONAL SUITA CONJECTURE 3

Indeed, let v0 ∈ IkG(z0). Then ǫ = 1 − kG(z
0, v0) > 0 and by the upper

semicontinuity of kG(·, v0), there exists N ∈ N (depending possibly on both
z0 and v0) such that for all ν ≥ N we have

kG(z
ν , v0) ≤ kG(z

0, v0) + ǫ/2 = 1− ǫ/2 < 1.

This implies that v0 ∈ IkG(z
ν) for all ν ≥ N proving our claim (2.1). Now

by Fatou’s lemma for measurable sets,

λ
(

IkG(z
0)
)

≤ λ
(

lim inf IkG(z
ν)
)

≤ lim inf
ν→∞

λ
(

IkG(z
ν)
)

which establishes the lower semicontinuity of z 7→ λ
(

IkG(z)
)

.
Now, we restrict attention to those domains G for which kG is continuous

and non-degenerate. To show the continuity of F k
G, it suffices to show that

z 7→ λ
(

IkG(z)
)

is upper semicontinuous. For this, pick a z0 ∈ G and let zν

be a sequence in D converging to z0. Let ǫ > 0. By continuity of kG, there
exists N ∈ N such that

kG(z
ν , v) > kG(z

0, v)− ǫ

for all ν ≥ N and v ∈ S = ∂Bn, the standard Euclidean unit sphere. Now,
for any nonzero vector v ∈ IkG(z

ν) where ν ≥ N ,

1 > kG(z
ν , v) = |v|kG(zν , v/|v|) > |v|

(

kG(z
0, v/|v|)−ǫ

)

= |v|
(

kG(z
0, v)/|v|−ǫ

)

and thus
1 + ǫ|v| > kG(z

0, v).

The continuity of kG together with its non-degeneracy also implies that there
is a positive constant c depending only on z0 such that kG(z

ν , v) ≥ c|v|
for all ν ≥ N and v ∈ Cn, modifying N if necessary. This implies that
IkG(z

ν) ⊂ c−1Bn for all ν ≥ N .
It follows that any vector v picked from any of the indicatrices IkG(z

ν)
for ν ≥ N satisfies

kG(z
0, v) < 1 + c−1ǫ

and this means that IkG(z
ν) ⊂ (1 + c−1ǫ)IkG(z

0). Therefore,

λ
(

IkG(z
ν)
)

≤ (1 + c−1ǫ)2nλ
(

IkG(z
0)
)

for all ν ≥ N . As c depends only on z0 but not on ǫ, this implies

lim sup
ν→∞

λ
(

IkG(z
ν)
)

≤ λ
(

IkG(z
0)
)

proving the upper semicontinuity of z 7→ λ
(

IkG(z)
)

.

To conclude, note that the non-degeneracy of kG entails the bounded-
ness of the indicatrices and its continuity implies the following geometric
property: every ray emanating from the origin in Tz(G) intersects the (usual
topological) boundary ∂IkG(z) of the indicatrix, in exactly one point. This
then leads to ∂IkG(z) being homeomorphic to ∂Bn; indeed, as the ‘graph’
of a (uniformly) continuous function on ∂Bn thereby ensuring that the 2n-
dimensional Lebesgue measure of ∂IkG(z) is zero.

(iii) A remark on F k
G2

: For the symmetrized bidisc G2 ⊂ C2, it is known

that F k
G2

(

(0, 0)
)

= 4/3. The explicit description of Aut(G2) shows that
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every point in G2 is equivalent to (b, 0) for 0 ≤ b < 1. A rough estimate of
F k
G2

(

(b, 0)
)

can be obtained by using the known expression for the Bergman

kernel KG2

(

(b, 0)
)

and then estimating the volume of Ik
G2

(

(b, 0)
)

.

Indeed,

KG2

(

(b, 0)
)

=
2− b2

π2(1− b2)2

and if G2 = π(D2) where π(z1, z2) = (z1+z2, z1z2) is the symmetrizing map,
then

dπ
(

(b, 0)
)

: Ik
D2

(

(b, 0)
)

→ Ik
G2

(

(b, 0)
)

and hence

λ
(

IkG2

(

(b, 0)
)

)

≥
∣

∣

∣
det dπ

(

(b, 0)
)

∣

∣

∣

2

λ
(

Ik
D2

(

(b, 0)
)

)

.

