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GAUSS-MANIN LIE ALGEBRA OF MIRROR ELLIPTIC K3 SURFACES

MURAD ALIM AND MARTIN VOGRIN

Abstract. We study mirror symmetry of families of elliptic K3 surfaces with elliptic

fibers of type E6, E7 and E8. We consider a moduli space T of the mirror K3 surfaces

enhanced with the choice of differential forms. We show that coordinates on T are given

by the ring of quasi modular forms in two variables, with modular groups adapted to the

fiber type. We furthermore introduce an algebraic group G which acts on T from the right

and construct its Lie algebra Lie(G). We prove that the extended Lie algebra generated

by Lie(G) together with modular vector fields on T is isomorphic to sl2(C)⊕ sl2(C).

1. Introduction

Mirror symmetry was discovered within string theory identifying the complex geometry

of a family of Calabi-Yau (CY) threefolds with the symplectic geometry of a mirror family

of CY threefolds. This identification was formulated mathematically as an isomorphism of

variations of Hodge structure (VHS), see e.g. [CK99] and references therein. Associated

to the holomorphic Gauss-Manin connection there is a non-holomorphic C∞ flat Gauss-

Manin connection which gives the underlying moduli spaces the structure of a special

Kähler manifold. This flat connection was given by Strominger in Ref. [Str90], see also

Ref. [CDF+93] and references therein for a review as well as Freed’s [Fre99] formulation of

special Kähler geometry.

Mirror symmetry has triggered many exciting developments in mathematics and has been

extended to CY manifolds in other dimensions as well as beyond CY, see Ref. [HKK+03].

A rich extension of special geometry is given by Cecotti and Vafa’s tt∗-geometry [CV91],

formulated mathematically in Refs. [Dub93, Her03]. In this work we will study mirror sym-

metry for CY twofolds given by lattice polarized K3 surfaces as introduced by Dolgachev

[Dol96]. The mirror constructions that we will use are the ones based on toric varieties as

put forward by Batyrev and Borisov in Refs. [Bat94, BB96]. A formulation of the special

Kähler geometry in this case was given in Ref. [Ali17] based on tt∗ geometry.

In the realm of Calabi-Yau threefolds, the wide mathematical interest in mirror sym-

metry was triggered by the predictions for the enumerative geometry of the genus 0 and

arbitrary degree curves of the quintic threefold of Candelas et al. [CdlOGP91]. A for-

mulation of mirror symmetry at higher genus was given by Bershadsky, Ceccotti, Ooguri

and Vafa [BCOV94], providing a recursive procedure to obtain the generating functions of

higher genus curve counts using the lower genus ones. In Ref. [YY04], Yamaguchi and Yau
1
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obtained a differential ring of finitely many special functions on the moduli space of the

mirror quintic and related geometries with one dimensional moduli spaces and proved that

the higher genus generating functions are polynomial in the generators, this result was gen-

eralized to arbitrary CY threefolds in Ref. [AL07]. The analogous differential rings for the

elliptic curve were put forward in Ref. [Hos10] as well as for K3 manifolds in Ref. [Ali17].

The differential rings of Refs. [YY04, AL07] were constructed from special Kähler geom-

etry as well as from the Gauss-Manin connection in Ref. [Zho13] and operations such as

holomorphic limit and completion, analogous to operations on the ring of quasi-modular

forms, were realized.

In a different strand of research, the work of Movasati [Mov12] provided a complex

geometric setting for quasi modular forms by considering the Gauss-Manin connection on

the complex three dimensional moduli space T of elliptic curves enhanced with choices of

two differential forms. Out of the vector fields on T, an sl2(C) Lie algebra was constructed.

One of the generators of this Lie algebra is identified with the modular vector field which

corresponds to Ramanujan’s relations between derivatives of quasi-modular forms. The

analogous procedure was continued by Movasati for the mirror quintic [Mov15] obtaining

a holomorphic version of the differential ring of Yamaguchi and Yau. In Ref. [AMSY16], a

synthesis of Movasati’s approach and the differential rings of the special geometry of CY

threefolds [YY04, AL07] was given, putting forward a moduli space T of CY threefolds

enhanced with choices of differential forms, together with the analogous Lie algebra G

which we will refer to in this work as the Gauss-Manin Lie algebra, this program was

called Gauss Manin Connection in Disguies (GMCD) by the authors [AMSY16], see also

[Mov17a] for more details. Constructions of the analogous moduli spaces T were given

in Ref. [Ali17] in relation to tt∗-geometry of CY d-folds, d = 1, 2, 3, as well as for Dwork

families of CY d-folds in Ref. [MN16], an sl2(C) sub Lie algebra for these families was

studied in Ref. [Nik17]. It was moreover used in Ref. [HMY17] for the study of modularity

of elliptic fibrations as well as for the study of Noether Lefschetz loci in Ref. [Mov17b].

