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µp- AND αp-ACTIONS ON K3 SURFACES IN

CHARACTERISTIC p

YUYA MATSUMOTO

Abstract. We consider µp- and αp-actions on RDP K3 surfaces (K3
surfaces with rational double point singularities allowed) in character-
istic p > 0. We study possible characteristics, quotient surfaces, and
quotient singularities. It turns out that these properties of µp- and αp-
actions are analogous to those of Z/lZ-actions (for primes l 6= p) and
Z/pZ-quotients respectively. We also show that conversely an RDP K3
surface with a certain configuration of singularities admits a µp- or αp-
or Z/pZ-covering by a “K3-like” surface, which is often an RDP K3 sur-
face but not always, as in the case of the canonical coverings of Enriques
surfaces in characteristic 2.

1. Introduction

K3 surfaces are proper smooth surfacesX with Ω2
X
∼= OX andH1(X,OX) =

0. The first condition implies that X has a global non-vanishing 2-form and
it is unique up to scalar.

Actions of (finite or infinite) groups on K3 surfaces have been vastly stud-
ied. For example, the quotient of a K3 surface by an action of a finite group
of order prime to the characteristic is birational to a K3 surface if and only
if the action preserves the global 2-form, and moreover the list of possible
such finite groups is determined in characteristic 0. Much less studied are
infinitesimal actions, or derivations, on K3 surfaces in positive character-
istic (with the exception of those with Enriques quotients in characteristic
2). Perhaps this is because it is known that smooth K3 surfaces admit
no nontrivial global derivations. However we find many examples of non-
trivial global derivations when we will look at RDP K3 surfaces, by which
we mean we allow rational double point singularities (RDPs), the simplest
2-dimensional singularities.

In this paper we consider derivations that correspond to actions of group
schemes µp and αp. We study possible characteristic, quotient surfaces, and
quotient singularities. It turns out that these properties of µp- and αp-
actions are quite similar to those of Z/pZ-actions in characteristic 6= p and
characteristic p respectively.

The actions of µp, and more generally of µpe and µn, on K3 surfaces are
also discussed in our previous paper [Mat20a].

The content and the main results of this paper are as follows.
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2 YUYA MATSUMOTO

In Section 2 we introduce fundamental notions of derivations, such as p-
closedness and fixed loci, and give their properties. Then in Section 3 we
describe local behaviors of derivations related to RDPs. We classify p-closed
derivations on RDPs without fixed points (Theorem 3.3) and RDPs arising
as p-closed derivation quotients of regular local rings (Lemma 3.6(2)).

We show that a µp- or αp-quotient Y of an RDP K3 surface X in charac-
teristic p is either an RDP K3 surface, an RDP Enriques surface, or a ratio-
nal surface (Proposition 4.1). For µp-actions the author proved in [Mat20a]
that the quotient is an RDP K3 surface if and only if the induced action
on the global 2-forms is trivial (this is parallel to the case of the actions of
finite groups of order not divisible by p). For αp-actions we could not find a
similar criterion, since in this case the action on the 2-form is always trivial
(this is parallel to Z/pZ-actions).

In [Mat20a] we proved that µp-actions on RDP K3 surfaces in characteris-
tic p occurs precisely if p ≤ 19. In this paper we prove that the corresponding
bound for αp-actions is p ≤ 11 (Theorem 8.1).

Suppose both X and the quotient Y are RDP K3 surfaces. We determine
the possible characteristic p for both µp and αp, and we moreover determine
the possible singularities of Y (Theorem 4.6). Again the results are parallel
to Z/lZ (for a prime l 6= p) and Z/pZ respectively. We also determine the
possible singularities of X when the quotient Y is a supersingular Enriques
surface (Theorem 9.1).

We also consider the inverse problem: whether an RDP K3 surface Y with
a suitable configuration of singularities (and certain additional properties)
can be written as the G-quotient of an RDP K3 surface X. It is known (at
least to experts) that the answer is affirmative if G = Z/lZ. We show a
similar result (Theorem 7.3) when G is Z/pZ, µp, or αp, although if G = µp
or G = αp then X is only “K3-like” (Definition 7.2) in general and it may
fail to be an RDP K3 surface. This behavior is analogous to that of the
canonical µ2- and α2-coverings of Enriques surfaces in characteristic 2.

Now suppose π : X → Y is a finite purely inseparable morphism of degree
p between RDP K3 surfaces. It is not necessarily the quotient morphism by
a (regular) action of µp or αp. We show (Theorem 5.2) that π admits a finite
“covering” π̄ : X̄ → Ȳ that is a µp- or αp-quotient morphism between either
RDP K3 surfaces or abelian surfaces. We determine the possible covering
degree and the characteristic for each case.

In Sections 9–10 we give explicit examples of RDP K3 surfaces and deriva-
tions.

Throughout the paper we work over an algebraically closed field k of
characteristic p ≥ 0, and whenever we refer to µp, αp, or p-closed derivations
we assume p > 0.

2. Preliminary on derivations

We recall basic facts on derivations, and relate differential forms on X to
those on the derivation quotient XD.
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2.1. General properties of derivations. Let X be a scheme over k. A
(regular) derivation on X is a k-linear endomorphism D of OX satisfying
the Leibniz rule D(fg) = fD(g) +D(f)g.

Suppose for simplicity that X is integral. Then a rational derivation on
X is a global section of Der(OX)⊗OX

k(X), where Der(OX) is the sheaf of
derivations on X. Thus, a rational derivation is locally of the form f−1D
with f a regular function and D a regular derivation.

Lemma 2.1. If A is a local RDP and D is a derivation on (SpecA)sm (the
complement of the closed point), then D extends to a derivation on SpecA.

Proof. Indeed, for each f ∈ A we have D(f) ∈ H0((SpecA)sm,OA) =
H0(SpecA,OA) = A since A is normal. �

Lemma 2.2. Suppose A is the localization of a finitely generated k-algebra
at a maximal ideal m, and D is a derivation on A. Then D extends to a

derivation on the completion Â = lim←−nA/m
n, and the completion ÂD of AD

at n := m ∩AD is equal to (Â)D.

Proof. Any derivation D satisfies D(mn) ⊂ m
n−1, hence D induces a mor-

phism lim
←−n

A/mn → lim
←−n

A/mn−1.

There is a canonical injection ÂD → (Â)D. Let us show the surjectivity

of this map. Suppose ([an])n is an element of Â (i.e. an ∈ A and an+l ≡ an
(mod m

n)) that belong to (Â)D (i.e. D(an) ∈ m
n−1). It suffices to find an

element bn ∈ m
n with D(bn) = D(an), since then ([an]) = ([an − bn]) ∈ ÂD.

Since D(an) = D(an+l)−D(an+l−an) ∈ m
n+l−1+D(mn), it suffices to show

D(mn) =
⋂
l≥0(D(mn)+m

n+l). Supposem is generated by N elements. This

follows from Krull’s intersection theorem, since A(p) is a Noetherian local
ring, A and hence D(ml) are finitely generated A(p)-modules, and m

n+l ⊂
m
l ⊂ (m(p))⌈(l−N(p−1))/p⌉A. �

Definition 2.3. Suppose D is a derivation on a scheme X. The fixed locus
Fix(D) is the closed subscheme of X corresponding to the sheaf (Im(D)) of
ideals generated by Im(D) = {D(a) | a ∈ OX}. Equivalently, this sheaf is
Im(D̄), where D̄ : Ω1

X → OX is the morphism defined below in Definition
2.5. A fixed point of D is a point of Fix(D).

Assume X is a smooth irreducible variety and D 6= 0. Then Fix(D)
consists of its divisorial part (D) and non-divisorial part 〈D〉. If we write
D = f

∑
i gi

∂
∂xi

for some local coordinate xi with gi having no common

factor, then (D) and 〈D〉 corresponds to the ideal (f) and (gi) respectively.
Assume X is a smooth irreducible variety and suppose D 6= 0 is now

a rational derivation, locally of the form f−1D′ for some regular function
f and (regular) derivation D′. Then we define (D) = (D′) − div(f) and
〈D〉 = 〈D′〉.

If X is only normal, then we can still define (D) as a Weil divisor.

Rudakov–Shafarevich [RS76] uses the term singularity for the fixed locus.
We do not use this, as we want to distinguish them from the singularities of
the varieties.
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The next theorem is proved by Rudakov–Shafarevich [RS76, Theorem
3] for regular derivations D satisfying some assumptions, and by Katsura–
Takeda [KT89, Proposition 2.1] for general rational derivations.

Theorem 2.4. Let D be a rational derivation on a smooth proper surface
X. Then

deg c2(X) = deg〈D〉 −KX · (D)− (D)2.

A derivation D on X acts naturally on the sheaves ΩqX , as follows.

Definition 2.5. Let D be a derivation on X. Decompose D : O → O as

D̄ ◦ d : O
d
−→ Ω1 D̄

−→ O. Then D̄ is O-linear. Let D̄q : Ω
q → Ωq−1 (q ≥ 1) be

the (O-linear) homomorphism defined by

D̄q(β1 ∧ · · · ∧ βq) =

q∑

j=1

(−1)j−1D̄(βj) · β1 ∧ · · · ∧ βj−1 ∧ βj+1 ∧ · · · ∧ βq,

for 1-forms βj , and for q = 0 let D̄0 be the zero map. We have D̄q1+q2(β1 ∧
β2) = D̄q1(β1) ∧ β2 + (−1)q1β1 ∧ D̄q2(β2) for a q1-form β1 and a q2-form β2.
We define Dq := d ◦ D̄q + D̄q+1 ◦ d : Ω

q → Ωq (q ≥ 0).

Proposition 2.6. Then we have the following properties.

• D0 = D.
• D1(df) = d(D0(f)).
• Dq1+q2(β1 ∧β2) = Dq1(β)∧β2 +β1 ∧Dq2(β2) for a q1-form β1 and a

q2-form β2. Hence, Dq1+···+ql(β1 ∧ · · · ∧ βl) =
∑l

i=1 β1 ∧ · · · ∧ βi−1 ∧
Dqi(βi) ∧ βi+1 ∧ · · · ∧ βl for qi-forms βi.
• [D,D′]q = [Dq,D

′
q] and (Dp)q = (Dq)

p.

• (hD)q = h · Dq + dh ∧ D̄q, which is equal to h · Dq if for example

h ∈ k(X)(p).

• Hence, If Dp = hD for h ∈ k(X)(p), then (Dq)
p = hDq. (This is not

true for general h ∈ k(X).)

Proof. Straightforward. �

We will write simply D in place of Dq.

2.2. General properties of p-closed derivations. We say that a deriva-
tion D on an integral scheme X is p-closed if there exists h ∈ k(X) with
Dp = hD. Quotients by such derivations will be studied in the next subsec-
tion.

The next formula is well-known.

Lemma 2.7 (Hochschild’s formula). Let A be a k-algebra in characteristic
p > 0, a an element of A, and D a derivation on A. Then

(aD)p = apDp + (aD)p−1(a)D.

In particular, if D is p-closed then so is aD.

The following lemmas are useful when analyzing local properties.



µp- AND αp-ACTIONS ON K3 SURFACES IN CHARACTERISTIC p 5

Lemma 2.8. Suppose B is a local domain equipped with a p-closed deriva-
tion D 6= 0 such that Fix(D) is principal. Then the maximal ideal m of B
is generated by elements xj (j ∈ J) and y, satisfying D(xj) = 0. If m is
generated by n elements then we can take |J | = n− 1.

If B is smooth, then this is proved in [Ses60, Proposition 6] (see also
[RS76, Theorem 1 and Corollary]).

Proof. Take f ∈ B with (D) = div(f). By replacing D with the (regular)
derivation f−1D, which is also p-closed by Hochschild’s formula (Lemma
2.7), we may assume (D) = 0, hence Fix(D) = ∅.

Take h ∈ B such that Dp = hD. Note that then D(h) = 0.
Take an element y ∈ B with D(y) 6∈ m (which exists since m 6∈ Fix(D)).

We may assume y ∈ m. Let w = yp−1. Then Dk(w) ∈ yB ⊂ m for
0 ≤ k ≤ p− 2 and Dp−1(w) ∈ B∗. We have u := Dp−1(w)− hw ∈ B∗ ∩BD.

Take elements (x′j)j∈J ′ generating m. Let

xj = ux′j +

p−2∑

k=0

(−1)kDk(w)Dp−1−k(x′j).

Then we have D(xj) = 0 and, since xj ≡ ux′j (mod yB), it follows that

xj (j ∈ J ′) and y generate m. If |J ′| < ∞ then we can remove one of
the elements, and the remaining elements still generate m. The removed
one cannot be y since (D(xj)) ⊂ m, hence the removed one is xj0 for some
j0 ∈ J

′, hence xj (j ∈ J
′ \ {j0}) and y generate m. �

Lemma 2.9. Suppose B is a local domain equipped with a p-closed deriva-
tion D 6= 0 of additive type such that Fix(D) = ∅. Then there exists x ∈ B
with D(x) = 1.

Proof. As in the previous lemma, since Fix(D) = ∅, there exists y ∈ m with
D(y) 6∈ m, and then u := Dp−1(yp−1) ∈ B∗ ∩ BD. Then Dp−1(u−1yp−1) =
1. �

2.3. p-closed derivation quotients and differential forms. If D is p-
closed, then XD is the scheme with underlying topological space homeo-
morphic to (and often identified with) X, and with structure sheaf OXD =
ODX = {a ∈ OX | D(a) = 0} consisting of the D-invariant sections of OX .
The natural morphism X → XD is finite of degree p (unless D = 0). If X
is normal then so is XD.

In this subsection we compare top differential forms onX and the quotient
XD (Propositions 2.12 and 2.14).

Special cases of p-closed derivations correspond to (non-reduced) group
schemes, as follows, which are the main subject of this paper.

Proposition 2.10. Let G = µp (resp. G = αp). Then the G-actions on a
scheme X correspond bijectively to the derivations D on OX of multiplicative
type (resp. of additive type), that is, Dp = D (resp. Dp = 0). The quotient
scheme X/G always exists, and coincides with XD.

Proof. Well-known. �
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Lemma 2.11. Let X be a smooth variety of dimension m (not necessar-
ily proper) equipped with a p-closed rational derivation D such that ∆ :=
Fix(D) is divisorial. Let π : X → XD be the quotient map. The morphism
π∗ : π∗Ω1

XD → Ω1
X induced by the pullback of 1-forms fits into a canonical

exact sequence

0→ OX(−p∆)
π′∗

−−→ π∗Ω1
XD

π∗

−→ Ω1
X

D̄
−→ OX(−∆)→ 0,

where FX = π′ ◦ π : X → XD → X(p) is the Frobenius, D̄ is defined as
in Definition 2.5 (i.e. D̄ ◦ d = D), and π′∗ is the morphism defined in the
diagram

F ∗
XDΩ

1

XD(p) π′∗Ω1
X(p) π′∗OX(p)(−∆(p)) 0

Ω1
XD

π(p)∗

0

D(p)

π′∗

π′∗

and the equality F ∗
X(OX(p)(−∆(p))) = OX(−p∆).

Let η (resp. ξ) be the image (resp. preimage) of 1 by the induced iso-

morphism OX
∼
→ Ker(π∗ ⊗ OX(p∆)) (resp. Coker(π∗ ⊗ OX(∆))

∼
→ OX).

Then η = d(fp)
D(f)p and ξ = df

D(f) for any local section f ∈ OX satisfying

div(D(f)) = ∆. Moreover dη = 0.

Proof. By the result of Seshadri (Lemma 2.8), we can take a local coordinate
x0, . . . , xm−1 of X such that xp0, x1, . . . , xm−1 is a local coordinate of XD.

Then D = φ ∂
∂x0

for some meromorphic function φ on X, and then ∆ =

div(φ). Then the sequence is

0→ 〈φp〉 → 〈d(xp0), dx1, · · · dxm−1〉 → 〈dx0, dx1, · · · dxm−1〉 → 〈φ〉 → 0

with φp 7→ d(xp0) and dx0 7→ φ, which is clearly exact. The formulas of η
and ξ are clear from the construction. dη = 0 follows either by computation
using the formula or from the observation that dη ∈ Im(

∧2 π′∗ : F ∗
XΩ

2
X(p) →

π∗Ω2
XD) = 0 (since rankπ′∗ = 1). �

Proposition 2.12. Let D and π : X → XD as in Lemma 2.11. Then there
is an isomorphism

ΩmX/k(∆) ∼= π∗(ΩmXD/k(π∗(∆))) = π∗ΩmXD/k ⊗OX(p∆)

of OX -modules, preserving the zero loci of forms, and sending

f0 · df1 ∧ · · · ∧ dfm−1 ∧D(g)−1dg 7→ f0 · df1 ∧ · · · ∧ dfm−1 ∧D(g)−pd(gp)

for local sections fi, g of OX if D(fi) = 0 for 1 ≤ i < m and D(g)−1 ∈
OX(∆).

Taking powers and then the D-invariant parts, we also obtain an isomor-
phism

((π∗Ω
m
X/k(∆))⊗n)D ∼= (ΩmXD/k(π∗(∆)))⊗n

of OXD -modules, satisfying the same property when n = 1 if D(f0) = 0.
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In particular, if D is regular and fixed-point-free, then we have isomor-
phisms

(π∗(Ω
m
X/k)

⊗n)D ∼= (ΩmXD/k)
⊗n and

H0(X, (ΩmX/k)
⊗n)D ∼= H0(XD, (ΩmXD/k)

⊗n)

with the same properties.

This refines the Rudakov–Shafarevich formula [RS76, Corollary 1 to Propo-
sition 3] KX ∼ π∗KXD + (p− 1)(D) (linear equivalence). We note that, by
Lemma 2.8, there indeed exist local sections f0, f1, . . . , fm−1, g for which the
m-forms in the statement are generators.

Proof. This follows immediately from the exact sequence in Lemma 2.11 and
the description of the elements η and ξ. �

Lemma 2.13. Suppose Vn
Gn−1
−−−→ Vn−1

Gn−2
−−−→ . . .