Since
∣

∣ det dπ
(

(b, 0)
)
∣

∣

2
= b2 and λ

(

Ik
D2

(

(b, 0)
))

= π2(1− b2)2, it follows that

F k
G2

(

(b, 0)
)

≥ (2− b2)b2

for 0 ≤ b < 1. This lower bound does not yield anything interesting near
b = 0 for then it is expected that F k

G2

(

(0, 0)
)

≈ 4/3, but it does show that

lim infb→1 F
k
G2

(

(b, 0)
)

≥ 1. Finally, note that π−1
(

(b, 0)
)

=
{

(b, 0), (0, b)
}

if b > 0 and one could work with dπ
(

(0, b)
)

which also maps Ik
D2

(

(0, b)
)

into Ik
G2

(

(b, 0)
)

. However, this gives the same lower bound for F k
G2

(

(b, 0)
)

as
above. It would be interesting to see if there is a transformation formula for
the Kobayashi indicatrix under proper holomorphic maps – this may lead
to better estimates for F k

G2

(

(b, 0)
)

.

(iv) Localization: It is possible to localize this invariant near peak points as
follows:

Proposition 2.1. Let G ⊂ C
n be a pseudoconvex domain and let p ∈ ∂G be

a local holomorphic peak point. Then for a sufficiently small neighbourhood
U of p,

lim
U∩G∋z→p

F k
U∩G(z)

F k
G(z)

= 1.

It should be mentioned that this holds for F τ
D where τ = a the Azukawa

metric as well; the proof is immediate when the already known localization
properties of the Azukawa and the Kobayashi metrics (cf. [14], [15], [10])
are combined with that of the Bergman kernel (cf. [11], [14]).

3. h-extendible domains

Recall that a pseudoconvex domain D ⊂ Cn+1 is said to be h-extendible near
a smooth, finite-type point p ∈ ∂D if the Catlin multitype (1, m1, . . . , mn)
of ∂D at p satisfies mn−q+1 = ∆q < ∞ for 1 ≤ q ≤ n, where ∆q is the q-type
of p. In this case, there are local coordinates z = (z0, z

′) = (z0, z1, . . . , zn)
around p = 0 and a real-valued, plurisubharmonic, (1/m1, 1/m2, . . . , 1/mn)
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weighted homogeneous polynomial P of total weight 1 with no plurihar-
monic terms such that D is defined locally near p by

(3.1) ρ(z) = Re z0 + P (z′, z′) +R(z)

where R(z) . (|z0|+ |z1|m1 + . . .+ |zn|mn)γ for some γ > 1. Call

D∞ =
{

(z0, z
′) : Re z0 + P (z′) < 0

}

the local model for D at p. Then D∞ is a taut domain. It is known that
h-extendability of D at p is equivalent to the existence of a positive, C∞-
smooth function a(z′) on Cn\{0} such that a is weighted homogeneous with
the same weights as for P and P (z′) − ǫa(z′) is strictly plurisubharmonic
on Cn \ {0} when 0 < ǫ ≤ 1. Note that Levi co-rank one, convex finite type
and decoupled finite type domains are all examples of h-extendible domains.
More details can be found in [6] and [18].

Theorem 3.1. Let D ⊂ Cn+1 be a bounded pseudoconvex domain that is
h-extendible at p ∈ ∂D with multitype (1, m1, . . . , mn) and whose associated
local model is D∞. If Γ is a non-tangential cone in D with vertex at p, then

lim
Γ∋z→p

F k
D(z) = F k

D∞
(b)

where b = (−1, 0, . . . , 0) ∈ D∞.

Proof. The boundary behaviour of KD(z) as z → 0 within Γ is known.
Indeed, Theorem 1 in [6] shows that

lim
Γ∋z→0

KD(z)
∣

∣ρ(z)
∣

∣

β
= KD∞

(b)

where β =
∑n

j=0 2/mj.

