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UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO

VARIETIES

HAROLD BLUM AND CHENYANG XU

Abstract. We prove that K-polystable degenerations ofQ-Fano varieties are unique.
Furthermore, we show that the moduli stack of K-stable Q-Fano varieties is sepa-
rated. Together with recently proven boundedness and openness statements, the
latter result yields a separated Deligne-Mumford stack parametrizing all uniformly
K-stable Q-Fano varieties of fixed dimension and volume. The result also implies
that the automorphism group of a K-stable Q-Fano variety is finite.
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1. Introduction

1.1. Moduli spaces of Fano varieties. To give a general framework for intrinsi-
cally constructing moduli spaces of Fano varieties is a challenging question in algebraic
geometry, especially if one wants to find a compactification. Unlike the KSBA con-
struction in the canonically polarized case, the Minimal Model Program often provides
more than one limit for a family of Fano varieties over a punctured curve. Thus, it
is unclear how to find a theory that picks the right limit. In examples, people have
obtained a lot of working experience on how to identify the simplest limit. On the
negative side, examples such as [PP10, Section 2.2], which gives a family that isotriv-
ially degenerates a homogeneous space to a different quasi-homogeneous space (with
non-reductive automorphism group), suggest that we should not consider all smooth
Fano varieties.

So when the definition of K-stability from complex geometry [Tia97] and its alge-
braic formulation [Don02], which were introduced to characterize when a Fano variety
admits a Kähler-Einstein metric, first appeared in front of algebraic geometers, it
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2 HAROLD BLUM AND CHENYANG XU

seemed bold to expect such a notion would be a key ingredient in constructing mod-
uli spaces of Fano varieties. However, as the theory has developed, more and more
evidence makes such an expectation believable.

We now expect that the moduli functor MKss
n,V of n-dimensional K-semistable Q-

Fano varieties of volume V , which sends S ∈ Schk to

MKss
n,V (S) =





Flat proper morphisms X → S, whose geometric fibers are
n-dimensional K-semistable Q-Fano varieties with

volume V , satisfying Kollár’s condition





is represented by an Artin stackMKss
n,V of finite type and admits a projective good mod-

uli space MKss
n,V →MKps

n,V (in the sense of [Alp13]), whose closed points are in bijection
with n-dimensional K-polystable Q-Fano varieties of volume V . Here, Kollár’s condi-

tion means that the reflexive power ω
[m]
X/S is flat over S and commutes with arbitrary

base change for each m ∈ Z (see [Kol09, 24]).
While smooth Kähler-Einstein Fano manifolds with finite automorphism group are

asymptotically Chow stable [Don01], examples in [OSY12, LLSW17] show that the
GIT approach likely fails to treat those with infinite automorphism groups or singu-
larities. (See [WX14] for examples where asymptotic Chow stability fails to construct
compact moduli spaces in the KSBA setting.) Therefore, we need to take a more

abstract approach to constructing MKps
n,V .

The construction ofMKps
n,V reduces to proving a number of concrete statements about

families of Q-Fano varieties. We list the main ones:

(I) Boundedness: There is a positive integer N = N(n, V ) such that if X ∈
MKss

n,V (k), then −NKX is a very ample Cartier divisor. This is settled in [Jia17]
using results in [Bir16].

(II) Zariski openness: If X → S is a family of Q-Fano varieties, then the locus
where the fiber is K-semistable is a Zariski open set.

Together, (I) and (II) show that MKss
n,V is an Artin stack of finite type and is a global

quotient. The following statements are needed to show MKss
n,V admits a projective good

moduli space.

(III) Good quotient: The stack MKss
n,V admits a good moduli space. To prove this,

it suffices to show:
(III.a) Reductive automorphism group: If X is a K-polystable Q-Fano va-

riety X , then Aut(X) is reductive.
(III.b) Gluing of local quotients: Near each K-polystable Q-Fano variety

X ∈ MKss
n,V (k), there exists a local atlas around [X ] given by an Aut(X)

slice. Furthermore, a point in the slice is GIT (poly/semi)stable with re-
spect to Aut(X) if and only if the corresponding Q-Fano variety is K-
(poly/semi)stable. To complete this step, it remains to verify that the



UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO VARIETIES 3

local GIT quotient spaces glue together to give the good quotient MKps
n,V

(e.g. the hypotheses of [AFS17, Theorem 1.2] are satisfied).
(IV) Separatedness: Any two K-semistable degenerations of a family of K-semistable

Q-Fano varieties over a punctured curve C◦ = C\0 lie in the same S-equivalence
class, i.e. they degenerate to a common K-semistable Q-Fano variety via special
test configurations.

(V) Properness: Roughly speaking, any family of K-semistable Fano varieties over
a punctured curve C◦ = C \ 0 can be filled in over 0 to a family of K-semistable
Q-Fano varieties over C.

(VI) Projecitivty: A sufficiently divisible multiple of the CM-line bundle yields

an ample line bundle on MKps
n,V .

We note that there are subtleties related to the requirement that objects inMKss
n,V (S)

satisfy Kollár’s condition. Luckily, such issues are of a local nature and have all
been addressed in the construction of the moduli space of KSBA stable varieties (see
[Kol09,Kol19]).

Strong evidence for the above picture is that, aside from (VI) (the projectivity of

MKps
n,V ), the problem is completely solved in [LWX19] (see also [SSY16,Oda15]) for Q-

Fano varieties with a Q-Gorenstein smoothing and some progress on the projectivity
was made in [LWX18a]. However, these results rely heavily on the deep analytic
tools established in [CDS15,Tia15]. Therefore, a completely algebraic proof is highly
desirable. Such a proof would likely allow us to drop the smoothable assumption.

The main result in this paper gives a complete solution to (IV). In the smoothable
case, this step is solved in [LWX19,SSY16] using analytic tools. The argument in this
document is purely algebraic.

1.2. Separatedness result. The following statement is our main result.

Theorem 1.1. Let π : (X,∆) → C and π′ : (X ′,∆′) → C be Q-Gorenstein families of
log Fano pairs over a smooth pointed curve 0 ∈ C. Assume there exists an isomorphism

φ : (X,∆)×C C
◦ → (X ′,∆′)×C C

◦

over C◦ : = C \ 0.

(1) K-semistable case: If (X0,∆0) and (X ′
0,∆

′
0) are K-semistable, then they are S-

equivalent.
(2) K-polystable case: If (X0,∆0) and (X ′

0,∆
′
0) are K-polystable, then they are iso-

morphic.
(3) K-stable case: If (X0,∆0) is K-stable and (X ′

0,∆
′
0) is K-semistable, then φ extends

to an isomorphism (X,∆) ≃ (X ′,∆′) over C.

Remark 1.2. (1) The K-polystable case of Theorem 1.1 follows immediately from
the K-semistable case and Definitions 2.5 and 2.6.

(2) By [LWX18b], the K-semistable case of Theorem 1.1 can be strengthened to
say (X0,∆0) and (X ′

0,∆
′
0) have a common K-polystable degeneration.
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(3) A special case of Theorem 1.1 was proved in [Oda12, 1.4] with the additional
assumption that α(X0,∆0) > dim(X0)/(dim(X0) + 1) (see also [Che09, 5.7]).

Theorem 1.1 implies the following special case of Step (III.a).

Corollary 1.3. Let (X,∆) be log Fano pair. If (X,∆) is K-stable, then Aut(X,∆)
is finite.

1.3. Moduli of uniformly K-stable Fano varieties. We now specialize our study
to the moduli of uniformly K-stable Fano varieties. Consider the moduli functor MuKs

n,V

that sends S ∈ Schk to

MuKs
n,V (S) =





flat, proper morphisms X → S, whose geometric fibers
are n-dimensional uniformly K-stable Q-Fano varieties

of volume V , satisfying Kollár’s condition



 .

Combining the following recent results:

(Iu) Boundedness: Proved in [Jia17],
(IIu) Zariski openness: Proved in [BL18], and
(IIIu) Separatedness (as a stack): Theorem 1.1.3,

we obtain the following corollary.

Corollary 1.4. The functor MuKs
n,V is a separated Deligne-Mumford stack of finite

type, which has a coarse moduli space MuKs
n,V that is a separated algebraic space.

One still missing property is

(IVu) Quasi-projectivity: MuKs
n,V is quasi-projective.

Significant progress on this problem was made in [CP18].

1.4. Summary of the paper. The original definition of K-stability in [Tia97,Don02]
is defined in terms of the sign of the generalized Futaki invariant on all test configu-
rations or at least special test configurations (see [LX14]). Recently, there has been
tremendous progress in reinterpreting K-stability in terms of invariants associated to
valuations rather than test configurations.

More specifically, in [BHJ17], the data of a test configuration was translated into
the data of a filtration and it was shown that a nontrivial special test configuration
yields a divisorial valuation. Then in a series of papers [Fuj16, Fuj19a, Fuj18] of K.
Fujita, all divisorial valuations were studied and an invariant β was defined for each
divisorial valuation. After [Li17], it became more natural to extend the setup to all
valuations over the log Fano variety rather than only considering divisorial valuations
(see also [LX16,BJ17]). Moreover, a characterization of K-stability notions in terms
of the sign of β-invariant for divisorial valuations was proved in [Li17,Fuj19a] and lead
to another characterization by the δ-invariant in [FO18,BJ17]. These interpretations
of K-stability using valuations have made it easier to apply techniques from birational
geometry, especially the Minimal Model Program, to the study of K-stability.
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In Section 2, we will have a short discussion on the above materials. More precisely,
we will provide information on the language of valuations and filtrations following
[BHJ17,Fuj19b,Li17] and the invariants β and δ associated to them following [Fuj19b,
FO18, BJ17]. We also discuss the normalized volume function from [Li18] and its
relation with the K-stability of Fano varieties (see [Li17,LX16]).

To proceed with our discussion, let us define the above invariants. Let (X,∆) be a
log Fano pair. Given a divisor E over X (i.e. E ⊂ Y is a prime divisor, where Y is a
normal variety with a proper birational morphism π : Y → X), the β-invariant of E
is given by

βX,∆(E) := AX,∆(E)(−KX −∆)n −

∫ ∞

0

vol(π∗(−KX −∆)− tE)dt

where AX,∆(E) is the log discrepancy of E. This invariant was defined in [Fuj18] and
the K-(semi)stability of (X,∆) can be phrased in terms of the positivity of βX,∆(E)
[Fuj19a,Li17].

Next, is the δ-invariant of (X,∆), which, as defined in [FO18], measures log canon-
ical thresholds of a certain classes of anti-log canonical divisors of (X,∆). It is shown
in [BJ17] that

δ(X,∆) = inf
E

AX,∆(E)(−KX −∆)n∫∞

0
vol(π∗(−KX −∆)− tE)dt

. (1)

Hence, we say that a divisor E over X computes δ(X,∆) if it achieves the infimum
in (1). The pair (X,∆) is uniformly K-stable (resp. K-semistable) if and only if
δ(X,∆) > 1 (resp. δ(X,∆) ≥ 1)[FO18,BJ17].

In Section 3, before attacking Theorem 1.1 in full generality, we consider the special
case in which (X0,∆0) is uniformly K-stable and (X ′

0,∆
′
0) is K-semistable. In this

case, we provide a short proof of the separatedness result by using properties of the
δ-invariant to reduce the question to the well known separatedness statement for the
moduli functor of klt log Calabi-Yau pairs (Proposition 3.2). This argument is more
straightforward than the general case and takes a slightly different approach. We hope
this perspective can be applied in other cases.

To prove Theorem 1.1 in full generality is more involved. We need to study the
case when the δ-invariants of the special fibers equal one. In general, analyzing the
valuation computing δ = 1 is quite subtle. For instance, the following statement has
been conjectured by experts.

Conjecture 1.5. Let (X,∆) be a log Fano pair. If δ(X,∆) ≤ 1 then δ(X,∆) is
computed by a divisor over X and any such divisor is dreamy.

The special case of Conjecture 1.5 when δ(X,∆) = 1 implies that K-stability is
equivalent to the apparently stronger notion of uniform K-stability. This is known for
smooth Fano varieties by [BBJ15], but the proof relies on analytic tools, in particular
the existence of Kähler-Einstein metrics.
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In Section 4, we will prove some special cases of Conjecture 1.5 which are needed
in our proof of Theorem 1.1. The first result is that if (X,∆) is a log Fano variety
with δ(X,∆) = 1, then any divisor computing δ(X,∆) is necessarily dreamy and
induces a special test configuration of (X,∆). The proof relies on the MMP techniques
developed in [LWX18b], which build upon work in [Li17, LX16, LX18]. Specifically,
we consider the cone over our log Fano pair and use the calculation in [Li17, LX16]
which shows that βX,∆(E) equals the derivative of the normalized volume function on
the valuation space of the cone along the path given by the interval connecting the
divisorial valuation associated to the pull back of E and the canonical valuation. A
careful study as in [LWX18b, Theorem 3.2] shows that E is indeed a dreamy divisor
and induces a special test configuration. In Section 4.2 and 4.3, we also address the
situations when the δ-invariant can be calculated by an ideal or a Q-divisor. These
results may be of independent interest.

Section 5 is the core of this paper and where we prove Theorem 1.1. The majority
of the work in this section is to construct the S-equivalence stated in the theorem.