G0−−→ V0 is a sequence
of morphisms between locally-free sheaves of equal finite rank m on an irre-
ducible scheme such that CokerGi are also locally-free and

∑
i∈[0,n[ rankCokerGi

is equal to the rank of CokerG[0,n[ at the generic point, where G[0,i[ :=
G0◦· · ·◦Gi−1. Then CokerG[0,n[ is also locally-free and there is a unique iso-

morphism
⊗

i(det CokerGi)
∼
→ detCokerG[0,n[ taking (vi)i to

∧
iG[0,i[(vi)

for local sections vi of Vi.

Proof. For 0 ≤ p ≤ q ≤ n, let G[p,q[ := Gp◦Gp+1◦· · ·◦Gq−1. The assumption
on the rank implies that CokerG[p,q[ has rank equal to

∑
i∈[p,q[ rankCokerGi

at the generic point. We show the following.

(1) For p ≤ r, CokerG[p,r[ is locally-free.

(2) For p ≤ q ≤ r, the sequence 0 → CokerG[q,r[
β
−→ CokerG[p,r[ →

CokerG[p,q[ → 0 is exact.

(1) is clear if r− p ≤ 1. (2) is clear if p = q or q = r. It suffices to show that
if p < q < r and (1) holds for (p, q) and (q, r) then (1) holds for (p, r) and
(2) holds for (p, q, r). The exactness at the middle and the right is clear.
Since Ker β is a subsheaf of a locally-free sheaf (by the assumption) and its
rank at the generic point is 0, we have Ker β = 0. Thus (2) is true by the
assumptions, and this together with the induction hypothesis imply (1).

Now, from (2) we obtain isomorphisms detCokerG[p,q[⊗detCokerG[q,r[
∼
→

detCokerG[p,r[ : v ⊗ w 7→ v ∧ G[p,q[(w). Composing these isomorphisms in-
ductively, we obtain the desired isomorphism. �

Proposition 2.14. Suppose X0
π0−→ X1

π1−→ . . .
πm−1
−−−→ Xm = X0

(p) is a
sequence of purely inseparable morphisms of degree p between m-dimensional
integral normal varieties, with each πi given by a p-closed rational derivation
Di on Xi. Then KX0 ∼ −

∑m−1
i=0 (πi−1 ◦ · · · ◦ π0)

∗(Di).

Proof. As the conclusion does not depend on closed subschemes of codimen-
sion ≥ 2, we may assume that Sing(Xi) = ∅ and 〈Di〉 = ∅ by restricting to
the complement.

We write π[0,i[ := πi−1 ◦· · · ◦π1 ◦π0 : X0 → Xi and let Gi : π
∗
[0,i+1[Ω

1
Xi+1

→

π∗[0,i[Ω
1
Xi

be the pullback of π∗i : π
∗
iΩ

1
Xi+1

→ Ω1
Xi

to X0. Then Coker(Gi ⊗
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OX0(π
∗
[0,i[(Di))) is free of rank 1, since it is the pullback of Coker(π∗i ⊗

OXi
((Di))), which is free of rank 1 by Lemma 2.11. Since G0◦· · ·◦Gm−1 = 0,

we can apply Lemma 2.13 to G0 ◦ · · · ◦Gm−1. Then the invertible sheaf

ΩmX0
⊗OX0

(∑

i

π∗[0,i[(Di)
)
= (Coker(G0 ◦ · · · ◦Gm−1))⊗

⊗

i

OX0(π
∗
[0,i[(Di))

∼=
⊗

i

Coker(Gi ⊗OX0(π
∗
[0,i[(Di)))

is trivial. �

The next proposition, which we will use in Section 7, is a slight general-
ization of arguments in [BM76, Sections 3 and 5] (where only derivations of
multiplicative or additive type are considered).

Proposition 2.15. Let D be a nontrivial p-closed derivation on an integral
scheme X, and let π : X → XD = Y be the quotient map. Suppose Fix(D) ⊂
π−1(Sing(Y )) and Sing(X) ⊂ π−1(Y sm). Then,

(1) X is Gorenstein.
(2) There is a canonical closed 1-form η on Y sm that coincides with the

one given in Lemma 2.11 on Y sm ∩ π(Xsm). It satisfies Sing(X) =
π−1(Zero(η)). X is normal if and only if codimZero(η) ≥ 2.

(3) Suppose X and Y are proper, Y admits a dualizing sheaf ωY , and it
is trivial (ωY ∼= OY ). Then X admits a dualizing sheaf ωX and it is
trivial.

(4) Suppose X and Y are surfaces. Suppose Y sm admits a global non-
vanishing 2-form ω, and fix such a 2-form. Then there is a unique
p-closed derivation DY on Y satisfying DY (f)ω = df ∧ η on Y sm.

It moreover satisfies Zero(η) = Fix(DY |Y sm), Y DY = (Xn)(p), and
DY (ω) = 0.

Proof. First note that Y is normal. Indeed, for each point y ∈ Sing(Y ),
the point π−1(y) ∈ X is smooth by assumption, in particular normal, and
normality inherits to derivation quotients.

(2) Let Y ′ = Y sm and X ′ = π−1(Y ′). Since Fix(D) ∩ X ′ = ∅ there
exists locally a section s ∈ OX′ with D(s) ∈ O∗

X′ . Consider the 1-form
η = d(sp)/D(s)p on Y ′. By Lemma 2.11, the restriction of η to π(Xsm)∩Y ′

(which is dense since X is integral) does not depend on the choice of s, is
defined globally, and is killed by d, hence η itself satisfies the same properties.

Two special cases are the following. If D is of multiplicative type then
we can take s satisfying D(s) = s ([Mat20a, Lemma 2.13]), and then η =
d log(sp). If D is of additive type then we can take s satisfying D(s) = 1
(Lemma 2.9), and then η = d(sp).

By assumption X is regular above Sing(Y ). Locally on Y ′, we have OX′ =
OY ′ [S]/(Sp − b), where b = sp. Hence X is complete intersection, in partic-
ular Gorenstein, and we have Sing(X) = π−1(Zero(db)) = π−1(Zero(η)).

Since X is regular at the generic point, η is not identically 0. X is normal
if and only if Sing(X) or equivalently Zero(η) is of codimension > 1.

(1) is proved above.
(3) Since X is proper and codimFix(D) ≥ 2, we have h ∈ k, where

Dp = hD. We may assume h ∈ {0, 1}. We follow [BM76, Proposition 9]. It
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suffices to give anOY -linear isomorphism φ : π∗OX →Hom(π∗OX ,OY ). Let
φ be the morphism x 7→ t(x ·−), where t = pr0 : π∗OX → (π∗OX)

D=0 = OY
if D is of multiplicative type (i.e. h = 1) and t = Dp−1 : π∗OX → OY
if D is of additive type (i.e. h = 0). Since Fix(D) ∩ X ′ = ∅, φ|Y ′ is an
isomorphism, and then φ itself is an isomorphism since π∗OX and OY are
normal at Sing(Y ).

(4) We define a derivation DY ′ on Y ′ = Y sm by DY ′ : OY ′

d
−→ Ω1

Y ′

∧η
−→

Ω2
Y ′

⊗ω
←−−
∼
OY ′ , hence DY ′(f)ω = df ∧ η. Then Fix(DY ′) = Zero(η). Write

OX′ = OY ′ [S]/(Sp−b) locally on Y ′ as in the proof of (2) and then η = u ·db

for a unit u ∈ O∗
Y ′ . Then it is clear that b ∈ O

DY ′

Y ′ and (OY ′)(p) ⊂ O
DY ′

Y ′ ,

hence (OX′)(p) ⊂ O
DY ′

Y ′ . Since O
DY ′

Y ′ is normal (since OY is normal) we

obtain ((OX′)n)(p) ⊂ O
DY ′

Y ′ . Since Y is normal, DY ′ extends to a derivation

DY on Y by Lemma 2.1, and we have ((OX)
n)(p) ⊂ ODY

Y . Comparing the

degree with respect to k(X) (p2 = [k(X) : k(X(p))] ≥ [k(X) : k(Y DY )] =
[k(X) : k(Y )] · [k(Y ) : k(Y DY )] ≥ p2) we observe that this is equality at the
generic point, and then since both sides are normal we obtain the equality.
We also obtain [k(Y ) : k(Y DY )] = p and hence DY is p-closed.

We have DY (η) = 0 since η is the pullback of a 1-form on OX
(p) ⊂ ODY

Y .
Comparing DY (DY (f)ω) = DY (df ∧ η) and DY (DY (f))ω = d(DY (f)) ∧ η
(both of which follow from DY (f)ω = df ∧ η), we obtain DY (ω) = 0. �

3. Local properties of derivations on smooth points and RDPs

In this section we will recall basic properties of RDPs and then consider
derivations on RDPs.

Definition 3.1 (RDPs). Rational double point singularities in dimension 2,
RDPs for short, are the 2-dimensional canonical singularities.

The exceptional curves of the resolution of singularity and their intersec-
tion numbers form a Dynkin diagram of type An, Dn, or En. We say that
the RDP is of type An, Dn, or En. For Dn and En in characteristic 2, En
in characteristic 3, and E8 in characteristic 5, and in no other cases, there
are more than one, finitely many, isomorphism classes of singularity sharing
the same Dynkin diagram. They are classified and named as Dr

n and Ern
by Artin [Art77], where the range of r is a certain finite set of non-negative
integers depending on the characteristic and the Dynkin diagram. In these
cases, and also in the cases of An with p | (n + 1) and Dn with p | (n − 2),
and in no other cases, the fundamental groups are different from those of
the corresponding RDPs in characteristic 0, again see [Art77].

We refer to n and r as the index and coindex of the RDP.
If A is the localization of a surface at an RDP, or the completion of such

an algebra, then we call SpecA a local RDP for short.
If SpecA is a local RDP or a 2-dimensional regular local ring, then we

denote Pic(A) = Pic((SpecA)sm) and call this the local Picard group of A.
If A is Henselian (e.g. if it is complete) then by [Lip69, Proposition 17.1],
this group is determined from the Dynkin diagram as in Table 1 and is
independent of the characteristic and the coindex.
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Table 1. Local Picard groups of Henselian RDPs (in any characteristic)

smooth An D2m D2m+1 E6 E7 E8

0 Z/(n+ 1)Z (Z/2Z)2 Z/4Z Z/3Z Z/2Z 0

Definition 3.2 (RDP surfaces). RDP surfaces are surfaces that have only
RDPs as singularities (if any). In particular, any smooth surface is an RDP
surface.

RDP K3 surfaces are proper RDP surfaces whose minimal resolutions are
(smooth) K3 surfaces. We similarly define RDP Enriques surfaces.

Since abelian surfaces and (quasi-)hyperelliptic surfaces do not admit
smooth rational curves, any RDP abelian or RDP (quasi-)hyperelliptic sur-
face is smooth.

Theorem 3.3. Let X be a surface equipped with a nontrivial p-closed deriva-
tion D, and w ∈ X a closed point. Let π : X → Y = XD be the quotient
morphism.

(1) Assume w /∈ Fix(D). If w is a smooth point then π(w) is also
a smooth point. If w is an RDP then π(w) is either a smooth

point or an RDP, and more precisely (ÔX,w,D) is isomorphic to
(k[[x, y, z]]/(F ), u · ∂/∂z) where u is a unit and F is a power series

∈ k[[x, y, zp]] that is one in Table 2. In either case X ×Y Ỹ → X is

crepant, where Ỹ → Y is the minimal resolution at π(w).
(2) If w ∈ Fix(D), then D uniquely extends to a derivation D1 on X1 =

BlwX. Suppose moreover that (D) = 0, that w is an RDP, and that
π(w) is either a smooth point or an RDP. Then π(w) is an RDP,
(D1) = 0, the image of each point above w is either a smooth point
or an RDP, g : Y1 = (X1)

D1 → Y is crepant, and Fix(D1) 6= ∅.

Proof. (1) Assume w is a smooth point (this case is already proved in [Ses60,
Proposition 6]). Taking a coordinate x, y as in Lemma 2.8 (i.e. D(x) = 0

and D(y) ∈ O∗
X,w), we have ÔY,π(w) ∼= k[[x, yp]], hence OY,π(w) is smooth.

Assume w is an RDP. By Lemma 2.8 we have a coordinate x, y, z satisfying
D(x) = D(y) = 0 and D(z) ∈ O∗

X,w.

We recall the classification [Mat20a, Proposition 4.8] of all formal power
series F ∈ k[[x, y, zp]] such that k[[x, y, z]]/(F ) defines an RDP at the origin,
up to multiples by units, and up to coordinate change preserving the invari-
ant subalgebra k[[x, y, zp]] ⊂ k[[x, y, z]]. The result is displayed in Table 2.
We observed that in each case π(w) is either a smooth point or an RDP

and that X ×Y Ỹ is an RDP surface crepant over X, where Ỹ → Y is the
resolution at π(w). (The entries of the singularities of X ×Y Ỹ is omitted if
Y is already smooth.)

(2) Take a 2-form χ on Y , nonzero on a neighborhood of π(w). Let ω be
the D-invariant 2-form on X corresponding to χ under the isomorphism in
Proposition 2.12. Let ω1 = q∗ω, where q : X1 → X is the blow-up. Let χ1

be the 2-form on Y1 corresponding to ω1. Then we have

div(ω) = π∗(div(χ)) + (p − 1)(D), div(ω1) = π∗1(div(χ1)) + (p − 1)(D1),
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Table 2. Non-fixed p-closed derivations on RDPs

p equation X Y = XD X ×Y Ỹ

any xy + zmp (m ≥ 2) Amp−1 Am−1 mAp−1

any xy + zp Ap−1 smooth —

5 x2 + y3 + z5 E0
8 smooth —

3 x2 + z3 + y4 E0
6 smooth —

3 x2 + y3 + yz3 E0
7 A1 E0

6
3 x2 + z3 + y5 E0

8 smooth —

2 z2 + x2y + xym (m ≥ 2) D0
2m smooth —

2 x2 + yz2 + xym (m ≥ 2) D0
2m+1 A1 D0

2m
2 x2 + xz2 + y3 E0

6 A2 D0
4

2 z2 + x3 + xy3 E0
7 smooth —

2 z2 + x3 + y5 E0
8 smooth —

and we have

div(ω1) = q∗(div(ω)) +KX1/X , div(χ1) = g∗(div(χ)) +KY1/Y .

By assumption we have (D) = 0 and KX1/X = 0. Hence we have

π∗1KY1/Y + (p − 1)(D1) = 0.

Since both terms are effective (since π(w) is an RDP) we have π∗KY1/Y =
(p − 1)(D1) = 0, and since π is a homeomorphism we have KY1/Y = 0. In
particular π(w) is not smooth, and there are no non-RDP singularities above
π(w). Finally, Fix(D1) 6= ∅ is proved in the same way as the corresponding
assertion in [Mat20a, Lemma 4.9(2)]. �

Definition 3.4 (cf. [Mat20a, Definition 4.6]). We say that an RDP surface
X equipped with a p-closed derivation D is maximal at a closed point w ∈ X
(not necessarily fixed) if either w ∈ X is a smooth point or π(w) ∈ XD is a
smooth point.

We say that X, or the quotient morphism π : X → Y = XD, is maximal
with respect to the derivation if it is maximal at every closed point. We
define the maximality of µp- and αp-actions similarly.

Corollary 3.5. Let π : X → Y = XD as in the previous theorem. Assume
that (D) = 0 and that X and Y are RDP surfaces. Then there exists an RDP
surface X ′ and a derivation D′ on X ′, whose quotient morphism denoted
π′ : X ′ → Y ′, fitting into a diagram

X ′ Y ′ X ′D′

X Y XD

π′

g

π

with X ′ → X and Y ′ → Y surjective birational and crepant, D′ = D on the
isomorphic locus of X ′ → X, Fix(D′) isolated, g(Fix(D′)) = Fix(D), and
π′ maximal.
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X ′ is characterized as the maximal partial resolution of X to which the
derivation extends. If D is of multiplicative type (resp. of additive type, resp.
fixed-point-free), then so is D′.

Proof. If D has a fixed RDP w (which is an isolated fixed point by assump-

tion) then consider X1 = BlwX → X and π1 : X1 → XD1
1 = Y1. where

D1 is the induced derivation on X1. By Theorem 3.3(2), D1 on X1 satisfies
the same condition, and X1 → X and Y1 → Y are crepant. Repeating this
finitely many times, we may assume X1 has no fixed RDP.

If D1 has a non-fixed RDP w whose image π(w) is an RDP, then consider

X2 = X1 ×Y1 Ỹ1 and the induced derivation D2, where Ỹ1 → Y1 is the
minimal resolution at π(w). Since w 6∈ Fix(D1) is equivalent to the existence
of f ∈ OX1,w with D1(f) ∈ OX1,w, and since this property inherits to points
above w, Fix(D2) does not meet the fiber above w. Comparing 2-forms
as in the proof of Theorem 3.3(2), we obtain KX2/X1

= (p − 1)(D2) = 0.
Therefore X2 → X1 and Y2 → Y1 are crepant and D2 on X2 satisfies the
same condition. Repeating this for the (finitely many) points w, we obtain
X ′ with the desired properties.

The characterization follows from Lemma 3.11, which states that each
exceptional curve above the remaining singularities appears in (D′) with
nonzero coefficient.

The final assertion is obvious for multiplicative and additive type, and for
fixed-point-freeness this follows from g(Fix(D′)) = Fix(D). �

Next, we classify RDPs that can be written as derivation quotients of
smooth points, and give a lower bound for deg〈D〉 of derivations D with non-
RDP quotients. The classification, as in (2), of such RDPs in characteristic
2 is also proved by Tziolas [Tzi17, Proposition 3.6].

Lemma 3.6. Let D be a nonzero p-closed derivation on B = k[[x, y]] in
characteristic p. Suppose that SuppFix(D) consists precisely of the closed
point. Let s = deg〈D〉 = dimkB/(D(x),D(y)).

