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Examples of wild ramification in an enriched

Riemann–Hurwitz formula

Candace Bethea, Jesse Leo Kass, and Kirsten Wickelgren

Abstract. M. Levine proved an enrichment of the classical Riemann–Hurwitz
formula to an equality in the Grothendieck–Witt group of quadratic forms.
In its strongest form, Levine’s theorem includes a technical hypothesis on
ramification relevant in positive characteristic. We describe what happens
when the hypotheses are weakened by showing an analogous Riemann–Hurwitz
formula and describing an example suggested by S. Saito.

1. Introduction

In the recent preprint [Lev17], Marc Levine established an enriched version
of the Riemann–Hurwitz formula that is valued in the Grothendieck–Witt group
of nondegenerate symmetric bilinear forms. In positive characteristic, especially
over an imperfect field, the strongest form of Levine’s theorem includes technical
hypotheses on the ramification. At the workshop Motivic homotopy theory and re-

fined enumerative geometry, Shuji Saito asked whether a Riemann–Hurwitz formula
should hold more generally. As an illustration of the situation he was interested

in, he gave the example of the map P1
Fp(t)

→ P1
Fp(t)

defined by y 7→ t−yp

y . In

this article, we prove a theorem which strengthens Levine’s result by establishing
his result under weaker hypotheses so that it applies to Saito’s function. We also
illustrate the content of the theorem by computing the terms for Saito’s example
as well as for the Artin–Schreier cover P1

Fp(t)
→ P1

Fp(t)
defined by y 7→ yp − y.

The problem of establishing an enriched Riemann–Hurwitz formula with weaker
hypotheses in characteristic p is interesting because the classical Riemann–Hurwitz
formula becomes more complicated when passing from characteristic 0 to charac-
teristic p > 0. Over an algebraically closed field of characteristic 0, the formula, as
described in Corollary 2.4 of [Har77, Chapter 4], states that a nonconstant map
f : Y → X of curves satisfies

(1.1) χ(Y ) = d · χ(X)−
∑

(e(y)− 1).

Here d is the degree of f , χ(C) = 2− 2g(C) is the topological Euler characteristic
of a curve C, and e(y) is the ramification index of f . Recall the ramification index
is the normalized valuation νy(f

∗(t)) of the pullback of a uniformizer t ∈ OX,f(y).
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When k has positive characteristic (but is still assumed to be algebraically
closed), Formula (1.1) becomes more complicated in two ways. First, we need to
additionally require that f is separable (to avoid maps like y 7→ yp which is ramified
everywhere). Second, Equation (1.1) holds as stated when f is separable and the
ramification indices are all coprime to p, i.e. when f is tamely ramified, but in
general, the term e(y)−1 must be modified. Define the branch index b(y) to be the
length of the module of relative Kähler differentials, i.e. b(y) := length(ΩY/X,y).
We then have

(1.2) χ(Y ) = d · χ(X)−
∑

b(y),

and b(y) ≥ e(y) − 1 with equality holding if and only if e(y) is coprime to p.
The branch index can alternatively be described in terms of the uniformizers. If
t ∈ OX,f(y) and u ∈ OY,y are uniformizers, then the branch index equals the
valuation vy(dt/du) for dt/du the unique function satisfying f∗(dt) = dt/du · du.

Formula (1.2) remains valid when k is nonalgebraically closed provided the
branch index is defined by b(y) := length(ΩY/X,y) [Liu02, Theorem 4.16, Re-
mark 4.17]. The branch index does not, however, always equal vy(dt/du). Indeed,

for Saito’s example y 7→ t−yp

y , we have dt/du = 0. In this example, the residual

extension k(y)/k(x) is inseparable. When the residual extension is separable, an
explicit expression for b(y) is given by [Ser79, Chapter 3, Propositions 13 and 14;
Chapter 4, Proposition 4] (where b(y) appears as the valuation of the different).

Over the real numbers k = R, the Riemann–Hurwitz formula admits a real-
topological analogue. One implication of the hypotheses is that the manifold of
real points Y (R) is orientable. Once we fix an orientation, the topological degree

degR(f) of the map f : Y (R) → X(R) on real points is well-defined and satisfies an
analogue of the Riemann–Hurwitz formula, as was observed by Levine in [Lev17,
Example 12.9]. Specifically, if y ∈ Y is a point with residue field R and t ∈ OX,f(y),
u ∈ OY,y are uniformizers with t compatible with the orientation (so the function
germ t : X(R) → R is orientation-preserving at f(y)), then define the real branch
index bR(y) to be the local degree of dt/du at y, so

bR(y) =











+1 if dt/du ◦ u−1 is increasing at 0;

−1 if dt/du ◦ u−1 is decreasing at 0;

0 otherwise.

