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Abstract

This paper is devoted to uniform versions of the Hanson-Wright inequality

for a random vector X ∈ R
n with independent subgaussian components. The

core technique of the paper is based on the entropy method combined with

truncations of both gradients of functions of interest and of the components

of X itself. Our results recover, in particular, the classic uniform bound of

Talagrand (1996) for Rademacher chaoses and the more recent uniform result

of Adamczak (2015) which holds under certain rather strong assumptions on

the distribution of X. We provide several applications of our techniques: we

establish a version of the standard Hanson-Wright inequality, which is tighter

in some regimes. Extending our results we show a version of the dimension-free

matrix Bernstein inequality that holds for random matrices with a subexpo-

nential spectral norm. We apply the derived inequality to the problem of

covariance estimation with missing observations and prove an almost optimal

high probability version of the recent result of Lounici (2014). Finally, we

show a uniform Hanson-Wright-type inequality in the Ising model under Do-

brushin’s condition. A closely related question was posed by Marton (2003).

Keywords : concentration inequalities, modified logarithmic Sobolev inequalities, uniform Hanson-
Wright inequalities, Rademacher chaos, matrix Bernstein inequality

1 Introduction

The concentration properties of quadratic forms of random variables is a classic topic in proba-
bility. A well-known result is due to Hanson and Wright (we refer to the form of this inequality
presented in Rudelson and Vershynin (2013)), which claims that if A is an n× n real matrix and
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X = (X1, . . . , Xn) is a random vector in Rn with independent centered components satisfying
maxi ‖Xi‖ψ2 ≤ K (we will recall the definition of ‖ · ‖ψ2 below), then for all t ≥ 0

P(|X⊤AX − EX⊤AX | ≥ t) ≤ 2 exp

(
−cmin

{
t2

K4‖A‖2HS

,
t

K2‖A‖

})
, (1.1)

for some absolute c > 0, where ‖A‖HS =
√∑

i,j A
2
i,j defines the Hilbert-Schmidt norm and ‖A‖

is the operator norm of A. An important extension of these results is when instead of just one
matrix A we have a family of matrices A and want to understand the behaviour of random
quadratic forms simultaneously for all matrices in the family. As a concrete example we consider
an order-2 Rademacher chaos: given a family A ⊂ Rn×n of n × n real symmetric matrices with
zero diagonal, that is for all A ∈ A we have Aii = 0 for all i = 1, . . . , n, one wants to study the
following random variable

ZA(ε) = sup
A∈A

n∑

i,j=1

Aijεiεj = sup
A∈A

ε⊤Aε,

where ε = (ε1, . . . , εn)⊤ is a sequence of independent Rademacher signs taking values ±1 with
equal probabilities. In the celebrated paper Talagrand (1996) it was shown, in particular, that
there is an absolute constant c > 0, such that for any t ≥ 0

P(|ZA(ε) − EZA(ε)| ≥ t) ≤ 2 exp


−cmin


 t2

(E sup
A∈A

‖AX‖)2
,

t

sup
A∈A

‖A‖




 . (1.2)

Similar inequalities in the Gaussian case follow from the results in Borell (1984) and Arcones and Gine
(1993). Apart from the new techniques that were used to prove (1.2), the significance of this result
is that previously (see, for example, Ledoux and Talagrand (2013)) similar bounds were one-sided
and had a multiplicative constant greater than 1 before EZA(ε). Results with a multiplicative
factor not equal to 1 are usually called deviation inequalities in contrast to concentration bounds
of the form (1.2) that are studied below. A simplified proof of the upper tail of (1.2), that is the
upper bound on P(ZA(ε)−EZA(ε) ≥ t), appeared later in Boucheron et al. (2003). We will refer
to inequalities of this form as (one-sided) concentration inequalities.

It is worth mentioning in advance that our main results are one-sided concentration inequali-
ties. This is because the entropy method, used extensively in our proofs, is known to have some
limitations when applied to prove lower tail inequalities (see the discussions in Ledoux (2001);
Boucheron et al. (2013)). It would be interesting for future work to consider similar bounds for
the lower tails.

Observe that when for every A ∈ A the diagonal elements are zero, the corresponding
quadratic forms are centered, that is EεTAε = 0. In the general situation we will be interested
in the analysis of

ZA(X) = sup
A∈A

(X⊤AX − EX⊤AX), (1.3)

for a random vector X taking its values in R
n. The analysis of both the expectation and the con-

centration/deviation properties of this random variable has appeared recently in many papers.
To name several deviation inequalities: Krahmer et al. (2014) study EZA(X) and deviations
of ZA(X) for classes of positive semidefinite matrices with applications to compressive sensing,
Dicker and Erdogdu (2017) prove deviation inequalities for supA∈A(X⊤AX−EX⊤AX) and sub-
gaussian vectors X under some extra assumptions. Additionally, a recent paper Adamczak et al.
(2018b) studies deviation bounds for Z = ‖X⊤AX−EX⊤AX‖ with Banach space-valued matrices
A and Gaussian variables, providing upper and lower bounds for the moments. The deviation in-
equality for general subgaussian vectors and a single positive semi-definite matrix was obtained in
Hsu et al. (2012). Returning to concentration inequalities, it was shown in Adamczak (2015) that
if X satisfies the so-called concentration property with constant K, that is for every 1-Lipschitz
function ϕ : Rn → R and any t ≥ 0 we have E|ϕ(X)| <∞ and