The focus of study of the current work is elliptically fibered lattice polarized K3 sur-

faces. The GMCD has been studied for particular families of lattice polarized K3’s in

Refs. [DHMW16, MN16, Nik17]. A description of the expected moduli space T for ar-

bitrary lattice polarized K3’s has been given in Ref. [Ali17], based on tt∗ geometry. In

this paper we will give an alternative, holomorphic construction of the moduli space T

attached to the elliptically fibered geometries. An elliptic K3 surface is a K3 surface X ,

together with a surjective morphism π : X → P1, such that the general fiber is an ellip-

tic curve. The singular fibers of π were classified in [Kod63]. A particularly interesting

subset of these, which are known to exhibit modular properties are projective K3 surfaces

with singular fibers of type E6, E7 and E8, corresponding to elliptic singularities of the

same type. In Refs. [LY95, LY96b] Lian and Yau proved that a fundamental solution of

the Picard-Fuchs equations for the mirrors of these K3 surfaces factorizes as a product of
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two modular forms for congruence subgroups of SL2(Z). The modular subgroup is given

by the respective monodromy group of an elliptic fiber of the mirror. Moreover, the au-

thors discovered an intricate relationship between the mirror map for these families and

the McKay-Thompson series [LY96a] (see also Ref. [Dor00]). An orthogonal approach to

connect K3 periods to quasi modular forms was taken in Ref. [YY07], where the authors

started with certain quasi-modular forms in two parameters and constructed K3 surfaces

for which these modular forms are realized as classical periods.

In this work, we will construct the moduli space T from the data of the holomorphic

Gauss-Manin connection of the middle dimensional cohomology of the mirrors of the el-

liptically fibered K3 manifolds. We show that T is 6-dimensional in accordance with its

general construction based on special geometry of Ref. [Ali17]. Away from the discrimi-

nant locus T is a locally ringed space with local rings OT. We will show that there is an

isomorphism

(1.1) OT
∼= M̃(Γ0(N)× Γ0(N)),

between the local ring OT and the graded ring of quasi-modular forms of the modular

subgroup Γ0(N) in two variables. The level N of the congruence subgroup is determined

by the type of elliptic fiber, as explained in Section 3. Moreover we will construct the

Gauss-Manin Lie algebra G attached to T and prove in Theorem 4.2 that there is an

isomorphism:

(1.2) G ∼= sl2(C)⊕ sl2(C).

This paper is organized as follows; In section 2 we review the setting of this work

including the description of the moduli space T and mirror symmetry for projective ellip-

tic K3 surfaces following to large extent existing literature [Hos00, CdlOF+94, CFKM94,

HKTY95a, HKTY95b]. We construct the variation of Hodge structure for these, following

[CK99] in the first part. In section 3 we introduce the notion of algebraic variation of

Hodge structure and we construct explicit coordinates on enlarged moduli spaces T. We

show that the local ring OT is isomorphic to the ring of quasi-modular forms in two vari-

ables. In the fourth section we construct the algebraic group G on T and compute its Lie

algebra. We show that the Lie algebra Lie(G) extended by the Ramanujan vector fields

Ra, introduced in (3.7), is isomorphic to sl2(C)⊕ sl2(C).

Acknowledgements. We would like to thank Florian Beck for comments on the man-

uscript. M.V. would like to thank the Yau Mathematical Sciences Center at Tsinghua

University, where part of this work was carried out, for hospitality and Babak Haghighat

and Si Li for helpful discussions. This research is supported by DFG Emmy-Noether grant

on Building blocks of physical theories from the geometry of quantization and BPS states,

number AL 1407/2-1.
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2. Mirror symmetry for elliptic K3 surfaces

2.1. Lattice polarized K3 surfaces. In this section we give a short review of mirror

symmetry for lattice polarized projective K3 surfaces following to a large extent [Dol96,

Dol13, Hos00]. A lattice polarized K3 surface is defined by an even, non-degenerate lattice

M of signature (1, 19−m) that admits a primitive embedding into the K3 lattice ΛK3 =

E8(−1) ⊕ E8(−1) ⊕ H⊕3 where H represents the rank two hyperbolic lattice. An M-

polarized K3 surface is a K3 surface X whose Picard lattice Pic(X) is given by M . The

orthogonal complement of M in ΛK3 gives the transcendental lattice of the K3 surface

and, up to a factor of H , the lattice of the mirror K3. Consider a mirror pair X∆, X∆◦

of projective K3 surfaces described by dual three-dimensional reflexive, integral polytopes

(∆,∆◦), as introduced in [Bat94, BB96], and denote by P∆ and P∆◦ the ambient toric

varieties of X∆ and X∆◦ respectively. The polarization of the two surfaces is given by the

pull-back of toric divisors, together with the divisors that arise from possible splitting of

the simple divisors intersected with the hypersurfaces into several irreducible components.

A toric Picard lattice is defined as Pictor(∆) = ι∗A1(X∆), where ι : X∆ → P∆ denotes

the embedding of the K3 surface into the toric variety and A1(P∆) is the first Chow group

of the toric variety. A mirror of a lattice polarized K3 surface (X∆,Pictor(∆)) is a lattice

polarized K3 surface (X∆◦,Piccor(∆
◦)), where Piccor(∆

◦) is the orthogonal complement of

Pictor(∆
◦) in H2(X,Z), see e. g. [Roh04].