To handle the Kobayashi indicatrices, first fix an ǫ ∈ (0, 1) and let Uǫ be
a neighbourood of p = 0 such that the bumped model

Dǫ =
{

Re z0 + P (z′)− ǫa(z′) < 0
}

contains D ∩ Uǫ. By [18], Dǫ is taut. For t > 0, let

πt(z) = (tz0, t
1/m1z1, . . . , t

1/mnzn)

and note that the scaled domains Dz = π1/|ρ(z)|(D ∩ Uǫ) converge to D∞

in the Hausdorff sense. Also, if z → 0 within Γ, the base points ζ(z) =
π1/|ρ(z)|(z) converge to a compact subset of the line {Re z0 = −1, z′ = 0} ⊂
D∞. This is so since non-tangential convergence implies that |Re z0| ≈
|ρ(z)|. Finally, note that πt ∈ Aut(D∞) for all t > 0 and hence Dz ⊂ Dǫ

for all z ∈ Γ close to the origin. Theorem 2.1 of [18] shows that for all fixed
w ∈ D∞, the Kobayashi metrics kDz

(w, v) → kD∞
(w, v) > 0 as z → 0 within

Γ. Moreover, the convergence is uniform on compact subsets of D∞ × Cn.
Hence, the indicatrices IkDz

(w) converge to IkD∞
(w) in the Hausdorff sense

and λ
(

IkDz
(wj)

)

→ λ
(

IkD∞
(w0)

)

if wj → w0 ∈ D∞. In particular, as z → 0
within Γ,

λ
(

IkDz

(

ζ(z)
)

)

→ λ
(

IkD∞
(ζ̃)
)
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where ζ̃ is a possible limit point of ζ(z). But as noted above, ζ̃ lies on
the line {Re z0 = −1, z′ = 0} and since D∞ is invariant under volume
preserving translations of the form z 7→ z + iα, α ∈ R, it follows that
λ
(

IkD∞
(ζ̃)
)

= λ
(

IkD∞
(b)
)

.

To conclude, it remains to note that

λ
(

IkDz

(

ζ(z)
)

)

=
∣

∣ρ(z)
∣

∣

−β
λ
(

IkD(z)
)

by the change of variables formula and that

F k
D(z) = KD(z)

∣

∣ρ(z)
∣

∣

β
λ
(

IkD(z)
)
∣

∣ρ(z)
∣

∣

−β → KD∞
(b)λ

(

IkD∞
(b)
)

= F k
D∞

(b)

as z → 0 within Γ. �

It should be noted that the non-tangential condition cannot be dropped
as the example of F k

E2µ
shows. More precisely, for D = E2µ and q one of its

weakly pseudoconvex points (say q = (0, 1)), note that

D∞ = {(z, w) ∈ C
2 : 2 Re(z) + |w|2µ < 0}.

Indeed, an analogue of the Cayley transform maps D∞ biholomorphically
onto E2µ with b = (−1, 0) mapped to the origin where the value of F k

E2µ
is

1. So,
lim

Γ∋z→q
F k
E2µ

= 1

whereas we know from [1] that every value attained by F k
E2µ

(z) as z varies in

E2µ is also attained as a boundary limiting value at q; in particular (as F k
E2µ

is a constant function only for µ = 1), there are sequences {pn} ⊂ E2µ ap-
proaching q non-tangentially along which F k

E2µ
has a limit and, the limiting

value differs from 1 – for instance, follow any one particular orbit of a point
of the form (0, p) with 0 < p < 1, under the action of the automorphism
group Aut(E2µ). But then, it turns out that ‘highly tangential sequences’
again yield boundary limit 1 – to record this peculiar feature of the bound-
ary behaviour of F k

E2µ
at the weakly pseudoconvex points of F k

E2µ
a bit more

precisely but briefly, let qn be a sequence of points in E2µ converging to q
such that: (i) the inner products of (qn − q)/|qn − q| with the unit inner
normal to ∂E2µ converge to 0 and (ii) the qn’s belong to mutually distinct
orbits of Aut(E2µ). Then, limn→∞ F k

E2µ
(qn) = 1.