With this definition, we have

(1.3) χR(X) = d · χR(Y )−
∑

bR(y).

Here χR(X) denotes the Euler characteristic of X(R) of the real locus. These Euler
characteristics vanish, so the formula simplifies to

0 =
∑

bR(y).

This equation admits a particularly simple interpretation when X = Y = P1
R

and f is defined by a monic polynomial f = xd + a1x
d−1 + a2x

d−2 + · · · + ad.
Considering f as a continuous function f : R → R, a computation of b(∞) shows
that Equation (1.3) takes the form

#local maxima of f −#local minima of f =

{

0 if d is odd;

−1 if d is even.
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This result is the real realization of Levine’s enriched Riemann–Hurwitz for-
mula. Over an arbitrary field, we replace the choice of an orientation of X(R) with
the choices of a line bundle M and an isomorphism α : M⊗2 ∼= T(X) of the square
of M with the tangent bundle. Observe that, over R, the pair (M,α) determines
an orientation of X(R), but not every real curve admits a pair (M,α). (Consider,
for example, the Brauer–Severi curve {X2 + Y 2 + Z2 = 0} ⊂ P2

R
.)

Given f : Y → X , Levine’s strongest form of the enriched Riemann–Hurwitz
formula holds under technical assumptions on the ramification that we recall below.
Let t and u be uniformizers as before, but now require that t is compatible with
(M,α) in the sense that, under the isomorphism on stalks α∨

f(y) : M
−⊗2
f(y)

∼= T∨
x (X),

dt corresponds to a tensor of the form s⊗ s (rather than s⊗ s′ for s 6= s′).
Write the pullback f∗(t) of the uniformizing parameter t under the natural

homomorphism f∗ : OX,f(x) → OY,y as f∗(t) = a · ue(y) with a ∈ O∗
Y,y. (Such an

expression exists by the definition of e(y).) Define the motivic branch index by

bA
1

(y) = 〈a(y)e(y)〉 ·
e−2
∑

i=0

〈(−1)i〉 in GW(k(y)).

Here GW(k(y)) denotes the Grothendieck–Witt group of nondegenerate symmetric
bilinear forms, 〈u〉 denotes the class of the rank 1 bilinear form with Gram matrix
(

u
)

, and a(y) denotes the image of a ∈ O∗
Y,y in the residue field.

With this notation, the hypothesis to [Lev17, Theorem 12.7] is that chark 6= 2,
f is separable, and every ramification point has the property that k(y) is a separable
extension of k and e(y) is coprime to p. When these hypotheses are satisfied, the
theorem states

(1.4) χA
1

(Y ) = d · χA
1

(X)−
∑

{y∈Y : e(y)>1}

Trk(y)/k(b
A

1

(y))

Here the sum runs over all ramification points of f . The term χA
1

(C) is the
Euler characteristic in A1-homotopy theory which equals (1− g(C)) · (〈+1〉+ 〈−1〉)

when C is a smooth curve. The expression Trk(y)/k(b
A

1

(y)) is the class of the
composition Trk(y)/k ◦β of the field trace map Trk(y)/k : k(y) → k with a bilinear

form β representing bA
1

(y).
Equation (1.4) is an enrichment of the earlier Riemann–Hurwitz formulas in the

sense that those earlier statements can be deduced from it by comparing invariants.
The fact that the left-hand and right-hand sides of (1.4) have the same rank is
Equation (1.2). When k = R, the fact that the signatures of the sides are equal is
Equation (1.3).

Levine’s hypotheses on the ramification points fail to hold in Saito’s example
and in the example of the Artin–Schreier cover. The Artin–Schreier cover fails
to satisfy the hypotheses because b(∞) = p. In Saito’s example, the ramification
point y defined by the ideal (yp − t) has the property that e(y) = 1 but the residue
extension k(y)/k(f(y)) is inseparable. Levine deduces [Lev17, Theorem 12.7] from
[Lev17, Corollary 10.9], and that corollary applies when f is wildly ramified, but it

does not provide an explicit expression for eA
1

(y). As Levine remarks immediately
after the corollary, the main result of [KW19] can be used to derive an explicit
expression for these branch indices. In fact, we can reduce to the case where OY,y

is a monogenic extension of OX,f(y) by Proposition 4.3 below, and in this case the
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branch indices can be computed using the earlier work of Cazanave [Caz12,Caz08]
(loc. cit. only treat the global A1-degree, but see [KW18] for the relation with the
local A1-degree).