2.2. Realization of elliptic K3 surfaces as hypersurfaces in weighted projective

spaces. Elliptic K3 surfaces with singular fibres of types E6, E7 and E8 can be obtained

as hypersurfaces of degrees d6 = 6, d7 = 8 and d8 = 12 in weighted projective spaces

P(2, 2, 1, 1), P(4, 2, 1, 1) and P(6, 4, 1, 1). Explicitly, they are given as the zero loci of

Fermat polynomials of the form

(2.1)
{
f(x) = x

d/w1

1 + x
d/w2

2 + xd3 + xd4 = 0
}
⊂ P(w1, w2, 1, 1),

where xi denote the homogeneous coordinates in P(w1, w2, 1, 1). In all three cases there

is a singular locus along x3 = x4 = 0 of the torus action resulting in the singular curve

C : x
d/w1

1 + x
d/w2

2 = 0. The singularity in the ambient space can be resolved by introducing

a linear relation x4 = λx3. This defines an exceptional divisor E, which is a ruled surface

over the curve C. The resulting geometry is a K3 surface which is a double cover of

the associated elliptic curves by the map (x1, x2, x3, x4) 7→ (λ = x3/x4; x1, x2, y3 = x23),

branched over the elliptic curve. Elliptic fibers of type E6, E7 and E8 at a general point

are given by hypersurfaces P(1, 1, 1)[3], P(2, 1, 1)[4] and P(3, 2, 1)[6], where the degree of the

hypersurface is indicated in the square brackets. The monodromy groups of these elliptic

curves are genus zero congruence subgroups of SL2(Z). We define them in Appendix A and

introduce quasi-modular forms for them. The congruence subgroups are Γ0(3) for elliptic

curve of type E6, Γ0(2) for elliptic curve of type E7 and Γ0(1) for elliptic curve of type E8.
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l(1) l(2)

D0 1 0 0 0 −(w1 + w2)/2− 1 0

D1 1 0 0 1 w1/2 0

D2 1 0 1 0 w2/2 0

D3 1 1 w2/2 w1/2 0 1

D4 1 -1 w2/2 w1/2 0 1

D5 1 0 w2/2 w1/2 1 -2
Table 1.

The polytopes ∆ = {Di}, i ∈ {0, 1, 2, 3, 4, 5} for elliptic K3 surfaces in (2.1) are given in

Table 1. The vectors l(i) of linear relations between the polytopes generate the Mori cone

in the secondary fan of P∆◦ . The intersection numbers can be computed from the toric

data. Let L be the linear system generated by degree one polynomials x3 and x4, and let

H be the linear system generated by degree 2 polynomials x23, x3x4, x
2
4, x1 and x2. It

is straightforward to compute the intersection numbers CLL = L · L = 0, CLH = CHL =

H · L = 2d/(w1w2), CHH = H ·H = 4d/(w1w2).

The mirror variety X∆◦ is constructed by the Batyrev-Borisov construction [BB96] as a

resolution of the quotient

(2.2)
{
fφ,ψ(y) = y

d/w1

1 + y
d/w2

2 + yd3 + yd4 − dψy1y2y3y4 − 2φy
d/2
3 y

d/2
4 = 0

}
/G,

in P(w1, w2, 1, 1) with coordinates y1, y2, y3, y4 and d is the degree of fφ,ψ(y). The discrete

groups G are (Z/3Z) × (Z/2Z), (Z/4Z)× (Z/2Z) and (Z/3Z) × (Z/3Z) for the three K3

surfaces in the usual order. The locus fψ,φ(y) = 0 defines a family X of lattice polarized

projective K3 surfaces over the moduli space B of dimension 2 for which ψ and φ provide

a local coordinate chart. The polarization is given, up to a a rank two hyperbolic lattice,

by the orthogonal complement of the toric divisors defined by {Di} in the K3 lattice ΛK3.

For later purposes it will be useful to write down a general polynomial of the form (2.2)

(2.3) fa1,...,a5(y) = a1y
d/w1

1 + a2y
d/w2

2 + a3y
d
3 + a4y

d
4 + a0y1y2y3y4 + a5y

d/2
3 y

d/2
4 .

It is equivalent to the form (2.2) by a projective transformation of yi. We define the GKZ

coordinates

(2.4) z1 =
a
w1/2
1 a

w2/2
2 a5

a
d/2
0

, z2 =
a3a4
a25

.

The relations between (ψ, φ) and (z1, z2) are −dψ = z
−2/d
1 z2 and −2φ = z

−1/2
2 . We will

denote the homogeneous polynomial fψ,φ in (2.2) by fz1,z2 to highlight the dependence on

z1 and z2.
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2.3. Variation of Hodge structure and Picard-Fuchs equations. Let B be a complex

manifold and let π : X → B be a family of K3 surfaces. The vector bundle H2
dR(X ) =

R2π∗C⊗ OB carries the Gauss-Manin connection ∇ : H2
dR(X ) → H2

dR(X )⊗OB
Ω1

B
defined

by the action on the locally constant subsheaf R2π∗C by

(2.5) ∇(s⊗ f) = s⊗ df,

for s ∈ R2π∗C, f ∈ OB, where OB denotes the C-algebra of regular functions on B and by

Ω1
B
we denote the OB-module of differential 1-forms on B. The Hodge filtration F •(Xb) =

{F p(Xb)}p=0,1,2 =
⊕

a≥pH
a,2−a(Xb) for each fiber specifies the Hodge bundle F• of the

family X . The Hodge filtration F •(Xb) varies holomorphically over the base B and ∇

satisfies Griffiths’ transversality

(2.6) ∇Fp ⊂ Fp−1 ⊗OB
Ω1

B
.