Step 1: We first observe that a pair of two different degenerations will induce filtra-
tions on each other’s section rings. Furthermore, the associated graded rings of the
filtrations are isomorphic with a grading shift matching the calculation of β-invariant.

Let us explain the above construction in more detail. Assume we have two Q-
Gorenstein families of log Fano pairs π : (X,∆) → C and π′ : (X ′,∆′) → C over a
smooth affine curve C and an isomorphism

φ : (X,∆)×C C
◦ → (X ′,∆′)×C C

◦,

that does not extend to an isomorphism over C◦ = C \ 0. Fix r so that L :=
−r(KX + ∆) and L := −r(KX′ + ∆′) are Cartier. We choose a proper birational
model over X and X ′

X̂

X X ′

ψ′ψ

φ

and write X̃0 and X̃ ′
0 for the birational transforms of X0 and X ′

0 on X̂ . The divisor

X̃ ′
0 induces a filtration F on the section ring of (X0,∆0) defined by

s ∈ FpH0(X0, mL0) if and only if ordX̃′
0
(s̃) ≥ p

for some (non-unique) extension s̃ ∈ H0(X,mL). Then we define

β := (−KX0
−∆0)

nAX,∆+X0
(X̃ ′

0)− lim
m→∞

∫ ∞

0

dimFmxH0(X0, mL0)

rn+1mn/n!
dx.

Similarly, we can define a filtration F ′ of the section ring of (X ′
0,∆

′
0) and the value

β ′ using the divisor X̃0. The construction here can be viewed as a relative version of
the one in [BHJ17, Section 5], where they consider a test configuration and a trivial
family.
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Next, we observe that there is an isomorphism of the associated graded rings of the
filtrations

⊕

m∈N

⊕

p∈Z

grpFH
0(X0, mL0)

ϕ
−→

⊕

m∈N

⊕

p∈Z

gr
mr(a+a′)−p
F ′ H0(X ′

0, mL
′
0), (2)

where a := AX,∆+X0
(X̃ ′

0) and a
′ := AX′,∆′+X′

0
(X̃0). Using this isomorphism, we deduce

that β + β ′ = 0.
Now if we assume (X0,∆0) and (X ′

0,∆
′
0) are K-semistable, then the β-invariant of

any divisor over X0 or X ′
0 is non-negative [Fuj19a,Li17]. A similar result is extended

to filtrations in [BL18].1 We can then conclude that β = β ′ = 0.

Step 2: At this point, we know X0 and X ′
0 have a common degeneration. Indeed,

the Rees construction gives degenerations

X0  X0 := Proj

(⊕

m∈N

⊕

p∈Z

grpFH
0(X0, mL0)

)

and

X ′
0  X ′

0 := Proj

(⊕

m∈N

⊕

p∈Z

grpF ′H
0(X ′

0, mL
′
0)

)
.

By (2), the degenerations X0 and X ′
0 are isomorphic.

An immediate concern is that the above graded rings are not necessarily finitely
generated. (Note that notions of K-stability have been investigated in the setting
of non-finitely generated filtrations [WN12, Szé15].) Since we aim to prove (X0,∆0)
and (X ′

0,∆
′
0) have a common degeneration to a K-semistable log Fano pair, we must

show that the filtrations F and F ′ are finitely generated and induce special test
configurations with generalized Futaki invariant zero. By [LWX18b, 3.1], this will
imply that the degenerations are K-semistable log Fano pairs.

To proceed, we rely on the fact that our filtrations are induced by divisors over our
families. More precisely, we use that β = 0 to show that there exists an extraction

Y → X of X̃ ′
0 and the fiber Y0 = V ∪W , where V andW are the birational transforms

of X0 and X ′
0. Now, we set E = W |V and observe that E induces a filtration FE

on the section ring of (X0,∆0). We then show F := Supp(E) is a prime divisor
and βX0,∆0

(F ) = 0. Using Theorem 4.1, we see FE is finitely generated and the
corresponding degeneration of (X0,∆0) is a special test configuration with generalized
Futaki invariant zero.

Next, we seek to show that the filtrations F and FE are equal. This statement is
equivalent to the surjectivity of certain restriction maps and is non-trivial. To achieve
the result, we take the relative cone of (X,∆) over C and run an analysis similar to
the proof of Theorem 4.1. After completing this argument, we can conclude that the
degenerations (X0,D0) and (X ′

0,D
′
0) are naturally K-semistable pairs.

1This is also independently obtained by Chi Li and Xiaowei Wang in [LW18].
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Finally, we need to show that the isomorphism X0 ≃ X ′
0 sends the degeneration

of ∆0 to the degeneration of ∆′
0, so that we get an isomorphism of pairs. To verify

this, we choose a divisor B ⊆ Supp(∆) and write B′ ⊆ Supp(∆′) for its birational
transform. Now, B0 degenerates to a divisor on X0 that corresponds to the initial
ideal in(IB0

) in the associated graded ring. Rather than showing ϕ(in(IB0
)) = in(IB′

0
),

we introduce auxiliary ideals I and I ′ such that the equality ϕ(I) = I ′ is clear. (The
ideal I is defined by restricting elements of the relative section ring that vanish to
certain orders along B and X̃ ′

0.) Using the relative cone construction again, we show
that I and I ′ agree with in(IB0

) to in(IB′
0
) at codimension one points. We can then

conclude that the desired isomorphism of boundaries holds.
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2. Preliminaries on valuations and K-stability

2.1. Conventions. We work over an algebraically closed field k of characteristic 0.
We follow the terminologies in [KM98,Kol13]. A pair (X,∆) is composed of a normal
variety X and an effective Q-divisor ∆ on X such that KX + ∆ is Q-Cartier. See
[KM98, 2.34] for the definitions of klt, plt, and lc pairs. A pair (X,∆) is log Fano if X
is projective, (X,∆) is klt, and −KX −∆ is ample. A variety X is Q-Fano if (X, 0)
is log Fano.

Definition 2.1. A Q-Gorenstein family of log Fano pairs π : (X,∆) → C over a
smooth curve C is composed of a flat proper morphism π : X → C and an effective
Q-divisor ∆, not containing any fiber of π, satisfying:

(1) π has normal, connected fibers (hence, X is normal as well)
(2) −KX −∆ is Q-Cartier and π-ample, and
(3) (Xt,∆t) is klt for all t ∈ C.

2.2. Valuations. Let X be a variety. A valuation on X will mean a valuation v :
K(X)× → R that is trivial on k and has center on X . Recall, v has center on X if
there exists a point ξ ∈ X such that v ≥ 0 on OX,ξ and > 0 on the maximal ideal.
Since X is assumed to be separated, such a point ξ is unique, and we say v has center
cX(v) := ξ. See [JM12, 3.1] for the definition of quasimonomial valuations.
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Following [JM12,BdFFU15], we write ValX for the set of valuations on X and Val∗X
for the set of non-trivial ones. To any valuation v ∈ ValX and p ∈ N, there is an
associated valution ideal ap(v) . For an affine open subset U ⊆ X , ap(v)(U) = {f ∈
OX(U) | v(f) ≥ p} if cX(v) ∈ U and ap(v)(U) = OX(U) otherwise.

For an ideal a ⊆ OX and v ∈ ValX , we set

v(a) := min{v(f) | f ∈ a · OX,cX(v)} ∈ [0,+∞].

We can define v(s) when L is a line bundle on X and s ∈ H0(X,L). After trivializing
L at cX(v), we set v(s) = v(f), where f is the local function corresponding to s under
this trivialization (this is independent of choice of trivialization).

2.2.1. Divisors over X. LetX be a variety and π : Y → X be a proper birational mor-
phism, with Y normal. A prime divisor E ⊂ Y defines a valuation ordE : K(X)× → Z
given by order of vanishing at E. Note that cX(ordE) is the generic point of π(E)
and, assuming X is normal, ap(v) = π∗OY (−pE).

We identify two such prime divisors on Y1 and Y2 as above if one is the birational
transform of the other. Equivalently, they induce the same valuation of K(X). A
divisor over X is an equivalence class given by this relation.

2.2.2. Log discrepancies. Let (X,∆) be a pair. We write

AX,∆ : Val∗X → R ∪ {+∞}

for the log discrepancy function with respect to (X,∆) as in [JM12,BdFFU15] (see
[Blu18b] for the case when ∆ 6= 0).

When π : Y → X is a proper birational morphism with Y normal and E ⊂ Y a
prime divisor,

AX,∆(ordE) = 1 + coeffE (KY − π∗(KX +∆)) .

We will often write AX,∆(E) for the above value.
The function AX,∆ is homogenous of degree 1, i.e. AX,∆(λv) = λ · AX,∆(v) for

λ ∈ R>0 and v ∈ ValX . A pair (X,∆) is klt (resp., lc) if and only if AX,∆(v) > 0
(resp., ≥ 0) for all v ∈ Val∗X .

2.2.3. Graded sequences. A graded sequence of ideals a• = (ap)p∈Z>0
on a variety X is

a sequence of ideals on X satisfying ap · aq ⊆ ap+q for all p, q ∈ Z>0. By convention,
a0 = OX . We set M(a•) := {p ∈ Z>0 | ap 6= (0)} and always assume M(a•) is
nonempty. If v ∈ Val∗X , then a•(v) is a graded sequence of ideals.

Let a• be a graded sequence of ideals on X and v ∈ ValX . It follows from Fekete’s
Lemma that the limit

v(a•) := lim
M(a•)∋m→∞

v(am)

m

exists and equals infm≥1
v(am)
m

; see [JM12, §2.1].
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Let x ∈ X be a closed point. If a• is a graded sequence of ideals on X and each
ideal ap is mx-primary, we set

mult(a•) := lim
p→∞

dim
k

(OX/ap)

pn/n!
.

If v ∈ ValX has center {x}, then ap(v) is mx-primary for each p > 0. In this case, we
call vol(v) := mult(a•(v)) the volume of v.

2.2.4. Log canonical thresholds. Let (X,∆) be an lc pair. Given a nonzero ideal a ⊆
OX , the log canonical threshold of a is given by

lct(X,∆; a) := sup{c ∈ Q≥0 | (X,∆+ a
c) is lc}.

If a• a graded sequence of ideals on X , the log canonical threshold of a• is given by

lct(X,∆; a•) := lim
M(a•)∋m→∞

m · lct(X,∆; am).

Fekete’s Lemma implies that the above limit exists an equals supmm · lct(X,∆; am)
[JM12, 2.5].

It is straightforward to show lct(X,∆; a•) ≤
AX,∆(v)

v(a•)
, for v ∈ Val∗X satisfying 0 6=

AX,∆(v) < +∞. Hence, if v ∈ Val∗X satisfies AX,∆(v) 6= 0, then

lct(X,∆; a•(v)) ≤ AX,∆(v), (3)

since v(a•(v)) = 1 [Blu18b, 3.4.9].

2.2.5. Extractions. Let E be a divisor over a normal variety X . We say that µ : XE →
X is an extraction of E if µ is a proper birational morphism with XE is normal, E
arises as a prime divisor E ⊂ XE , and −E is µ-ample.

Note that if µ : XE → X is an extraction of E, then E ⊇ Exc(µ) and equality holds
if codimX(cX(ordE)) ≥ 2. Indeed, Lemma 4.5 implies that if p ∈ Z>0 is sufficiently
divisible, then µ is the blowup along ap(ordE) and ap(ordE) · OY = OY (−pE).

The following technical statement gives a criterion for when an exceptional divisor
may be extracted. The criterion will be used repeatedly in Section 5.

Proposition 2.2. Let (X,∆) be a klt pair or a plt pair such that ⌊∆⌋ = S is a
non-zero Q-Cartier divisor. If E is a divisor over X satisfying

a := AX,∆(E)− lct(X,∆; a•(ordE)) < 1,

then there exists an extraction µ : XE → X of E and (XE, µ
−1
∗ (∆) + (1− a)E) is lc.

The proposition is a consequence of [BCHM10] and properties of the log canonical
threshold of a graded sequence of ideals.

Proof. See the argument in [Blu17, 1.5] for the case when (X,∆) is klt. If (X,∆) is
plt, observe that (X,∆ε := ∆− εS) is klt for 0 < ε < 1. If we set

aε := AX,∆ε
(ordE)− lct(X,∆ε; a•(ordE)),

then lim
ε→0

aε = a and we may reduce to the klt case. �
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2.3. Filtrations. Let (X,∆) be a n-dimensional log Fano pair. Fix a positive integer
r such that L := −r(KX +∆) is Cartier and write

R = R(X,L) =
⊕

m∈N

Rm =
⊕

m∈N

H0(X,OX(mL))

for the section ring of L. Set M(L) := {m ∈ N |H0(X,OX(mL)) 6= 0}.

Definition 2.3. A filtration F of R we will mean the data of a family of vector
subspaces FλRm ⊆ Rm for m ∈ N and λ ∈ R satisfying

(1) FλRm ⊆ Fλ′Rm when λ ≥ λ′;
(2) FλRm = ∩λ′<λF

λ′Rm;
(3) F0Rm = Rm and FλRm = 0 for λ≫ 0.
(4) FλRm · FλRm′ ⊆ Fλ+λ′Rm+m′ .

A filtration F of R is a called an N-filtration if FλRm = F ⌈λ⌉Rm for all m ∈ N and
λ ∈ R. To give a N-filtration F , it suffices to give a family of subspaces FpRm ⊆ Rm

for m, p ∈ N satisfying (1), (3), and (4).
A filtration F is linearly bounded if there exists C > 0 so that FCmRm = 0 for all

m ∈ N and trivial if FλRm = 0 for all m ∈ N and λ > 0.