In this paper, we explain in more detail how to use the results of [KW19] to
establish an enriched Riemann–Hurwitz formula with explicitly computable branch
indices when f is allowed to have wild ramification. Rather than using the formalism
developed in [Lev17], we establish an enriched Riemann–Hurwitz formula using
the Euler class formalism in [KW17]. Under suitable hypotheses, the local index
indy df is defined as the local A1-degree with respect to a coordinate system. This
class is represented by an explicit bilinear form, and we recall a recipe for computing
the form in Section 2.

The main result is

Theorem 1.1. Let k be any field. Let f : Y → X be a non-constant, sepa-

rable map of smooth, proper, geometrically connected curves over k. We make the

following assumptions:

(1) X is oriented, meaning we have a line bundle M and a chosen isomor-

phism M⊗2 ∼= T∨X.

(2) e(Y,Hom(f∗T∨X,T∨Y ), df) = e(Y,Hom(f∗T∨X,T∨Y ), αdf) for all α in

k∗.

Then there is an equality

(1.5) χA
1

(Y ) = d · χA
1

(X)−
∑

{y:df(y)=0}

indy df.

This is proven in Section 4 below. The notation e(Y,Hom(f∗T∨X,T∨Y ), df)
is defined in Section 2. As we explain, when f : Y → X is described explicitly, the
local indices of df can be effectively computed using the main results of [Caz12,
Caz08,KW19].

Remark 1.2. We comment on the assumptions in Theorem 1.1.

(1) Assumption 1 can always be achieved after base change to a finite exten-

sion M of k, because T∨X has even degree and Pic0(X)(k̄) is divisible.

(2) There is work in progress to show that Assumption (2) always holds [BW19],
as well as to show that the local indices agree with those of [Lev17].

We demonstrate the theorem in Section 3 by explicitly working out the terms in
Equation (1.5) for the Artin–Schreier cover and Saito’s function f(y) = (t− yp)/y.
These examples are especially interesting in the context of work of Kato and Abbes–
Saito [Kat89,AS02,AS03,Sai12] on the conductor of an extension of local fields
with inseparable residue extension because classical work suggests that it would be

interesting to explore the connection between that conductor and the term bA
1

(y).
Recall that, when the residue field is separable, the classical index b(y) equals the
valuation of the different which is related to the conductor by Artin’s Conductor-
Discriminant formula [Neu99, Chapter VII,(11.9)]. Perhaps there is an enrichment
of this formula that extends to the case where the residual extension is inseparable.

2. Notation

For a field k, let GW(k) denote the Grothendieck–Witt group of k, which is
the group completion of the semi-ring under ⊕ and ⊗ of isomorphism classes of
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k-valued nondegenerate symmetric bilinear forms on finite dimensional k-vector
spaces. Since all such forms are stably diagonalizable, GW(k) is generated by
1-dimensional forms 〈a〉 with a in k∗/(k∗)2, where 〈a〉 is the isomorphism class
generated by the bilinear form

k × k → k,

(x, y) 7→ axy.

The class of the hyperbolic form is denoted h and is given by h = 〈1〉+ 〈−1〉.
We recall some definitions from [KW17] that allow us to define an Euler num-

ber in GW(k). There are other definitions of such Euler numbers. Relevant refer-
ences include [GI80], [BM00], [Fas08], [Mor12, Chapter 8.2], [AF16], [DJK18],
and [LR18]. Please see, for example, the discussion in Section 1.1 of [KW17]
entitled Relation to other work.