We say that a family X of K3 surfaces is polarized by a lattice M if each fiber of X is po-

larized by M . The image of the polarization ι :M → H2
dR(X ) consists of constant sections

of the Gauss-Manin connection. We will denote by ∇ : H2
dR(X )ι → H2

dR(X )ι ⊗OB
Ω1

B
the

induced connection on the quotient H2
dR(X )ι = H2

dR(X )/ι(M). Furthermore, we will de-

note by F•
ι a filtration on H2

dR(X )ι induced by F •. We say that a basis ω = (ω1, . . . , ωm+2)

of H2
dR(Xb)ι is compatible with its Hodge filtration if ω1 ∈ F 2, ω2, . . . , ωm+1 ∈ F 1 \F 2 and

ωm+2 ∈ F 0 \ F 1.

For families of projective K3 surfaces in (2.2) the variation of Hodge structure can be

constructed with the Griffiths-Dwork method, as reviewed below. Define a holomorphic

3-form on P(w1, w2, w3, w4) by

(2.7) ΩP(w1,w2,w3,w4) =

4∑

k=1

(−1)kwkxkdx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dx4,

where hat denotes the omission of the k-th factor. For hypersurfaces (2.2), ΩP(w1,w2,w3,w4)

can be used to construct a basis of H3(P(w1, w2, w3, w4)−Xb) by

(2.8) Ξi =
PiΩP(w1,w2,w3,w4)

fkz1,z2
,

where Pi are homogeneous polynomials of degree kd − (
∑
wj + 1). Ξi restrict to the

hypersurface Xb via the residue map Res : H3(P(w1, w2, w3, w4)−Xb) → PH2(Xb), where

PH2(Xb) denotes the primitive cohomology of Xb. Let ωj = Resfz1,z2 (y)=0(Ξj) ∈ PH2(Xb).

We define the Gauss-Manin connection by

(2.9) ∇θiωj = Resfz1,z2(y)=0(θiΞj),

where θi = zi
∂
∂zi

. It is straightforward to check that Griffiths transversality is satisfied

and consequently a basis constructed from a fixed (2, 0) form ω1 by successive application
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of the Gauss-Manin connection is compatible with the Hodge filtration. The holomorphic

(2, 0) form on Xb can be chosen to be

(2.10) ω1 = Resfz1,z2(y)=0

(
4∑

k=1

(−1)kwkyk
dy1 ∧ . . . ∧ d̂yk ∧ . . . ∧ dy4

fz1,z2(y)

)
,

We furthermore define 2-forms ωi, i = 2, 3, 4 as

(2.11) ω2 = ∇θ1ω1, ω3 = ∇θ2ω1, and ω4 = ∇θ1∇θ1ω1.

For dimensional reasons (ω1, ω2, ω3, ω4) indeed provide a basis for H2
dR(Xb)ι and Griffiths

transversality ensures its compatibility with the Hodge filtration.

Proposition 2.1. The Gauss-Manin connection in the basis ω = (ω1, ω2, ω3, ω4) is

(2.12) ∇θiω
tr = Giω

tr,

with

(2.13) G1 =




0 1 0 0

0 0 0 1
1
2
µ(1− ν)z1

1
2
(∆1 − 1) 0 1

2
∆1

(G1)41 (G1)42 (G1)43 (G1)44


 ,

(2.14) G2 =




0 0 1 0
1
2
µ(1− ν)z1

1
2
(∆1 − 1) 0 1

2
∆1

2ν(1−ν)z1z2
∆2

(1−2∆1)z2
∆2

2z2
∆2

(1−2∆1)z2
∆2

(G2)41 (G2)42 (G2)43 (G2)44


 ,

where we defined

(2.15) ∆1 = 1− µν2z1, ∆2 = 1− 4z2,

with (µ, ν) given by (3, 3), (4, 4) and (12, 6) for K3 surfaces of elliptic type E6, E7 and E8

respectively. The entries (Gi)4j are collected in Appendix B. Parameters µ and ν can be

computed from the toric data as

(2.16) µ =
2d

w1w2

(
d

w1

)w1/2−1(
d

w2

)w2/2−1

, ν =
d

2
.

Proof. Picard-Fuchs system for hypersurfaces in weighted projective varieties is equiva-

lent to the GKZ hypergeometric system [GKZ89] and can thus be determined from the

generators of the Mori cone l(i) in Table 1. �

Let Wb be the Poincaré dual of ι(M) in H2
dR(Xb). We define

(2.17) H2(Xb,Z)ι = H2(Xb,Z)/Wb.
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Denote the basis of H2(Xb,Z)ι by γ
j
b , j = 1, . . . , m+2, and define the period matrix Π by

integrating the basis ω of H2
dR(Xb)ι over the integral cycles γjb ∈ H2(Xb,Z)ι

(2.18) Πij =

∫

γjb

ωi, γjb ∈ H2(Xb,Z)ι, i, j = 1, . . . , m+ 2.