2.3.1. Rees construction. Let F be an N-filtration of R. The Rees algebra of F is the
k[t]-algebra

Rees(F) :=
⊕

m∈N

⊕

p∈Z

(FpRm)t
−p ⊆ R[t, t−1].

The associated graded ring of F is

grFR :=
⊕

m∈N

⊕

p∈Z

grpFRm, where grpFRm =
FpRm

Fp+1Rm
.

Note that

Rees(F)⊗k[t] k[t, t
−1] ≃ R[t, t−1] and

Rees(F)

tRees(F)
≃ grFR. (4)

Hence, Rees(F) is said to give a degeneration of R to the associated graded ring of F .
An N-filtration F is finitely generated if Rees(F) is a finitely generated k[t]-algebra.

In this case, we set X := ProjA1 (Rees(F)). By (4),

XA1\0 ≃ X × (A1 \ 0) and X0 ≃ Proj(grFR).

We write D for the Q-divisor that is the closure of ∆× (A1 \ 0) under the embedding
of X × (A1 \ 0) in X .

The scheme X can naturally be endowed with the structure of a test configuration
of (X,∆). The test configuration is called special if (X ,D) → A1 is a Q-Gorenstein
family of log Fano pairs. See [LX14, §3] and [BHJ17, §2] for information on test
configurations and the generalized Futaki invariant.
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With the above setup, consider a subscheme Z ⊂ X and write IZ ⊂ R for the
corresponding homogenous ideal. The scheme theoretic closure of Z × (A1 \ 0) in X ,
denoted by Z, is defined by the ideal

⊕

m∈N

⊕

p∈Z

(FpRm ∩ IZ)t
−p ⊆ Rees(F).

Indeed, the corresponding subscheme agrees with Z × (A1 \ 0) away from 0 and is
torsion free over 0. The above description of Z yields that its scheme theoretic fiber
along 0 is given by the initial ideal

in(IZ) :=
⊕

m∈N

⊕

p∈Z

im(FpRm ∩ IZ → grpFRm) ⊂ grpFRm.

2.3.2. Volume. Given a filtration F of R, we set

vol(FR(x)) := lim sup
m→∞

dim(FxmRm)

mn/n!

for x ∈ R≥0. Assuming F is linearly bounded (which implies vol(FR(x)) = 0 for
x ≫ 0), we set

S(F) :=
1

rn+1(−KX −∆)n

∫ ∞

0

vol(FR(x)) dx.2

By [BC11] (see also [BHJ17, 5.3]),

S(F) = lim
m→∞

(
1

r dim(Rm)

∫ ∞

0

dim(FmxRm) dx

)
(5)

In particular, if F is an N-filtration, then S(F) = limm→∞

∑
p≥0(pdimgrp

F
Rm)

mr dimRm
.

2.3.3. Base ideals. Given a filtration F of R, set

bp,m := im (FpRm ⊗OX(−mL) → OX) .

for p,m ≥ 0. We set bp(F) := bp,m for m ≫ 1. The ideal bp(F) is well defined and
b•(F) is a graded sequence of ideals assuming F is non-trivial [BJ17, 3.17-3.18].

2.3.4. Filtrations induced by valuations. Given v ∈ Val∗X , we set

Fλ
vRm = {s ∈ Rm | v(s) ≥ λ}

for each λ ∈ R and m ∈ N. Equivalently, Fλ
vRm = H0(X,OX(mL) ⊗ aλ(v)). Note

that Fv is a non-trivial filtration of R.
If AX,∆(v) < +∞ , then Fv is linearly bounded [BJ17, 3.1]. In this case, we set

S(v) := S(Fv).

2Note that this differs from the definition of S(F) in [BJ17,BL18] by a factor of 1/r. Since we
are interested in the polarization −KX −∆, not L, such a convention is natural.
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2.3.5. Filtrations induced by divisors. If E is a divisor over X , we write FE := FordE

and S(E) := S(FE). Following [Fuj19a], we say E is dreamy if FE is a finitely
generated filtration of R.

When E arises as a prime divisor on a proper normal model µ : Y → X ,

Fλ
ERm = H0

(
Y,OY (mrµ

∗(−KX −∆)− ⌈λ⌉E)
)
.

Therefore,

S(E) =
1

(−KX −∆)n

∫ ∞

0

vol(µ∗(−KX −∆)− xE) dx.

2.4. K-stability. Based on the original analytic definition in [Tia97], an algebraic
definition of K-(semi,poly)-stability was introduced in [Don02]. Here, we will define
these notations for log Fano pairs using valuations.

2.4.1. β-invariant. Let (X,∆) be an n-dimensional log Fano pair and E a divisor over
X . Following [Fuj19a],

βX,∆(E) := (−KX −∆)n (AX,∆(E)− S(E)) .

More generally, if v ∈ ValX with AX,∆(v) < +∞, we set βX,∆(v) := (−KX −
∆)n

(
AX,∆(v)− S(v)

)
.

Definition 2.4. A log Fano pair (X,∆) is

(1) K-semistable if βX,∆(E) ≥ 0 for all divisors E over X ;
(2) K-stable if βX,∆(E) > 0 for all dreamy divisors E over X ;
(3) uniformly K-stable if there exists an ε > 0 such that

βX,∆(E) ≥ εAX,∆(E)(−KX −∆)n

for all divisors E over X .

The equivalence of the above definition with the original definitions was addressed
in [Fuj19a,Fuj19b,Li17] and the arguments rely on the special degeneration theory of
[LX14]. In Corollary 4.2, we will show that the wordy dreamy may be removed from
Definition 2.4.2.

Definition 2.5. A log Fano pair (X,∆) is K-polystable if it is K-semistable and any
special test configuration (X ,D) → A1 of (X,∆) with (X0,D0) K-semistable satisfies
(X ,D) ≃ (X,∆)× A1.

The equivalence of the above definition with the definition in [LX14, 6.2] relies on
the following result: If (X,∆) is a K-semistable log Fano pair and (X ,D) is a special
test configuration of (X,∆), then Fut(X ,D) = 0 if and only if (X0,D0) is K-semistable
[LWX18b, 3.1].

Definition 2.6. Two K-semistable log Fano pairs (X,∆) and (X ′,∆′) are S -equivalent
if they degenerate to a common K-semistable log Fano pair via special test configu-
rations.
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By [LWX18b, 3.2], S-equivalent log Fano pairs degenerate to a common K-polystable
pair via special test configurations. Furthermore, the K-polystable pair is uniquely
determined up to isomorphism.

2.4.2. δ-invariant. We recall an interpretation of the above discussion using an invari-
ant introduced in [FO18].

Let (X,∆) be a log Fano pair. Fix a positive integer r so that L := −r(KX +∆)
is a Cartier divisor and H0(X,OX(L)) 6= 0. Given m ∈ rN, we say D ∼Q −KX −∆
is m-basis type if there exists a basis {s1, . . . , sNm

} of H0(X,OX(−m(KX +∆)) such
that

D =
1

mNm

(
{s1 = 0}+ · · ·+ {sNm

= 0}
)
.

We set δm(X,∆) := min{lct(X,∆;D) |D ∼Q −KX − ∆ is m-basis type}. The δ-
invariant (also known as the stability threshold) of (X,∆) is

δ(X,∆) = lim sup
m→∞

δmr(X,∆),

and is independent of the choice of r [BJ17, 4.5]. The invariant may also be calculated
in terms of valuations or filtrations.

Theorem 2.7 ([BJ17, Theorems A,C]). We have

δ(X,∆) = inf
E

AX,∆(E)

S(E)
= inf

v

AX,∆(v)

S(v)
,

where the first infimum runs through all divisors E over X and the second through all
v ∈ Val∗X with AX,∆(v) < +∞. Furthermore, the limit lim

m→∞
δmr(X,∆) exists.

Proposition 2.8 ([BL18, Proposition 4.10]). We have

δ(X,∆) = inf
F

lct(X,∆; b•(F))

S(F)

where the infimum runs through all non-trivial linearly bounded filtrations of R(X,L).

Combining Definition 2.4 and Theorem 2.7, we immediately see

Theorem 2.9 ([FO18,BJ17]). A log Fano pair (X,∆) is uniformly K-stable (resp.,
K-semistable) if and only if δ(X,∆) > 1 (resp., ≥ 1).

While in Section 3 we will use the definition of the δ-invariant in terms of m-basis
type divisors, in Section 5 we will rely on its characterization in terms of valuations
and filtrations.
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2.5. Normalized volume. Now, we discuss an invariant similar to the δ-invariant,
but defined in a local setting. The invariant was first introduced in [Li18] and is closely
related to the K-semistability of log Fano pairs.

Let (X,∆) be an n-dimensional klt pair and x ∈ X a closed point. The non-
archimedean link of X at x is defined as

ValX,x := {v ∈ ValX | cX(v) = x } ⊂ ValX .

Definition 2.10 ([Li18]). The normalized volume function v̂ol(X,∆),x : ValX,x →
(0,+∞] is defined by

v̂ol(X,∆),x(v) =

{
A(X,∆)(v)

n · vol(v) if A(X,∆)(v) < +∞;

+∞ if A(X,∆)(v) = +∞.

The volume of the singularity (x ∈ (X,∆)) is defined as

v̂ol(x,X,∆) := inf
v∈ValX,x

v̂ol(X,∆),x(v).

The previous infimum is a minimum by the main result in [Blu18a].

See [LLX18] for a survey on the recent study of the normalized volume function,
especially the guiding question, the Stable Degeneration Conjecture (see [Li18, 7.1]
and [LLX18, 4.1]).

2.5.1. Relation to K-stability. The connection between the normalized volume func-
tion and K-semistability is via the cone construction first studied in [Li17].

Let (X,∆) be a log Fano pair and r a positive integer so that L := −r(KX +∆) is
a Cartier divisor. Let (Z,Γ) denote the cone over X with respect to the polarization
L and x ∈ Z denote the vertex. Specifically, Z = Spec(R), where R = R(X,L) and Γ
is the closure of the pullback of ∆ via the projection map Z \ {x} → X .

There is a natural map XL → Z, where XL := SpecX
(⊕

p≥0OX(pL)
)
is the total

space of the line bundle on X whose sheaf of sections is OX(L). The map is an
isomorphism over Z \ x and the preimage of the vertex is the zero section Xzs ⊂ XL.
We call v0 := ordXzs

the canonical valuation over the cone.

Theorem 2.11 ([Li17, LL19, LX16]). The canonical valuation v0 is a minimizer of

v̂ol(Z,Γ),x if and only if (X,∆) is K-semistable.

At first sight, using the normalized volume function to study the K-stability of log
Fano pairs may seem indirect. However, this approach yields a number of new results
(for example, see [LX16,LWX18b]). In this paper, the following key ingredient in the
proof of Theorem 2.11 plays an important role in the proof of our main result.

Following [Li17, LX16], let E be a divisor over X that arises on a proper normal
model µ : Y → X . Consider the natural birational maps

YL → XL → Z,
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where YL := SpecY
(⊕

m≥0OY (mµ
∗L)

)
. Let Yzs ⊂ YL denote the zero section and E∞

the preimage ofE under the projection YL → Y . Setting vt equal to the quasimonomial
valuation with weights (1, t) along Yzs and E∞ gives a ray of valuations

{vt | t ∈ [0,∞)} ⊂ ValZ,x,

where v0 = ordXzs
and v∞ = ordE∞

. When k ∈ N, there exists a divisor Ek over Z
satisfying v 1

k
= 1

k
ordEk

.

By the formula for the log discrepancy of a quasimonomial valuation [JM12, 5.1],

AZ,Γ(vt) = AZ,Γ(ordXzs
) + tAZ,Γ(ordE∞

) = r−1 + tAX,∆(ordE).

The valuation ideals are given by, for t > 0,

ap(vt) =
⊕

m≥0

FE
(p−m)/tRm ⊆ R and ap(v0) =

⊕

m≥p

Rm ⊆ R.

To see the previous formula holds, fix a uniformizer ω ∈ OY,E and a local section
s of OY (µ

∗L) that trivializes the sheaf at the generic point of E. The choice of s
induces a rational map YL 99K Y ×A1 that is an isomorphism at the generic point of
Yzs ∩E∞. The birational transforms of Yzs and E∞ on Y ×A1 are Y × 0 and E ×A1.

Fix f =
∑

m≥0 fm ∈ R. For m such that fm 6= 0, set gm := fm/ω
ordE(fm), which,

at the generic point of E, is a non-vanishing section of OY (µ
∗L). The image of f in

OY×A1,E×0 equals
∑

m

(
gm
sm

)
ωordE(fm)πm, where π is the parameter for A1. Since π and

ω are local equations for Y × 0 and E ×A1 at the generic point of E × 0 and gm
sm

does
not vanish at E × 0,

vt(f) := min
m

{t · ordE(fm) +m | fm 6= 0}

and the formula for ap(vt) follows.
By the calculation in [Li17, (31, 32)] (see also the proof of [LX16, 4.5] or Lemma 2.12)

d

dt
v̂ol(vt)

∣∣
t=0+

= (n+ 1)βX,∆(E) (6)

This equation is a key input in our proof of Theorem 4.1. More specifically, we will
follow ideas from [LWX18b] and analyze directions along which the normalized volume
function has derivative equal to zero.