Let Y be a smooth k-scheme of dimension r. Given a point y of Y , Nisnevich
coordinates around y are the data of a Zariski open neighborhood U of y and
an étale map φ : U → A

r
k from U to affine r-space such that the induced map

k(φ(y)) → k(y) on residue fields is an isomorphism.
Let V → Y be a vector bundle of rank r over Y . A relative orientation of V is

a line bundle M and an isomorphism Hom(det TY, detV) ∼=M⊗2.
Let σ be a section of V . Given Nisnevich local coordinates around an isolated

zero y of σ, there is a local index (also called a local degree) indy σ in GW(k) of
σ at y defined in [KW17, Definition 28]. Because our interest lies in being able
to compute the local indices at points, especially points whose residue fields are
inseparable extensions of k and when the order of vanishing of σ is divisible by the
characteristic k, we recall the following computational recipe for indy σ. One can
also compute indy σ using the main result of [Caz08].

We choose a local trivialization of V near y which is compatible with the relative
orientation. Under this trivialization, σ is identified with an element f of ⊕r

i=1OY .
Letmy denote the ideal corresponding to y. We can choose an element g of ⊕r

i=1m
N
y

for N sufficiently large (relative to the order of vanishing of f) so that the function
f + g is in the image of φ∗ : ⊕r

i=1OAr
k
,φ(y) → ⊕r

i=1OY,y. Choose F in ⊕r
i=1OAr

k
,φ(y)

such that φ∗(F ) = f+g. (Any choice of such a g and F will do.) Then F determines
a function F : W → A

r
k from an open subset W ⊂ A

r
k = Spec k[y1, . . . , yr] to A

r
k.

Let F = (F1, F2, . . . , Fr).
Since y is an isolated zero, Q = k[y1, . . . , yr]φ(y)/〈F1, . . . , Fr〉 is a finite di-

mensional k-vector space. Scheja–Storch [SS75, Section 3] construct the following
bilinear form on Q, and the isomorphism class of this form is indy σ. We can choose
aij in k[y1, . . . , yr]⊗k k[y1, . . . , yr] such that

Fj ⊗ 1− 1⊗ Fj =
∑

i

aij(yi ⊗ 1− 1⊗ yi).

Let ∆ denote the image of det(aij) in Q⊗kQ. There is a canonical map Q⊗kQ→
Hom(Hom(Q, k), Q) sending b ⊗ c to the linear map which sends µ to µ(b)c. The
image of ∆ is an isomorphism Θ : Hom(Q, k) → Q. Let η = Θ−1(1). We obtain a
bilinear form Q×Q→ k defined by

(b, c) 7→ η(bc).
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It follows from the main theorem of [KW19] that indy σ agrees with the local
A

1-degree of the associated function F at φ(y), at least when y is k-rational or F

has a simple zero. We denote this latter element of GW(k) by degA
1

y σ.
Suppose now that additionally Y is proper, V is relatively oriented, and that

σ is a section with only isolated zeros such that there are Nisnevich coordinates
around every zero of σ. Then define the Euler number e(Y,V , σ) of V with respect
to σ by

e(Y,V , σ) =
∑

x:σ(x)=0

indx σ.

If σ and σ′ are sections with only isolated zeros that can be connected by sec-
tions with only isolated zeros, potentially after base change by an odd degree field
extension, then e(Y,V , σ) = e(Y,V , σ′) ([KW17, Corollary 36]).

3. Examples

Here we look at the Riemann–Hurwitz formula in two specific cases that il-
lustrate some of the more delicate behavior of covers of curves in characteristic
p. The first example is the example suggested by Shuji Saito. This example is a
rational map f : P1

k(t) → P1
k(t) with a ramification point y such that e(y) = 1 but

the residual extension k(y)/k(f(y)) is inseparable.
The second example is an Artin–Schreier cover f : P1

k → P1
k. This cover has

the property that it admits a ramification point y such that k(y) = k(f(y)) but the
ramification index e(y) equals the residual characteristic p.

We work over a field k of odd characteristic p. For a field extension L/k,
let P1

L,y denote 1-dimensional projective space over the field L with projective

variables Y and W , i.e., P1
L,y = ProjL[W,Y ] with affine coordinate y = Y/W , and

let P1
L,x = ProjL[X,Z].

Proposition 3.1. The rational function f : P1
k(t),y → P1

k(t),x defined by y 7→
t−yp

y has the property that there is a relative orientation such that the branch indices

are

ind(yp−t) df =

(

p− 1

2

)

· h+ 〈1〉

ind∞ df =

(

p− 3

2

)

· h+ 〈−1〉.

In particular, the enriched Riemann–Hurwitz formula (1.5) holds.