The first row of Π corresponds to the periods (X0, X1, X2, X3) of ω1. They satisfy the

Picard-Fuchs differential equations

(θ1(θ1 − 2θ2)− µz1(νθ1 + ν − 1)(νθ1 + 1)) ·Xj = 0,
(
θ22 − z2(θ1 − 2θ2)(θ1 − 2θ2 − 1)

)
·Xj = 0, j = 0, 1, 2, 3,

(2.19)

where (µ, ν) are (3, 3), (4, 4) and (12, 6) as in Proposition 2.1. The system (2.19) admits a

holomorphic solution

(2.20) X0 =
∑

n≥2m≥0

(
d
2
n
)
!(

w1

2
n
)
!
(
w2

2
n
)
!(m!)2(n− 2m)!

zn1 z
m
2 ,

with leading term 1. There are unique solutions Xa, a = 1, 2 of (2.19) of the form

(2.21) Xa = (2πi)−1X0 log(za) + Sa, a = 1, 2,

where Sa is a convergent power series in z1 and z2, with S
a → 0 as |zi| → 0. The series Sa

are fixed uniquely as a solution to (2.19).

Definition 2.2. The Griffiths-Yukawa couplings Yij are

(2.22) Yij = −

∫

X

ω1 ∧∇θi∇θjω1, i, j = 1, 2.

Proposition 2.3. The Griffiths-Yukawa couplings for the mirrors of elliptically fibered K3

surfaces are given by

Y11 =
2c

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

Y12 = Y21 =
c∆1

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

Y22 =
2c(2∆1 − 1)z2

∆2
1 + (∆2 − 1)(∆1 − 1)2

.

(2.23)

Proof. We compute

(2.24) θkYij = −

∫

X

∇θkω1 ∧ ∇θi∇θjω1 −

∫

X

ω1 ∧∇θi∇θj∇θkω1.

Integrating by parts the first term, we find

(2.25) θkYij = −
2

3

∫

X

ω ∧ ∇θi∇θj∇θkω1.
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From the Gauss-Manin system we can express the action of ∇θi∇θj∇θk in terms of lower

order operators. By Griffiths transversality only operators of second order will contribute

and Yij are the solutions of the resulting differential equations. Moreover, we have the

following relations between Griffiths-Yukawa couplings

(2.26) ∆1Y11 − 2Y12 = 0 and ∆2Y22 + 4z2Y12 − z2Y11 = 0,

which fix Y12 = Y21 and Y22 in terms of Y11. �

The intersection pairing

(2.27) Q : H2
dR(X)×H2

dR(X) → C, Q(ωi, ωj) =

∫

X

ωi ∧ ωj ,

in the basis ω will be denoted by Qω. It is given by

(2.28) Qω =




0 0 0 −Y11

0 Y11 Y12
1
2
θ1Y11

0 Y21 Y22 −1
2
θ2Y11 + θ1Y12

−Y11
1
2
θ1Y11 −1

2
θ2Y11 + θ1Y12 Y44


 ,

with

Y44 = −
1

∆2
1 + (∆2 − 1)(∆1 − 1)2

(
−4θ21Y11 +

1

2
(∆1 − 1)(1 + ∆2(1 + ∆1))θ1Y11

+
1

2
((∆1 − 1)(2∆2(1−∆1)− 1) + 4µ(ν − 1)z1(4(1−∆2) + 3∆2))Y11

)
.

(2.29)

Note that the logarithmic derivatives of Yij can be expressed in terms of multiplication

factors

(2.30) θ1Y11 =
(1−∆1)(1 + (∆1 − 1)∆2)

∆2
1 + (∆2 − 1)(∆1 − 1)2

Y11, θ2Y11 =
(1−∆1)

2(∆2 − 1)

∆2
1 + (∆2 − 1)(∆1 − 1)2

Y11,

hence all the entries in Qω can be expressed in terms of Y11 and algebraic prefactors.

3. Algebraic variation of Hodge structure and differential rings

3.1. Moduli space of enhanced K3 surfaces. By moduli spaces T of lattice polar-

ized K3 surfaces enhanced with differential forms we refer to the moduli spaces of pairs

(X, {ωi}i=1,...,m+2) where X is a K3 surface polarized by a lattice M of rank rk(M) =

20 − m with signature (1, 19 − m) and {ωi}1=1,...,m+2 is a basis of H2
dR(X)/ι(M), where

ι : M → H2
dR(X) denotes the polarization map. A basis {αi}i=1,...,m+2 of H2

dR(X)/ι(M)

can be fixed, such that the intersection pairing in this basis is given by the pairing

(3.1) Φ =




0 0 −1

0 Cab 0

−1 0 0


 ,
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where Cab denote the intersection numbers of the elliptic K3 surface. Mirror families

introduced in the previous section are two-parameter families of hypersurfaces in weighted

projective spaces (2.2). They are polarized by the pull-back of the lattice of toric divisors

to the hypersurface. The rank of Piccor(X
◦) is 18, m = 2 and the moduli space T is 6-

dimensional. Away from the discriminant locus T is a locally ringed space with the local

ring OT. We will show that there is an isomorphism

(3.2) OT
∼= M̃(Γ0(N)× Γ0(N)),

between the local ring OT and the graded ring of quasi-modular forms of the modular

subgroup Γ0(N) in two variables. The level N of the congruence subgroup is determined by

the type of elliptic fiber of the elliptic K3, as explained in the next subsection. For explicit

construction of the coordinates on T consider the filtration preserving transformation ω 7→