2.5.2. C. Li’s derivative formula. In the proof of Theorem 1.1, we will need a more
general version of (6). The more general formula follows from the original argument
in [Li17].

Let (X,∆) be an n-dimensional log Fano pair and r ∈ Z>0 so that L := −r(KX+∆)
is Cartier. Set R = R(X,L) and fix a linearly bounded filtration F of R.

Associated to F , we define a collection of graded sequences of ideals of R. For
t ∈ R>0 and j ∈ Z>0, set

bt,j :=
⊕

m≥0

F (j−m)/tRm ⊂ R and b0,j :=
⊕

m≥j

Rm ⊂ R.
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Note that bt,• is a graded sequence of ideals of R for each for each t ∈ R≥0. Addition-
ally, bt,j contains ⊕m≥jRm.

Lemma 2.12. With the above notation, fix A > 0 and set

f(t) = (r−1 + At)n+1mult(bt,•)

for t ∈ R≥0. The following hold:

(1) mult(bt,•) = rn(−KX −∆)n − (n+ 1)
∫∞

0
vol(FR(x)) t dx

(1+tx)n+2 ;

(2) df
dt
|t=0+ = (n+ 1)(−KX −∆)n (A− S(F)).

Proof. This follows from the argument in [Li17, (18)-(25)]. For the reader’s conve-
nience, we give a brief proof. For t ∈ R>0, we have

mult(bt,•) = lim
j→∞

(n + 1)!

jn+1
dim(R/bt,j)

= lim
j→∞

(n + 1)!

jn+1

∞∑

m=0

dim(Rm/F
(j−m)/tRm)

= lim
j→∞

(n + 1)!

jn+1

j∑

m=0

(
dimRm − dimF (j−m)/tRm

)

= vol(L)− lim
j→∞

(n+ 1)!

jn+1

j∑

m=0

dimF (j−m)/tRm.

Statement (1) now follows from [Li17, (25)], where c1 = 0, α = β = 1
t
.

For (2), compute

df

dt

∣∣∣
t=0+

= (n+ 1)Ar−nmult(b0,•) + r−n−1 d

dt
(mult(bt,•))

∣∣∣
t=0+

.

From (1), we know mult(b0,•) = rn(−KX −∆)n and

d

dt
(mult(bt,•))

∣∣∣
t=0+

= −(n + 1)

∫ ∞

0

(
vol(FR(x))

(
1− (n+ 1)tx

(1 + tx)n+3

))∣∣∣
t=0+

dx.

Since the latter simplifies to −(n + 1)
∫∞

0
vol(FR(x))dx, (2) is complete. �

3. Uniformly K-stable Fanos

In this section, we prove a special case of Theorem 1.1 for uniformly K-stable Fano
varieties. We will then apply the result to study the moduli functor MuKs

n,V .

3.1. Separatedness result. The following result is a special case of Theorem 1.1 and
will be reproved in Section 5. We present its proof independently, since the following
argument is simpler than the proof in Section 5.
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Theorem 3.1. Let π : (X,∆) → C and π′ : (X ′,∆′) → C be Q-Gorenstein families of
log Fano pairs over a smooth pointed curve 0 ∈ C. Assume there exists an isomorphism

φ : (X,∆)×C C
◦ → (X ′,∆′)×C C

◦

over C◦ := C \0. If (X0,∆0) is uniformly K-stable and (X ′
0,∆

′
0) is K-semistable, then

φ extends to an isomorphism (X,∆) ≃ (X ′,∆′) over C.

The proof of Theorem 3.1 follows from properties of the δ-invariant and the following
birational geometry fact.

Proposition 3.2. Let π : (X,∆) → C and π′ : (X ′,∆′) → C be Q-Gorenstein
families of log Fano pairs over a smooth pointed curve 0 ∈ C. Assume there exists an
isomorphism

φ : (X,∆)×C C
◦ → (X ′,∆′)×C C

◦

over C◦ := C \ 0. If there exist effective horizontal3 Q-divisors D and D′ on X and
X ′ satisfying

(1) D ∼Q,C −KX −∆ and D′ ∼Q,C −KX′ −∆′ ,
(2) D is the birational transform of D′, and
(3) (X0,∆0 +D0) is klt and (X ′

0,∆
′
0 +D′

0) is lc,

then φ extends to an isomorphism (X,∆) ≃ (X ′,∆′) over C.

The above proposition is well known to experts and follows from the separatedness
of the moduli functor of klt log Calabi-Yau pairs (e.g. see [Oda12, Theorem 4.3],
[LWX19, Theorem 5.2]). For the convenience of the reader, we prove the result.

Proof. Fix a common log resolution X̂ of (X,∆) and (X ′,∆′)

X̂

X X ′

ψ′ψ

φ

and write X̃0 and X̃ ′
0 for the birational transforms of X0 and X ′

0 on X̂.

First, assume X̃0 = X̃ ′
0. This equality implies φ : X 99K X ′ is an isomorphism in

codimension one. Thus, φ induces an isomorphism

π∗OX(−m(KX +∆)) ≃ π′
∗OX′(−m(KX′ +∆′))

for all m ∈ N. Since

X = ProjC
⊕

m≥0

π∗OX(−m(KX +∆)) and X ′ = ProjC
⊕

m≥0

π′
∗OX′(−m(KX′ +∆′)),

we conclude φ extends to an isomorphism over C.

3A Q-divisor on X or X ′ is called horizontal if its support does not contain a fiber of the map to
C.
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We now assume X̃0 6= X̃ ′
0 and aim for a contradiction. Write

KX̂ + ψ−1
∗ (∆ +D) = ψ∗(KX +∆+D) + aX̃ ′

0 + P

and

KX̂ + ψ′
∗
−1
(∆′ +D′) = ψ′∗(KX′ +∆′ +D′) + a′X̃0 + P ′

where the components of Supp(P ) ∪ Supp(P ′) are both ψ and ψ′-exceptional. By

assumption (2), P − P ′ is supported on X̂0.
Inversion of adjunction and our assumption that (X0,∆0+D0) is klt imply (X,∆+

D +X0) is plt in a neighborhood of X0. Hence,

−1 < a(X̃ ′
0, X,∆+D +X0) = a− ordX̃′

0
(X0).

Since ordX̃′
0
(X0) = 1, we see a > 0. The same argument, but with the assumption

that (X ′
0,∆

′
0 +D′

0) is lc implies a′ ≥ 0.

Observe aX̃ ′
0−a

′X̃0+(P−P ′) ∼Q,C 0, sinceKX+∆+D ∼Q,C 0,KX′+∆′+D′ ∼Q,C 0,

and ψ−1
∗ (D+∆) = ψ′

∗
−1(D′+∆′). Therefore, there exists a rational number c so that

aX̃ ′
0 − a′X̃0 + (P − P ′) ∼Q,C cψ

∗(X0).

Comparing the coefficients of X̃ ′
0 on the two sides implies c > 0, while comparing the

coefficients of X̃0 implies c ≤ 0. This is a contradiction. �

Lemma 3.3. Keep the notation and setup of Theorem 3.1. If m ∈ Z>0 is sufficiently
divisible, then there exist effective horizontal Q-divisors B and B′ on X and X ′ such
that

(1) B ∼Q,C −KX −∆ and B′ ∼Q,C −KX′ −∆′,
(2) B is the birational transform of B′, and
(3) B0 and B′

0 are m-basis type with respect to (X0,∆0) and (X ′
0,∆

′
0).

Proof. Fix a positive integer m so that L := −m(KX −∆) and L′ := −m(KX′ −∆′)
are Cartier and π∗OX(L) and π′

∗OX′(L) are nonzero. Since H i(Xt,OXt
(Lt)) and

H i(X ′
t,OX′

t
(L′

t)) are zero for all i > 0 and t ∈ C by Kawamata-Viehweg vanishing,
π∗OX(L) and π′

∗OX′(L′) are vector bundles. Furthermore, the sheaves satisfy coho-
mology and base change.

Now, the birational map φ induces a map from local sections of π∗OX(L) to rational
sections of π′

∗OX′(L′). After twisting by dX ′
0, where d≫ 0, we get a morphism

π∗OX(L) → π′
∗OX′(L′ + dX ′

0)

that is an isomorphism away from 0 ∈ C. Tensoring by OC,0 gives a morphism

ϕ : π∗OX(L)⊗OC
OC,0 → π′

∗OX′(L′ + dX ′
0)⊗OC

OC,0,

of locally free OC,0 modules that is an isomorphism after tensoring with K(C).
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Write t for the uniformizer of OC,0. Since OC,0 is a principal ideal domain, there
exist bases {s1, . . . , sN} and {s′1, . . . , s

′
N} for the above free modules so that the trans-

formation matrix is diagonal. Hence, for each 1 ≤ i ≤ N , there exist pi ∈ Z≥0 and
ai ∈ O×

C,0 so that ϕ(si) = ait
pis′i.

For a sufficiently small neighborhood 0 ∈ U ⊂ C, we may extend each si to a section
s̃i ∈ π∗OX(L)(U) and s′i to a section s̃′i ∈ π′

∗OX′(L′)(U). Let B and B′ denote the
closures of

1

mN

(
{s̃1 = 0}+ · · ·+ {s̃N = 0}

)
and

1

mN

(
{s̃′1 = 0}+ · · ·+ {s̃′N = 0}

)
.

in X and X ′. By construction, B0 and B′
0 are both m-basis type divisors and B is

the birational transform of B′. �

Proof of Theorem 3.1. Since X0 is uniformly K-stable and X ′
0 is K-semistable,

δ(X0,∆0) > 1 and δ(X ′
0,∆

′
0) ≥ 1.

Hence, we may choose 0 < ε≪ 1 so that

1− ε

δ(X0,∆0)
+

ε

α(X0,∆0)
< 1, (7)

where α(X0,∆0) is Tian’s α-invariant, i.e.

α(X0,∆0) = inf{ lct(X0,∆0;D) | 0 ≤ D ∼Q −KX0
−∆0}.

Next, choose a positive integer M so that

1− ε

δm(X0,∆0)
+

ε

α(X0,∆0)
< 1 and δm(X

′
0,∆

′
0) > 1− ε (8)

for all positive integers m divisible by M . Such a choice is possible by (7), the
inequality δ(X ′

0,∆
′
0) ≥ 1, and the fact that δ is a limit.

Now, fix a positive integer m divisible by M so that the conclusion of Lemma 3.3
holds for m and −m(KX′ + ∆′) is relatively base point free over C. Hence, we may
find Q-divisors B ∼Q,C −KX − ∆ and B′ ∼Q,C −KX′ − ∆′ satisfying the conclusion
of Lemma 3.3 for m. Since B0 and B′

0 are m-basis type,

lct(X0,∆0;B0) ≥ δm(X0,∆0) and lct(X ′
0,∆

′
0;B

′
0) ≥ δm(X

′
0,∆

′
0) > 1− ε.

The latter implies (X ′
0,∆

′
0 + (1− ε)B′

0) is lc.
Since −m(KX′ + ∆′) is relatively base point free over C, after shrinking C in a

neighborhood of 0, we may apply [KM98, Lemma 5.17] to find an effective divisor
G′ ∈ |−m(KX′+∆′)| in general position so that (X ′

0,∆
′
0+(1−ε)B′

0+(ε/m)G′
0) remains

lc. Write G for the birational transform of G′ on X . Note that G ∼Q,C −m(KX +∆),
since the statement holds over C◦. Thus, lct(X0,∆0; (1/m)G0) ≥ α(X0,∆0).

Now, consider the divisors

D := (1− ε)B +
ε

m
G and D′ := (1− ε)B′ +

ε

m
G′.
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Observe that D ∼Q,C −KX − ∆ and D′ ∼Q,C −KX′ − ∆′. As mentioned above,
(X0,∆

′
0 +D′

0) is lc. Additionally, the pair (X0,∆0 +D0) is klt. Indeed, since

1/lct(D + F ) ≤ 1/lct(D) + 1/lct(F )

for any two effective Q-Cartier Q-divisors D and F on a klt pair, we know

1

lct(X0,∆0;D0)
≤

1

lct(X0,∆0; (1− ε)B0)
+

1

lct(X0,∆0; (ε/m)G0)

≤
1− ε

δm(X0,∆0)
+

ε

α(X0,∆0)

which is < 1 by (8). Proposition 3.2 now implies φ extends to an isomorphism. �

Remark 3.4. If (X0,∆0) and (X ′
0,∆

′
0) are only assumed to be K-semistable, then

they are not necessarily isomorphic (but are S-equivalent by Theorem 1.1). Therefore,
we do not expect the the above strategy to be useful in this more general case.

Recall, if (X,∆) is a log Fano pair, then Aut(X,∆) is the closed subgroup of Aut(X)
defined by

Aut(X,∆) := {g ∈ Aut(X) | g∗∆ = ∆}.

The following result is an immediate corollary of Theorem 3.1 and a special case of
Corollary 1.3.

Corollary 3.5. Let (X,∆) be a log Fano pair. If (X,∆) is uniformly K-stable, then
Aut(X,∆) is finite.