It is possible to obtain global bounds for this invariant on Levi co-rank one
domains. This follows from the following wherein τ denotes any distance
decreasing metric or the Bergman metric.

Lemma 3.2. Let Ω be a smoothly bounded pseudoconvex domain in C
n

whose boundary ∂Ω is of (finite type and of) Levi corank at most one at
p ∈ ∂Ω. Then there exist positive constants c, C and a neighborhood U of p
such that c ≤ F τ

Ω(z) ≤ C for all z ∈ Ω ∩ U .

Proof. This will follow from the well-known boundary estimates of Catlin
and Cho for τ equal to the Carathéodory, Kobayashi or the Bergman metric.
We recall the relevant ideas briefly. Let r be a local defining function for ∂Ω
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in a neighbourhood U of p = 0. By shrinking this neighbouhood if needed,
we may assume that the orthogonal projection onto the boundary ∂D is
well-defined on U and that the normal vector field, given at any ζ ∈ U by

ν(ζ) =
(

∂r/∂z1(ζ), ∂r/∂z2(ζ), . . . , ∂r/∂zn(ζ)
)

has no zeros in U ; this is normal to the hypersurface Γζ =
{

r(z) = r(ζ)
}

.

For each ζ ∈ U , there is a uniform radius R > 0 and an injective holomorphic
mapping Φζ : B(ζ, R) → Cn such that the transformed defining function
ρζ = rζ ◦ (Φζ)−1 reads

(3.2) ρζ(w) = r(ζ) + 2Rewn +
2m
∑

l=2

Pl(ζ ;w1) + |w2|2 + . . .+ |wn−1|2

+

n−1
∑

α=2

∑

j+k≤m
j,k>0

Re
(

(

bαjk(ζ)w
j
1w

k
1

)

wα

)

+R(ζ ;w)

where

Pl(ζ ;w1) =
∑

j+k=l

aljk(ζ)w
j
1w

k
1

are real valued homogeneous polynomials of degree l without harmonic
terms and the error function R(ζ, w) → 0 as w → 0 faster than one of
the monomials of weight 1. Further, the map Φζ is actually a holomorphic
polynomial automorphism of weight one of the form

Φζ(z) =
(

z1 − ζ1, Gζ(z̃ − ζ̃)−Q2(z1 − ζ1), 〈ν(ζ), z − ζ〉 −Q1(
′z − ′ζ)

)

(3.3)

where Gζ ∈ GLn−2(C), z̃ = (z2, . . . zn−1),
′z = (z1, z2, . . . , zn−1) and Q2 is a

vector valued polynomial whose α-th component is a polynomial of weight
at most 1/2 of the form

Qα
2 (t) =

m
∑

k=1

bαk (ζ)t
k

for t ∈ C and 2 ≤ α ≤ n− 1. Finally, Q1(
′z − ′ζ) is a polynomial of weight

at most 1 and is of the form Q̂1

(

z1 − ζ1, Gζ(z̃ − ζ̃)
)

with Q̂1 of the form

Q̂1(t1, t2, . . . , tn−1) =

2m
∑

k=2

ak0(ζ)t
k
1 −

n−1
∑

α=2

m
∑

k=1

aαk (ζ)tαt
k
1 −

n−1
∑

α=2

cα(ζ)t
2
α.

Since Gζ is just a linear map, Q1(
′z − ′ζ) also has the same form when

considered as an element of the algebra of holomorphic polynomials C[′z −
′ζ ], when ζ is held fixed. The coefficients of all the polynomials, mentioned
above, are smooth functions of ζ . Note that Φζ(ζ) = 0 and

Φζ(ζ1, . . . , ζn−1, ζn − ǫ) =
(

0, . . . , 0,−ǫ ∂r/∂zn(ζ)
)

.
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Define for each δ > 0, the special-radius

τ(ζ, δ) = min
{(

δ/|Pl(ζ, ·)|
)1/l

,
(

δ1/2/Bl′(ζ)
)1/l′

: 2 ≤ l ≤ 2m, 2 ≤ l′ ≤ m
}

.