P (|ϕ(X) − Eϕ(X)| ≥ t) ≤ 2 exp
(
−t2/2K2

)
, (1.4)
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then the following bound, similar to (1.2), holds for every t ≥ 0,

P(|ZA(X) − EZA(X)| ≥ t) ≤ 2 exp


−cmin


 t2

K2(E sup
A∈A

‖AX‖)2
,

t

K2 sup
A∈A

‖A‖




 . (1.5)

This result has application to covariance estimation and recovers another recent concentration
result of Koltchinskii and Lounici (2017); this is discussed further in Section 2. The drawback
of (1.5) is that the required concentration property places strong restrictions on the distribution
of X : while it is satisfied by the standard Gaussian distribution as well as by some log-concave
distributions (see Ledoux (2001)), it is not known whether the concentration property holds for
general subgaussian entries and even in the simplest case of Rademacher random vectors.

In this paper we extend the aforementioned results in two directions. We extend the result
of Boucheron et al. (2003) for bounded variables by allowing non-zero diagonal values of the
matrices and unbounded subgaussian variables Xi. First, let us recall the following definition.
For α > 0 denote the ψα-norm of a random variable Y by

‖Y ‖ψα
= inf

{
t ≥ 0 : E exp

( |Y |α
tα

)
≤ 2

}
,

which is a proper norm whenever α ≥ 1. A random variable Y with ‖Y ‖ψ1 < ∞ is referred to
as subexponential and ‖Y ‖ψ2 < ∞ is referred to as subgaussian and the corresponding norm is
usually named a subgaussian norm. We also use the Lp(P ) norm. For p ≥ 1 we set ‖Y ‖Lp

=

(E|Y |p) 1
p . One of our main contributions is the following upper-tail bound.

Theorem 1.1. Suppose that the components of X = (X1, . . . , Xn) are independent centered
random variables and A is a finite family of n × n real symmetric matrices. Denote M =∥∥maxi |Xi|

∥∥
ψ2
. Then, for any t ≥ max{ME supA∈A ‖AX‖,M2 supA∈A ‖A‖} we have

P(ZA(X) − EZA(X) ≥ t) ≤ exp


−cmin


 t2

M2(E sup
A∈A

‖AX‖)2
,

t

M2 sup
A∈A

‖A‖




 , (1.6)

where c > 0 is an absolute constant and ZA(X) is defined by (1.3).

Remark 1.1. In Theorem 1.1 and below we assume that all A ∈ A are symmetric. This was done
only for convenience of presentation and in fact, the analysis may be performed for general square
matrices. The only difference will be that in many places A should be replaced by 1

2 (A+AT ).

Remark 1.2. Notice that even though the above result is stated for finite sets A, it also holds for
arbitrary bounded sets. Indeed, for a bounded set of matrices A, since these matrices are finite
dimensional we can consider an increasing sequence A1 ⊂ A2 ⊂ . . . ... ⊂ A of finite epsilon-nets
of A such that the pointwise convergence ZAk

(X) → ZA(X) holds. This pointwise convergence
implies convergence in probability, in particular,

lim
k→∞

P(ZAk
(X) − EZAk

(X) ≥ t) = P(ZA(X) − EZA(X) ≥ t).

Since for a subset Ak ⊂ A the values E supA∈Ak
‖AX‖2 and supA∈Ak

‖A‖ are not greater than
those for the original set A, we obtain the bound (1.6) for arbitrary bounded sets. For the sake
of simplicity, we only consider finite sets below.

In particular, Theorem 1.1 recovers the right-tail of the result of Talagrand (1.2) up to absolute
constants, since in this case we obviously have

∥∥maxi |εi|
∥∥
ψ2

. 1. Furthermore, the result of

Theorem 1.1 works without the assumption used in Talagrand (1996) and Boucheron et al. (2003)
that diagonals of all matrices in A are zero. Moreover, it is also applicable in some situations
when the concentration property (1.4) holds: indeed, if X is a standard normal vector in R

n
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then it is well known (see Ledoux and Talagrand (2013)) that M =
∥∥maxi |Xi|

∥∥
ψ2

∼ √
logn. If

moreover the identity matrix In ∈ A then E supA∈A ‖AX‖ ≥ E‖X‖ &
√
n. Therefore, in this

case the factor M is only of at most logarithmic order when compared to E supA∈A ‖AX‖.
In the special case that A consists of just one matrix, our bound recovers the bound that

is similar to the original Hanson-Wright inequality. On the one hand, our bound may have an
extra logarithmic factor that depends on the dimension n. On the other hand, the original term
maxi ‖Xi‖ψ2‖A‖HS is replaced by the better term E‖AX‖. We discuss this phenomenon below.
The core of the proof of the Hanson-Wright inequality in Rudelson and Vershynin (2013) is based
on the decoupling technique which may be used (at least in a straightforward way) to prove the
deviation inequality—but not the concentration inequality—for supA∈A(X⊤AX − EX⊤AX) in
the case that A consists of more than one matrix.