Proof. Since Aut(X,∆) is a linear algebraic group, it is affine. To conclude that
Aut(X,∆) is finite, it suffices to show that it is proper. To see the properness, consider
a map g : C◦ → Aut(X,∆), where 0 ∈ C is a smooth pointed curve and C◦ = C \ 0.
The map g induces an isomorphism

(X × C,∆× C)×C C
◦ → (X × C,∆× C)×C C

◦

over C◦. By applying Theorem 3.1 to the above isomorphism, we see f extends to a
map g : C → Aut(X,∆). Hence, Aut(X,∆) is proper, and the proof is complete. �

In [BHJ16, Corollary E], it is shown that the polarized automorphism group of a
uniformly K-stable polarized manifold (X,L) is finite. Their proof uses analytic tools.

Remark 3.6. Our proofs of Theorem 3.1 and Corollary 3.5 extend to the case of
polarized klt pairs (X,∆;L) (that is, (X,∆) is a projective klt pair and L an ample
Q-Cartier divisor on X) such that KX +∆+ L is nef and δ(X,∆;L) > 1.

3.2. Moduli spaces.

Proof of Corollary 1.4. As previously mentioned, the result relies on [Jia17,BL18] and
Theorem 3.1. Indeed, [Jia17] (see also [Che18] or [LLX18, 6.14]) states that the set
of varieties MuKs

n,V (k) is bounded. Hence, there exists a positive integer M so that
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−MKX is a very ample Cartier divisor for all X ∈ MuKs
n,V (k). Furthermore, the set of

Hilbert functions m 7→ χ
(
ω
[−mM ]
X

)
with X ∈ MuKs

n,V (k) is finite.

For such a Hilbert function h, consider the subfunctor MuKs
h ⊂ MuKs

n,V parame-
terizing uniformly K-semistable Q-Fano varieties with Hilbert function h. Note that
MuKs

n,V =
∐

hM
uKs
h . Set N := h(1)−1, and let Hilb(PN) be the Hilbert scheme param-

eterizing closed subschemes of PN with Hilbert polynomial h. Write X → Hilb(PN)
for the corresponding universal family.

Now, let U ⊂ Hilb(PN) denote the open subscheme parameterizing normal, Cohen-
Macaulay varieties. By [HK04, 3.11], there is a locally closed subscheme V ⊂ U
such that a map T → U factors through V if and only if there is an isomorphism

ω
[−M ]
XT /T

≃ LT ⊗OXT
(1), where LT is the pullback of a line bundle from T . By applying

[BL18] to the normalization of V , we see

V ′ := {t ∈ V |Xt is a uniformly K-stable Q-Fano variety}

is open in V . Finally, we apply [Kol09, 25] or [AH11] to find a locally closed decom-
position W → V ′ such that a morphism T → V ′ factors through W if and only if
XT → X satisfies Kollár’s condition.

As a consequence of the above discussion, MuKs
h ≃ [W/PGL(N + 1)]. Theorem

3.1 implies MuKs
h is a separated Deligne-Mumford stack. Furthermore, we may apply

[KM97] to see MuKs
h has a coarse moduli space MuKs

h , which is a separated algebraic
space. �

4. Places computing the δ-invariant

In this section, we will study the cases when valuations, ideals, and Q-divisors
compute the δ-invariant. The results proved here are related to Conjecture 1.5 and
will be used in the proof of Theorem 1.1.

4.1. Divisors computing δ.

Theorem 4.1. Let (X,∆) be a K-semistable log Fano pair. If E is a divisor over

X satisfying δ(X,∆) =
AX,∆(E)

S(E)
= 1, then E is dreamy and induces a non-trivial

special test configuration (X ,D) such that Fut(X ,D) = 0. In particular, (X,∆) is not
K-stable.

The proof follows an argument in [LWX18b, Section 3.1]. The argument will be
used again in the proof of Lemma 5.10 in a relative setting.

Proof. Fix a positive integer r so that L := −r(KX +∆) is a Cartier divisor and set
R = R(X,L). Consider the cone (Z,Γ) over (X,∆) with respect to the polarization
L.

The divisor E over X induces a ray of valuations

{vt | t ∈ [0,∞)} ⊂ ValZ,x
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(see Section 2.5.1). For k ∈ Z>0, there is a divisor Ek over Z so that v 1
k
= 1

k
ordEk

.

By (6),
d

dt
v̂ol(vt)

∣∣
t=0+

= (n+ 1)βX,∆(E).

Since AX,∆(E)− S(E) = 0, we know βX,∆(E) = 0. Defining f(t) := v̂ol(vt), a Taylor
expansion gives

f(t) = f(0) +O(t2) for 0 ≤ t≪ 1.

For a fixed positive integer k, set

ak,• := a•(ordEk
) and ck := lct(Z,Γ; ak,•).

Note that ck ≤ AZ,Γ(Ek) by (3). This implies

f(0) ≤ cn+1
k ·mult(ak,•) ≤ f

(
1

k

)
= AZ,Γ(Ek)

n+1 ·mult(ak,•),

where the first inequality follows from [Liu18, 7] and the assumption that (X,∆) is
K-semistable. Therefore,

(
1

1 +O(1/k2)

) 1
n+1

≤

(
f(0)

f(1/k)

) 1
n+1

≤
ck

AZ,Γ(Ek)
≤ 1.

Since (1 +O(1/k2))1/(n+1) is of the order 1 +O(1/k2), we see

1−O

(
1

k2

)
=

ck
AZ,Γ(Ek)

≤ 1.

Using that AZ,Γ(Ek) = kr−1 + AX,∆(E),

lim
k→∞

(AZ,Γ(Ek)− ck) = lim
k→∞

(
AZ,Γ(Ek)

(
1−

ck
AZ,Γ(Ek)

))
= 0.

Hence, we may fix k ≫ 0 so that AZ,Γ(Ek)− ck < 1.
By Proposition 2.2, there exists a proper birational morphism µk : Zk → Z such

that Ek ⊂ Zk and −Ek is ample over Z. Therefore,
⊕

p≥0 µk∗OZk
(−pEk) is a finitely

generated OZ-algebra. Since µk∗(OZk
(−pEk)) = ap(kv1/k), the latter implies

⊕

p∈N

⊕

m∈N

Fp−mk
E Rm

is a finitely generated R-algebra. Therefore, Rees(FE) is finitely generated as well and
E is dreamy.

Let (X ,D) denote the test configuration induced by FE. The test configuration is
normal and non-trivial [Fuj17, 3.8] and Fut(X ,D) is a multiple of AX,∆(E) − S(E)
[Fuj19a, 6.12], which is zero. We conclude (X ,D) is special, since otherwise there
would exist a test configuration of (X,∆) with negative Futaki invariant [LX14, 1]. �

An immediate corollary to Theorem 4.1 is the following strengthening of [Fuj19a,
1.6] and [Li18, 3.7]. The result was expected in the arXiv version of [Li18].
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Corollary 4.2. A log Fano pair (X,∆) is K-stable if and only if βX,∆(E) > 0 for any
divisor E over X.

Proof. Theorem 4.1 implies the forward implication. The reverse implication was
shown in [Fuj19a, 1.6] and [Li18, 3.7]. �

4.2. Ideals computing δ. Let (X,∆) be a log Fano pair and a ( OX a nonzero
ideal. Write π : Y → X for the normalized blowup of X along a and E for the
effective Cartier divisor on Y such that a · OY = OY (−E). We set

S(a) :=
1

vol(−KX −∆)

∫ +∞

0

vol(π∗(−KX −∆)− tE) dt.

Proposition 4.3. If (X,∆) is a log Fano pair and a ( OX a nonzero ideal, then

lct(X,∆; a)

S(a)
≥ δ(X,∆). (9)

Furthermore, write π : Y → X for the normalized blowup of a and E for the Cartier
divisor on Y such that a · OY = OY (−E). If (9) is an equality, then Supp(E) is a
prime divisor and computes δ(X,∆).

The above proposition is an analog of [LX16, Theorem 3.11] for the δ-invariant and
is similar to [Fuj19b, Corollary 3.22].

Proof. Choose a divisor F over X computing lct(X,∆; a). By [BCHM10], there is an
extraction ρ : XF → X of F . Set p := ordF (a). Hence, AX,∆(F )/p = lct(X,∆; a) and
a
k · OXF

⊆ OXF
(−kpF ) for all k ∈ N.

By the previous inclusion, if we set L := −KX −∆, then

vol(π∗L− tE) ≤ vol(ρ∗L− tpF )

for all t ∈ R≥0. Hence, S(a) ≤ p−1S(F ), and we see

lct(a)

S(a)
≥
AX,∆(F )

S(F )
.

Since AX,∆(F )/S(F ) ≥ δ(X,∆), (9) holds.
Now assume (9) is an equality. In this case, the above argument implies F computes

δ(X,∆). To finish the proof, it suffices to show Y = XF and Supp(E) = F .
Fix a positive integer k so that −kpF is Cartier and choose an ideal c ⊆ OXF

such
that

a
k · OXF

= c · OXF
(−pkF ).

Write τ : Z → XF for the normalized blowup of XF along c and G for the Cartier
divisor on Z such that c · OZ = OZ(−G). Since Z is normal and

a
k · OZ = (c · OXF

(−pkF )) · OZ = OZ(−pkτ
∗(F )−G)

is locally free, ρ ◦ τ factors through π:
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Z

Y XF

X

σ τ

π ρ

.

Additionally, σ∗(E) = τ ∗(pF ) + k−1G.
If we can show c = OXF

, the proof will be complete. Indeed, if c = OXF
, then τ is

an isomorphism and σ∗E = pF . But, since σ∗E = pF is anti-ample over X , σ must
also be an isomorphism and we are done.

We claim that if c ( OXF
, then

vol(π∗L− tE) < vol(ρ∗L− tpF )

for 0 < t≪ 1 and, thus, S(a) < (1/p)S(F ). Since, we will then have

δ(X,∆) ≤
AX,∆(F )

S(F )
<

lct(a)

S(a)
= δ(X,∆),

a contradiction will be reached.
To prove the above claim, fix 0 < ε ≪ 1/k so that H := pτ ∗F + εG is anti-ample

over X . Note that by our choice of ε, we also have

vol(π∗L− tE) = vol(τ ∗(ρ∗L)− tσ∗E) ≤ vol(τ ∗(ρ∗L)− tH).

Therefore, it suffices to show

vol(τ ∗(ρ∗L)− tH) < vol(ρ∗L− tpF )

for 0 < t≪ 1.
Fix 0 < t ≪ 1 so that both At := ρ∗L − tpF and Bt := τ ∗(ρ∗L) − tH are both

ample. Following an argument in [Fuj19b, 3.3], we note that for 0 ≤ i ≤ n− 1,

0 ≤ εtG · (τ ∗At)
i · Bn−i−1

t

= (τ ∗At − Bt) · (τ
∗At)

i · Bn−i−1
t ,

since G is effective, τ ∗At is nef, and Bt is ample. Additionally,

0 < (τ ∗At −Bt) · B
n−1
t .

We now see

0 <

n−1∑

i=0

(
(τ ∗At − Bt) · (τ

∗At)
i ·Bn−i−1

t

)

= (τ ∗At)
n − (Bt)

n

= vol(ρ∗L− tpF )− vol(τ ∗(ρ∗L)− tH),

and conclude vol(ρ∗L− tpF ) < vol(τ ∗(ρ∗L)− tH) for 0 < t≪ 1. �
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4.3. Q-divisors computing δ. Let (X,∆) be a log Fano pair, µ : Y → X a proper
birational morphism with Y normal, and E an effective Q-Cartier Q-divisor on Y such
that −E is µ-ample. We set ap(E) := µ∗OY (−⌈pE⌉) ⊆ OX and

S(E) :=
1

(−KX −∆)n

∫ ∞

0

vol(µ∗(−KX −∆)− tE) dt.

Proposition 4.4. With the above notation, we have

lct(X,∆; a•(E))

S(E)
≥ δ(X,∆). (10)

Furthermore, if (10) is an equality, then Supp(E) is a prime divisor.

The statement is a consequence Proposition 4.3 and the following elementary lemma.

Lemma 4.5. Let µ : Y → X be a proper birational morphism of normal varieties and
E an effective Q-Cartier Q-divisor on Y such that −E is µ-ample. Set

ap(E) := µ∗OY (−⌈pE⌉) ⊆ OX .

If p ∈ Z>0 is sufficiently divisible, then

(1) Y is the blowup of X along ap(E),
(2) ap(E) · OY = OY (−pE), and

(3) (ap(E))
ℓ = apℓ(E) for all ℓ ∈ Z>0.

Proof. Since −E is ample over X ,
⊕

m∈N am(E) is a finitely generated OX -algebra

and Y ≃ ProjX
(⊕

m∈N am(E)
)
. The former statement implies that if p ∈ Z>0 is

sufficiently divisible, then the p-th Veronese,
⊕

m∈N apm(E), is finitely generated in
degree 1. Hence, (1) and (3) are complete. For (2), observe that the natural map
µ∗µ∗OX(−pE) → OY (−pE) is surjective for p ∈ Z>0 sufficiently divisible, since −E
is µ-ample. �

Proof of Proposition 4.4. Fix p ∈ Z>0 satisfying (1)-(3) of Lemma 4.5 and set a :=
ap(E). By (1) and (2), p · S(a) = S(E). By (3)

lct(X,∆; a•(E)) := lim
m→∞

(mp · lct(X,∆; apm(E))) = p · lct(X,∆; a).