(1) If D is of additive type then s ≥ 2.
(2) Assume BD is an RDP.

(a) Then (p, s,BD) is one of those listed in Table 3. In particular,
we have s = n/(p − 1) in every case, where n is the index
of the RDP. The table also shows an example of D (satisfying
Dp = hD) realizing each case.

(b) If D is of multiplicative type, then BD is of type Ap−1.
(c) If D is of additive type, then (p,BD) is one of (5, E0

8 ), (3, E
0
6 ),

(2,D0
4m), or (2, E0

8 ).
(d) If D is of additive type and (p,BD) = (5, E0

8 ), (3, E
0
6 ), then

Im(Dj |KerDj+1) is equal to the maximal ideal n of BD for each
1 ≤ j ≤ p− 1.

(3) Assume D is of additive type and BD is a non-RDP. If p = 2 then
s ≥ 12. If p = 3 then s > 3. If p = 5 then s > 2.

The following corollary is an immediate consequence of this lemma and
will be used in Section 4.
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Table 3. RDPs arising as quotients of smooth points by
p-closed derivations, and examples of derivations

p deg〈D〉 RDP example of D(x),D(y) h

any 1 Ap−1 x,−y 1

5 2 E0
8 y, x2 0

3 3 E0
6 y3, x 0

3 4 E0
8 y4, x y3

2 4m D0
4m x2, y2m 0

2 4m+ 2 D0
4m+2 x2 + xy2m, y2m+1 y2m

2 7 E0
7 xy2, x2 + y3 y2

2 8 E0
8 y4, x2 0

Corollary 3.7. Suppose Ai = k[[x, y]], 1 ≤ i ≤ N , are respectively equipped
with derivations Di of additive type and suppose SuppFix(Di) consists pre-
cisely of the closed point for each i. Let si = deg〈Di〉 = dimk Ai/(Di(x),Di(y)).
Assume

∑
si = 24/(p + 1). Then either

• N = 1 and AD1
1 is a non-RDP and p ≥ 3, or

• each ADi

i is an RDP, and more precisely (p, {ADi

i }) is (2, 2D0
4),

(2, 1D0
8), (2, 1E

0
8 ), (3, 2E

0
6 ), or (5, 2E0

8 ).

Proof of Lemma 3.6. (1) Since Dp = 0, it follows that D|
m/m2 is nilpotent,

hence for some coordinate x, y ∈ m we have D(x) ∈ m
2.

(2a–2c) We observe that the derivation D described in Table 3 satisfies
(D) = 0 and Dp = hD, and it realizes the RDP.

Suppose BD is an RDP. Since the composite Pic(BD) → Pic(B) →

Pic((BD)
(1/p)

) ∼= Pic(BD) is equal to the p-th power map, and since Pic(B)
is trivial, Pic(BD) is a p-torsion group and has no nontrivial prime-to-p tor-
sion. The natural morphism SpecBD → SpecB(p) is the quotient morphism
with respect to some rational p-closed derivation D′ on BD. Then by the
Rudakov–Shafarevich formula we have

KBD ∼ π∗KB(p) + (p − 1)(D′),

but since both canonical divisors are trivial, we have (p − 1)(D′) ∼ 0, and
by above we have in fact (D′) ∼ 0. Replacing D′ with g−1D′ where (D′) =
div(g), we may assume D′ is regular with (D′) = 0. Then, by Theorem 3.3,
the closed point is not an isolated fixed point either, and (p,BD,D′) is one
of (p,X,D) listed in Table 2 with XD smooth. Hence, after a coordinate
change, (p,D) is one of those listed in Table 3 up to replacing D by a unit
multiple. We obtain (2a).

It remains to check the impossibility for the derivation to be of multiplica-
tive or additive type. Suppose D1 is a derivation on B satisfying (D1) = 0
and realizing the RDP. Then D1 = fD for some f ∈ B∗, where D is the
derivation given in Table 3. By Hochschild’s formula (Lemma 2.7) we have
Dp

1 = (fp−1h+D(g))D1 where g = (fD)p−2(f). If h ∈ m and (Im(D)) ⊂ m
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then fp−1h+D(g) 6= 1 for any f ∈ B∗. Thus we obtain (2b). If h 6∈ (Im(D))
then fp−1h+D(g) 6= 0 for any f ∈ B∗. Thus we obtain (2c).

(3) If p > 5 then there is nothing to prove. We will check that if p ≤ 5
and D is of additive type with s less than the bound then BD is an RDP.

Suppose p = 5 and s = 2. We have D|
m/m2 6= 0 and (D|

m/m2)2 = 0. We

may assume D(y) = x, D(x) = f = y2 + g, g ∈ (x2, xy, y3). we say that
the monomial xiyj has degree 3i + 2j and let In be the ideal generated by
the monomials of degree ≥ n. We have D(In) ⊂ In+1, f ≡ y2 (mod I5),
and D2(f) − 2(x2 + y3) =: h ∈ I7. Let B′ = k[[X,Y,Z]]/(−Z5 + 2(X2 +
Y 3) + h5) ⊂ BD where X = x5, Y = y5, Z = D2(f) = D4(y). Since

h5 ∈ I7
(5) = (X3,X2Y,XY 2, Y 4)k[[X,Y ]], B

′ is normal and hence B′ = BD,

and it is an RDP of type E0
8 .

Suppose p = 3 and s = 2, 3. We have D|
m/m2 6= 0 and (D|

m/m2)2 = 0. We

may assume D(y) = x, D(x) = f , D(f) = 0, f = ys + g, g ∈ (x2, xy, ys+1).
Then since D(f) = 0 it follows that s 6= 2, hence s = 3, and that g ∈
(x2, xy2, y4). We say that the monomial xiyj has degree 2i+ j and let In be
the ideal generated by the monomials of degree ≥ n. We have D(In) ⊂ In+1

and g ∈ I4 = (x2, xy2, y4). Let B′ = k[[X,Y,Z]]/(−Z3 +X2 + Y f3) ⊂ BD

where X = x3, Y = y3, Z = x2 + yf . Since f3 = Y 3 + g3 with g3 ∈ I4
(3) =

(X2,XY 2, Y 4)k[[X,Y ]], B
′ is normal and hence B′ = BD, and it is an RDP

of type E0
6 .

Suppose p = 2. By Theorem 3.8 there exists h ∈ k[[x, y]]∗ and R,S, T ∈
k[[x, y]] such that D′ = h−1D satisfies D′(x) = S2+T 2x, D′(y) = R2+T 2y,
and D′2 = T 2D′. (This derivation D′ is p-closed but not necessarily of

additive type.) Suppose s < 12 and that BD = BD′

is not an RDP. Then
by Corollary 3.9 we have R,S ∈ m

2, T ∈ m, and T 6∈ m
2. Since D = hD′

is of additive type we have D′(h) + hT 2 = 0, but this is impossible since
Im(D′) ⊂ m

3 and hT 2 6∈ m
3.

(2d) We use the description given in the proof of (3). Suppose D is ad-
ditive and (p,BD) = (3, E0

6 ), (5, E
0
8 ). Since Im(Dp−1) ⊂ Im(Dj |KerDj+1) ⊂

Im(D|KerD2) ⊂ m ∩ BD = n, it suffices to show n ⊂ Im(Dp−1). If (p, s) =
(5, 2), a straightforward calculation yields D4(y) = Z, D4(x2) ≡ y5 = Y
(mod I11∩B

D), D4(x3y) ≡ x5 = X (mod I16∩B
D). Since the initial terms

of the elements Z,Z2, Y,X have different degrees 6, 12, 10, 15, these elements
are linearly independent modulo I15+1, hence D

4(y),D4(x2),D4(x3y) gener-
ate n/n2. If (p, s) = (3, 3), a straightforward calculation yieldsD2(y) = Y +g
(g ∈ I4∩B

D), D2(y2) = 2Z, D2(xy2) = 2X. Clearly these elements generate
n/n2. �

Theorem 3.8. Let k be an algebraically closed field of characteristic 2.
Let D be a nonzero p-closed derivation on B = k[[x, y]]. Then there exist
h,R, S, T ∈ k[[x, y]], such that D = hD′ where D′ is the p-closed derivation
defined by D′(x) = S2 + T 2x and D′(y) = R2 + T 2y. It follows that

BD = BD′

= k[[x2, y2, R2x+ S2y + T 2xy]]

∼= k[[X,Y,Z]]/(Z2 + (R(2))2X + (S(2))2Y + (T (2))2XY ),

where X = x2, Y = y2, Z = R2x+ S2y + T 2xy. We have D′2 = T 2D′ and
D2 = (D′(h) + hT 2)D.
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HereR(2) = R(2)(X,Y ) ∈ k[[X,Y ]] is the power series satisfyingR(2)(x2, y2) =

R(x, y)2, and S(2) and T (2) are defined in the same way.
We can give a classification of quotient singularities with small deg〈D〉,

using which we can complete the proof of Lemma 3.6.

Corollary 3.9. Let D, h, R, S, T , and D′ be as in the previous theorem.
Assume (D) = 0.

(1) If R or S is a unit, then BD is smooth and deg〈D〉 = 0.
Hereafter we assume this is not the case, and we implicitly make

similar assumptions cumulatively.
(2) If T is a unit, then BD is an RDP of type A1.
(3) If R and S generate m, then BD is an RDP of type D0

4.
(4) Suppose R and S generate a 1-dimensional subspace of m/m2. We

may assume R 6∈ m
2 and S ∈ m

2. Suppose moreover that x and
R generate m. Let m = dimk B/(R,S) and n = dimk B/(R,T ) (so
2 ≤ m ≤ ∞ and 1 ≤ n ≤ ∞). Since (D′) = 0, at least one of m
and n is finite. (e.g. (R,S, T ) = (y, xm, 0), (y, 0, xn).) Then BD is
an RDP of type D0

min{4m,4n+2}.

(5) Suppose R 6∈ m
2, S ∈ m

2, and that x and R do not generate m.
• If dimkB/(R,T ) = 1 (e.g. (R,S, T ) = (x, 0, y)), then BD is an
RDP of type E0

7 .
• If dimk B/(R,T ) > 1 and dimkB/(R,S) = 2 (e.g. (R,S, T ) =
(x, y2, 0)), then BD is an RDP of type E0

8 .
• If dimk B/(R,T ) > 1 and dimkB/(R,S) = 3 (e.g. (R,S, T ) =
(x, y3, 0)), then BD is an elliptic double point of the form Z2 +
X3 + Y 7 + ε = 0, where ε ∈ (X5,X3Y,X2Y 3,XY 4, Y 9), and
deg〈D〉 = 12.

(6) Suppose R,S ∈ m
2, T 6∈ m

2. We may assume T ≡ x (mod m
2).

• If dimk B/(T, S) = 2 (e.g. (R,S, T ) = (0, y2, x)), then BD is an
elliptic double point of the form Z2 +X3Y + Y 5 + ε = 0, where
ε ∈ (X5,X4Y,X3Y 2,X2Y 3,XY 4, Y 7), and deg〈D〉 = 11.
• If dimk B/(T, S) > 2 and dimk B/(T,R) = 2 (e.g. (R,S, T ) =
(y2, 0, x)), then BD is an elliptic double point of the form Z2 +
X3Y+XY 4+ε = 0, where ε ∈ (X5,X4Y,X3Y 2,X2Y 3,XY 5, Y 7),
and deg〈D〉 = 12.

(7) In all other cases, deg〈D〉 > 12 and BD is not an RDP.

If BD is An, Dn, or En, then we have deg〈D〉 = n.

Proof of Theorem 3.8. BD satisfies k[[x2, y2]] ⊂ BD ⊂ k[[x, y]] and hence
there exists f ∈ k[[x, y]] such that BD = k[[x2, y2, f ]]. Write f = Q2+R2x+
S2y + T 2xy with Q,R, S, T ∈ k[[x2, y2]]. We have gcd(Q,R, S, T ) = 1. We
may assume Q = 0.

Since D(f) = 0 we have (R2 + T 2y)D(x) + (S2 + T 2x)D(y) = 0. There
exists h ∈ FracB such that D(x) = (S2 + T 2x)h and D(y) = (R2 + T 2y)h.
It remains to show h ∈ B.

It suffices to show that R2+T 2y and S2+T 2x have no nontrivial common
factor. Suppose there exists an irreducible non-unit power series P ∈ k[[x, y]]
dividing both S2 + T 2x and R2 + T 2y. Since P does not divide T (since
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gcd(R,S, T ) = 1), we have x = S2/T 2 and y = R2/T 2 in the quotient ring

B/P , hence B/P = (B/P )(2), contradiction. �

Proof of Corollary 3.9. Straightforward. �

Convention 3.10. We use the following numbering for the exceptional
curves of the resolutions of RDPs.

• An: e1, . . . , en, where ei · ei+1 = 1.
• Dn: e1, . . . , en, where {(i, j) | i < j, ei · ej = 1} = {(1, 2), . . . , (n −
2, n− 1)} ∪ {(n − 2, n)}.
• E6: e1, e2±, e3±, e4, where e1 ·e4 = e2+ ·e3+ = e2− ·e3− = e3± ·e4 = 1.
• E7: e1, . . . , e7, where {(i, j) | i < j, ei ·ej = 1} = {(1, 2), . . . , (5, 6)}∪
{(4, 7)}.
• E8: e1, . . . , e8, where {(i, j) | i < j, ei ·ej = 1} = {(1, 2), . . . , (6, 7)}∪
{(5, 8)}.

Lemma 3.11. Let X = SpecB be a local RDP of index n in characteristic p,
equipped with a p-closed derivation D, with Fix(D) = ∅ and XD = SpecBD

smooth. Let X̃ be the resolution of X and D̃ the rational derivation on X̃
induced by D. Then (D̃)2 = −2n/(p− 1) and deg〈D̃〉 = n(p− 2)/(p − 1).

Proof. For each case of (p,Sing(X)), a straightforward computation yields

the following description of (D̃) and 〈D̃〉, from which the stated equalities
follow. The cases for p = 2 also appear in [EHSB12, Lemma 6.5].

If p = 2, then 〈D̃〉 = 0. For every case, each closed point in Supp〈D̃〉
appears with degree 1, so we write only the support. We denote by qij the
intersection of ei and ej , and by q′i a certain point on ei (not lying on the
other components).

(p,Ap−1): (D̃) = −
∑
ei, 〈D̃〉 = {qi,i+1 | 1 ≤ i ≤ p− 2}.

(2,D0
2m): (D̃) = −(

∑m−1
i=1 (2ie2i−1 + 2ie2i) +me2m−1 +me2m).

(2, E0
7 ): (D̃) = −(3e1 + 4e2 + 7e3 + 8e4 + 6e5 + 2e6 + 5e7).

(2, E0
8 ): (D̃) = −(2e1 + 6e2 + 8e3 + 12e4 + 14e5 + 10e6 + 4e7 + 8e8).

(3, E0
6 ): (D̃) = −(2e1+2e2++2e2−+3e3++3e3−+3e4), 〈D̃〉 = {q

′
1, q2+,3+, q2−,3−}.

(3, E0
8 ): (D̃) = −(2e1 + 3e2 + 6e3 + 8e4 + 9e5 + 7e6 + 4e7 + 5e8), 〈D̃〉 =

{q′1, q34, q67, q
′
8}.

(5, E0
8 ): (D̃) = −(2e1 + 3e2 + 4e3 + 5e4 + 5e5 + 4e6 + 2e7 + 3e8), 〈D̃〉 =

{q12, q23, q34, q67, q
′
7, q

′
8}. �

4. µp- and αp-actions on RDP K3 surfaces

Proposition 4.1. Let G = µp or G = αp. Let X be an RDP K3 surface
or an RDP Enriques surface equipped with a nontrivial G-action and let
D be the corresponding derivation. If the divisorial part (D) of Fix(D) is
zero and each point in π(Fix(D)) is either smooth or an RDP, then X/G
is an RDP K3 surface or an RDP Enriques surface. Otherwise, X/G is a
(possibly singular) rational surface.

If X is an RDP K3 surface, then X/G is an RDP Enriques surface if
and only if the G-action is fixed-point-free (Fix(D) = ∅), and in this case
we have p = 2.
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Proof. Let Y = X/G. By the Rudakov–Shafarevich formula, π∗KY ∼ KX−
(p − 1)(D), hence KY ≤ 0 in (Pic(Y ) ⊗ Q)/≡, and KY ≡ 0 if and only if
(D) = 0. We have Sing(Y ) ⊂ π(Sing(X) ∪ Fix(D)), and each point of
π(Sing(X)\Fix(D)) is either a smooth point or an RDP by Theorem 3.3(1).

Let ρ : Ỹ → Y be the resolution. Then KỸ ≤ ρ∗KY and the equality holds
if and only if Sing(Y ) consists only of RDPs. We deduce that KỸ ≡ 0 if and
only if (D) = 0 and each point in π(Fix(D)) is either smooth or an RDP.

In this case Y is a proper RDP surface with κ(Ỹ ) = 0. Otherwise we have

κ(Ỹ ) = −∞.
Next we will show that Y is not birational to abelian, (quasi-)hyperelliptic,

or non-rational ruled surface. Since π is purely inseparable we have b1(X̃) =

b1(X) = b1(Y ) = b1(Ỹ ), where bi = dimQl
H i

ét(−,Ql) are the l-adic Betti

numbers for an auxiliary prime l 6= p. Since X̃ is a K3 surface or an Enriques
surface we have b1(X̃) = 0. Hence Ỹ is not abelian, (quasi-)hyperelliptic, nor
non-rational ruled, since such surfaces have b1 > 0. Thus the first assertion
follows.