Proof. We will show there is an equality
∑

{y:df(y)=0}

indA
1

y df = h
(

g(P1
k(t),y)− 1 + deg f(1− g(P1

k(t),x))
)

in GW(k(t)), where deg f refers to the degree of the extension of function fields.
First observe that the right-hand side is

h
(

g(P1
k(t),y)− 1 + deg f(1− g(P1

k(t),x))
)

= h(0− 1 + p(1− 0))

= h(p− 1),
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so we need to show that
∑

{y : df(y)=0} ind
A
1

y df = h(p− 1). Observe that

{y : df(y) = 0} = {y : f ′(y) = 0 or h′(w) = 0},

where w = 1
y and h = 1

f . Here we are using the affine coordinates y = Y/W on

Spec k(t)[y] and w = W/Y on Spec k(t)[w]. On Spec k(t)[y, y−1], x = f(y) = t−yp

y

and f ′(y) = yp−t
y2 = 0 only at the point defined by the ideal (yp−t). On Spec k(t)[w],

z = h(w) = wp−1

wpt−1 and h′(w) = (p−1)wp−2

wpt−1 = 0 at w = 1
y = 0. We will compute

indA
1

(yp−t) df and indA
1

∞ df separately.
In order for local degrees to be well-defined, we must first construct a relative

orientation for the line bundle Hom(f∗T∨P1
k(t),x, T

∨P1
k(t),y) → P1

k(t),y . We will use

the definition of relative orientability given by Kass and Wickelgren in [KW17],
which is related to the analogous definition in [OT14]. Given a line bundle E on
a smooth curve C, a relative orientation of E is the datum of a line bundle M and
an isomorphism Hom(TC,E) ∼=M⊗2. Observe that

Hom(TP1
k(t),y,Hom(f∗T∨P1

k(t),x, T
∨P1

k(t),y))
∼= T∨P1

k(t),y ⊗Hom(f∗T∨P1
k(t),x, T

∨P1
k(t),y)

∼= T∨P1
k(t),y ⊗ (f∗T∨P1

k(t),x)
∨ ⊗ T∨P1

k(t),y

∼= O(−2)⊗O(2p)⊗O(−2)

∼= O(p− 2)⊗2,

so Hom(f∗T∨P1
k(t),x, T

∨P1
k(t),y) is relatively orientable.

We will still make precise the explicit isomorphism TP1
k(t),y

∼= O(1)⊗2 in or-

der to compute local degrees using sections. Write v := −w on Spec(k(t)[v]) =
Spec(k(t)[−w]) and give P1

k(t),y the affine coordinate y = 1
v so that dy = 1

v2 dv.

Define TP1
k(t),y → O(1)⊗2 on affine patches by v 7→ ∂y on Spec k(t)[v] and y 7→ ∂v

on Spec k(t)[y], where ∂y and ∂v are the respective duals of the sections dy and dv
on T∨P1

k(t),y. Note then that ∂y = v2∂v, as desired.

Let U = f−1 Spec(k(t)[z]) ∩ Spec(k(t)[v]) for notational ease, and let ψ be the
trivialization of Hom(f∗T∨P1

k(t),x, T
∨P1

k(t),y) which associates 1 ∈ OP1
k(t),y

to the

function {dz 7→ dv}. Since z = h(w) = wp−1

wpt−1 , dz = (1−p)vp−2

vpt−1 dv and hence df |U =
(1−p)vp−2

vpt−1 {dz 7→ dv} in Hom(f∗T∨P1
k(t),x, T

∨P1
k(t),y)(U). Thus the global section

df of Hom(f∗T∨P1
k(t),x, T

∨P1
k(t),y) corresponds to the function v 7→ (1−p)vp−2

−vpt−1 in

the coordinate v on U . Therefore we need to compute indA
1

(yp−t) df = deg(yp−t)
yp−t
y2

and indA
1

∞ df = degA
1

0
(1−p)vp−2

−vpt−1 .