The result now follows immediately from Proposition 4.3. �

5. Constructing the S-equivalence

In this section, we prove Theorem 1.1. In Section 5.1 we will construct filtrations
of

R =
⊕

m∈N

H0(X0,−mr(KX0
+∆0)) and R′ =

⊕

m∈N

H0(X ′
0,−mr(KX′

0
+∆′

0)),

whose associated graded rings are isomorphic. Then in Section 5.2, we concentrate on
proving that these filtrations and their associated graded rings are finitely generated.
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5.1. Filtrations induced by degenerations. Let

π : (X,∆) → C and π′ : (X ′,∆′) → C

be Q-Gorenstein families of n-dimensional log Fano pairs over a smooth pointed curve
0 ∈ C. Assume there exists an isomorphism

φ : (X,∆)×C C
◦ → (X ′,∆′)×C C

◦

over C◦ := C \ 0 that does not extend to an isomorphism (X,∆) ≃ (X ′,∆′) over C.
Furthermore, assume C is affine and there exists t ∈ O(C) so that divC(t) = 0.

From this setup, we will construct filtrations on the section rings of the special
fibers. Set L := −r(KX + ∆) and L′ := −r(KX′ + ∆′), where r is a positive integer
so that L and L′ are Cartier. For each non-negative integer m, set

Rm := H0(X,OX(mL)) R′
m := H0(X ′,OX′(mL′))

Rm := H0(X0,OX0
(mL0)) R′

m := H0(X ′
0,OX′

0
(mL′

0)).

Additionally, set

R := ⊕mRm, R := ⊕mRm, R′ := ⊕mR
′
m, and R′ := ⊕mR

′
m.

Observe that the natural maps

Rm ⊗ k(0) → Rm and R′
m ⊗ k(0) → R′

m

are isomorphisms. Indeed, Kawamata-Viehweg applied to the fibers of π and π′ implies
Riπ∗OX(mL) and R

iπ′
∗OX′(mL′) vanish for all i > 0 and m ≥ 0. Hence, π∗OX(mL)

and π′
∗OX′(mL′) are vector bundles and their cohomology commutes with base change.

Since C is affine, Rm and R′
m can be identified with the OC-module π∗OX(mL) and

π′
∗OX′(mL′), and the statement follows.

Fix a common log resolution X̂ of (X,∆) and (X ′,∆′)

X̂

X X ′

ψ′ψ

φ

and write X̃0 and X̃ ′
0 for the birational transforms of X0 and X ′

0 on X̂. Set

a := AX,∆+X0
(X̃ ′

0) and a′ := AX′,∆′+X′
0
(X̃0). (11)

Observe that X̃0 6= X̃ ′
0, since otherwise φ would extend to an isomorphism over C by

the second paragraph of the proof of Proposition 3.2.

5.1.1. Definition of filtrations. For each p ∈ Z and m ∈ N, set

FpRm := {s ∈ Rm | ordX̃′
0
(s) ≥ p}, and F ′pR′

m := {s ∈ R′
m | ordX̃0

(s) ≥ p}.

We define N-filtrations of R and R′ by setting

FpRm := im(FpRm → Rm) and F ′pR′
m := im(F ′pR′

m → R′
m),
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where the previous maps are given by restriction of sections. It is straightforward to
check that F and F ′ are filtrations of R and R′.

Observe that Rm ≃ Rm/tRm and FpRm ≃ im(FpRm → Rm/tRm) ≃ FpRm

FpRm∩tRm

and similar statement holds for F ′. Therefore, we have natural isomorphisms

grpFRm ≃
FpRm

(FpRm ∩ tRm) + Fp+1Rm
grpF ′R

′
m ≃

F ′pR′
m

(F ′pR′
m ∩ tR′

m) + F ′p+1R′
m

. (12)

5.1.2. Relating the filtrations. We aim to show that grFR and grF ′R′ are isomorphic
up to a grading shrift.

Since ψ∗(X0) = ψ′∗(X ′
0) have multiplicity one along X̃0 and X̃ ′

0, we may write

KX̂ + ψ−1
∗ (∆) = ψ∗(KX +∆) + aX̃ ′

0 + P

and

KX̂ + ψ′
∗
−1
(∆′) = ψ′∗(KX′ +∆′) + a′X̃0 + P ′,

where the components of Supp(P ) ∪ Supp(P ′) are both ψ and ψ′-exceptional. Now,

FpRm ≃ H0
(
X̂,OX̂

(
mψ∗L− pX̃ ′

0

))

= H0
(
X̂,OX̂

(
mψ′∗L′ + (mra− p)X̃ ′

0 −mra′X̃0 +mr(P − P ′)
))
.

Hence, for s ∈ FpRm, multiplying ψ∗s by tmra−p gives an element of

H0
(
X̂,OX̂

(
mψ′∗L′ − (mr(a+ a′)− p)X̃0

))
,

which can be identified with F ′mr(a+a′)−pR′
m.

As described above, for each p ∈ Z and m ∈ N, there is a map

ϕ̃p,m : FpRm −→ F ′mr(a+a′)−pR′
m,

which, when Rm and R′
m are viewed as submodules of K(X) and K(X ′), sends

s 7→ tmra−p(φ−1)∗(s). Similarly, there is a map

ϕ̃′
p,m : F ′pR′

m −→ Fmr(a+a′)−pRm,

which sends s′ 7→ tmra
′−pφ∗(s′). Observe that ϕ̃′

mr(a+a′)−p,m ◦ ϕ̃p,m is the identity map,

since the composition corresponds to multiplication by tmra
′−(mr(a+a′)−p)tmra−p = 1.

Hence, ϕ̃p,m is an isomorphism.

Lemma 5.1. For each p ∈ Z and m ∈ N,

(1) ϕ̃p,m(F
pRm ∩ tRm) = F ′mr(a+a′)−p+1R′

m;
(2) ϕ̃p,m(F

p+1Rm) = F ′mr(a+a′)−pR′
m ∩ tR′

m.

Proof. To see (1), fix s ∈ FpRm. Now, s ∈ tRm if and only if s vanishes along X0,
which is equivalent to the condition that

ψ∗s ∈ H0
(
X̂,OX̂

(
mψ∗L− pX̃ ′

0 − X̃0

))
.
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Since the latter holds precisely when

tmra−pψ∗s ∈ H0
(
X̂,OX̂

(
mψ′∗L′ − (mr(a+ a′)− p+ 1)X̃0

))
,

which is identified with F ′mr(a+a′)−p+1R′
m, (1) holds. (2) follows from a similar argu-

ment. �

Proposition 5.2. The collection of maps (ϕ̃p,m) induce an isomorphism of graded
rings

ϕ :
⊕

m∈N

⊕

p∈Z

grpFRm →
⊕

m∈N

⊕

p∈Z

gr
mr(a+a′)−p
F ′ R′

m.

Hence, grpFRm and grpF ′R′
m vanish for p > mr(a + a′).

Proof. For fixed p ∈ Z and m ∈ N, consider the natural maps

̺ : FpRm → grpFRm and ̺′ : F ′mr(a+a′)−pR′
m → gr

mr(a+a′)−p
F ′ R′

m.

By (12) and Lemma 5.1, ϕ̃p,m sends the kernel of ̺ to the kernel ̺′. Hence, ϕ̃p,m
induces an isomorphism ϕp,m : grpFRm → gr

mr(a+a′)−p
F ′ R′

m.
Write ϕ : grFR → grF ′R′

m for the induced module isomorphism on the direct sums.
Since

ϕ̃p,m(s̃1)ϕ̃q,ℓ(s̃2) = ϕ̃p+q,m+ℓ(s̃1 · s̃2)

for any s̃1 ∈ FpRm and s̃2 ∈ F qRℓ, we see ϕ is a ring isomorphism. Since grpFRm

and grpF ′R′
m vanish when p < 0, the isomorphism ϕ implies the vanishing when p >

mr(a + a′). �

5.1.3. Properties of the filtrations.

Lemma 5.3. For each positive integer p,

bp(F) = ap(ordX̃′
0
) · OX0

and bp(F
′) = ap(ordX̃0

) · OX′
0
.

Proof. Recall that

bp(F) := im(FpRm ⊗OX0
(−mL0) → OX0

)

for m≫ 0. Since FpRm := im(FpRm → Rm), we see

bp(F) = im
(
FpRm ⊗OX(−mL) → OX

)
· OX0

.

Therefore, proving the first equality reduces to showing

ap(ordX̃′
0
) = im

(
FpRm ⊗OX(−mL) → OX

)

for m≫ 0. Since FpRm = H0(X,OX(mL)⊗ ap(ordX̃′
0
)) and L is π-ample, the latter

statement holds. The argument for bp(F
′) is the same. �

Proposition 5.4. The following hold:

(1) a ≥ lct(X ,∆+X0 ; a•(ordX̃′
0
)) = lct(X0,∆0; b•(F));

(2) a′ ≥ lct(X ′,∆′ +X ′
0; a•(ordX̃0

)) = lct(X ′
0,∆

′
0; b•(F

′)).
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Proof. The first pair of inequalities holds by (3). The second pair follows from Lemma
5.3 and inversion of adjunction. �

Proposition 5.5. The filtrations F and F ′ of R and R′ are linearly bounded, non-
trivial, and satisfy

a+ a′ = S(F) + S(F ′).

Proof. Proposition 5.2 implies FpRm = 0 and F ′pR′
m = 0 when m > 0 and p >

mr(a + a′). Therefore, F and F ′ are linearly bounded.
The base ideals bp(F) and bp′(F

′) are non-zero for p > 0 by Lemma 5.3. Therefore,
the filtrations cannot be trivial.

Applying Proposition 5.2, we see
∑

p≥0

(p dim grpFRm) +
∑

p≥0

(p dim grpF ′R
′
m) =

∑

p≥0

(p dim grpFRm) +
∑

p≥0

(
p dim gr

mr(a+a′)−p
F Rm

)

=
∑

p≥0

(mr(a + a′) dim grpFRm) .

= mr(a+ a′) dimRm.

Combining the previous equation with (5) gives S(F) + S(F ′) = a+ a′. �

It also natural to rescale the above values and set

β := (−KX0
−∆0)

n(a− S(F)) and β ′ := (−KX′
0
−∆′

0)
n(a′ − S(F ′)).

In this language, Proposition 5.5 states that β + β ′ = 0.

5.2. Proof of Theorem 1.1. The goal of this subsection is to prove Theorem 1.1.
To do so, we consider the filtrations defined in Section 5.1. Under the hypothesis that
(X0,∆0) and (X ′

0,∆
′
0) are K-semistable, we will show that the filtrations are induced

by dreamy divisors.
Furthermore, we will prove that these dreamy divisors induce special test configura-

tions (X ,D) and (X ′,D′) of (X0,∆0) and (X ′
0,∆

′
0) with generalized Futaki invariant

zero. Hence, the log Fano pairs cannot be K-stable. Proposition 5.2 will then be used
to show that (X0,D0) ≃ (X ′

0,D
′
0) and allow us to conclude that (X0,∆0) and (X ′

0,∆
′
0)

degenerate to a common K-semistable log Fano pair.

Proof of Theorem 1.1. Assume (X0,∆0) and (X ′
0,∆

′
0) are both K-semistable and φ

does not extend to an isomorphism. We must show (X0,∆0) and (X ′
0,∆

′
0) are S-

equivalent and not K-stable. To do so, we use the filtrations F and F ′ constructed in
Section 5.1.

Since (X0,∆0) and (X ′
0,∆

′
0) are K-semistable, Proposition 2.8 implies

lct(X0,∆0; b•(F)) ≥ S(F) and lct(X ′
0,∆

′
0; b•(F

′)) ≥ S(F ′).

Combining the previous inequalities with Propositions 5.4 and 5.5, we see

a = lct(X,∆+X0; a•(ordX̃′
0
)) = lct(X0,∆0; b•(F)) = S(F) (13)
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and
a′ = lct(X ′,∆′ +X ′

0; a•(ordX̃0
)) = lct(X ′

0,∆
′
0; b•(F

′)) = S(F ′). (14)

Furthermore, δ(X0,∆0) = δ(X ′
0,∆

′
0) = 1.

By the first pair of equalities in (13) and (14), we may apply Proposition 2.2 to ex-

tract X̃ ′
0 over X and X̃0 over X

′. Specifically, there exist proper birational morphisms
µ and µ′:

V ∪W ⊂ Y Y ′ ⊃ V ′ ∪W ′

X0 ⊂ X X ′ ⊃ X ′
0

C

µ µ′

φ

π π′

such that the following hold:

(1) the fibers of Y (respectively, Y ′) over 0 contains two components V and W
(respectively, V ′ and W ′) and they are the birational transforms of X0 and
X ′

0;
(2) −W and −V ′ are ample over X and X ′ respectively;
(3) (Y, V +W + µ−1

∗ ∆) and (Y ′, V ′ +W ′ + µ′−1
∗ ∆′) are lc.

We write
µ0 : V → X0 and µ′

0 : W
′ → X ′

0

for the restrictions of µ and µ′ to V and W ′. Clearly, µ0 and µ
′
0 are proper birational

morphisms.

Lemma 5.6. The pairs (Y, V + µ−1
∗ ∆) and (Y ′,W ′ + µ′−1

∗ ∆′) are plt. Hence, V and
W ′ are normal.