Suppose X is an RDP K3 surface. To show the equivalence of freeness
and Enriques quotient, we may assume that Fix(D) is isolated and that,
by Corollary 3.5, π is maximal. By the equality s = n/(p − 1) of Lemma
3.6(2a), [Mat20a, Proposition 6.10] (which is stated for µp-actions) holds
also for αp-actions, from which the equivalence and p = 2 follows. �

Remark 4.2. Suppose X is an RDP K3 surface. If G = µp, the author
showed [Mat20a, Theorems 6.1 and 6.2] that X/µp is an RDP K3 surface if
and only if the action is symplectic ([Mat20a, Definition 2.6]) in the sense
that the nonzero global 2-form ω on Xsm, which is unique up to scalar,
is D-invariant (i.e. D(ω) = 0). Note that since Dp = D we always have
D(ω) = iω for some i ∈ Fp. If G = αp, then this criterion fails since, in
fact, any action is symplectic in this sense, since Dp = 0. This difference is
parallel to that of actions of tame and wild finite groups (i.e. of order not
divisible or divisible by p).

Theorem 4.3. Let X and Y be RDP surfaces with KX numerically trivial
and KY trivial. If π : X → Y is the quotient morphism by either a µp-

action or an αp-action, then so is the induced morphism π′ : Y → X(p) (not
necessarily by the same group).

Proof. Let D be the derivation on X corresponding to the action. By the
Rudakov–Shafarevich formula KX ∼ π∗KY + (p − 1)(D), we have (p −
1)(D) ≡ 0. Since (D) is effective and numerically trivial, it follows that
(D) ∼ 0.

Let D′ be a rational p-closed derivation on Y inducing π′, i.e. Y D′

= X(p).
(To find one, take a generator h of k(Y )/k(X(p)) (so hp ∈ k(X(p))), and
define D′ by D′|k(X(p)) = 0 and D′(h) = 1. Then D′p = 0, in particular

D′ is p-closed.) By Proposition 2.14, we have KY ∼ −(D
′) − π′∗((D(p)).

Since KY ∼ 0 and (D(p)) ∼ 0, we have (D′) = div(g) for some rational
function g ∈ k(Y )∗. Then D′′ := g−1D′ is a regular derivation on Y with

Y D′′

= Y D′

= X(p) and (D′′) = 0. By Hochschild’s formula D′′ is also
p-closed, hence D′′p = λD′′ for some everywhere regular function λ on Y ,
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hence λ ∈ k, and by replacing D′′ with a scalar multiple we may assume
λ = 0 or λ = 1, and thenD′′ gives either an αp- or µp-action respectively. �

Remark 4.4. There exist finite inseparable morphisms of degree p between
RDP K3 surfaces that are not µp- nor αp-quotients. Classification of such
morphisms will be given in Section 5.

Theorem 4.3 fails also if π is a µ2-quotient with Y an Enriques surface
(so that KY is nontrivial), as in the next proposition, proved by the same
way as Theorem 4.3.

Proposition 4.5 (cf. [CD89, Section 1.2]). Let X be an RDP K3 surface in
characteristic p = 2 and π : X → Y a µ2-quotient morphism with Y an RDP
classical Enriques surface. Then π′ : Y → X(2) is not the quotient morphism
by a p-closed (regular) derivation. Instead π′ is the quotient morphism by a
p-closed rational derivation D′ on Y with (D′) ∼ KY .

Suppose X and Y are RDP K3 surfaces. We will determine possible
characteristics and singularities.

Theorem 4.6. Let π : X → Y be a G-quotient morphism between RDP K3
surfaces in characteristic p, where G ∈ {µp, αp}. If G = µp then p ≤ 7. If
G = αp then p ≤ 5.

If moreover π is maximal, then Sing(Y ) are as follows.

• 24
p+1Ap−1 if G = µp.

• 2D0
4, 1D

0
8, or 1E0

8 if G = α2.
• 2E0

6 if G = α3.
• 2E0

8 if G = α5.

By Theorem 4.3, X is a G′-quotient of Y (1/p) for G′ ∈ {µp, αp}, and hence
Sing(X) is also as described above. In particular, the total index of RDPs
of X and that of Y are both equal to 24(p − 1)/(p + 1).

Remark 4.7. Suppose X is a smooth K3 surface and G ⊂ Aut(X) a cyclic
subgroup of prime order p. Assume Y = X/G is an RDP K3 surface. If
char(k) 6= p then it is well-known that Sing(Y ) is 24

p+1Ap−1, and in particular

the total index of RDPs of Y is equal to 24(p − 1)/(p + 1). We will see
below (Theorem 7.3) that this value is equal to 24(p − 1)/(p + 1) even in
characteristic p. Consequently, this value 24(p − 1)/(p + 1) appears for
actions of any group scheme G of order p in any characteristic!

Proof of Theorem 4.6. We may assume π is maximal. First we prove the
assertion for the total indices of Sing(X) and Sing(Y ). Let {wi} ⊂ X and

{vj} ⊂ Y be the RDPs, of indices mi and nj respectively. Let X̃ be the

resolution of X and D̃ the induced rational derivation on X̃. Using Lemma
3.6(2) and Lemma 3.11 we obtain

(D̃)2 = −
∑

i

2

p− 1
mi, deg〈D̃〉 =

∑

i

p− 2

p− 1
mi +

∑

j

1

p− 1
nj.

By Theorem 2.4 we have 24 = deg〈D̃〉 − (D̃)2 =
∑

i
p
p−1mi +

∑
j

1
p−1nj.

We can apply the same argument to π′ : Y → X(p) to obtain another
equality. Also, since π is purely inseparable we have dimH2

ét(X,Ql) =
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dimH2
ét(Y,Ql) and hence

∑
imi =

∑
j nj. By either way, we obtain

∑
imi =∑

j nj = 24(p − 1)/(p + 1).
Each vj is one of those appearing in Table 3. If G = αp then we have

p ≤ 5 and then Sing(Y ) is as stated. If G = µp then Sing(Y ) is as stated,
and hence (p+ 1) | 24 and 24(p− 1)/(p + 1) < 22. This implies p ≤ 11. We
refer to [Mat20a, Theorem 7.1] for a proof of p 6= 11. �

5. Inseparable morphisms of degree p between RDP K3 surfaces

Suppose π : X → Y is a finite inseparable morphism of degree p between
RDP K3 surfaces. It is not always a quotient morphism by a global regular
derivation. However it can be covered by such a quotient morphism, and we
have a classification as in Theorem 5.2.

Lemma 5.1. Let r > 1 be an integer prime to p = char k. Suppose either

M =

(
λ 0
0 −λ

)
(λ ∈ k∗), or r is even and M =

(
0 1
0 0

)
. Then there is no

g ∈ SL2(k) of order r such that g−1Mg = ζM with a primitive r-th root ζ
of 1.

Proof. If 2 | r, then gr/2 ∈ SL2(k) is of order 2, hence gr/2 = −I2, which
is central. If r > 2 in the former case, then M and ζM have different
eigenvalues. �

Theorem 5.2. Suppose π : X → Y is a finite inseparable morphism of de-
gree p between RDP K3 surfaces. Then for some r ≥ 1 and some G ∈
{µp, αp}, there exists a Z/rZ-equivariant G-quotient morphism π̄ : X̄ → Ȳ
between proper RDP surfaces equipped with Z/rZ-actions, fitting into a com-
mutative diagram

X̄ Ȳ

X Y

φX

π̄

φY

π

such that φX : X̄ → X and φY : Ȳ → Y are the Z/rZ-quotient morphisms.
Among such “coverings” π̄, there exists a minimal one (i.e. any other such

covering admits π̄ as a subcovering). If π̄ is minimal, then r ∈ {1, 2, 3, 4, 6}
and r | p − 1, the Z/rZ-actions on X̄ and Ȳ are symplectic (in the usual
sense on abelian and K3 surfaces), and moreover exactly one the following
holds:

(1) X̄ and Ȳ are (smooth) abelian surfaces, and r 6= 1;
(2) X̄ and Ȳ are RDP K3 surfaces, G = µp, p ≤ 7, and (p, r) 6=

(7, 2), (7, 6); or
(3) X̄ and Ȳ are RDP K3 surfaces, G = αp, p ≤ 5, and (p, r) 6= (5, 4).

Every case and every remaining (p, r) occurs.
If π̄ is minimal and moreover maximal (in the sense of Definition 3.4),

then Sing(Y ) is as described in Table 4.

Proof. As in the proof of Theorem 4.3, take a rational derivation D with
Y = XD. Then we have (p − 1)(D) = 0 in Pic(Xsm). Let φ : Xsm → Xsm
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Table 4. Structure of purely inseparable morphisms of de-
gree p between RDP K3 surfaces

covering p r Sing(Y )

abelian ≡ 1 (mod 6) 6 A5 + 4A2 + 5A1

abelian ≡ 1 (mod 4) 4 4A3 + 6A1

abelian ≡ 1 (mod 3) 3 9A2

abelian ≡ 1 (mod 2) 2 16A1

K3, µ7 7 3 A6 + 6A2

K3, µ7 7 1 3A6

K3, µ5 5 4 A4 + 4A3 + 2A1

K3, µ5 5 2 2A4 + 8A1

K3, µ5 5 1 4A4

K3, µ3 3 2 3A2 + 8A1

K3, µ3 3 1 6A2

K3, µ2 2 1 8A1

K3, α5 5 2 E0
8 + 8A1

K3, α5 5 1 2E0
8

K3, α3 3 2 E0
6 + 8A1

K3, α3 3 1 2E0
6

K3, α2 2 1 2D0
4 , 1D

0
8, or 1E

0
8

be the étale covering trivializing (D) (so r = deg φ divides p− 1). Then the
normalization X̄ of X in k(Xsm) is an RDP surface.

We claim that X̄ is an RDP K3 surface or an abelian surface. This is triv-
ial if r = 1. Assume r ≥ 2, hence p ≥ 3. By construction X̄ has trivial canon-
ical divisor. If X̄ is not RDP K3 nor abelian, then it is (quasi-)hyperelliptic
surface in characteristic p = 3. Hence r = 2. Comparing the l-adic Euler–
Poincaré characteristic (which is 0 and 24 for (quasi-)hyperelliptic and K3

surfaces), we observe that the involution g on the resolution ˜̄X has 16 fixed
points, but then we have

22− 16 = dimH2
ét(

˜̄X/〈g〉,Ql) = dimH2
ét(

˜̄X,Ql)
〈g〉 ≤ dimH2

ét(
˜̄X,Ql) = 2,

a contradiction.
We have φ−1((D)) = div(h) for some h ∈ k(X̄), and then D̄ := h−1 ·φ∗(D)

is a regular derivation. Write X̄D̄ = Ȳ . Take a generator gX of the Z/rZ-
action on X̄ . Then gX acts on D̄ by multiplication by a r-th root λ of
unity. This λ is in fact a primitive r-th root of unity since, if λs = 1, then
D̄ descends to X̄/〈gsX 〉, hence (D) is trivialized on X̄/〈gsX 〉, hence g

s
X = 1,

hence r | s. Hence gX induces an automorphism gY on Ȳ of order r with
Ȳ /〈gY 〉 = Y .

We show the minimality. Let ψ : X̄ ′ → X with D̄′ be another covering
of π with the required properties. Then the pullback ψ∗(D) of D to X̄ ′

coincide with D̄′ up to k(X)∗, in particular (ψ∗(D)) ∼ 0 on Pic(ψ−1(Xsm)).
Hence ψ|ψ−1(Xsm) factors through φ|φ−1(Xsm), and ψ factors through φ.
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We show r ∈ {2, 3, 4, 6} and the description of the singularities in the case
X̄ is an abelian surface. It is proved by Katsura [Kat87, Theorem 3.7 and
Table in page 17] that, if X̄ is an abelian surface and g is a nontrivial sym-
plectic automorphism (fixing the origin) of order r prime to p = char k, then
r ∈ {2, 3, 4, 5, 6, 8, 10, 12}, X̄/〈g〉 is an RDP K3 surface, and Sing(X̄/〈g〉)
are as in Table 5 (in [Kat87] the coefficient of A7 in order 8 is written as 1,
but this is a misprint and actually it is 2). In particular, if r ∈ {5, 8, 10, 12}
then (since the exceptional curves of the resolution of X̄/〈g〉 generate a rank
20 negative-definite lattice) X̄/〈g〉 is a supersingular RDP K3 surface and
X̄ is a supersingular abelian surface. It is showed [Kat87, Lemma 6.3] that
supersingular abelian surfaces in characteristic p do not have symplectic au-
tomorphisms of order r = 5 if p ≡ 1 (mod 5). One observes that the proof of
this lemma relies only on the fact that [Q(ζ5) : Q] = 4, therefore it remains
valid if we replace 5 with 8, 10, or 12. Hence we obtain r ∈ {2, 3, 4, 6} in
our case.

Suppose X̄ is an RDP K3 surface and π̄ is a µp-quotient or an αp-quotient.
Then respectively p ≤ 7 or p ≤ 5 by Theorem 4.6. We show that if r > 1
then gX does not fix any point of Fix(D̄). If G = µp, then the action of D̄
on the tangent space of a point of Fix(D̄) is diagonalizable with eigenvalues
±i (i ∈ F∗

p). If G = αp, then p ∈ {3, 5} and hence r ∈ {2, 4}, and the action

of D̄ on the tangent space is nilpotent and nontrivial (otherwise s ≥ 3 in
Lemma 3.6). Hence in either case it is impossible by Lemma 5.1.

Using this, we show that (G, r) = (µ7, 2), (µ7, 6), (α5, 4) cannot happen.
If (G, r) = (µ7, 2), then Fix(D̄) consists of 3 points w1, w2, w4 ∈ X̄ , on
whose tangent spaces D̄ acts by eigenvalues ±1,±2,±4 respectively. Since
g∗XD̄ = −D̄, we have gX(w1) 6= w2, w4, and we have gX(w1) 6= w1 by above.
Contradiction. The case (G, r) = (µ7, 6) is reduced to the previous case. If
(G, r) = (α5, 4), then Fix(D̄) consists of 2 points, hence g2X fixes each point.
Contradiction.

The assertion on Sing(Y ) follows from the description of Sing(Ȳ ) (The-
orem 4.6), the description of the fixed locus and the quotient singularities
of a symplectic automorphism of finite order prime to the characteristic
(Nikulin [Nik79, Section 5] (p = 0) and Dolgachev–Keum [DK09, Theorem
3.3] (p > 0)), and the observation above that 〈gX〉 acts freely on Fix(D̄).

We will see in Examples 10.2–10.8 (r = 1), 10.12 (r > 1, X̄ abelian),
10.14 (r > 1, X̄ K3) that all cases indeed occur. �

6. Z/pZ-, µp-, αp-coverings of RDPs

In this section we describe Z/pZ-, µp-, and αp-coverings of certain RDPs
that are related to Z/pZ-, µp-, and αp-coverings of RDP K3 surfaces dis-
cussed in Section 7.

6.1. µp-coverings. Let Z = SpecA be a local ring that is an RDP of type

An−1, in characteristic p ≥ 0 (possibly dividing n). Let Z̃ → Z be the
minimal resolution and let ej (1 ≤ j ≤ n − 1) be the exceptional curves
numbered as in Convention 3.10 (i.e. ej · ej′ = 1 if and only if |j − j′| = 1).

Lemma 6.1.
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Table 5. RDP K3 surfaces arising as symplectic cyclic quo-
tients of abelian surfaces [Kat87, Table in page 17]

r Sing(X)

2 16A1

3 9A2

4 4A3 + 6A1

5 5A4

6 A5 + 4A2 + 5A1

8 2A7 +A3 + 3A1

10 A9 + 2A4 + 3A1

12 A11 +A3 + 2A2 + 2A1

(1) There is a canonical injection from Pic(Zsm) to a cyclic group of
order n. It is compatible with étale extensions of A and it is an
isomorphism if A is Henselian.

In the following assertions, we assume that the injection in (1) is
an isomorphism.

(2) For each 0 < h < n, let Lh be a line bundle on Zsm belonging to
the class h ∈ Z/nZ ∼= Pic(Zsm). Let L0 = OZsm . Let φ0 = idL0

and φ1 = idL1 . Take isomorphisms φh : Lh
∼
→ L⊗h

1 (2 ≤ h < n) and

ψ : L0
∼
→ L⊗n

1 . Then the morphisms

φ−1
h+h′ ◦ (φh ⊗ φh′) : Lh ⊗ Lh′ → Lh+h′ (h+ h′ < n),

(φ−1
h+h′−n ⊗ ψ

−1) ◦ (φh ⊗ φh′) : Lh ⊗ Lh′ → Lh+h′−n (h+ h′ ≥ n)

define an OZsm-algebra structure on V :=
⊕n−1

h=0 Lh.

(3) Let L̄h := ι∗Lh and V̄ = ι∗V =
⊕n−1

h=0 L̄h, where ι : Zsm → Z is
the inclusion. Then the OZsm-algebra structure on V extends to an
OZ-algebra structure on V̄ , and V̄ is regular. U := Spec V̄ → Z is
a µn-covering.

(4) Let L̃h = ι̃∗Lh, where ι̃ : Zsm → Z̃ is the inclusion. Then Ih :=

Im((L̃h)
⊗n → OZ̃) is an invertible sheaf and, writing Ih = OZ̃(−

∑
bh,jej),

there exists a ∈ (Z/nZ)∗ such that bh,j ≡ ahj (mod n). More pre-
cisely, we have

Ih = O(−
∑

j

fn((ah mod n), j)ej).

Here m mod n denotes the remainder modulo n, i.e., the unique integer
∈ {0, . . . , n−1} congruent to m modulo n, and the function fn : {1, 2, . . . , n−
1}2 → Z is defined by

fn(h, j) =

{
hj (j ≤ n− h)

(n− h)(n − j) (j ≥ n− h).