The local degrees deg(yp−t)
yp−t
y2 and degA

1

0
(1−p)vp−2

−vpt−1 can be computed using

Cazanave’s result on the naive homotopy class of a rational function from P1
L

to itself for any field L [Caz12]. Given a rational function f1
f2

: P1
L → P1

L, we

can write f1(x)f2(y)−f1(y)f2(x)
x−y =:

∑

1≤i,j≤n cijx
i−1yj−1. The Bézoutian of f1

f2
, de-

noted Béz(f1, f2), is defined to be the bilinear form with Gram matrix [cij ]1≤i,j≤n.
Cazanave’s main result is that Béz(f1, f2) is a representative of the isomorphism

class of degA
1 f1

f2
in GW(L).
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Cazanave’s result allows us to compute the global degree, degA
1

(y
p−t
y2 ), which is

equal to
∑

{q : q 7→0} deg
A
1

q
yp−t
y2 by [KW19]. In this particular case, the only zero of

f is the closed point {(yp− t)}, so a global degree computation using the Bézoutian

also computes the local degree, degA
1

(yp−t)
yp−t
y2 . If we write f1 = yp− t and f2 = y2,

then

f1(x)f2(y)− f1(y)f2(x)

x− y
=
x2y2(xp−2 − yp−2) + t(x2 − y2)

x− y

= x2y2(xp−3 + xp−4y + · · ·+ yp−3) + t(x+ y)

= t(x+ y) + xp−1y2 + xp−2y3 + · · ·+ x2yp−1.

Thus the Gram matrix of the Bézoutian of yp−t
y2 , and hence a Gram matrix of

indA
1

(yp−t) df , is

Béz(yp − t, y2) =















0 t 0 . . . 0
t 0 0 . . . 0
0 0 0 . . . 1
...

...
... · · ·

...
0 0 1 . . . 0















.

A diagonalization of this matrix is the Gram matrix of the diagonal nonde-
generate symmetric bilinear form

(

p−1
2

)

· h+ 〈1〉. Therefore we can conclude that

indA
1

(yp−t) df =
(

p−1
2

)

· h+ 〈1〉 in GW(k(t)).

Now we will compute degA
1

0
(1−p)vp−2

−vpt−1 = indA
1

∞ df . The global degree of (1−p)vp−2

−vpt−1

will be equal to the local degree at 0 plus the local degree at ∞, as {0,∞} is the
fiber over 0. If we write f1 = (1− p)vp−2 and f2 = −vpt− 1, then

f1(x)f2(y)− f1(y)f2(x)

x− y
=

(p− 1)txp−2yp−2(y2 − x2) + (p− 1)(yp−2 − xp−2)

x− y

= (p− 1)[txp−2yp−2(y + x) + (yp−3 + yp−4x+ · · ·+ yxp−4 + xp−3)]

= (p− 1)[txp−2yp−1 + txp−1yp−2 + yp−3 + yp−4x+ · · ·+ yxp−4 + xp−3].

Thus the Gram matrix of the Bézoutian of (1−p)vp−2

−vpt−1 is























0 . . . 0 (p− 1) 0 0
0 . . . (p− 1) 0 0 0
0 . . . 0 0 0 0
...

. . . 0 0
...

...
(p− 1) . . . 0 0 0 0

0 . . . 0 0 0 t(p− 1)
0 . . . 0 0 t(p− 1) 0























.

The diagonalization of this Gram matrix of the diagonal bilinear form
(

p−1
2

)

·

h+ 〈(p− 1)〉 =
(

p−3
2

)

·h+ 〈−1〉. Since degA
1

∞
(1−p)vp−2

−vpt−1 = 〈1〉+ 〈−1〉, it follows that

ind∞ df = degA
1

0
(1−p)vp−2

−vpt−1 =
(

p−3
2

)

· h+ 〈−1〉 in GW(k(t)).
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We conclude that
∑

{y : df(y)=0}

indA
1

y df = indA
1

(yp−t) df + indA
1

∞ df

=

(

p− 1

2

)

h+ 〈1〉+ h

(

p− 3

2

)

+ 〈−1〉

= (p− 2)h+ 〈1〉+ 〈−1〉

= (p− 1)h,

as desired. �

Proposition 3.2. The rational function f : P1
k(t),y → P1

k(t),x defined by y 7→

yp − y has the property that there is a relative orientation such that the branch

indices are

ind∞df =

(

p− 1

2

)

· h.

In particular, the enriched Riemann–Hurwitz formula (1.5) holds.

Proof. Orient as in the previous proof. For the affine coordinates z and v as
in that proof, we have that f is given by v 7→ vp/(1− vp−1), so

df |U =
−v2p−2

(1− vp−1)2
· dv.

We complete the proof by computing the local degree of −v2p−2

(1−vp−1)2 using [Caz12].