α = Sω, Gi 7→ Ga =
∑

i
1
zi

∂zi
∂ta

SGiS
−1 + ∂aS · S−1, i, a = 1, 2, where S is of the form

(3.3) S =




s0 0 0

sa sa,i 0

s3,0 s3,i s3,3


 ,

and ∂a =
∂
∂ta

denotes the differentiation with respect to coordinates ta. The moduli space

T of K3 surfaces enhanced with differential forms consists of the moduli space B, together

with the independent parameters of S. The condition on the pairing

(3.4) SQωS
tr = Φ,

reads explicitly:

s3,3 =
1

s0Y1,1
,

C
alg
ab = sa,isb,jYij , i, j = 1, 2,

s3,i =
1

s0
s−1
a,jY

−1
ji sa +

1

s0

Y−1
i1 Y24 + Y−1

i2 Y34

Y11
,

s3,0 =
1

2s0
(Calg)−1

ab sa,0sb,0 +
Y22(Y

2
24 + Y11Y44)− Y2

12Y44 − 2Y12Y24Y34

2s0Y2
11(Y11Y22 − Y2

12)
.

(3.5)

For elliptic K3 surfaces we find 4 independent parameters. As coordinates on T we choose

s0, s1, s2 and s1,1.

3.2. Algebraic variation of Hodge structure for projective elliptic K3 surfaces.

Let (X , α) → T be a family of lattice polarized projective K3 surfaces with a fixed choice of

basis α ofH2
dR(X )ι, such that the intersection pairing in the basis α is Φ. Let furthermore R

denote the function ring of T. The relative algebraic de Rham cohomology H2
dR(X /T) (see

[Gro66]) carries the Gauss-Manin connection ∇ : H2
dR(X ) → H2

dR(X /T)⊗R Ω1
T
, where Ω1

T

is an R-module of differential forms in R [KO68]. As before, the Gauss-Manin connection
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restricts to the quotient H2
dR(X )ι. Let Vec(T) be the Lie algebra of vector fields on T. The

algebraic Gauss-Manin connection ∇ acts on α as

(3.6) ∇Ei
α = AEi

α, Ei ∈ Vec(T),

where AEi
are (m+ 2)× (m+ 2) matrices with entries in OT.

Theorem 3.1. There are unique vector fields Ra ∈ Vec(T) and unique C
alg
ab ∈ OT, a, b = 1, 2

symmetric in a, b such that

(3.7) ARa =



0 δba 0

0 0 Calgac
0 0 0


 .

We call them modular vector fields. Furthermore

(3.8) Ra1C
alg
a2a3 = 0.

Theorem 3.1 amounts to finding S and ta as above such that

(3.9) A ∂
∂ta

=
∑

i

1

zi

∂zi
∂ta

SGiS
−1 + ∂aS · S−1.

Proposition 3.2. The system (3.9) is solved by

(3.10) s0 =
(
X0
)−1

, ta =
Xa

X0
,

where X0 denotes the fundamental period and Xa denote the the periods with a logarithmic

pole at za = 0. Furthermore, the other independent parameters in S satisfy

(3.11) sa,i =
1

zi

∂zi
∂ta

s0, sa =
∑

i=1,2

sa,iθi log s0 = ∂ta log s0.

Proof. The proof is computational. For a proof using the special Kähler structure of B see

[Ali17]. �

Corollary 3.3. With this choice, we find that C
alg
ab are C

alg
11 = CHH ,C

alg
12 = C

alg
21 = CHL and

C
alg
22 = CLL = 0, which finishes the proof of Theorem 3.1.

We define weight 1 quasi-modular forms for genus zero congruence subgroups in Appendix

A.

Theorem 3.4. [LY95, LY96b] The fundamental period X0 of a mirror to a projective

elliptic K3 surface factorizes

(3.12) X0 = A(τ1)A(τ2),

with τ1 = t1, τ2 = t1 + t2 and the weight 1 modular forms A are given in Appendix A.

For each model, the quasi-modular form A is the quasi-modular form associated to the



12 MURAD ALIM AND MARTIN VOGRIN

monodromy group of the respective elliptic fiber. This can be checked by comparison with

(2.20).

Proposition 3.5. There is an isomorphism

(3.13) OT
∼= M̃(Γ0(N)× Γ0(N)),

between the local ring OT and the graded ring of quasi-modular forms of the modular sub-

group Γ0(N) in two variables. The level N of the congruence subgroup is the same as in

the monodromy group of the elliptic fibre of the elliptic K3 surface.

Proof. The independent variables t := {zi, s0, sa, s1,1}i,a=1,2 form a local chart for T. Denote

by OT the local ring at t ∈ T. Theorem 3.4 provides an isomorphism between the ring OT

and the ring of quasi-modular forms in two variables. The isomorphism is given by the

inverse mirror map zi = zi(t1, t2). Fix αa =
(
C(τa)
A(τa)

)r
, r as in Appendix A. It satisfies

(3.14) ∂τaαb = δbaαb(1− αb)A
2(τb).