Proof. (1) This is [Lip69, Proposition 17.1].
(2) Straightforward.
(3) We may assume that A is complete. By changing the isomorphism

Z/nZ ∼= Pic(Zsm), we may assume that A = k[[xn, yn, xy]] ⊂ B = k[[x, y]]
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and identify L̄h with xhA + yn−hA ⊂ B for 0 < h < n, and φ−1
h with the

multiplication in B. We have ψ−1(x⊗n) = axn with a ∈ A∗. Replacing

B = k[[x, y]] with k[[x′, y′]] (x′ = a1/nx, y′ = a−1/ny), and identifying

xhA + yn−hA
∼
→ x′hA + y′n−hA by the multiplication by (a1/n)h, we may

assume a = 1. Then V̄ = B and is regular.
(4) Straightforward (cf. [Mat20a, Lemma 4.16]). �

Remark 6.2. Suppose A is Henselian. If p ∤ n, then U → Z is independent

of the choices (since, under the notation in the proof, a1/n exists in A∗) and
U |Zsm → Zsm is the fundamental covering. To the contrary, if p | n, then
U → Z does depend on the choice of the isomorphisms φh and ψ, and is not
unique.

6.2. Z/pZ- and αp-coverings.

Lemma 6.3. Let A be a Noetherian Gorenstein 2-dimensional local k-
algebra, and I ⊂ A an ideal with Supp(A/I) ⊂ {mA} (equivalently I ⊃ m

n
A

for some n). Then dimk Ext
1(I,A) = dimk A/I. For any other such ideal

I ′ with I ′ ⊂ I, the induced map Ext1(I,A) → Ext1(I ′, A) is injective. The

map Ext1(I,A)
∼
→ Ext2(A/I,A)→ H2

mA
(A) is injective and its image is the

I-torsion part H2
mA

(A)[I].

If x, y is a regular sequence in mA, then we have an isomorphism H2
mA

(A)
∼
→

Coker
(
A[x−1]⊕A[y−1]→ A[(xy)−1]

)
.

Proof. See [Mat20b, Lemma 3.1]. The assertion on the dimension follows
from dimExt1(m, A) = dimExt2(k,A) = 1, which follows from Gorenstein.

�

Lemma 6.4. Let A and I be as in the previous Lemma. Then there are
canonical semilinear maps F : Ext1(I,A)→ Ext1(I(p), A) and F : Ext2(A/I,A) →
Ext2(A/I(p), A), which we call the Frobenius, satisfying the following prop-
erties.

• F commute with the boundary maps and the pullbacks by inclusions
I ′ →֒ I of ideals.
• hI(p)(F (e)) = (hI(e))

p, where hI is the map Ext1(I,A)
∼
→ Ext2(A/I,A) →

H2
mA

(A)
∼
→ Coker

(
A[x−1]⊕A[y−1]→ A[(xy)−1]

)
defined in Lemma

6.3.

Proof. We define the maps on the local cohomology groups H2
mA

(A), and
use the identification of Lemma 6.3. �

Now let Z = SpecA be a local RDP in characteristic p and suppose
(p,Sing(Z)) is one of the following, and define an integer m ≥ 1 accordingly.

• (p,Sing(Z)) = (2,Dr
4m), m ≥ 1, r ∈ {0, . . . ,m}.

• (p,Sing(Z)) = (2, Er8), r ∈ {0, 1, 2}, let m = 2.
• (p,Sing(Z)) = (3, Er6), r ∈ {0, 1}, let m = 1.
• (p,Sing(Z)) = (5, Er8), r ∈ {0, 1}, let m = 1.

Thus, in each case, the range of r is {0, . . . ,m}.
(The RDPs of type Dr

4m (r ∈ {m + 1, . . . , 2m − 1}) and Er8 (r ∈ {3, 4})
in characteristic 2 will not be discussed in this paper.)
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We assume A is complete, and we fix the presentation A = k[[x, y, z]]/(F )
as follows, for each case of (p,Sing(Z)).

(2,Dr
4m) : F = z2 + x2y + xy2m + λzxym, λ = 0, ym−r (r = 0, r > 0),

(2, Er8) : F = z2 + x3 + y5 + λzxy2, λ = 0, y, 1 (r = 0, 1, 2),

(3, Er6) : F = −z2 + x3 + y4 + λx2y2, λ = 0, 1 (r = 0, 1),

(5, Er8) : F = z2 + x3 + y5 + (λ/2)xy4, λ = 0, 2 (r = 0, 1).

Write x1 = x and x2 = y. Let Zi = SpecA[x−1
i ]. Define q̄i ∈ A[x

−1
i ] as

below and let ε̄ := z/(xym). Then we have ε̄p − λε̄ = q̄1 − q̄2.

q̄1 :=





x−1,

x−2y,

x−3yz,

x−5(y5 + λxy4 + (λ2/4)x2y3 + 2x3)z,

q̄2 :=





y−(2m−1),

y−4x,

−y−3z,

−y−5xz.

Note that ε̄ itself cannot be written as ε̄ = q′1 − q
′
2 with q′i ∈ A[x

−1
i ].

Define an ideal I ⊂ A to be I = (x, ym, z) according to the convention
on m and the presentation given above. In fact, this ideal can be defined
intrinsically (without assuming completeness) as follows:

• If (p,Sing(Z)) is (2,Dr
4), (3, E

r
6), or (5, Er8), then I is the maximal

ideal m.
• If (p,Sing(Z)) is (2,Dr

4m) (resp. (2, E
r
8)), then I consists of the ele-

ments that vanish on the component e2m (resp. e4) with order ≥ 2m
(resp. ≥ 8), where the components are numbered as in Convention
3.10.

Lemma 6.5. Ext1A(I,A) is m-dimensional as a k-vector space, and gener-
ated by the class ē of ε̄ as an A-module (under the identification of Lemma
6.3).

Proof. By Lemma 6.3, we have dimExt1A(I,A) = dimk(A/I) = m. We
also have I ⊂ Ann(ē). It remains to show that Ann(ē) ⊂ I. It suffices to
show ym−1 /∈ Ann(ē). Using the isomorphism A = k[[x, y]] ⊕ k[[x, y]]z of
k[[x, y]]-modules, we see that the class of ym−1ε̄ = zym−1/(xym) = z/(xy)

in Coker
(
A[x−1]⊕A[y−1]→ A[(xy)−1]

)
is nontrivial. �

Lemma 6.6. Let qi ∈ A[x
−1
i ] and ε ∈ A[(xy)−1]. Suppose εp−λε = q1− q2,

and the class [ε] is a generator of Ext1A(I,A). Let Ui → Zi be the coverings
given by OUi

= OZi
[ti]/(t

p
i−λti−qi), glue them on Z1∩Z2 by t1−t2 = ε, and

let U = SpecB → Z = SpecA be the normalization of U1 ∪U2 → Z1 ∪Z2 =
Zsm ⊂ Z. Then the following assertions hold.

(1) Let e be the class of ε in Ext1A(I,A) Then e = h · ē for some
h ∈ (k[y]/ym)∗. We have (ι∗(e) 6= 0 and) F (e) = λ · ι∗(e), where

F : Ext1(I,A) → Ext1(I(p), A) is the Frobenius (Lemma 6.4), and

ι∗ : Ext1(I,A) → Ext1(I(p), A) is the morphism induced from the

inclusion ι : I(p) → I. If r = m then h ∈ µp−1 ⊂ k
∗.

(2) U1 ∪ U2 is regular, and U is regular.
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(3) There is a unique endomorphism δ ∈ End(B) (of the A-module B)

satisfying δ|A = 0, δ(ti) = 1, δ(bc) = δ(b)c+ bδ(c)+λ1/(p−1)δ(b)δ(c),
and δp = 0. Here we fix a (p− 1)-th root λ1/(p−1) of λ.

If r = m (resp. 0 < r < m), then g := id + λ1/(p−1)δ is an
automorphism of order p generating AutZ(U), and π is a Z/pZ-
covering with SuppFix(g) consisting precisely of the closed point
(resp. dimSuppFix(g) = 1). If r = m, this means that U ×Z Z

sm →
Zsm is the fundamental covering.

If r = 0, then δ is a derivation of additive type, and π is an
αp-covering with SuppFix(δ) consisting precisely of the closed point.

(4) We have Im(δj |Ker δj+1) = I for all 1 ≤ j ≤ p− 1.
(5) Let V = Ker δ2 ⊂ B. The extension

0→ A→ V
δ
−→ I → 0

is non-split. The corresponding class in Ext1(I,A) is e.

These descriptions of the coverings for the cases r > 0 are essentially the
ones given in [Art77, Sections 4–5]. (We note that the equations for p = 3, 5
given there should be fixed as −α3 − α for p = 3 and α5 − 2α for p = 5.)

Proof. (1) By Lemma 6.5, the first assertion is clear. The assumption on ε
yields the equality F (e) − λ · ι∗(e) = 0. Suppose r = m. Since ē satisfies
the same equality and since λ ∈ k∗, we have hp = h in k[y]/(ym), hence
h ∈ µp−1.

(2) For the cases r = m, this is proved by Artin [Art77, Sections 4–5].
Suppose (p,Sing(Z)) = (2,Dr

4m) (resp. (2, Er8)). Let u = xt1 and v =
ymt2. Then we have u2 +λxu− x2f = x (resp. = y), v2 + λymv− y2mf = y
(resp. = x), and ymu−xv = z. Let B′ = A[u, v]. Then by above B′ is integral
over A, satisfies A ( B′ ⊂ FracB, and its maximal ideal is generated by u
and v, hence B′ is regular, in particular normal, hence B′ = B.

Suppose r = 0. Let Z ′ := Zsm = Z1∪Z2 and U
′ := U×Z Z

′. Let ω be the
2-form on Z ′ satisfying Fxiω = dxi+1 ∧ dxi+2, where we write (x1, x2, x3) =
(x, y, z) and consider the indices modulo 3. Applying Proposition 2.15 to
U ′ → Z ′, we obtain a 1-form η satisfying η = dqi = dq̄i + df on Zi and a
derivation D′ satisfying D′(g)ω = dg ∧ η, π(Sing(U ′)) = Zero(η) = Fix(D′),

and Z ′D′

= ((U ′)n)(p). Since Z is normal, D′ extends to a derivation D

on Z, and since U is normal we have ZD = U (p). It remains to show
Fix(D) = ∅, since then by Theorem 3.3(1) it follows that U (p) and hence
U are regular. Let c = 1, 1, 3 and i = 3, 1, 2 for p = 2, 3, 5 respectively
(hence Fxi = 0). A straightforward calculation yields η = cF−1

xi+1
dxi+2 + df

(= −cF−1
xi+2

dxi+1+df). Hence we haveD(xi) = −c+Fxi+2fxi+1−Fxi+1fxi+2 ∈
O∗
Z (where df =

∑
h fxhdxh), hence Fix(D) = ∅.

(3) On each Ui there exists a unique δ ∈ End(OUi
) with the required

properties. They glue to an endomorphism δ on OU1∪U2 . Since U is normal
and U1 ∪ U2 is the complement in U of a codimension 2 subscheme, this δ
extends to U .

If r = m (resp. 0 < r < m), then g := id + λ1/(p−1)δ ∈ End(B) preserves
products and satisfies gp = id, hence is an automorphism. It is nontrivial
since λ 6= 0 and δ 6= 0. Since the ideal of OU1∪U2 generated by Im(g − id) is
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(ym−r), we have SuppFix(g)|U1∪U2 = ∅ (resp. SuppFix(g)|U1∪U2 = (y = 0)).
Since the image of the closed point of U is singular, the closed point belongs
to SuppFix(g).

If r = 0, then δ is a derivation (since λ = 0) and is of additive type,
we have SuppFix(δ)|U1∪U2 = ∅, and similarly the closed point belongs to
SuppFix(δ).

(4) If (p,Sing(Z)) = (3, E0
6 ), (5, E

0
8 ), this is proved in Lemma 3.6(2d).

Let Ij := Im(δj |Ker δj+1) for each 1 ≤ j ≤ p− 1. We have Ip−1 ⊂ Ij ⊂ I1.
By assumption we have ε /∈ A[x−1] +A[y−1], hence I1 ( A, hence I1 ⊂ m.

Suppose p = 2. Let u, v be as in the proof of (2). We have δ(1) = 0,
δ(u) = x, δ(v) = ym, δ(uv) = xv + uym + λxym = z + λxym. Since the
A-module B = k[[u, v]] is generated by 1, u, v, uv, we obtain I1 = Im(δ) =
(x, ym, z) = I.

Suppose (p,Sing(Z)) = (3, E1
6 ), (5, E

1
8 ). Let aj = dimk(A/Ij) for each

1 ≤ j ≤ p − 1. Since Ij ⊂ I1 = I = m we have aj ≥ 1. It suffices to
show

∑
j(aj − 1) = 0. Suppose there is an action of G = Z/pZ = 〈g〉 on a

K3 surface X such that the quotient Y = X/G is an RDP K3 surface with
(p,Sing(Y )) = (3, nE1

6 ), (5, nE
1
8 ) and that SuppFix(G) = π−1(Sing(Y )),

where π : X → Y is the quotient morphism. At each singular point w
of Y , the morphism ÔX,π−1(w) → ÔY,w is as above (since it is the fun-

damental covering of (Spec ÔY,w)
sm). Let δ := g − id ∈ End(π∗OX) and

Ij := Im(δj |Ker δj+1) ⊂ OY for each 1 ≤ j ≤ p − 1. We have χY (Ij) =
χY (OY )−χY (OY /Ij) = 2−naj and 2 = χX(OX) = χY (π∗OX) = χY (OY )+∑p−1

j=1 χY (Ij) = 2 +
∑

j(2 − naj). Since there indeed exist examples with

n = 2 (Examples 10.10 and 10.11), we obtain
∑

j(aj − 1) = 0.

(5) Clear. �

Lemma 6.7. Suppose Y is an RDP K3 surface and let Zi = Spec ÔY,wi
for

wi ∈ Sing(Y ).

(1) Suppose Sing(Y ) = {w1, w2}. Let I be the ideal I = Ker(OY →⊕
i=1,2OY,wi

/mwi
), where mwi

are the maximal ideals. Then the

restriction Ext1Y (I,OY )→ Ext1Z1
(mw1 ,OZ1) is an isomorphism.

(2) Suppose Sing(Y ) = {w1} and (p,w1) is either (2,D
r
8) or (2, E

r
8) with

r ∈ {0, 1, 2}. Let I ⊂ OY,w1 be the ideal defined above (just before

Lemma 6.5) and I = Ker(OY → OY,w1/I). Then Ext1Y (I,OY ) →
Ext1Z1

(I,OZ1) is injective and its image is a 1-dimensional k-vector
space generated by a · ē for some a ∈ A∗, where ē is an element as
in Lemma 6.5.

Proof. Let I ( OY be any ideal on an RDP K3 surface Y with dimSupp(OY /I) =
0 (hence Supp(OY /I) 6= ∅). By Serre duality (and the equalities h1(OY ) = 0
and h2(OY ) = 1), we obtain dimExt1(I,OY ) = h0(O/I)−1 and dimExt2(I,OY ) =
0.
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Comparing the long exact sequences for 0 → I → O → O/I → 0 on Y
and

∐
i Zi, we have (since H1(Y,O) = H1(Zi,O) = H2(Zi,O) = 0)

0 Ext1Y (I,O) Ext2Y (O/I,O) H2(Y,O) 0

0
⊕

i Ext
1
Zi
(I,O)

⊕
i Ext

2
Zi
(O/I,O) 0,

∼

hence we obtain an exact sequence

0 Ext1Y (I,O)
⊕

i Ext
1
Zi
(I,O) H2(Y,O) 0

compatible with the Frobenius and the pullbacks by inclusions of ideals.
Here, the Frobenius on Ext1Y (I,O) is induced by the one onH2

Supp(O/I))(Y,O).

In particular, for any inclusion I →֒ J ( OY , the diagram

Ext1Y (J ,O)
⊕

i Ext
1
Zi
(J ,O)

Ext1Y (I,O)
⊕

i Ext
1
Zi
(I,O)

is a cartesian diagram.
(1) Apply this to J = Ker(OY → OY,w2/mw2).
(2) Let J = Ker(OY → OY,w1/mw1) and consider the diagram above.

Write A = ÔY,w1 ,M := Ext1Z1
(I,O),MJ := Im(Ext1Z1

(J,O)→ Ext1Z1
(I,O)),

and MY := Im(Ext1Y (I,O) → Ext1Z1
(I,O)). We know that M is generated

by an element ē with Ann(ē) = I = (x, y2, z), and that MJ = M [J ] = yM
by Lemma 6.3. Now MY ⊂ M is a 1-dimensional k-vector subspace with
MY ∩MJ = Ext1Y (J ,O) = 0 by the above cartesian diagram. This shows
that MY has a basis a · ē for some a ∈ A∗. �

7. Z/pZ-, µp-, αp-coverings of K3 surfaces by K3-like surfaces

Let G be one of Z/lZ, Z/pZ, µp, or αp (l is a prime 6= p). Suppose π : X →
Y is a G-quotient morphism between RDP K3 surfaces in characteristic p,
and suppose moreover that π is maximal (Definition 3.4) if G = µp or G = αp
and that X is smooth if G = Z/lZ or G = Z/pZ. Let ρ : Ỹ → Y be the
minimal resolution.

Quotient singularities on Y and some additional properties on Pic(Y sm)
are known for G = Z/lZ (Theorem 7.1(1)). We prove its analogue for G =
µp,Z/pZ, αp (Theorem 7.3(1)). For G = Z/lZ, conversely, such properties on
Y recovers a Z/lZ-coveringX → Y (Theorem 7.1(2)). We state and prove its
analogue for G = µp,Z/pZ, αp (Theorem 7.3(2)). However, in the converse
statement for µp and αp, the covering is a K3-like surface (Definition 7.2)
but not necessarily birational to a K3 surface. This situation is similar to the
canonical µ2- or α2-coverings of classical or supersingular Enriques surfaces
in characteristic 2, where the covering is K3-like ([BM76, Proposition 9])
but not necessarily birational to a K3 surface.