An algebra computation shows that the

(−x2p−2)(1 − yp−1)2 − (−y2p−2)(1− xp−1)2

x− y
= −(x2p−3+x2p−4y+· · ·+xy2p−4+y2p−3)

+ 2xp−1yp−1(xp−2 + xp−3y + · · ·+ xyp−3yp−2).

We conclude that a Gram matrix for the local degree is




























0 0 . . . 0 0 . . . 0 −1
0 0 . . . 0 0 . . . −1 0
...

...
. . .

...
...

...
...

...
0 0 . . . 0 −1 . . . 0 2
0 0 . . . −1 0 . . . 2 0
...

...
. . .

...
...

...
...

...
0 −1 . . . 0 2 . . . 0 0
−1 0 . . . 2 0 . . . 0 0





























.

This Gram matrix is equivalent to the Gram matrix where the only nonzero entries
are −1’s along the antidiagonal, and this matrix represents

(

p−1
2

)

· h. �

4. Main Theorem

We prove the enriched Riemann–Hurwitz formula, Theorem 1.1, over an arbi-
trary field k discussed in the introduction. Marc Levine has previously shown an
enriched Riemann–Hurwitz formula [Lev17, Theorem 12.7]. The hypotheses and
context of Theorem 1.1 differ from M. Levine’s result, and our particular interest
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in the present context comes from the possibility of explicitly computing certain
local indices, even in the presence of wild ramification and inseparable residue field
extensions.

Let f : Y → X be a non-constant, separable map of smooth, proper, geomet-
rically connected curves over k.

We will need Nisnevich coordinates around the closed points of Y (see Section
2 for the definition of Nisnevich coordinates). For k infinite, the existence of such
coordinates is shown by [Knu91, Chapter 8, Proposition 3.2.1]. When k ⊆ k(y) is
separable, this is proven in [KW17, Lemma 18]. Combining these results gives the
desired existence. We include a different proof here, directly extending [KW17,
Lemma 18] in the case where the dimension of Y is 1, because it offers another
perspective. Namely, the proof of [KW17, Lemma 18] holds under the weaker
hypothesis that k ⊆ k(y) is a simple extension of fields, meaning that k(y) is
obtained from k by adjoining a single element. We will show that k ⊆ k(y) is
always simple, using a modification of David Speyer’s proof of the Primitive Element
Theorem [Spe10].

Lemma 4.1 (Speyer, Lemma 2, loc. cit). Let r(x) and q(x) be polynomials

with coefficients in a field with q(0) 6= 0. Then, for all but finitely many t, the

polynomials r(tx) and q(x) have no common factor.

Speyer’s proof is cleverly designed to avoid field extensions; we include a prosaic
one for convenience.

Proof. In an algebraic closure, we may factor r(x) = a(x−α1)(x−α2) · · · (x−
αn) and q(x) = b(x − β1)(x − β2) · · · (x − βm). If r(tx) and q(x) have a common
factor, then there is some αi and βj such that tx − αi is a multiple of x − βj , or
equivalently αi = tβj . As βj is not zero, this eliminates only one value of t. �

Lemma 4.2. Let k ⊆ M be a finite simple field extension. Let M ⊆ E be a

finite separable field extension. Then k ⊆ E is a simple extension.

Proof. We may assume that k is an infinite field of characteristic p > 0,
because the result is immediate when k is finite or characteristic 0.

By assumption, there is an element α of M such that M = k[α]. Let f be the
minimal polynomial of α over k.

Since M ⊆ E is finite and separable, there exists β in E such that E =M [β] =

k[α, β]. Since β is separable over M , E = M [βpd

] for all d by [Lan02, Chapter V,

Exercise 16, page 254]. There exists a d such that βpd

is separable over k. Thus,

by replacing β by βpd

, we may assume that β is separable over k. Let g be the
minimal polynomial of β over k.

Define r(x) and q(x) in E[x] by f(x) = (x−α)r(x−α) and g(x) = (x−β)q(x−
β). Since β is separable, we know that 0 is not a root of q(x). Therefore by Lemma
4.1 and our assumption that k is infinite, we can choose t in k such that r(tx) and
q(x) have no common factor. We claim that E = k[α− tβ].