(3.4)

where

Bl′(ζ) = max
{

∣

∣bαjk(ζ)
∣

∣ : j + k = l′, 2 ≤ α ≤ n− 1
}

, 2 ≤ l′ ≤ m.

Here, the norm of the homogeneous polynomials Pl(ζ, ·) of degree l, is taken
according to the following convention: for a homogeneous polynomial

p(v) =
∑

j+k=l

aj,kv
j v̄k,

define |p(·)| = maxθ∈R |p(eiθ)|. It was shown in [9] that the coefficients bαjk’s
in the above definition of τ(ζ, δ) are insignificant and may be ignored, so
that

τ(ζ, δ) = min
{(

δ/|Pl(ζ, ·)|
)1/l

: 2 ≤ l ≤ 2m
}

.

Set

τ1(ζ, δ) = τ(ζ, δ) = τ, τ2(ζ, δ) = . . . = τn−1(ζ, δ) = δ1/2, τn(ζ, δ) = δ

and define the dilations

∆δ
ζ(z) =

(

z1/τ1(ζ, δ), . . . , zn/τn(ζ, δ)
)

.

The scaling maps are defined by the composition

Sδ
ζ (z) = ∆δ

ζ ◦ Φζ .

and they induce the so-called M-metric defined on the one-sided neighbour-
hood U ∩D:

MD(ζ, v) =
n
∑

k=1

∣

∣

∣

(

DΦζ(ζ)v
)

k

∣

∣

∣

/

∣

∣

∣
τk
(

ζ, ǫ(ζ)
)

∣

∣

∣
=
∣

∣

∣
D
(

Sδ
ζ (ζ)

)

(v)
∣

∣

∣

l1

where ǫ(ζ) > 0 is such that ζ̃ = ζ +(0, . . . , ǫ(ζ) lies on ∂D. The significance
of this metric is that it is uniformly comparable to the Kobayashi metric
[17], in the sense that

(3.5) kD(ζ, v) ≈ MD(ζ, v) ≈
∥

∥

∥
D
(

Sδ
ζ (ζ)

)

(v)
∥

∥

∥
,

where ‖ · ‖ denotes any norm on Cn and the suppressed constants are in-
dependent of v and ζ (depending only on the domain U ∩ D). In particu-
lar, taking ‖ · ‖ to be the l∞-norm, we may translate this estimate on the
Kobayashi metric into one about its indicatrix and its dilates:

(3.6) cR(ζ) ⊂ IkD(ζ) ⊂ CR(ζ)

here c, C are a pair of positive constants independent of ζ and R(ζ) is the
polydisc centered at the origin of polyradius

(

τ1
(

ζ, ǫ(ζ)
)

,
√

ǫ(ζ), . . . ,
√

ǫ(ζ), ǫ(ζ)
)

.
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When D is additionally bounded and globally pseudoconvex, it follows from
Theorem 1 of [8] that for all ζ in some tubular neighborhood of U ∩ ∂D,

KD(ζ, ζ) ≈
(

Vol
(

R(ζ)
)

)−1

wherein the suppressed constants depend only on D and are independent
of ζ . Combining this with (3.6), finishes the verification of Lemma 3.2. �

We now further note that as a consequence of Proposition 2.1, the bound-
edness assumption on Ω in the above lemma can be dropped, provided we
restrict to τ = a or k, the Azukawa or Kobayashi metrics respectively. In-
deed, to see that the global smoothness assumption of the above lemma can
be circumvented when we combine it with Proposition 2.1 (for τ = a, k)
to drop the boundedness assumption, we recall a technique explained by
Bell in the final section of his article [2], for completing a small piece of ∂Ω
(in case Ω is unbounded) about p into a smooth pseudoconvex finite type
hypersurface so that the resulting smoothly bounded domain G is a (small)
subdomain of Ω; the lemma above applies to G and then, Proposition 2.1
will compare F τ

G with F τ
Ω to yield the version of the above lemma for un-

bounded Ω as desired in case τ = a, k. Further next, the just-mentioned
technique of Bell, also enables us to drop the global smoothness and bound-
edness assumption to conclude the following

Theorem 3.3. Let D ⊂ Cn+1 be a pseudoconvex domain whose boundary
is smooth and of finite type near p ∈ ∂D. Suppose p is an h-extendible point
with D∞ being the associated local model. If Γ is a non-tangential cone in
D with vertex at p, then

lim
Γ∋z→p

F k
D(z) = F k

D∞
(b)

where b = (−1, 0, . . . , 0) ∈ D∞.