Theorem 7.1.
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(1) Let π be as above and suppose G = Z/lZ. Then l ≤ 7, Sing(Y ) =
24
l+1Al−1, and |Pic(Y

sm)tors| = l. The l-torsion is given by a divisor

on Ỹ whose multiple by l is linearly equivalent to
∑

i,j jaiei,j for a

suitable numbering ei,j (1 ≤ i ≤ 24
l+1 , 1 ≤ j ≤ l − 1, ei,j · ei,j+1 =

1) of exceptional curves of Ỹ . Here (a1, . . . , a24/(l+1)) is given by
(1, . . . , 1), (1, . . . , 1), (1, 1, 2, 2), (1, 2, 4) for l = 2, 3, 5, 7 respectively.
Every prime l ≤ 7 occur in every characteristic 6= l.

(2) Conversely, let Y be an RDP K3 surface in characteristic 6= l with
Sing(Y ) = 24

l+1Al−1 and Pic(Y sm)tors 6= 0. Then there exists a

smooth K3 surface X and a Z/lZ-quotient morphism π : X → Y
with SuppFix(Z/lZ) = π−1(Sing(Y )).

Proof. (1) The assertions l ≤ 7 and Sing(Y ) = 24
l+1Al−1 are proved by

Nikulin [Nik79, Section 5] (p = 0) and Dolgachev–Keum [DK09, Theorem
3.3] (p > 0). Then the eigenspace of π∗OX for a nontrivial eigenvalue gives
an invertible sheaf whose l-th power is isomorphic to OỸ (−

∑
i,j fl(ai, j)ei,j)

for a suitable numbering, where fl is the function defined in Lemma 6.1.
See [Mat20a, Theorem 7.1] for details. See the proof of (2) to show that
Pic(Y sm) has no more torsion.

Examples for each l are well-known.

(2) By the exact sequence

0→
⊕

i,j

Z[ei,j]→ Pic(Ỹ )→ Pic(Y sm)→ 0,

where ei,j runs through the exceptional curves of Ỹ → Y over wi ∈ Sing(Y ),
and the fact that discriminant group of the Al−1 lattice is cyclic of order
l, we see that a nontrivial element of Pic(Y sm)tors is of order l and induces

∆ ∈ Pic(Ỹ ) satisfying
∑
bi,jei,j = l∆ ∈ lPic(Ỹ ) for some coefficients bi,j ∈ Z

not all divisible by l. By Lemma 6.1(4), there exist integers ai satisfying
bi,j ≡ jai (mod l). We may assume ai ∈ {0, . . . , ⌊l/2⌋} and bi,j = (jai mod
l) ∈ {0, 1, . . . , l − 1}. Computing the intersection number (l∆)2, we obtain
∆2 = −l−1

∑
i ai(l− ai) ∈ 2Z. Moreover we have ∆2 6= −2 since if ∆2 = −2

then ∆ or −∆ is effective, which leads to a contradiction. The only solution
(ai) is as in the statement of (1), up to the numbering of the RDPs wi.

Suppose there are two l-torsion elements
∑

(jai mod l)ei,j and
∑

(ja′i mod

l)ei,j with (ai) and (a′i) linearly independent in F
24/(l+1)
l . Then for some

m ∈ Z, the elements ai − ma′i ∈ Fl are neither all zero nor all nonzero,
contradicting the observation above. Hence Pic(Y sm)tors is of order l.

Now suppose there is a nontrivial l-torsion of Y sm. Construct a µl-
covering π : X → Y as in Lemma 6.1. Then X is regular above Sing(Y ).

It is clear from the construction that π is finite étale outside Sing(Y ).
Hence X is a smooth proper surface. A non-vanishing 2-form on Y sm pull-
backs to a non-vanishing 2-form on X \π−1(Sing(Y )), which then extends to

X. For each 0 < k < l, we have (L̃k)
2 = −4 by the calculation of ∆2 above,

hence χ(Ỹ , L̃k) = 0, hence χ(Y, L̄k) = χ(Y, ρ∗L̃k) = χ(Ỹ , L̃k) = 0 since

Riρ∗L̃k = 0 for i > 0. Here χ is the Euler–Poincaré characteristic of the
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sheaf cohomology. Hence χ(X,O) = χ(Y,O)+
∑

0<k<l χ(Y, L̄k) = 2+0 = 2.
Hence X is a K3 surface.

Alternatively, we can conclude that X is a K3 surface from by computing
the Euler–Poincaré characteristic χ of the l′-adic cohomology for an auxiliary
prime l′ 6= char k. Indeed, as π is finite étale outside Sing(Y ), we have
χ(X \ π−1(Sing(Y ))) = l · χ(Y sm), hence χ(X) − 24

l+1 = l · (χ(Y ) − l 24
l+1),

therefore χ(X) = 24. �

Definition 7.2 (following [BM76, Proposition 9]). A proper reduced Goren-
stein (not necessarily normal) surface X is K3-like if hi(X,OX ) = 1, 0, 1 for
i = 0, 1, 2, and the dualizing sheaf ωX is isomorphic to OX .

RDP K3 surfaces are K3-like.

Theorem 7.3.

(1) Let G be µp, Z/pZ, or αp. Let π be as in the beginning of this
section. Then (G,Sing(Y ), |Pic(Y sm)tors|) is one of those listed in

Table 6. If G = µp, then the p-torsion is given by a divisor on Ỹ
whose multiple by p is linearly equivalent to

∑
i,j jaiei,j, with ai as

in Theorem 7.1(1). Every case occur.
(2) Conversely, suppose Y is an RDP K3 surface in characteristic p with

Sing(Y ) as in Table 6, let G be the corresponding group scheme, and
if G = µp suppose moreover Pic(Y sm)tors 6= 0. Then there exists a
G-quotient morphism π : X → Y from a proper K3-like surface X
with Sing(X)∩π−1(Sing(Y )) = ∅ and SuppFix(G) = π−1(Sing(Y )).
If G = Z/pZ then X is a smooth K3 surface. If G = µp or G = αp,
then one of the following holds:
• X is an RDP K3 surface.
• X is a normal rational surface with Sing(X) consisting of a
single non-RDP singularity, and p ≥ 3.
• X is a non-normal rational surface with dimSing(X) = 1.

All three cases of (2) occur for all G ∈ {µp (p ≤ 7), αp (p ≤ 5)} unless
otherwise stated. See Section 10.4 for examples.

Remark 7.4. Dolgachev–Keum studied Z/pZ-actions on K3 surfaces in
characteristic p. Their results in the case of K3 quotients are as follows
[DK01, Theorem 2.4 and Remark 2.6]: Suppose G = Z/pZ acts on a K3
surface X in characteristic p with quotient Y birational to a K3 surface.
Then

• Fix(G) is isolated and Sing(Y ) = π(Fix(G)), and each singularity of
Y is an RDP.
• 1 ≤ #Sing(Y ) ≤ 2 and p ≤ 5.
• If p = 2, then Sing(Y ) is one of 1D1

4 , 2D
1
4 , 1D

2
8, or 1E

2
8 .

(The E2
8 on the last is misprinted as E4

8 in [DK01, Remark 2.6].)
Also note that if G = Z/pZ then each quotient RDP singularity on Y

should be one of those having fundamental group Z/pZ and smooth funda-
mental covering, which, due to Artin [Art77, Sections 4–5], are the following:

• Dr
4r (r ≥ 1) and E2

8 if p = 2.
• E1

6 if p = 3.
• E1

8 if p = 5.
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Table 6. Singularities of Z/lZ-, µp-, Z/pZ-, and αp-quotient
K3 surfaces in characteristic p

char. G Sing(Y ) |Pic(Y sm)tors|

p ≥ 0 Z/lZ l ≤ 7 prime, l 6= p 24
l+1Al−1 l

p µp p ≤ 7 24
p+1Ap−1 p

5 Z/5Z 2E1
8 1

3 Z/3Z 2E1
6 1

2 Z/2Z 2D1
4 , 1D

2
8 , or 1E

2
8 1

5 α5 2E0
8 1

3 α3 2E0
6 1

2 α2 2D0
4 , 1D

0
8 , or 1E

0
8 1

• There are no such RDP if p ≥ 7.

Note that these RDPs and their Z/pZ-coverings are discussed in Section 6.2.
Thus, it was known that Sing(Y ) is 1E1

6 or 2E1
6 if p = 3, and 1E1

8 or 2E1
8 if

p = 5. Compared to these results, we exclude the possibility of 1D1
4 (p = 2),

1E1
6 (p = 3), and 1E1

8 (p = 5).

Proof of Theorem 7.3. (1) Consider the case G = µp, αp. The assertion on
Sing(Y ) is showed in Theorem 4.6. If G = µp, the author showed [Mat20a,
Theorem 7.1] that the eigenspace of π∗OX for a nontrivial eigenvalue (of the
derivation D of multiplicative type corresponding to the µp-action) gives an
invertible sheaf whose p-th power is isomorphic to OỸ (−

∑
i,j fp(ai, j)ei,j)

for a suitable numbering. Here fp is the function defined in Lemma 6.1.
The same (characteristic-free) argument as in the proof of Theorem 7.1(2)
shows |Pic(Y sm)tors| = p. A similar calculation shows that if (p,Sing(Y )) is
(2, 2Dr

4) etc. then Pic(Y sm)tors = 0.
Consider the case G = Z/pZ. As in Proposition 4.1 (using the usual

ramification formula in place of the Rudakov–Shafarevich formula) we have
that Fix(G) is finite and each point in π(Fix(G)) is an RDP. Let Sing(Y ) =
{wi}. Then each wi is one of the RDPs appearing in Remark 7.4, hence in
Section 6.2, and let mi be the integer defined there. Let Ij = Im(δj |Ker δj+1)
for 1 ≤ j ≤ p − 1, where δ = g − id ∈ End(π∗OX). We have χY (Ij) =
χY (OY )− χY (O/Ij) = 2 −

∑
imi by Lemma 6.6(4). Since 2 = χX(OX) =

χY (OY ) +
∑

j χY (Ij) = 2 + (p− 1)(2−
∑

imi), we obtain
∑

imi = 2. This

proves the assertion on Sing(Y ).

(2) Suppose G = µp. As in the case of Z/lZ (Theorem 7.1(2)), with l
replaced with p, we obtain a µp-covering π : X → Y . Since in this case π is
not étale over Y sm, X may be singular.

By Proposition 2.15, X is Gorenstein with ωX ∼= OX , and we have a

derivation D on Y satisfying Fix(D) = π(Sing(X)) and Y D = (Xn)(p).
Here −n is the normalization. Also X is normal if and only if the divisorial
part (D|Y sm) of Fix(D|Y sm) is zero.



µp- AND αp-ACTIONS ON K3 SURFACES IN CHARACTERISTIC p 31

As in the Z/lZ case, we have χ(X,OX ) = 2. Since X is connected and re-
duced we have h0(X,OX ) = 1, and h2(X,OX ) = h2(X,ωX) = h0(X,OX ) =
1. Thus X is K3-like.

Let D′ = D|Y sm and suppose (D′) 6= 0. Then X is non-normal. By

Proposition 4.1, Y D = (Xn)(p) is rational, and hence X is rational.

Now suppose (D′) = 0. Then X is normal and we have Y D = X(p). As
in the proof of Theorem 4.3 we have Dp = λD for some scalar λ, and we
may assume λ = 1 or λ = 0 (by replacing D by a suitable multiple).

Suppose λ = 1. Since D is a derivation of multiplicative type withD(ω) =
0 (Proposition 2.15(4)), where ω is a global 2-form on Y sm, it follows from
[Mat20a, Theorem 6.1] that Y D is an RDP K3 surface.

Next suppose λ = 0. By Theorem 2.4 and Lemma 3.11 and the assump-
tion on Sing(Y ), we have deg〈D′〉 = 24/(p + 1). Then, by Corollary 3.7,
either every singularity of X is an RDP, or X has a single singularity and
it is non-RDP and p ≥ 3. In the latter case X is a rational surface by
Proposition 4.1.

Now we consider the cases G = Z/pZ and G = αp simultaneously. Write

Sing(Y ) = {wi}
N
i=1. Define an ideal I = I1 ⊂ OY by I = Ker(OY →⊕

i(OY,wi
/Iwi

)), where Iwi
⊂ OY,wi

is as in Section 6.2. Then we have

h0(OY /I) = 2 and hence dimExt1(I,O) = 1 (as in the proof of Lemma
6.7). Take a nonzero element e ∈ Ext1(I,O) corresponding to a non-split
extension

0→ OY → V
δ
−→ I → 0

(which is unique up to scalar) and let ei := e|Zi
∈ Ext1Zi

(Iwi
,O) be its

restriction to Zi = SpecOY,wi
. By Lemma 6.7, ei generates this group as an

OY,wi
-module.

As in the proof of Lemma 6.7, we have a diagram with exact rows

0 Ext1Y (I,O)
⊕N

i=1 Ext
1
Zi
(Iwi

,O) H2(Y,O) 0

0 Ext1Y (I
(p),O)

⊕N
i=1 Ext

1
Zi
(Iwi

(p),O) H2(Y,O) 0

β γ

β′ γ′

where the double vertical arrows are F and ι∗. By Lemma 6.6(1), we
have Im(Fmiddle) ⊂ Im(ι∗middle). Hence Im(Fleft) ⊂ β′−1(Im(Fmiddle)) ⊂
β′−1(Im(ι∗middle)) = Im(ι∗left), where the last equality follows from snake
lemma (applied to the commutative diagram for ι∗) since ι∗right = id. Since

Ext1Y (I,O) is 1-dimensional, we obtain F (e) = λ · ι∗(e) for some λ ∈ k.
Clearly the same equality holds for ei for each i, and since ei is a generator,
we have the following equivalence: λ 6= 0 (resp. λ = 0) if and only if the
coindex r of the RDP(s) is 6= 0 (resp. r = 0) if and only if G = Z/pZ (resp.
G = αp).

Since the restriction e|Y sm ∈ H1(Y sm,O) is annihilated by F−λ, it induces
a G-covering X|Y sm → Y sm as follows. Take an open covering {Oh} of Y

sm

fine enough and take local sections th ∈ V with δ(th) = 1 ∈ I|Y sm = OY sm .
Let ehh′ = th− th′ ∈ O (this 1-cocycle represents e|Y sm). Then since F (e) =
λ · ι∗(e) there exists ch ∈ O with ephh′ − λehh′ = ch − ch′ . We equip the
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locally-free sheaf Vp−1 := Symp−1
OY sm

(V |Y sm) on Y sm with an OY sm-algebra

structure by tph := λth + ch, and let X|Y sm = Spec Vp−1. Since each ei is a
generator, this Y sm-scheme is regular above a neighborhood of wi by Lemma
6.6(2). By filling the holes above Sing(Y ) by normalization, we obtain a Y -
scheme X that is isomorphic to X|Y sm outside Sing(Y ) and regular above a
neighborhood of Sing(Y ) (again by Lemma 6.6(2)). Extend δ : V |Y sm → OY
to an endomorphism δ ∈ EndOY sm (Vp−1) by δ(a ⊗ b) = δ(a) ⊗ b + a ⊗

δ(b) + λ1/(p−1)δ(a) ⊗ δ(b) (note that this is compatible with the equality
tph = λth+ ch) and then extend it to an endomorphism δ ∈ EndOY

(OX) (by
using normality ofX above a neighborhood of Sing(Y )). Then δ corresponds
to a G-action on X, and π : X → Y is a G-covering.

Let Ij = Im(δj |Ker δj+1) for 1 ≤ j ≤ p− 1. Then we have Ij = Ker(OY →⊕
i(OY,wi

/Iwi,j)) with Iwi,j as in Section 6.2, hence we have χ(Ij) = 2 −∑
i dim(OY,wi

/Iwi,j) = 0. Since π∗OX has OY ,I1, . . . ,Ip−1 as a composition
series and since χ(OY ) = 2 and χ(Ij) = 0 for each 1 ≤ j ≤ p − 1, we have
χ(OX) = 2.

Suppose G = Z/pZ. It is clear from the construction that π is finite
étale outside Sing(Y ). Hence X is smooth, and a non-vanishing 2-form on
Y sm pullbacks to a non-vanishing 2-form on X \ π−1(Sing(Y )), which then
extends to X. Hence X is a K3 surface.

Suppose G = αp. We conclude by using Proposition 2.15 as in the case
of G = µp. �

Remark 7.5. In the proof of the case of G = Z/pZ, αp of Theorem 7.3(2),
we showed F (ei) = λ · ι∗(ei) for each RDP wi. A similar argument proves
an unexpected consequence on non-existence of certain RDP K3 surfaces:
If Y is an RDP K3 surface in characteristic p, then (p,Sing(Y )) cannot be
(2,D0

4 + D1
4), (3, E0

6 + E1
6), (5, E0

8 + E1
8), (2,D1

4m) (m ≥ 2), nor (2, E1
8 ).

This implies that RDP K3 surfaces in characteristic 2 cannot have Dr
2n nor

Dr
2n+1 if 0 < r < n− 1 and 2 ∤ (n − r), since a partial resolution of such an

RDP produces a D1
2(n−r+1) with 2 | (n− r + 1) and n− r + 1 > 2.

We do not prove this in this paper, as we give a more general result,
relating singularities to the height of the K3 surface, in a subsequent paper
[Mat20b, Theorem 1.2].

8. Bound of p for αp-actions

Theorem 8.1. Let k be an algebraically closed field of characteristic p > 0.
Then there exists an RDP K3 surface equipped with a nontrivial action of
µp (resp. αp) if and only if p ≤ 19 (resp. p ≤ 11).

Proof. The case of µp is given in [Mat20a, Theorem 8.2]. Examples of RDP
K3 surfaces with a nontrivial action of αp in characteristic p for p ≤ 11 are
given in Section 10.2. It remains to show that if p ≥ 13 then there is no
such example.

Suppose p ≥ 13 and X is an RDP K3 surface equipped with a nontrivial
action of αp. Since smooth K3 surface have no global derivations, X has an
RDP x, and since RDPs fixed by the αp-action can be blown up, we may
assume x and all other RDPs are not fixed. Since p ≥ 7, by Theorem 3.3(1),
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x and all other RDPs are of type Amp−1. Since p ≥ 13, It follows that m = 1
and that x is the only RDP.