Proof. By inversion of adjunction, (X,X0 +∆) is plt. Therefore, (Y, V +µ−1
∗ ∆) is plt

away from Exc(µ) = W . Since (Y, V +W + µ−1
∗ ∆) is lc, (Y, V + µ−1

∗ ∆) cannot have
lc centers in W . Therefore, (Y, V + µ−1

∗ ∆) is plt, and V is normal by [KM98, 5.52].
The same argument works for Y ′. �

Now, consider the restrictions of W and V ′ to the birational transforms of X0 and
X ′

0:
E := W |V and E ′ := V ′|W ′.

Since W and V ′ are Q-Cartier, but not necessarily Cartier, E and E ′ may have
fractional coefficients.

The Q-divisors E and E ′ induce N-filtrations on R and R′ defined by

Fp
ERm := H0

(
V,OV

(
µ∗
0(mL0)− ⌈pE⌉

))
⊆ Rm

and
Fp
E′R

′
m := H0

(
W ′,OW ′

(
µ0

′∗(mL′
0)− ⌈pE ′⌉

))
⊆ R′

m
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for p,m ≥ 0. Note that

FpRm ⊆ Fp
ERm and F ′pR′

m ⊆ Fp
E′R

′
m.

Therefore,

S(F) ≤ S(FE) and S(F ′) ≤ S(FE′). (15)

Lemma 5.7. The supports F := Supp(E) and F ′ := Supp(E ′) are prime divisors
Furthermore,

(1) F computes δ(X0,∆0) and E = 1
d
F for some positive integer d;

(2) F ′ computes δ(X ′
0,∆

′
0) and E

′ = 1
d′
F ′ for some positive integer d′.

Proof. Since −W is ample over X , the restriction map

µ∗OY (−pW ) → µ0∗OV (−pE)

is surjective for all positive integers p sufficiently divisible. Hence, if we set

ap(E) := µ0∗OV (−pE) ⊆ OX0
,

then ap(E) = ap(ordW ) · OX0
for such p and inversion of adjunction yields

lct(X0,∆0; a•(E)) = lct(X,∆+X0; a•(ordW )).

Combining the previous equality with (13) and (15) yields

lct(X0,∆0; a•(E)) = S(F) ≤ S(FE). (16)

Since (X0,∆0) is K-semistable, Proposition 4.4 implies (16) is an equality and F :=
Supp(E) is a prime divisor. Therefore, S(F) = S(FE) and F := Supp(E) is a prime
divisor that computes δ(X0,∆0).

To see E = 1
d
F for a positive integer d, we cut by hyperplanes to reduce the

statement to a surface computation. The statement then follows from the fact that
(Y, V +W + µ−1

∗ (∆)) is lc and the classification of lc surface pairs ([Kol13, 3.32] and
[Kol13, 3.35.2]). The argument for E ′ is identical. �

Lemma 5.8. For all but finitely many x ∈ R≥0,

vol(FER
(x)) = vol(FR(x)) and vol(FE′R′(x)) = vol(F ′R′(x)).

Proof. As shown in the proof of Lemma 5.7, S(F) = S(FE). Hence,

1

rLn

∫ ∞

0

vol(FR(x)) dx = S(F) = S(FE) =
1

rLn

∫ ∞

0

vol(FER
(x)) dx.

Since vol(FR(x)) ≤ vol(FER
(x)) by (15) and the two functions are continuous at all

but one value [BHJ17, 5.3.ii], the desired equality holds. �

Proposition 5.9. For all p ∈ Z and m ∈ N,

FpRm = Fp
ERm and F ′pR′

m = Fp
E′R

′
m.
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Proving this key proposition amounts to showing that the restriction map

H0
(
Y,OY

(
mµ∗L− pW

))
→ H0

(
V,OV

(
mµ∗

0L0 − ⌈pE⌉
))

is surjective. Since such a statement is quite subtle, we will not study this restriction
map directly. Instead, we use a construction that originated in [Li17] (with a refining
analysis from [LWX18b]) and work on the cone over our family of log Fano pairs.

Consider the relative cone over (X,∆) → C with polarization L given by

Z := C(X/C,L) = Spec(R) → C.

Write σ : C → Z for the section of cone points and Γ for the closure of the inverse
image of ∆ under the projection Z \ σ(C) → X . Note that the fiber of (Z,Γ) over 0,
denoted (Z0,Γ0), is the cone over (X0,∆0) and Z0 = Spec(R).

There is a natural proper birational morphism YL → Z, where YL := SpecY
(⊕

m≥0OY (mL)
)
,

and it is the total space of the line bundle whose sheaf of sections is OY (mL). We
write Yzs ⊂ YL for the zero section andW∞ for the preimage ofW under the projection
map YL → Y . Hence, Yzs ∩W∞ ≃W .

Associated to the divisor W over X , is a ray of valuations

{wt | t ∈ [0,∞)} ⊂ ValZ ,

where wt is the quasi-monomial valuation with weights (1, t) along Yzs and W∞. For
each positive integer k, let Wk denote the divisor over X such that w1/k =

1
k
ordWk

.
Note that

AZ,Γ+Z0
(wt) = AZ,Γ+Z0

(ordYzs) + tAZ,Γ+Z0
(ordW∞

) = AZ,Γ+Z0
(ordYzs) + tAX,∆+X0

(ordW )

= r−1 + ta

and, by a local computation as in 2.5.1,

ap(wt) =
⊕

m∈N

F (p−m)/tRm ⊆ R. (17)

Therefore,

ap(wt) · OZ0
=

⊕

m∈N

F (p−m)/tRm ⊆ R. (18)

We also consider a ray in the valuation space of Z0. Consider the natural map
VL0

→ Z0, where VL0
= SpecV

(⊕
m≥0 OV (mµ

∗
0L0)

)
. We write Vzs ⊂ VL0

for the zero
section and F∞ for the inverse image of F under the projection VL0

→ V . Let vt
denote the the quasi-monomial valuation with weights (1, td) along Vzs and F∞. Note
that

ap(vt) =
⊕

m∈N

F
(p−m)d/t
F Rm =

⊕

m∈N

F
(p−m)/t
E Rm ⊆ R. (19)

For each positive integer k divisible by d, there is a divisor Fk over Z0 such that
v1/k = d

k
ordFk

. Since F computes δ(X0,∆0) = 1, the proof of Theorem 4.1 implies
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that Fk may be extracted for k ≫ 0. Let

ρk : Z0,Fk
→ Z0

denote this extraction.

Lemma 5.10. For k ≫ 0, there exists an extraction τk : ZWk
→ Z of Wk over Z such

that (ZWk
,Wk + τk∗

−1(Γ + Z0)) is lc.

Proof. For t ∈ R≥0, let a•(wt)·OZ0
denote the restriction of a•(wt) to a graded sequence

of ideals on Z0. By Lemma 2.12.1 and Lemma 5.8,

mult(a•(wt) · OZ0
) = mult(a•(vt)) (20)

for each t ∈ R≥0.
Set

f(t) :=
(
r−1 + at

)n+1
mult(a•(wt) · OZ0

).

Applying Lemma 2.12, we see

f(0) = (−KX0
−∆0)

n and f ′(0) = (−KX0
−∆0)

n(a− S(F)) = 0.

Hence, a Taylor expansion gives f(t) = f(0) +O(t2) for 0 < t≪ 1.
For each positive integer k, define

ck := lct(Z,Γ + Z0; a•(ordWk
)).

Note that ck ≤ AZ,Γ+Z0
(Wk) = kr−1 + a by (3). Additionally,

ck = k · lct(Z,Γ + Z0; a•(w1/k)) = k · lct(Z0,Γ0; a•(w1/k) · OZ0
)

by inversion of adjunction and the relation a•k(ordWk
) = a•(w1/k). Therefore,

f(0) ≤ lct
(
Z0,Γ0; a•(w1/k) · OZ0

)n+1
mult

(
a•(w1/k) · OZ0

)

=
(ck
k

)n+1

mult
(
a•(w1/k) · OZ0

)
≤ f

(
1

k

)
,

where the first inequality follows from [Liu18, 7] and the assumption that (X0,∆0) is
K-semistable (see also [Li17, Theorem 3.1] and [LX16, Theorem A]).

Now, set ak := AZ,Γ+Z0
(Wk) − ck. As in the proof of Theorem 4.1, the previous

inequalities imply lim
k→∞

ak = 0. Hence, if k ≫ 0, Proposition 2.2 yields an extraction

τk : ZWk
→ Z of Wk such that the pair

(ZWk
, τk

−1
∗ (Γ + Z0) + (1− ak)Wk)

is lc. Since lim
k→∞

(1 − ak) = 1, the ACC for log canonical thresholds [HMX14] implies

(ZWk
, τk

−1
∗ (Γ + Z0) +Wk) must be lc when k ≫ 0. �

From now on, we fix a positive integer k so that d divides k, there exist extractions

ρk : Z0,Fk
→ Z0 and τk : ZWk

→ Z,

and (ZWk
, τk

−1
∗ (Γ + Z0) +Wk) is lc. The argument used to prove Lemma 5.6 implies

(ZWk
, τk

−1
∗ (Γ + Z0)) is plt and τk

−1
∗ (Z0) is normal.
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Lemma 5.11. We have a diagram

Fk ⊂Z0,Fk
ZWk

⊃Wk

Z0 Z

ρk τk

(i.e. the birational transform of Z0 on ZWk
is the extraction of Fk). Additionally,

(i) Wk|Z0,Fk
= 1

d
Fk and

(ii) dWk is Cartier at the generic point of Fk.

Proof. Since −Wk and −Fk are ample over Z and Z0, we may find a positive integer
p so that

apd(ordWk
) ⊆ OZ and ap(ordFk

) ⊆ OZ0

satisfy the conclusions of Lemma 4.5. Hence, ZWk
is the blowup of Z along apd(ordWk

)
and Z0,Fk

is the blowup of Z0 along ap(ordFk
). The former statement implies τk

−1
∗ (Z0)

is the blowup of Z0 along apd(ordWk
) · OZ0

.

Claim: mult(apd(ordWk
) · OZ0

) = mult(ap(ordFk
))

To compute these multiplicities, observe

mult(ap(ordFk
)) = pn+1 ·mult (a•(ordFk

)) = (pd/k)n+1mult
(
a•(v1/k)

)
,

since apℓ(ordFk
) = ap(ordFk

)ℓ for all ℓ ≥ 0 and d
k
ordFk

= v1/k. Similar reasoning
implies

mult(apd(ordWk
) · OZ0

) = (pd/k)n+1mult
(
a•(w1/k) · OZ0

)
.

Equation 20 now completes the claim.

Observe apd(ordWk
) · OZ0

⊆ ap(ordFk
), since

apd(ordWk
) · OZ0

=
⊕

m∈N

Fpd−mkRm ⊆
⊕

m∈N

Fpd−mk
E Rm = ap(ordFk

).

A theorem of Rees [Ree61] now implies that apd(ordWk
) · OZ0

and ap(ordFk
) have the

same integral closure.
The latter implies apd(ordWk

)·OZ0
and ap(ordFk

) have the same normalized blowups.
Since the corresponding blowups equal τk

−1
∗ (Z0) and Z0,Fk

and are already normal,
they must be isomorphic. The equality of the integral closures further implies pdWk|τk−1

∗ (Z0)
=

pFk, which completes (1).
To see (2), cut by n− 1 generic hyperplanes to get a lc surface pair. The statement

then follows from the fact that (Y, V +W + µ−1
∗ (∆)) is lc and the classification of lc

surface singularities (see [Kol13, 3.32] and [Kol13, 3.35.2]). �

Proof of Proposition 5.9. With the above results, the equality of the two filtrations is
now a statement concerning valuation ideals (see Equations 18 and 19).

Let us consider the restriction sequence

0 → OZWk
(−pdWk − Z0,Fk

) → OZWk
(−pdWk) → OZ0,Fk

(−pFk) → 0. (21)
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where p is a positive integer. By the proof [KM98, 5.26], the sequence is exact if pdWk

is Cartier at all codimension two points of ZWk
contained in Z0,Fk

. Since the latter
holds by Lemma 5.11, (21) is exact.

Claim: R1τk∗OZWk
(−pdWk − Z0,Fk

) = 0 for all p > 0.

Note that (ZWk
, τk

−1
∗ (Γ)) is klt, since (ZWk

, τk
−1
∗ (Γ + Z0)) is plt. Therefore, [Kol13,

10.37] implies the desired vanishing holds as long as

− pdWk − Z0,Fk
− (KZWk

+ τk
−1
∗ (Γ)) (22)

is τk-nef. To prove the latter, observe

KZWk
+ τk

−1
∗ (Γ) ∼Q,τk KZWk

+ τk
−1
∗ (Γ)− τ ∗k (KZ + Γ + Z0)

= (AZ,Γ+Z0
(ordWk

)− 1)Wk − Z0,Fk
.

Therefore, (22) is relatively Q-linearly equivalent to −(pd + AZ,Γ+Z0
(ordWk

) − 1)Wk.
Since −Wk is τk-ample, (22) is τk-nef when p > 0 and the proof of the claim is
complete.