4. piecewise smooth strongly pseudoconvex domains

Definition 4.1. A bounded domain D in Cn is said to be a strongly pseu-
doconvex polyhedral domain with piecewise smooth boundary if there are
C2-smooth real valued functions ρ1, . . . , ρk : C

n → R, k ≥ 2 such that

(i) D =
{

z ∈ Cn : ρ1(z) < 0, . . . , ρk(z) < 0
}

,
(ii) for {i1, . . . , il} ⊂ {1, . . . , k}, the gradient vectors ∇ρi1(p), . . . ,∇ρil(p)

are linearly independent over C for every point p such that ρi1(p) =
. . . = ρil(p) = 0, and,

(iii) ∂D is strongly pseudoconvex at every smooth boundary point,

where for each i = 1, . . . , k and z ∈ Cn,

∇ρi(z) = 2

(

∂ρi
∂z̄1

(z), . . . ,
∂ρi
∂z̄n

(z)

)

.

Since the intersection of finitely many domains of holomorphy is a domain
of holomorphy, it follows that the polyhedral domain D as in Definition 4.1
is pseudoconvex.
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Let D ⊂ C
2 be a strongly pseudoconvex polyhedral domain with piece-

wise smooth boundary as above defined by

D =
{

z ∈ C
2 : ρ1(z) < 0, . . . , ρk(z) < 0

}

.

Let p0 ∈ ∂D be a singular boundary point, i.e., ∂D is not smooth at p0. We
study F k

D(z) as z → p0. It is evident from Definition 4.1 that exactly two of
the hypersurfaces {z ∈ C2 : ρj(z) = 0} (where j = 1, . . . , k) intersect at the
point p0. Without loss of generality, we may assume that

ρ1(p
0) = ρ2(p

0) = 0.

Let pj be a sequence of points in D converging to p0. Denote by

λj = dist
(

pj, {ρ1 = 0}
)

,

µj = dist
(

pj, {ρ2 = 0}
)

for each j. Note that both λj and µj tend to zero as j → ∞.

Following [12], there are three cases to be considered:

(I) The sequence pj is of radial type, i.e., there is a positive constant C
(independent of j) such that 1/C ≤ µ−1

j λj ≤ C for all j.

(II) The sequence pj is of q-tangential type, i.e., either limj→∞ µ−1
j

√

λj =

0 or limj→∞ λ−1
j
√
µj = 0.

(III) The sequence pj is of mixed type, i.e., it is neither radial type nor
q-tangential type. Here, there are further two cases:

(a) limj→∞
λj

µj
= 0 and limj→∞

√
λj

µj
= m > 0,

(b) limj→∞
λj

µj
= 0 and limj→∞

√
λj

µj
= ∞.

Theorem 4.2. Let D be a strongly pseudoconvex polyhedral bounded domain
in C2 with piecewise smooth boundary. Let p0 ∈ ∂D be a singular boundary
point and pj be a sequence of points in D converging to p0.

(i) If the sequence {pj} is of radial type, then F k
D(p

j) → F k
∆×∆

(

(0, 0)
)

=
1.

(ii) If the sequence {pj} is of q-tangential type, then F k
D(p

j) → F k
B2

(

(0, 0)
)

=
1.

(iii) If the sequence {pj} is of mixed type, then

F k
D(p

j) → F k
D1,∞

(

(0, 0)
)

in case (III)(a) and

F k
D(p

j) → F k
∆×∆

(

(0, 0)
)

= 1

in case (III)(b),

where D1,∞ is the model domain defined by

D1,∞ =

{

(z1, z2) ∈ C
2 : ℑz1 + 1 >

Q1(z2)

m2
,ℑz2 > −1

}

,

and Q1 is a strictly subharmonic polynomial of degree 2.
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It should be noted that if p0 ∈ ∂D is a smooth boundary point, then the
proof of Theorem 1.1 of [1] implies that F k

D(z) → 1 as z → p0.