We observe that the tangent module TB of the RDP B = ÔX,x =

k[[x, y, z]]/(xy − zp) of type Ap−1 is a free B-module with basis e1 = x ∂
∂x −

y ∂
∂y , e2 =

∂
∂z , and that a1e1 + a2e2 (a1, a2 ∈ B) fixes the closed point if and

only if a2 ∈ mB .
Let ∆ := (D). The morphism H0(X,OX (∆)) → H0(X,TX) → TB →

B/mB = k taking f to the coefficient modulo mB of e2 in (fD)|B is injective,

since if f is in the kernel then fD extends to an element of H0(X̃, TX̃) = 0.

Hence dimH0(X,OX (∆)) = 1. It follows that Supp(∆) is a finite disjoint
union (possibly empty) of ADE configurations of smooth rational curves.

Let X ′ = X \Supp(Fix(D)) = X \(Supp(∆)∪Supp(〈D〉)), X ′′ = X ′\{x},
and Y ′ = X ′D, Y ′′ = X ′′D. Then X ′′ and Y ′′ are smooth. Since X ′′ is the
complement in a K3 surface of a finite disjoint union of ADE configurations
and closed points, we have H0(X ′′,OX) = k. Moreover we can compute
Pic(X ′′)[p] as in the proof of Theorem 7.1(2), and since there is at most one
RDP of type Ap−1 (since p ≥ 13) we obtain Pic(X ′′)[p] = 0.

Fix a nonzero element ωX of H0(Xsm,Ω2
X) (which is unique up to k∗).

We have D(ωX) = 0 since D acts nilpotently on this 1-dimensional space.
Let ωY be the 2-form on Y ′′ corresponding to ωX |X′′ via the isomorphism
H0(X ′′,Ω2

X)
D ∼= H0(Y ′′,Ω2

Y ) of Proposition 2.12. Let DY ′′ be the deriva-
tion on Y ′′ of Proposition 2.15. Then Fix(DY ′′) = ∅, DY ′′ is p-closed,

and Y ′′DY ′′ = X ′′(p). Write Dp
Y ′′ = hDY ′′ with h ∈ k(Y ). Then h ∈

H0(Y ′′,OY ) ⊂ H
0(X ′′,OX) = k.

As DY ′′ extends to DY ′ on Y ′ with Fix(DY ′) ⊂ {π(x)}, we have h 6= 0,
since x (of type Ap−1) is not αp-quotient by Lemma 3.6. We may assume

h = 1 (by replacing DY ′ with a multiple by k∗). Then Y ′′(1/p) → X ′′ is
a µp-covering, which corresponds to an element of Pic(X ′′)[p] = 0. Since
H0(X ′′,OX) = k, such a covering is non-reduced, which is absurd. �

9. Coverings of supersingular Enriques surfaces in

characteristic 2

In this section we give a restriction on the singularities of the canonical
α2-covering of a supersingular Enriques surface in characteristic 2, and give
some examples. A more detailed study will be given in a subsequent paper
[Mat21].

Let X be a classical or supersingular (smooth) Enriques surface in charac-
teristic 2 (i.e. an Enriques surface with Picτ (X) = Z/2Z or α2 respectively).
Let π : Y → X be its canonical µ2- or α2-cover. We recall some known
properties of Y .

• ([BM76, Proposition 9]) Y is K3-like (as in Definition 7.2, i.e. hi(Y,OY ) =
1, 0, 1 for i = 0, 1, 2, and the dualizing sheaf ωY is isomorphic to OY ).
There exists a global regular 1-form η 6= 0 on X, unique up to scalar,
and it satisfies Sing(Y ) = π−1(Zero(η)). The zero locus Zero(η) is
nonempty (hence Y is singular somewhere), and if it has no divisorial
part then it is of degree 12.
• ([CD89, Theorem 1.3.1]) One of the following holds.
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– Y has only RDPs as singularities, and Y is an RDP K3 surface.
– Y has only isolated singularities, it has exactly one non-RDP

singularity and that is an elliptic double point, and Y is a nor-
mal rational surface.

– Y has 1-dimensional singularities, and Y is a non-normal ratio-
nal surface.

• ([ESB04]) Non-normal examples exist. More detailed properties, for
example on the structure of the divisorial part of Zero(η), are proved.
• ([EHSB12, Corollary 6.16]) If Y is an RDP K3 surface, then Sing(Y )
is one of 12A1, 8A1+D

0
4, 6A1+D

0
6, 5A1+E

0
7 , 3D

0
4 , D

0
8+D

0
4 , E

0
8+D

0
4,

or D0
12.

• ([Sch19, Sections 13–14]) If Y has an elliptic double point singularity,
then there are no other singularities on Y . Such examples exist.

By using similar arguments as in Theorem 7.3(2), we can give some re-
strictions on the singularities of the canonical α2-coverings of supersingular
Enriques surfaces in characteristic 2, assuming it is an RDP K3 surface.
Since this method depends on the triviality of the canonical divisor of X, it
cannot be applied to classical Enriques surfaces.

Theorem 9.1. Let π : Y → X be the canonical α2-covering of a supersin-
gular Enriques surface X. If Y is an RDP K3 surface, then Sing(Y ) is one
of 12A1, 3D

0
4, D

0
8 +D0

4, E
0
8 +D0

4, or D
0
12.

Proof. By Theorem 4.3, X → Y (2) is the quotient by a derivation D of
multiplicative or additive type with (D) = 0. Then deg〈D〉 = 12 by Theorem
2.4. The assertion follows from by Lemma 3.6. �

Remark 9.2. 12A1 is the most generic case, and explicit examples are
given for example by [KK15, Section 4]. We give examples with Sing(Y )
being 3D0

4 , D
0
8 +D0

4, E
0
8 +D0

4, or single non-RDP, in Example 9.4, and we
will give an example of the remaining RDP case (i.e. Sing(Y ) = D0

12) in a
subsequent paper [Mat21, Section 5]. See also [Sch19, Sections 13–15] for
various examples, although classical and supersingular Enriques surfaces are
not distinguished explicitly.

Remark 9.3. We note an error of an example of Bombieri–Mumford [BM76,
Section 5]. Let X be a supersingular Enriques surface (in characteristic 2).
They showed that there exists a regular vector field ϑ (canonical up to
scalar) and they gave two examples of X, second of which is claimed to have
δX = 0, where δX is the scalar defined by ϑ2 = δXϑ (by normalizing ϑ we
may assume δX ∈ {0, 1}). However their calculation is incorrect and this X
actually has δX = 1. Note that δX = 1 (resp. δX = 0) is equivalent to the

morphism X → (Y (2))n being a µ2-quotient (resp. an α2-quotient), where
Y → X is the canonical covering of the Enriques surface.

Their construction is as follows. Let Y ⊂ P5 be the complete intersection
of the three quadrics

x21 + x1x2 + y23 + y1x2 + x1y2 = 0,

x22 + x2x3 + y21 + y2x3 + x2y3 = 0,

x23 + x3x1 + y22 + y3x1 + x3y1 = 0.
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This surface Y has exactly 6 isolated singular points:

(1, 1, 1, 0, 0, 0);

(t3, t, 1, t3, t, 1), t3 + t2 + 1 = 0;

(t2, t, 1, t3, t2, t), t2 + t+ 1 = 0.

(We corrected the error on the coordinates of the points of the third type.)
Let X be the quotient of Y by the α2-action (xi, yi) 7→ (xi, εxi + yi), that
is, D(xi) = 0 and D(yi) = xi. They claim that X is a smooth supersingular
Enriques surface, but actually it has 3A2 singularities at the images of the
3 points (t3, t, 1, t3, t, 1), t3+ t2+1 = 0, of type A5. (The other singularities

of Y are all A1 and their images are smooth points.) Then Sing(X̃ ×X Y )

is 12A1, with three A1 above each A5 of Y , where X̃ ×X Y is the canonical
α2-covering of the resolution X̃ of X. Consequently X̃ has δX̃ = 1.

We will construct supersingular Enriques surfaces with δX = 0.

Example 9.4. We consider the indices modulo 3. Let Fi ∈ k[x1, x2, x3, y1, y2, y3]
(i = 1, 2, 3) be homogeneous quadratic polynomials belonging to the subring
k[x2j , y

2
j , tj , sj ]j=1,2,3 (resp. k[x2j , y

2
j , tj , uj ]j=1,2,3), where tj = xj+1xj+2, sj =

yj+1yj+2, uj = xj+1yj+2 + xj+2yj+1, and let Y = (F1 = F2 = F3 = 0) ⊂ P5.
Endow Y with a derivation D of multiplicative (resp. additive) type with

(D(xj),D(yj)) = (0, yj)

(resp. (D(xj),D(yj)) = (0, xj))

(see the convention before Example 10.2). If Fi are generic, then Y is an
RDP K3 surface and the quotient X = Y D is a classical (resp. supersin-
gular) Enriques surface. Liedtke [Lie15, Proposition 3.4] showed that any
classical (resp. supersingular) Enriques surface is birational to an RDP En-
riques surface of this form. (Liedtke’s theorem also covers singular Enriques
surfaces (i.e. those with Picτ = µ2), which we do not discuss in this paper.)

As showed in Proposition 4.5, in the classical case there is no (regular)

derivation D′ on X with XD′

= (Y (2))n.
Consider the supersingular case. Write Fi = Ai + Bi + Ci, where Ai ∈

〈x2j , y
2
j 〉j , Bi ∈ 〈tj〉j , Ci ∈ 〈uj〉j . For simplicity assume C1, C2, C3 are linearly

independent, and then we may assume Ci = ui. Write Bi =
∑

j bijtj. The

derivation D′ on X defined by

D′(Bi + ui) = 0,

D′(tj) = bj+1,j+2x
2
j+1 + bj+2,j+1x

2
j+2 + etj +Aj ,

where e =
∑

j bjj, satisfies XD′

= (Y (2))n and D′2 = eD′. (To check

that this is well-defined, it suffices to observe D′(tj+1)tj+2 + tj+1D
′(tj+2) =

x2jD
′(tj), and it is straightforward.) If e 6= 0 then e−1D′ is of multiplicative

type and if e = 0 then D′ is of additive type. One can check (e.g. by using
the Jacobian criterion) that if Fi is generic with Ci = ui and e = 0 then
Sing(Y ) is 3D0

4 at (G1 = G2 = G3 = H1 = H2 = H3 = 0),

Gj =
√
Aj +

√
bj+1,j+2xj+1 +

√
bj+2,j+1xj+2,

Hj = Bj + uj + bj+1,j+2x
2
j+1 + bj+2,j+1x

2
j+2.
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Note that the subscheme (H1 = H2 = H3 = 0) ⊂ P5 is of codimension 2 and
degree 3, since

∑
xjHj = 0.

Now, for simplicity let Fi = Ai + ui (so bij = 0 and e = 0).

• If A1 = x21 +x23, A2 = y21 + y22, A3 = x23 + y23, then Sing(Y ) is 3D0
4 at

(x1, x2, x3, y1, y2, y3) = (0, 1, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1), (0, 0, 0, 1, 1, 0).
• If A1 = x21+x

2
2+y

2
1, A2 = x23, A3 = y21+y

2
2, then Sing(Y ) is D0

8+D
0
4

at (1, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1).
• If A1 = x21 + x22 + y21, A2 = y21 + y22, A3 = x23 + y23, then Sing(Y ) is
E0

8 +D0
4 at (1, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 1).

• If A1 = x21 + x23 + y21 , A2 = x22 + y21 + y23, and A3 = y22 , then Sing(Y )
consists of a single non-RDP singularity at (1, 0, 1, 0, 0, 0).

We will give an example of the remaining RDP case (i.e. Sing(Y ) =
D0

12), and also examples in the classical case, in a subsequent paper [Mat21,
Section 5].

10. Examples

10.1. Local αp-actions.

Example 10.1. For p = 2, 3, 5, 7, let D be the derivation on A = k[[x, y]]
defined as in the table. Then D is of additive type, with (D) = 0, deg〈D〉
is as in the table, and AD = k[[X,Y,Z]]/(F ), where X = xp, Y = yp, Z is
as in the table, and F is as in the table, and AD is a non-RDP. (cf. Lemma
3.6.)

The non-RDPs appearing in Examples 9.4 and 10.3–10.6 are isomorphic
to the quotient singularities listed here, at least up to terms of high degree.

p D(x) D(y) deg〈D〉 F Z

2 y2 x6 12 X7 + Y 3 − Z2 x7 + y3

3 y x6 6 X7 + Y 2 − Z3 x7 + y2

5 xy 2(x2 + y2) 4 2X3 +XY 2 − Z5 2x3 + xy2

7 y −2x3 3 X4 + Y 2 − Z7 x4 + y2

10.2. Actions on RDP K3 surfaces with rational quotients. Exam-
ples for G = Z/lZ, l ≤ 19 and l 6= p, are well-known.

Examples for G = Z/pZ, p ≤ 11, are given in [DK01].
Examples for G = µp, p ≤ 19 and p 6= 5, are given in [Mat20a, Section

9]. For G = µ5, the derivation D = t∂/∂t on the elliptic RDP K3 surface
(y2 + x3 + x2 + t10 = 0) gives an example.

Examples for G = αp, p ≤ 7, are given in Section 10.4. For G = α11, the
derivation D = ∂/∂t on the elliptic RDP K3 surface (y2+x3+x2+ t11 = 0)
gives an example.

We do not know whether examples with G = αp, p = 13, 17, 19, exist.

10.3. Actions on RDP K3 surfaces with RDP Enriques quotients.

As noted in Proposition 4.1, this is possible only if p = 2. We gave examples
in Example 9.4.

10.4. Actions with RDP K3 quotients. In this section, we give the
following examples of G-quotient morphisms π : X → Y in the following
characteristics p.
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• X and Y are RDP K3 surfaces,X is smooth, G = Z/pZ, (p,Sing(Y )) =
(2, 2D1

4), (2,D
2
8), (2, E

2
8 ), (3, 2E

1
6 ), (5, 2E

1
8 ).

• X and Y are RDP K3 surfaces, and the induced morphism π′ : Y →
X(p) is a G′-quotient morphism, with

– (G,G′) = (µp, µp), p ≤ 7;
– (G,G′) = (µp, αp), p ≤ 5;
– (G,G′) = (αp, αp), p ≤ 3.

(We note that if π is an example for (G,G′) = (µp, αp), then π′ is
an example for (G,G′) = (αp, µp).)

When p = 2, we give examples with all pairs (Sing(X),Sing(Y )) ∈
{8A1, 2D

0
4 , 1D

0
8 , 1E

0
8}

2 except (1E0
8 , 1E

0
8 ).

• Y is an RDP K3 surface with Sing(Y ) and Pic(Ỹ ) as in Table 6, X
is the corresponding G-covering that is a K3-like rational surface,
and

– X has a single singularity, which is a non-RDP, G = µp (p ≤
7, p 6= 2) and G = αp (p ≤ 5, p 6= 2).

– X is non-normal, G = µp (p ≤ 7) and G = αp (p ≤ 5).

In this case π′ : Y → (X(p))n is an αp-quotient morphism with ratio-
nal quotient.

We prove in a subsequent paper [Mat20b, Corollary 6.8] that if X and Y
are RDP K3 surfaces then the following are impossible:

• (G,G′) = (α5, α5).
• (G,G′,Sing(X),Sing(Y )) = (α2, α2, 1E

0
8 , 1E

0
8 ).

Below we use the following description of derivations. Suppose X is
a projective scheme over k, L is an ample line bundle on it, and D∗ ∈
Endk(H

0(X,L)) is a k-linear endomorphism that extends to a derivation
D∗ of the k-algebra

⊕
m≥0H

0(X,mL). Then D∗ induces a derivation D

on X by D(f/g) = D∗(f)/g − fD∗(g)/g2 on (g 6= 0) ⊂ X for f, g ∈
H0(X,mL). This can be applied for example to X = (F = 0) ⊂ P3 and
D∗ ∈ Endk(H

0(OP3(1))) satisfying D∗(F ) = cF for some c ∈ k. Below we
write simply D in place of D∗.

Example 10.2 (G = µ2 (resp. G = α2)). Let F ∈ k[w, x, y, z] be a homo-
geneous quartic polynomial belonging to

k[w2, x2, y2, z2, wx, yz] (resp. k[w2, x2, y2, z2, xz, wz + xy])

and let X = (F = 0) ⊂ P3. Such F is uniquely written as

F = H + wxI + yzJ + wxyzK

(resp. F = H + xzI + (wz + xy)J + xz(wz + xy)K)

with H, I, J,K ∈ k[w2, x2, y2, z2] of respective degree 4, 2, 2, 0. Endow X
with a derivation D of multiplicative (resp. additive) type with

(D(w),D(x),D(y),D(z)) = (0, 0, y, z)

(resp. (D(w),D(x),D(y),D(z)) = (x, 0, z, 0))

If F is generic, then X and the quotient Y = XD are RDP K3 surfaces.
Let L′ be the line bundle on Y with H0(Y,L′) = H0(X, pL)D. The deriva-
tion D′ on H0(Y,L′) defined by D′(w2) = D′(x2) = D′(y2) = D′(z2) = 0
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and

D′(wx) = J + wxK, D′(yz) = I + yzK

(resp. D′(xz) = J + xzK, D′(wz + xy) = I + (wz + xy)K)

satisfies Y D′

= X(2) and D′2 = KD′. If K 6= 0 then K−1D′ is of multiplica-
tive type, and if K = 0 then D′ is of additive type. This gives an 11- (resp.
10-) dimensional family Y of µ2-actions which degenerate to α2-actions in
codimension 1. One can check that if F is generic then Sing(X) is 8A1,
if F is generic with K = 0 then Sing(X) is 2D0

4 , and if F is generic with
K = 0 and #(H = I = J = 0) = 1 then Sing(X) is 1D0

8 . If G = µ2 and
(H, I, J,K) = (w4+ y4, x2+ y2, w2+x2+ y2+ z2, 0) then Sing(X) is 1E0

8 . If
G = α2 and (H, I, J,K) = (x4+z4+w2y2, w2, y2, 0) then Sing(X) is 1E0

8 and
Sing(Y ) is 2D0

4 . IfG = α2 and (H, I, J,K) = (w4+x4+z4, w2, x2+y2+z2, 0)
then Sing(X) is 1D0

8 and Sing(Y ) is 1D0
8. If G = α2 and (H, I, J,K) =

(w4 + y2z2, x2, y2, 0) then Sing(X) is 1E0
8 and Sing(Y ) is 1D0

8 .
If G = µ2 and (H, I, J,K) = (y2I + x2J,w2 + y2, x2 + λ2z2, 0) (resp.