To see this, let h(x) = f(tx + α − tβ). Note that h(x) has coefficients in
k[α − tβ]. Since the polynomial ring k[α − tβ][x] is a principal ideal domain, the
ideal 〈h(x), g(x)〉 is generated by a polynomial s(x) in k[α− tβ][x], which we may
assume to be monic. (So s(x) is the GCD, but we wish to emphasize the ambient
ring.)The polynomial s(x) also generates the ideal 〈h(x), g(x)〉 of E[x] generated
h(x) and g(x).
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We compute s(x) by computing the GCD of h(x) and g(x) in E[x]. We have
h(x) = f(tx+α−tβ) = t(x−β)r(t(x−β)) and g(x) = (x−β)q(x−β). By the choice
to t, the polynomials r(t(x − β)) and q(x− β) have no common factor. Therefore,
the GCD of h(x) and g(x) is x− β. Greatest common divisors are well-defined up
to a nonzero scalar. Since x− β and s(x) are both GCDs of h(x) and g(x) and are
both monic polynomials, we have that s(x) = x− β. Thus β is in k[α− tβ]. Since
t is in k, it follows that α is in k[α− tβ]. Thus k[α− tβ] ⊃ k[α, β] = E, proving the
claim. �

We combine the previous lemma to reprove the existence of the desired Nis-
nevich coordinates:

Proposition 4.3. Let Y be a smooth curve over k and let y be a closed point

of Y . Then there exist Nisnevich coordinates around y.

Remark 4.4. Proposition 4.3 follows from [Knu91, Chapter 8, Proposition
3.2.1] when k is infinite.

Proof. By the proof of [KW17, Lemma 18], Nisnevich coordinates exist
around y when k ⊆ k(y) is a finite, simple extension of fields. Since Y is smooth,
there is an étale map φ from a Zariski open neighborhood of y to A

1
k. It follows

that k ⊆ k(y) is of the form k ⊆ k(φ(y)) ⊆ k(y) where k ⊆ k(φ(y)) is a simple
extension and k(φ(y)) ⊆ k(y) is a separable extension. The proposition thus follows
from Lemma 4.2. �

To prove Theorem 1.1, we prove that under the same hypotheses, there is an
equality

∑

{y:df(y)=0}

indy df = h(g(Y )− 1 + deg f(1− g(X)))

in GW(k) between the local indices (or degrees) of df at its zeros and the hyperbolic
form h = 〈−1〉+〈1〉multiplied by the integer g(Y )−1+deg f(1−g(X)), where g(X)
and g(Y ) denote the genera of X and Y , respectively, and deg f = [k(Y ) : k(X)].

Proof of Theorem 1.1. Since f is separable, the section df of

V = Hom(f∗T∨X,T∨Y )

is nonzero and therefore has only isolated zeros, because Y is a curve. By Propo-
sition 4.3, there are Nisnevich coordinates around all the zeros of df .

We claim that V is relatively orientable. By Assumption (1), we may choose a
line bundle M on X such that M⊗2 ∼= T∨X . Then

Hom(TY,V) ∼= T∨Y ⊗Hom(f∨T∨X,T∨Y )

∼= T∨Y ⊗ (f∗T∨X)∨ ⊗ T∨Y

∼= (T∨Y )⊗2 ⊗ ((f∗M)∨)⊗2

∼= (T∨Y ⊗ (f∨M)∨)⊗2,

and so Hom(TY,V) is a square. We may therefore choose a relative orientation,
and we do this now. (It will not matter what the chosen relative orientation is in
the present case.)
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Therefore, e(Y,V , df) is defined, and by definition is equal to

(4.1) e(Y,V , df) =
∑

y:df(y)=0

indy df.

Since V = Hom(f∗T∨X,T∨Y ) is rank one, which is odd, e(Y,V , df) is a multiple
of the hyperbolic element h by [SW18, Proposition 12] and Assumption 2. (In a
different context and under different hypotheses [SW18, Proposition 12] is proven
by M. Levine in [Lev17, Theorem 7.1]. M. Levine also credits J. Fasel.) Thus

(4.2) e(Y,V , df) = h(degV/2).

Using the fact that Hom(f∗T∨X,T∨Y ) = (f∗T∨X)∨ ⊗ T∨Y , we have

deg Hom(f∗T∨X,T∨Y ) = deg(f∗T∨X)∨ ⊗ T∨Y(4.3)

= deg f∗TX + degT∨Y(4.4)

= deg f degTX + deg T∨Y(4.5)

= deg f(2− 2g(X)) + (2g(Y )− 2).(4.6)

Combining Equations (4.1), (4.2), and (4.3) gives the desired result. �
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