We adapt the scaling method from [12] to understand F k
D(p

j) in each of
the above cases. To begin with, apply a complex linear change of coordinates
A so that A(p0) = (0, 0) and the gradient vector to the hypersurface A

(

{ρ1 =
0}
)

and A
(

{ρ2 = 0}
)

at the origin is parallel to the ℑz1 and ℑz2 axis
respectively. Write A(pj) = p̃j for each j.

Case (I): The smoothness of ρ1 and ρ2 implies that for each j, there is a
unique point sj on A

(

{ρ1 = 0}
)

and tj on A
(

{ρ2 = 0}
)

such that

dist
(

p̃j , A
(

{ρ1 = 0}
)

)

= |p̃j − sj|,

dist
(

p̃j, A
(

{ρ2 = 0}
)

)

= |p̃j − tj |.

There exists a sequence {Bj} of affine automorphisms of C2 such that
Bj(p̃j) = (0, 0) for each j and the domains Bj ◦A(U ∩D) (for a sufficiently
small neighbourhood U of p0) are defined by
{

(z1, z2) : ℑ
(

z1 − sj1
)

> Q1(z2, z2) + o
(

|z1 − sj1|+ |z2|2
)

,

ℑ
(

z2 − tj2
)

> Q2(z1, z1) + o
(

|z2 − tj2|+ |z1|2
)

}

,

where Q1 and Q2 are real-valued quadratic polynomials.

Define the dilations

Lj(z1, z2) =

(

z1
λj

,
z2
µj

)

,

and the dilated domains Dj = Lj◦Bj◦A(U∩D). Note that Lj ◦Bj◦A(pj) =
(0, 0) for all j. Among other things, the following two claims were proved
in [12]. First, that Dj converges to

D∞ =
{

(z1, z2) ∈ C
2 : ℑz1 > −c1,ℑz2 > −c2

}

,

where c1 and c2 are positive constants. Secondly, for all j large, the scaled
domains Dj are contained in D0, where

D0 =
{

(z1, z2) ∈ C
2 : ℑz1 > −c1 − r,ℑz2 > −c2 − r

}

,

and r > 0 is fixed. It should be noted that there is a biholomorphism from
the limit domain D∞ onto the unit bidisc ∆×∆ that preserves the origin.

Case (II): Assume that the sequence pj is of q-tangential type to {ρ1 = 0},
i.e., limj→∞ µ−1

j

√

λj = 0.

For a sufficiently small neighbourhood U of p0, we may assume that pj

are in U for all j. The domain A(U ∩D) is given by
{

(z1, z2) : ℑ
(

z1 − p̃j1
)

+ λj > Q1

(

z2 − p̃j2
)

+ o
(
∣

∣z1 − p̃j1
∣

∣+
∣

∣z2 − p̃j2
∣

∣

2)
,

ℑ
(

z2 − p̃j2
)

+ µj > Q2

(

z1 − p̃j1
)

+ o
(
∣

∣z2 − p̃j2
∣

∣+
∣

∣z1 − p̃j1
∣

∣

2)
}

,
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where Q1 are Q2 are strictly subharmonic quadratic polynomials. Let Lj :
C2 → C2 be the dilations given by

Lj(z1, z2) =

(

z1 − p̃j1
λj

,
z1 − p̃j2
√

λj

)

.

It follows that Lj◦A(pj) = (0, 0) and the scaled domains Dj = Lj◦A(U∩D)
converge to

D∞ =
{

(z1, z2) ∈ C
2 : ℑz1 + 1 > Q1(z2)

}

,

which is biholomorphically equivalent to B
2.

Case (III): Here, the sequence pj is of mixed type. Consider the dilations

Lj(z1, z2) =

(

z1 − p̃j1
λj

,
z1 − p̃j2

µj

)

and note that Lj ◦A(pj) = (0, 0). It follows that the dilated domains Dj =
Lj ◦ A(U ∩D) converge to

D∞ =

{

(z1, z2) ∈ C
2 : ℑz1 + 1 > lim

j→

µ2
j

λj

Q1(z2),ℑz2 > −1

}

.