In terms of these the inverse mirror map is

z1 =
1

dN
(α1 + α2 − 2α1α2), z2 =

1

d2N

α1α2(1− α1)(1− α2)

z21
.(3.15)

The remaining elements of the ring are found from (3.10), (3.11), (3.12) and (A.3)

sa = −
1

2r

(
E(τa) +

2Cr(τa)− Ar(τa)

Ar−2(τa)

)
,

s1,1 =
α1(1− α1)(1− 2α2)

α1(1− α2) + α2(1− α1)

A(τ1)

A(τ2)
.

(3.16)

�

4. The Gauss-Manin Lie algebra

4.1. Algebraic Group acting on T. We define a Lie group G by

(4.1) G = {g ∈ GL(m+ 2,C)| g block lower triangular and gΦgtr = Φ}.

It acts on T from the right as

(4.2) (X,α)·g = (X,αtrg),

where α = (α1, . . . , αm+2)
tr is the special basis defined in the section 2, g ∈ G, and αtrg is

the standard matrix product. The condition gΦgtr = Φ fixes dim(G) = dim(T) − 2 = 4.

The group G is generated by two elements isomorphic to the multiplicative group C∗ and

two elements isomorphic to the additive group C. The following lemma gives the generators

of G:
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Lemma 4.1. For any g ∈ G there are unique elements gi ∈ G, i = 1, 2, 3, 4 such that g

can be written as a product of at most four gi. For families (2.2), gi are given by

g1 =




h0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 h−1
0


 , g2 =




1 0 0 0

0 h11 h21 0

0 h12 h22 0

0 0 0 1


 ,

g3 =




1 0 0 0

C
alg
11 h1 1 0 0

C
alg
12 h1 0 1 0

0 h1 0 1


 , g4 =




1 0 0 0

C
alg
12 h2 1 0 0

C
alg
22 h2 0 1 0

0 0 h2 1


 ,

(4.3)

where hij , i, j = 1, 2 satisfy the constraints

(4.4)
∑

i,j=1,2

C
alg
ij hikhjl = C

alg
lk .

The constraints can be solved by a simple algebraic manipulation, which yields only one

independent parameter. We fix h11 = C
alg
12 h3 as the independent parameter and express hij

in terms of h3.

The Lie algebra of G is given by

(4.5) Lie(G) = {g ∈ Mat(m+ 2,C)| g is block lower triangular and gΦ + Φg = 0}.

The Lie algebra Lie(G) is a Lie sub-algebra of Vec(T). The basis of Lie(G) can be con-

structed from the elements gi ∈ G. We find

g1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


 , g2 =




0 0 0 0

0 C
alg
12 −C

alg
11 0

0 C
alg
22 −C

alg
12 0

0 0 0 0


 ,

g3 =




0 0 0 0

C
alg
11 0 0 0

C
alg
12 0 0 0

0 1 0 0


 , g4 =




0 0 0 0

C
alg
12 0 0 0

C
alg
22 0 0 0

0 0 1 0


 .

(4.6)

4.2. The Gauss-Manin Lie algebra. The Gauss-Manin Lie algebra is defined to be the

OT module generated by Lie(G) and the modular vector fields Ra in (3.7). We write the

action of the modular vector fields Ra on α explicitly

(4.7) AR1
=




0 1 0 0

0 0 0 C
alg
11

0 0 0 C
alg
12

0 0 0 0


 , AR2

=




0 0 1 0

0 0 0 C
alg
12

0 0 0 C
alg
22

0 0 0 0


 .
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Theorem 4.2. The Gauss-Manin Lie algebra, generated by g1, g2, g3, g4 and AR1
,AR2

, is

isomorphic to sl2(C)⊕ sl2(C).

Proof. Let

(4.8) A =




1 0 0 0

0 w1w2

2d
−2w1w2

2d
0

0 0 w1w2

2d
0

0 0 0 1


 .

Here w1w2

2d
= C−1

HL, as in Section 2. The Lie algebra is given by the generators

J 1 = A · (g1 + g2) =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , J 2 = A · (g1 − g2) =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 ,

J 1
− = A · g3 =




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


 , J 2

− = A · g4 =




0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


 ,

J 1
+ = A · AR2

=




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


 J 2

+ = A · AR1
=




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


 .

(4.9)

which form a basis of sl2(C)⊕ sl2(C), with commutation relations

(4.10) [J a
+,J

a
−] = J a, [J a

0 ,J
a
+] = J a

+, [J a
0 ,J

a
−] = −J a

−, [J 1
• ,J

2
• ] = 0, a = 1, 2,

where • denotes any generator. �

5. Conclusions

Movasati’s work on the enhanced moduli space of elliptic curves [Mov12] provided the

VHS and algebraic context for quasi-modular forms with the corresponding sl2(C) Lie

algebra. The general automorphic or modular properties for moduli spaces of CY threefolds

such as the quintic are less clear (see Ref. [Mov17a]), although the analogous enhanced

moduli spaces and Gauss-Manin Lie algebras have been put forward. Lattice polarized