G = α2 and (H, I, J,K) = ((z2 + w2)I + x2J,w2 + z2, x2 + λ2y2, 0)), with
λ ∈ k \ F2, then Sing(X) = (I = J = 0), hence X is non-normal, and
Sing(Y ) consists of π(Fix(D)) = 8A1 (resp. π(Fix(D)) = 1D0

8) and 4A1

(resp. 1A1) contained in π(Sing(X)). Let Y ′ → Y be the resolution of the
latter singularities. Then X ×Y Y

′ → Y ′ is an example of a non-normal µ2-
(resp. α2-) covering.

Example 10.3 (G = µ3 (resp. G = α3)). Let F ∈ k[x, y, z] be a homo-
geneous sextic polynomial belonging to k[x, y3, z3, A], where A = yz (resp.
A = xz + y2), and let X = (w2 + F = 0) ⊂ P(3, 1, 1, 1). Such F is uniquely
written as

F = H + xAI + (xA)2J

with H, I, J ∈ k[x3, y3, z3] of respective degree 6, 3, 0. Endow X with a
derivation D of multiplicative (resp. additive) type with

(D(w),D(x),D(y),D(z)) = (0, 0, y,−z)

(resp. (D(w),D(x),D(y),D(z)) = (0, 0, x, y)).

If F is generic, then X and the quotient Y = XD are RDP K3 surfaces.
The derivation D′ on Y defined by

D′(y3) = D′(z3) = 0, D′(w) = I + 2JxA, D′(xA) = w

satisfies Y D′

= X(3) and D′3 = 2JD′. If J 6= 0 then (2J)−1/2D′ is of
multiplicative type and if J = 0 then D′ is of additive type. This gives a 7-
(resp. 6-) dimensional family Y of µ3-actions which degenerate to α3-actions
in codimension 1. One can check that if F is generic then Sing(X) is 6A2,
and if F is generic with J = 0 then Sing(X) is 2E0

6 .
If (H, I, J) = ((λ3x3+y3)2+(y3−z3)2, y3−z3, 0) with λ ∈ k \F3, then X

has a single singularity at (0, 1, λ, λ) (resp. (0, 0, 1, 0)), which is a non-RDP,
X is a rational surface, and Y is an RDP K3 surface with Sing(Y ) = 6A2

(resp. Sing(Y ) = 2E0
6).

If (H, I, J) = ((x3 + y3 + z3)2, x3 + y3 + z3, 0), then X is non-normal
rational surface with Sing(X) = (w = x + y + z = 0), and Y is an RDP
K3 surface with Sing(Y ) = 6A2 (resp. Sing(Y ) consists of π(Fix(D)) = 2E0

6
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and 3A1 contained in π(Sing(X))), and X×Y Y
′ → Y ′, where Y ′ = Y (resp.

Y ′ → Y is the resolution of RDPs of other than 2E0
6 ) is an example of a

non-normal µ3- (resp. α3-) covering.

Example 10.4 (G = µ5). Let F ∈ k[x, y, z] be a homogeneous sextic poly-
nomial belonging to k[x, y5, z5, A] where A = yz and let X = (w2+F = 0) ⊂
P(3, 1, 1, 1). Endow X with a derivation D of multiplicative (resp. additive)
type with

(D(w),D(x),D(y),D(z)) = (0, 0, y,−z)

If F is generic, then X and the quotient Y = XD are RDP K3 surfaces.
Write

F = a6x
6 + a4x

4A+ a2x
2A2 + a0A

3 + bxy5 + cxz5.

Define a derivation D′ on Y by

D′(x5) = D′(y5) = D′(z5) = 0,

D′(wx2) = 3x
∂F

∂A
,D′(wA) =

∂F

∂x
,D′(x3A) = −wx2,D′(xA2) = −2wA.

Then it satisfies Y D′

= X(5) and D′5 = eD′, where e = a22 − 3a0a4. If e 6= 0

then e−1/4D′ is of multiplicative type and if e = 0 then D′ is of additive
type. This gives a 3-dimensional family Y of µ5-actions which degenerate
to α5-actions in codimension 1. One can check that if F is generic then
Sing(X) is 4A4, and if F is generic with e = 0 then Sing(X) is 2E0

8 .
If F = (A − x2)3 + x(2x5 + y5 + z5), then X has a single singularity at

(w, x, y, z) = (0, 1,−1,−1), which is a non-RDP, X is a rational surface,
and Y is an RDP K3 surface with Sing(Y ) = 4A4 + A2, where A2 is the
image of the non-RDP. Let Y ′ → Y be the resolution of the A2 point, then
Sing(X ×Y Y

′) is a single non-RDP.

Example 10.5 (G = µ7). Let a ∈ k, F = w2 + x51x2 + x52x4 + x54x1 +
ax21x

2
2x

2
4 ∈ k[w, x1, x2, x4] and X = (F = 0) ⊂ P(3, 1, 1, 1). Let b = (a−3 −

1)1/3 ∈ k ∪ {∞}, hence b = 0 if and only if a3 = 1. Then Sing(X) consists
of the points (0, x1, x2, x4) satisfying

(x51x2 : x
5
2x4 : x

5
4x1 : ax

2
1x

2
2x

2
4) = (1 + 4jb : 1 + 2jb : 1 + jb : 4)

for some j ∈ {1, 2, 4}, and it is 3A6 if b 6= 0 and a single non-RDP if b = 0.
X admits a derivation D of multiplicative type with

D(w) = 0, D(xi) = ixi.

whose quotient Y = XD is an RDP K3 surface. If b 6= 0 then Sing(Y ) =
π(Fix(D)) is 3A6, and if b = 0 then Sing(Y ) = π(Fix(D)) ∪ π(Sing(X)) is
3A6 +A1. In the latter case, let Y ′ → Y be the resolution of the A1 point,
then Sing(X ×Y Y

′) is a single non-RDP whose completion is isomorphic to
k[[X,Y,Z]]/(X2 + Y 4 + Z7 + . . . ).
Y admits a derivation D′ defined by

D′(x7i ) = 0,

D′(xix
2
2ix

4
4i) = i2wx2ix

3
4i,

D′(wxix
3
2i) = i2(−x72i + 2xix

2
2ix

4
4i − 2ax2ix

4
2ix4i),
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i = 1, 2, 4, where the indices are considered modulo 7, satisfying D′7 =
(1− a3)D′.

Example 10.6 (G = α5). Let Y be the RDP K3 surface w2+(y2−2xz)3+
z(x5 + y5 + z5) = 0, equipped with the derivation D′ defined by D′(w) = 0,
D′(x) = y, D′(y) = z, D′(z) = 0. Then Sing(Y ) is 2E0

8 at w = y2 − 2xz =

x + y + z = 0. Then (Y D′

)
(1/p)

is the α5-covering of Y , with a single
singularity that is non-RDP.

Example 10.7 (G = µ5 (resp.G = α5)). Let a ∈ k and assume a(a3−2) 6= 0
(resp. a = 0). Let S be the elliptic RDP K3 surface y2 = x3+ax2+t5(t−1)5,
equipped with the derivation D′ = ∂/∂t having 1-dimensional fixed locus
at t = ∞. Then Sing(S) is 4A4 at t = 0, t = 1, t5(t − 1)5 + 2a3 = 0
(resp. 2E0

8 at t = 0, t = 1). S admits a non-normal µ5- (resp. α5-) covering,

birational to (SD
′

)
(1/p)

. We see that SD
′

is a certain compactification of
y2 = x3 + ax2 + T (T − 1), where T = t5.

Example 10.8 (G = µ7). Let S be the elliptic RDP K3 surface y2 =
x3 + t7x+ 1, equipped with the derivation D′ = ∂/∂t having 1-dimensional
fixed locus at t = ∞. Then Sing(S) = 3A6 at −4(t7)3 − 27 = 0. Similarly
to the previous example, S admits a non-normal µ7-covering birational to

(SD
′

)
(1/p)

. We see that SD
′

is a certain compactification of y2 = x3+Tx+1,
where T = t7.

Example 10.9 (G = Z/2Z; See also [DK01, Examples 2.8]). Let F ∈
k[w, x, y, z] be a homogeneous quartic polynomial belonging to

k[w2 + x2, y2 + z2, wx, yz, wy + xz,wz + xy],

and let X = (F = 0) ⊂ P3. Endow X with an automorphism g of order
2 with g(w, x, y, z) = (x,w, z, y). If F is generic, then X is a smooth K3
surface and Y = X/〈g〉 is an RDP K3 surface, with

Fix(g) = {(α,α, β, β) | α2c(w2x2)1/2 + αβc(wxyz)1/2 + β2c(y2z2)1/2 = 0},

where c(m) are the coefficients of the monomials m in F . If F is generic
(resp. generic with c(wxyz) = 0), then Sing(Y ) = π(Fix(g)) is 2D1

4 (resp.
1D2

8).
Now let X ⊂ P5 = Proj k[x1, x2, y1, y2, y3, y4] be the K3 surface defined

by

x21 + x1y1 + y3y2 = x22 + x2y2 + y21 + y3y4 = y1y3 + y2y4 + y24 = 0,

with automorphism g defined by g(xi) = xi+yi, g(yi) = yi. Then #Fix(g) =
1 (at x1 = x2 = y1 = y2 = y4 = 0), and Y = X/〈g〉 is an RDP K3 surface
with Sing(Y ) = π(Fix(g)) = 1E2

8 .

Example 10.10 (G = Z/3Z). Let F ∈ k[w, x, y, z] be a homogeneous
quartic polynomial belonging to

k[w, x+ y + z, xy + yz + zx, xyz, (x− y)(y − z)(z − x)],

and let X = (F = 0) ⊂ P3. Endow X with an automorphism g of order
3 with g(w, x, y, z) = (w, y, z, x). If F is generic (e.g. if F = w4 + x4 +
y4 + z4 − λ3wxyz with λ 6= 0, 1), then X is a smooth K3 surface, Fix(g) =
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{(0, 1, 1, 1), (λ, 1, 1, 1)} where λ = (−c(wxyz)/c(w4))1/3, and Y = X/〈g〉 is
an RDP K3 surface with Sing(Y ) = 2E1

6 .

Example 10.11 (G = Z/5Z, and G = α5). Let a, b−1, b0, b1 ∈ k with
b−1b1 6= 0. Let b = b(t) = b−1t

−1 + b0 + b1t and c = c(t) = tb(t) =
b−1 + b0t+ b1t

2. Let S and T be two RDP K3 surfaces defined by

S : y2 = x3 + at4x+ t5c,

T : Y 2 = X3 + a5t4X + tc5.

Let ξ = t−2X + ab. Let ∆ = −4a3 − 27b2. Let f : T 99K S be the rational
map defined by f(X,Y ) =
(
t2
ξ5 − abξ4 − a2∆ξ3 − a∆3ξ

(2aξ2 +∆2)2
, Y

ξ6 + a2∆ξ4 − 2b∆2ξ3 − a∆3ξ2 + 2∆5

(2aξ2 +∆2)3

)
.

Over k(t), this defines a separable (resp. inseparable) isogeny of degree 5
between ordinary (resp. supersingular) elliptic curves if a 6= 0 (resp. a = 0).

Suppose b is generic and a 6= 0. Then T and S are RDP K3 surfaces
with 4A4 and 2E1

8 respectively. Let T̃ → T be the resolution. Then f

induces a finite morphism T̃ → S that is the quotient morphism of a Z/5Z-
action generated by the translation by a 5-torsion point (X,Y ) = ( 2

e2∆ −

ab, 2∆(e3 + b
e3 )), e

4 = 2a.

Suppose a = 0 and disc(c) = b20−4b−1b1 6= 0 (so c is not a square). Then T

and S are both RDP K3 surfaces with 2E0
8 . Let T̃ → T be the resolution, C

be the unique 4A4 configuration contained in the union of the two fibers over
t = 0 and t =∞, and T̃ → T ′ be the contraction of C. Then T ′ is an RDP
K3 surface with 4A4, and f induces a finite morphism f ′ : T ′ → S which is
an α5-quotient morphism. Define a derivation D′ on S by D′(x) = 2c′(t)x,
D′(y) = 3c′(t)y, D′(t) = c(t). We have D′5 = (disc(c))2D′. This defines a

µ5-action on S whose quotient is T ′(5).
Suppose a = 0 and disc(c) = b20 − 4b−1b1 = 0 (so c is a square). Then

Sing(S) contains 2E0
8 , the derivation D

′ on S defined as above has divisorial
fixed locus, and the corresponding α5-covering of S is non-normal.

10.5. Inseparable morphisms of degree p between RDP K3 sur-

faces. We give an example for each case with r > 1 mentioned in Theorem
5.2.

Example 10.12 (Kummer surfaces and generalized Kummer surfaces (cf.
[Kat87])). Let r ∈ {2, 3, 4, 6}. Let p be a prime with p ≡ 1 (mod r). Let
π̄ : A → B be a purely inseparable isogeny of degree p between abelian
surfaces in characteristic p, (automatically) induced by a derivation, say
D. Suppose we have symplectic automorphisms gA ∈ Aut0(A) and gB ∈
Aut0(B) of same order r satisfying π̄ ◦ gA = gB ◦ π̄ and g∗A(D) = ζD for
a primitive r-th root ζ of unity. Here Aut0 is the group of automorphisms
preserving the origin. Then π : A/〈gA〉 → B/〈gB〉 is a purely inseparable
morphism of degree p between RDP K3 surfaces, whose covering as in The-
orem 5.2 is π̄.

The singularities of the quotients are as in Table 5 [Kat87, Table in page
17]: 16A1, 9A2, 4A3 + 6A1, A5 + 4A2 + 5A1 for r = 2, 3, 4, 6 respectively.
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Examples of such π̄, gA, gB are given as follows. If r = 2, take π̄ arbitrarily
and let gA = [−1]A, gB = [−1]B . If r = 3, 4, 6, take an elliptic curve E
equipped with an automorphism h ∈ Aut0(E) of order r, and let π̄ : A =
E × E → B = E × E(p) and gA = h × h−1, gB = h × (h(p))−1. Then gB is
symplectic since p ≡ 1 (mod r).

Remark 10.13. If π̄ : A → B be a purely inseparable morphism of degree
p between non-supersingular abelian surfaces in characteristic p = 2, then
π : A/{±1} → B/{±1} is a µ2- or α2-quotient morphism between RDP K3
surfaces. More precisely, if p-rank(A) = 2 (resp. p-rank(A) = 1) then both
Sing(A/{±1}) and Sing(B/{±1}) are 4D1

4 (resp. 2D2
8) (Katsura [Kat78,

Proposition 3]), and both π̄ and π are µ2-quotient (resp. either both are
µ2-quotient or both are α2-quotient).

If A is (and hence B is) supersingular, then A/{±1} is not birational to a
K3 surface, instead it is a rational surface with a single non-RDP singularity
(Katsura [Kat78, Proposition 3]), and so is B/{±1}.

Example 10.14. For each pair of G ∈ {µp, αp} and r > 1 appearing in
Theorem 5.2(2,3), we give an example of an RDP K3 surface X̄ with a
derivation D of multiplicative type or additive type and a symplectic auto-
morphism g ∈ Aut(X) of order r such that Ȳ = X̄D is an RDP K3 surface
and g∗(D) = ζD for a primitive r-th root ζ of unity, hence g induces a sym-
plectic automorphism g′ ∈ Aut(Y ) (of order r), and the induced morphism
π : X = X̄/〈g〉 → Y = Ȳ /〈g′〉 has π̄ : X̄ → Ȳ as its minimal covering as in
Theorem 5.2.

[µ5, r = 4] Let X̄ = (x31x2 − x
3
2x4 + x34x3− x

3
3x1 = 0) ⊂ P3 be the quartic

RDP K3 surface (with 4A4 at {(x1 : x2 : x3 : x4) = (1 : 2e3 : e : 3e2) |
e4 = −1}), and define a derivation D and an automorphism g of X̄ by
D(xi) = ixi, g(xi) = x(2i mod 5). Then both D and g are symplectic, and

g∗D = 2−1D. Hence π : X = X̄/〈g〉 → Y = Ȳ /〈g〉 is an example with π̄ a
µ5-quotient and r = 4.

[µ7, r = 3] Suppose b 6= 0 in Example 10.5, and let g(w, x1, x2, x4) =
(w, x4, x1, x2). Then g is symplectic and g∗D = 2D.

[α5, r = 2] Suppose e = 0 in Example 10.4 and suppose moreover b = c,
and let g(w, x, y, z) = (−w, x, z, y). Then g∗D = −D and g∗D′ = −D′.

[µ3 (resp. α3), r = 2] In Example 10.3 suppose that H and I are invariant
under (x, y, z) 7→ (x, z, y) (resp. (x, y, z) 7→ (x,−y, z)). For example, let
F = x6+y6+z6+xyz(y3+z3) (resp. F = x6+y6+z6+x(xz+y2)(x3−z3)).
Let g(w, x, y, z) = (−w, x, z, y) (resp. g(w, x, y, z) = (−w, x,−y, z)). Then
g∗(D) = −D.
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