More specifically, the limit domain turns out to be

(4.1) D1,∞ =

{

(z1, z2) ∈ C
2 : ℑz1 + 1 >

Q1(z2)

m2
,ℑz2 > −1

}

.

in case III(a), and

D2,∞ =
{

(z1, z2) ∈ C
2 : ℑz1 > −1,ℑz2 > −1

}

in case III(b).
Note that the limiting domain D1,∞ is a Siegel domain of second kind

(refer [16] for more details) and hence complete Kobayashi hyperbolic. Ev-
idently, D1,∞ can be written as the intersection of an open ball with a half
space in C2. Moreover, D1,∞ is an unbounded convex domain. Furthermore,
according to [16], D1,∞ is biholomorphic to a bounded domain in C2. In
particular, the Bergman kernel KD1,∞

is non-vanishing along the diagonal.
Also, note that the limit domain D2,∞ is biholomorphic to the unit bidisc
∆×∆ via a map that preserves the origin.

The stability of the infinitesimal Kobayashi metric under scaling can
be proved using similar ideas as in Lemma 5.2 of [13]. The following two
ingredients will be required in the proof – first, the limit domain D∞ is
complete Kobayashi hyperbolic and hence taut in each of the cases (I), (II),
and (III). The next step is to consider the mappings f j : ∆ → Dj that
almost realize kDj (·, ·) and establish that {f j} is normal. Recall that, in
each of the three cases listed above, the scaled domains Dj are all contained
in the taut domain 2D∞ for large j. Hence, it is possible to pass to a
subsequence of {f j} that converges to a holomorphic mapping f : ∆ → D∞

uniformly on compact sets of ∆. It follows that the limit map f provides a
candidate in the definition of kD∞

(·, ·).
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Lemma 4.3. For (z, v) ∈ D∞ × C
2,

kDj(z, v) → kD∞
(z, v).

Moreover, the convergence is uniform on compact sets of D∞ × C
2.

The next step is a stability statement for the Kobayashi indicatrices of
the scaled domains Dj.

Lemma 4.4. For z in any compact subset S of D∞,

(i) IkDj (z) is uniformly compactly contained in Cn for all j large, and
(ii) the indicatrices IkDj(z) converge uniformly in the Hausdorff sense to

IkD∞
(z).

Finally, for each z ∈ D∞, the functions λ
(

IkDj (z)
)

converge to λ
(

IkD∞
(z)
)

.

For the proof, repeat the arguments provided earlier along with the fol-
lowing observation: the limit domain D∞ is biholomorphically equivalent
to a bounded domain in C2 in each of the cases (I), (II) and (III), which
implies that there is a uniform positive constant C (depending only on S)
such that for z ∈ S

kD∞
(z, v) ≥ C|v|

for all v ∈ C2.
Proof of Theorem 4.2: Observe that

F k
U∩D(p

j) = F k
Dj ((0, 0)) = KDj

(

(0, 0)
)

λ
(

IkDj(0, 0)
)

for each j. To control the Bergman kernels KDj on the scaled domains, note
first that the limit domain D∞ is biholomorphic to a convex domain in each
of the cases (I), (II) and (III) which implies that

KDj

(

(0, 0)
)

→ KD∞

(

(0, 0)
)

(4.2)

by virtue of Lemma 2.1 of [1]. Moreover, applying Lemma 4.4, it follows
that

F k
U∩D(p

j) → F k
D∞

(

(0, 0)
)

.(4.3)

Finally, to conclude, note that the domain D as in Definition 4.1 supports a
local holomorphic peak function at each boundary point. It follows that F k

D

can be localized near p0 ∈ ∂D. This observation together with (4.3) yields

F k
D(p

j) → F k
D∞

(

(0, 0)
)

,

where D∞ is the model domain at the point p0. The result follows by recall-
ing that the limit domain D∞ is biholomorphic to ∆ × ∆ in cases (I) and
(IIIb) and to B2 in case (II). �
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