Returning to the proof of the proposition, we apply τk∗ to (21) and see

0 → τk∗OZWk
(−pdWk − Z0,Fk

) → apd(ordWk
) → ap(ordFk

) → 0

is exact for all p > 0. The right exactness implies Fpd−mkRm = Fpd−mk
E Rm for all

p > 0 and m ≥ 0. Since k was chosen to be a multiple of d, the latter implies
FpdRm = Fpd

E Rm for all p,m ≥ 0. Using the relations

FpRm ⊆ Fp
ERm = F

⌈p/d⌉d
E Rm,

we conclude FpRm = Fp
ERm for all p,m ≥ 0. �

We now return to the proof of Theorem 1.1. Recall, F := Supp(E) and F ′ := Supp(E ′)
compute δ(X0,∆0) and δ(X ′

0,∆
′
0), which are both one. Theorem 4.1 implies F and

F ′ are dreamy. Therefore, (X0,∆0) and (X ′
0,∆

′
0) are not K-stable.

It remains to show that (X0,∆0) and (X ′
0,∆

′
0) are S-equivalent. Consider the

filtrations F and F ′, which agree with FE and FE′ by Proposition 5.9. The filtrations
F and F ′ are finitely generated (since F and F ′ are dreamy). Let (X ,D) and (X ′,D′)
denote the test configuration of (X0,∆0) and (X ′

0,∆
′
0) associated to these filtrations.

We claim that (X ,D) and (X ′,D′) are non-trivial special test configurations and
the fibers over 0 ∈ A1 are K-semistable. Indeed, (X ,D) is a normal non-trivial test
configuration [Fuj17, 3.8] and its Futaki invariant is a multiple of AX0,∆0

(F ) − S(F )
[Fuj19a, 6.12], which is zero. Therefore, (X ,D) must be special, since otherwise there
would exist a test configuration of (X0,∆0) with negative Futaki invariant [LX14, 1].
[LWX18b, 3.1] now implies (X0,D0) is K-semistable. Since the same argument may
be applied to (X ′,D′), the claim holds.
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To finish the proof of the S-equivalence, we are left to show that there is an isomor-
phism (X0,D0) ≃ (X ′

0,D
′
0). Note that

X0 = Proj

(⊕

m∈N

⊕

p∈N

grpFRm

)
and X ′

0 = Proj

(⊕

m∈N

⊕

p∈N

grpF ′R
′
m

)
.

Therefore, the isomorphism ϕ : grFR → grF ′R′ in Proposition 5.2 induces an iso-
morphism X0 ≃ X ′

0. This proves Theorem 1.1 in the case when the boundaries
∆ and ∆′ are trivial. We claim that ϕ indeed induces an isomorphism of pairs
(X0,D0) ≃ (X ′

0,D
′
0). Proving D0 and D′

0 match under the isomorphism X0 ≃ X ′
0

is quite delicate.
To proceed, fix a prime divisor B ⊂ Supp(∆), and let B′ ⊂ Supp(∆′) denote

its birational transform on X ′. Write B ⊂ Supp(D) and B′ ⊂ Supp(D) for the
degenerations of B0 ⊂ X0 and B′

0 ⊂ X ′
0 on X and X ′. To complete the proof, we

will show that the isomorphism X0 ≃ X ′
0 sends B0 to B′

0, where B0 and B′
0 denote the

divisorial parts of the scheme theoretic fibers of B and B′ over 0.
Recall that the scheme theoretic fibers of B and B′ over 0 are defined by the ideals

in(IB0
) ⊂ grFR and in(IB′

0
) ⊂ grF ′R′,

where IB0
⊂ R and IB′

0
⊂ R denote the ideals defining B0 andB

′
0. Observe that in(IB0

)
and in(IB′

0
) are homogenous with respect to the gradings by m and p. Furthermore,

the graded components may be expressed as

in(IB0
)p,m := in(IB0

) ∩ grpFRm = im (FpRm ∩ IB0
→ grpFRm) ≃

FpRm ∩ IB0

Fp+1Rm ∩ IB0

and

in(IB′
0
)p,m := in(IB′

0
) ∩ grpF ′R

′
m = im

(
F ′pR′

m ∩ IB′
0
→ grpF ′R

′
m

)
≃

F ′pR′
m ∩ IB′

0

F ′p+1R′
m ∩ IB′

0

.

Rather than showing that the isomorphism grFR → grF ′R′ sends in(IB0
) to in(IB′

0
),

we introduce auxiliary ideals defined using sections of the relative section rings that
vanish along B and B′. For p,m ≥ 0, set

Ip,m := im (FpRm ∩ IB → grpFRm) and I ′p,m := im (F ′pR′
m ∩ IB′ → grpF ′R

′
m) ,

where IB ⊂ R and IB′ ⊂ R′ are the ideals defining B and B′. It is straightforward
to check that

I :=
⊕

m∈N

⊕

p∈N

Ip,m ⊂ grFR and I ′ :=
⊕

m∈N

⊕

p∈N

I ′p,m ⊂ grF ′R′

are ideals and are contained in in(IB0
) and in(IB′

0
) .

The following two propositions show that the isomorphism X0 ≃ X ′
0 induced by ϕ

sends B0 to B′
0. Indeed, Proposition 5.12 states that the isomorphism X0 ≃ X ′

0 sends
V (I) to V (I ′). Since V (I) and V (I ′) agree with B0 and B′

0 away from codimension
two subsets by Proposition 5.13, the result follows. �
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We are left to prove the following two propositions used in the above proof.

Proposition 5.12. The isomorphism ϕ : grFR → grF ′R′ sends I to I ′.

Proof. Observe that for s̃ ∈ FpRm,

s̃ ∈ FpRm ∩ IB if and only if ϕ̃p,m(s̃) ∈ F ′mr(a+a′)−pR′
m ∩ IB′ .

Indeed, s̃ and ϕ̃p,m(s̃) differ by a unit away from 0 ∈ C and membership in the ideals
IB and IB′ may be tested away from 0 ∈ C, since B and B′ are horizontal. Therefore,
ϕ(Ip,m) = I ′mr(a+a′)−p,m and the result follows. �

The next proposition is more difficult to prove.

Proposition 5.13. The subschemes defined by

(1) in(IB0
) and I on X0;

(2) in(IB′
0
) and I ′ on X ′

0

agree away from codimension 2 subsets.

To prove the statement for (1), it suffices to show that

dim

(⊕

p≥0

in(IB0
)p,m

Ip,m

)
= O(mn−2). (23)

To bound the dimension of the previous module, we return to the cone construction
argument used earlier in this section.

Consider the the relative cone (Z,Γ) and the extractions

τk : ZWk
→ Z and ρk : Z0,Fk

→ Z0

used in the proof of Proposition 5.9. Let G ⊆ Supp(Γ) denote the prime divisor

defined via pulling back B ⊆ Supp(∆). Write G̃ and G̃0 for the birational transforms
of G and G0 on ZWk

and Z0,Fk
.

Observe that for j ≥ 0

ajd(ordWk
) ∩ IG =

⊕

m≥0

(
F jd−mkRm ∩ IB

)

and

aj(ordFk
) ∩ IG0

=
⊕

m≥0

(
F jd−mkRm ∩ IB0

)
.

Therefore,

aj(ordFk
) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0

+ (aj+1(ordFk
) ∩ IG0

)
≃

⊕

m≥0

in(IB0
)jd−mk,m

Ijd−mk,m
. (24)

Lemma 5.14. We have

aj(ordFk
) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0

+ (aj+1(ordFk
) ∩ IG0

)
= O(jn−2).
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A key subtlety in proving this lemma is that the divisors G̃ and G̃0 may fail to be
Q-Cartier. The proof we will utilize the fact that

(ZWk
,Wk + Z0,Fk

+ τk∗
−1(Γ))

is lc. The latter implies Fk = Wk ∩ Z0,Fk
is not contained in Supp(τk∗

−1(Γ)) by

[Kol13, 2.32.2]. Hence, Fk 6⊂ G̃.

Proof. Fix a positive integer q such that qdWk is Cartier. For each r ∈ {0, . . . , q− 1},
set

Qr := coker
(
OZWk

(−G̃− rdWk) → OZ0,Fk
(−G̃0 − rFk)

)
,

where the previous map is defined via restriction.

Claim: The support of Qr is contained in the intersection of Z0,Fk
and the locus where

G̃ is not Q-Cartier.
To prove the claim, it suffices to show

OZWk
(−G̃− rdWk) → OZ0,Fk

(−G̃0 − rFk) → 0

is exact along

U := {z ∈ ZWk
| G̃ is Q-Cartier at z}.

The the proof of [KM98, 5.26] implies the statement holds, assuming

(i) (G̃+ rdWk)|U and Z0,Fk
|U are Q-Cartier and

(ii) (G̃+rdWk)|U is Cartier at all codimension two points of U contained in Z0,Fk
|U .

Statement (i) is clear, since Wk and Z0,Fk
are Q-Cartier and U is the locus where G̃

is Q-Cartier. For (ii), observe that G+rdWk is Cartier at the generic point of Fk, since

Fk 6⊂ G̃ and dWk is Cartier at the generic point of Fk. Note that ZWk
is regular at the

remaining codimension two points contained in Z0,Fk
. Indeed, ZWk

\Wk ≃ Z \ σ(C)
and Z is regular along all codimension one points of Z0, since Z0 is a normal Cartier
divisor on Z.

We now return to the proof of the lemma. Given a positive integer j, write j = bq+r
where r ∈ {0, . . . , q − 1}. Consider the exact sequence

OZWk
(−G̃− jdWk) → OZ0,Fk

(−G̃0 − jFk) → Qr(−bqdWk) → 0.

Pushing forward the sequence by τk∗, we see

ajd(ordWk
) ∩ IG → aj(ordFk

) ∩ IG0
→ τk∗Qr(−bqdWk) → 0,

is exact for b≫ 0, since −Wk is τk-ample. Hence,

dim

(
aj(ordFk

) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0

+ (aj+1(ordFk
) ∩ IG0

)

)

≤ dim

(
aj(ordFk

) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0

+ (aj+q(ordFk
) ∩ IG0

)

)

≤ dim
(
coker (τk∗Qr(−bqdWk) → τk∗Qr(−(b+ 1)qdWk))

)
.
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We are now reduced to showing that the last term equals O(bn−2).
Let D denote the effective Cartier divisor qdWk. Consider the exact sequence

Qr(−(b+ 1)D) → Qr(−bD) → Qr(−bD)|D → 0

After pushing forward by τk, we see

τk∗Qr(−(b+ 1)D) → τk∗Qr(−bD) → H0(D,Qr(−bD)|D) → 0.

is exact for b ≫ 0. Since Qr is supported on the locus of Z0,Fk
where G̃ is not Q-

Cartier, Lemma 5.15 implies Qr|D has dimension at most dim(Z0,Fk
) − 3 = n − 2.

Therefore,

H0(D,Qr|D(−bD|D)) = O
(
bn−2

)

and the lemma is complete. �

The previous proof used the following property of lc pairs.

Lemma 5.15. Let (X,∆+E1 +E2) be an lc pair such that (i) (X,∆) is klt and (ii)
E1 and E2 are Q-Cartier prime divisors. If x ∈ X is a codimension three point and
x ∈ E1 ∩ E2 ∩ Supp(∆), then X is Q-factorial at x.

Proof. After taking appropriate index one covers, we can assume E1 and E2 are
Cartier. By cutting, we can assume dim(X) = 3 and x is a closed point. Since
(X,∆) is klt, E1 is Cohen-Macaulay [KM98, 5.25].

We claim E1 is normal at x. If not, since E1 is S2, it cannot be R1 by Serre’s
Theorem. Hence, E1 is singular on a curve C passing through x. Note that C 6⊂
Supp(∆) ∪ E2 by [Kol13, 2.32]. If we consider the normalization Eν

1 → E1, we
see DiffEν

1
(∆) has coefficient one along the divisors in the preimage of C and pos-

itive coefficient along the preimage of Supp(∆). By [Kol13, 2.31], this implies that
(Eν

1 ,DiffEν
1
(∆) + E2|Eν

1
) is not lc, which contradicts adjunction.

Shrinking around x, we may assume E1 is normal. Adjunction gives (E1,∆|E1
+ E2|E1

)
is lc. Since E2|E1

is Cartier, (E1,∆|E1
) is canonical at x. Using that x ∈ Supp(∆|E1

),
[Kol13, 2.29.2] yields that E1 is smooth at x. Hence, X is smooth at x. �

Proof of Proposition 5.13. To prove the statement for (1), it suffices to show

∑

p≥0

dimNp,m = O(mn−2), (25)

where Np,m := in(IB0
)p,m/Ip,m. The previous estimate follows from Lemma 5.14.

Indeed, by Lemma 5.14 and (24)

∑

m≥0

dimNjd−mk,m = O
(
jn−2

)
.
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Since F is linearly bounded, there exists a positive integer C so that grpFRm = 0 for
all p ≥ mC. Hence, Np,m = 0 for p ≥ mC and we see

M∑

m=0

∑

p≥0

dimNpd,m ≤

M(C+k)/d∑

j=0

∑

m≥0

dimNjd−mk,m = O
(
Mn−1

)

Therefore, ∑

p≥0

dimNpd,m = O(mn−2).

Observe that grpFRm = 0 for all p not divisible by d by Proposition 5.9 and the fact
that E = d−1F . Therefore, the previous equation implies (25) holds. Hence, (1) holds
and (2) holds by an identical argument. �

Proof of Corollary 1.3. The proof is the same as the proof of Corollary 3.5, but with
Theorem 3.1 replaced by Theorem 1.1 (3). �
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