K3 manifolds therefore provide the middle grounds between the classical theory of quasi

modular forms and new structures appearing in the moduli spaces of generic threefolds. We

should note, that in various limiting constructions both of elliptically fibered CY manifolds

as well as non-compact CY manifolds, connections to classical quasi modular forms have
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been worked out, see Ref. [Hag17] for a review. Correspondingly sl2(C) Lie-subalgebras

of the full Gauss-Manin (GMCD) Lie algebras have been put forward in the context of

elliptic fibrations [HMY17]. A different kind of universal sl2(C) Lie sub-algebra of the

Gauss-Manin Lie algebra stemming from the rescaling of the holomorphic top form of the

Griffiths-Dwork family of CY d-folds has been studied in Ref. [Nik17]. Our result provides

on the other hand the full Gauss-Manin Lie algebra which is beyond, yet very close to the

classical one, reducing to a direct sum of two copies the classical one. It would be interesting

to investigate the Gauss-Manin Lie algebra in detail for more intricate geometries of lattice

polarized K3 manifolds and perhaps obtain a complete classification of the Lie algebras that

can be obtained in this way. The description of the Gauss-Manin Lie algebras in terms of

the data of the intersection form which is needed for that was already given in Ref. [Ali17].

We note moreover that we expect the study of mirror families with three-dimensional

moduli spaces of complex structures to provide the arena for the study of the analogs

of quasi-modular forms for Siegel modular forms as alluded to in Ref. [DHMW16]. A

further possible line of investigation would be to understand the relevance of the enhanced

moduli space T for the enumerative geometry of the Calabi-Yau threefolds that admit a

K3 fibration, as demonstrated in Ref. [OP17]. In a similar way the differential ring of

T 2 was exploited in studying the threefold K3×T 2, which lead to a novel computation of

certain BPS degeneracies in Ref. [KT17] and the proof of Igusa cusp form conjecture in

Ref. [OP18].

Appendix A. Ramanujan-Serre differential ring for congruence

subgroups

Let H = {τ | Im(τ) > 0} be the upper half plane and the group SL2(Z) the group of

matrices

(
a b

c d

)
with integer entries satisfying ad − bc = 1. The genus zero congruence

subgroups of SL2(Z) are defined as

(A.1) Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)|c ≡ 0 mod N

}
.

We define weight one modular forms associated to the congruence subgroups:

N A B C

1 E4(τ)
1/4

(
E4(τ)3/2+E6(τ)

2

)1/6 (
E4(τ)3/2−E6(τ)

2

)1/6

2 (64η(2τ)24+η(τ)24)1/4

η(τ)2η(2τ)2
η(τ)4

η(2τ)2
23/2 η(2τ)

4

η(τ)2

3 (27η(3τ)12+η(τ)12)1/3

η(τ)η(3τ)
η(τ)3

η(3τ)
3η(3τ)

3

η(τ)
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Where E4(τ) and E6(τ) denote the Eisenstein series and η(τ) denotes the Dedekind η-

function. Define also the analogue of the Eisenstein series E2

(A.2) E = ∂τ logB
rCr,

where r = 6 for N = 1, r = 4 for N = 2 and r = 3 for N = 3. The ring of quasi-modular

forms for genus zero congruence subgroups is M̃(Γ0(N)) = C[A,B,E].

From the Ramanujan-Serre differential ring of Eisenstein series we deduce the following

differential relations

∂τA =
1

2r
A

(
E +

Cr − Br

Ar−2

)
,

∂τB =
1

2r
B(E − A2),

∂τC =
1

2r
C(E + A2),

∂τE =
1

2r
(E2 − A4).

(A.3)

The j-function for genus zero congruence subgroups Γ0(N) reads

(A.4) j =
dNA

2r

Cr(Ar − Cr)
,

where dN = 432 for Γ0(1), dN = 64 for Γ0(2) and dN = 27 for Γ0(3). Note that dN = µν2

in (2.19), which is to be expected, as in the limit z2 → 0 the system reduces to the

Picard-Fuchs equation of the elliptic curve.

Appendix B. Gauss-Manin connection matrices

The entries (Gi)4j of the Gauss-Manin connection matrices are

(G1)41 =
µ(1− ν)z1(2(1−∆1)− 1)

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

(G1)42 =
µz1((1− ν)((2 −∆1)∆2 − 2) + ν2(2∆1∆2 − 1))

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

(G1)43 =
2µ(1− ν)z1∆2

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

(G1)44 =
3µν2z1(1− (1−∆1)∆2)

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

(B.1)
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and

(G2)41 =
µ(1− ν)(1−∆1)z1(1− (1 + ∆1)∆2)

2(∆2
1 + (∆2 − 1)(∆1 − 1)2)

,

(G2)42 =
µz1((1− ν)(1 −∆2)− ν2(1−∆1)(1− (1 + ∆1)∆2)

2(∆2
1 + (∆2 − 1)(∆1 − 1)2)

,

(G2)43 = −
µ(1− ν)z1∆1∆2

∆2
1 + (∆2 − 1)(∆1 − 1)2

,

(G2)44 =
(1−∆1)(−1 + (1−∆1)(3∆2 − 1)− (1−∆2

1)∆2)

2(∆2
1 + (∆2 − 1)(∆1 − 1)2)

.

(B.2)
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