A natural question to ask is whether one may improve Theorem 1.1 and replace M =∥∥maxi |Xi|
∥∥
ψ2

by K = maxi
∥∥Xi

∥∥
ψ2

. In Section 2 we discuss that in the deviation version of

Theorem 1.1 this replacement is not possible in some cases. This is quite unexpected in light of
the fact that

∥∥maxi |Xi|
∥∥
ψ2

does not appear in the original Hanson-Wright inequality. Therefore,

we believe that the form of our result is close to optimal. We also provide the following extension
of Theorem 1.1 which may be better in some cases.

Proposition 1.2. Suppose that the components of X = (X1, . . . , Xn) are independent centered
random variables. Suppose also that the variables Xi are distributed symmetrically (Xi has the
same distribution as −Xi). Let A be a finite family of n × n real symmetric matrices. Denote
M =

∥∥maxi |Xi|
∥∥
ψ2

and K = maxi
∥∥Xi

∥∥
ψ2

and let G be a standard Gaussian vector in Rn. Then,

for any t ≥ max{MKE supA∈A ‖AG‖,MK supA∈A ‖A‖} we have

P(ZA(X) − EZA(X) ≥ t) ≤ exp



−cmin



 t2

M2K2(E sup
A∈A

‖AG‖)2
,

t

MK sup
A∈A

‖A‖







 ,

where c > 0 is an absolute constant and ZA(X) is defined by (1.3).

Remark 1.3. Proposition 1.2 is closer to the standard Hanson-Wright inequality (1.1). Indeed,
in the case that A = {A} we have E‖AG‖ ∼ ‖A‖HS. The difference is that K4 and K2 are
replaced by M2K2 and MK respectively.

We proceed with some notation that will be used below. For a non-negative random variable Y ,
define its entropy as

Ent(Y ) = EY log Y − EY logEY.

Instead of the concentration property (1.4), we also discuss the following closely related property:

Assumption 1. We say that a random vector X taking value in Rn satisfies the logarithmic
Sobolev inequality with constant K > 0 if for any continuously differentiable function f : Rn → R

we have
Ent(f2) ≤ 2K2

E‖∇f(X)‖2, (1.7)

whenever both sides of the inequality are not infinite.

One of the technical contributions of this paper is that we use a similar scheme to prove
Theorem 1.1 and to recover (1.5) under the logarithmic Sobolev Assumption 1. The application of
logarithmic Sobolev inequalities requires computation of the gradient of the function of interest,
that is, in our case, the gradient of ZA(X) = sup

A∈A
(XTAX − EXTAX). In the analysis that

we present, there is a need to control the behaviour of ∇ZA(X) (or its analogs) and, as in
Boucheron et al. (2003) and Adamczak (2015), we use a truncation argument to do so. However,
in both cases our proofs make use of the entropy variational formula of Boucheron et al. (2013),
that states that for random variables Y,W with E exp(W ) <∞ we have

E(W exp(λY )) ≤ E exp(λY ) log(E exp(W )) + Ent(exp(λY )). (1.8)
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Doing so allows us to shorten the proofs and avoid some technicalities appearing in previous
papers. Finally, to prove Theorem 1.1 we use a second truncation argument: this argument is
based on the Hoffman-Jørgensen inequality (see Ledoux and Talagrand (2013)). We also present
two lemmas which are used several times in the text. Both results have short proofs and may be
of independent interest.

Lemma 1.3. Suppose that for random variables Z,W and any λ > 0 we have

Ent(eλZ) ≤ λ2EWeλZ and P(W > L+ θt) ≤ e−t, (1.9)

where θ, L are positive constants. Then, the following concentration result holds

P(Z − EZ > t) ≤ exp

(
−cmin

{
t2

L+ θ
,
t√
θ

})
, (1.10)

where c > 0 is an absolute constant. If, moreover, (1.9) holds for any λ ≤ 0, we have

P(|Z − EZ| > t) ≤ 2 exp

(
−cmin

{
t2

L+ θ
,
t√
θ

})
.

The second technical result is a version of the convex concentration inequality of Talagrand
(1996) which does not require the boundedness of the components of X .

Lemma 1.4. Let f : Rn → R be a convex, L-Lipschitz function with respect to the Euclidean
norm on Rn and X = (X1, . . . , Xn) be a random vector with independent components. Then, for
any t ≥ CL ‖maxi |Xi|‖ψ2

we have

P (|f(X) − Ef(X)| > t) ≤ exp

(
−c t2

L2 ‖maxi |Xi|‖2ψ2

)
,

where c, C > 0 are absolute constants.

Despite generalizing existing results on convex concentration, the result of Lemma 1.4 follows
easily from the truncation approach combined with the Hoffman-Jørgensen inequality. As another
application of this technique we provide a version of the matrix Bernstein inequality that holds for
random matrices with subexponential spectral norm. For clarity of presentation, this inequality
is first presented in Section 4. Finally, the same argument showing that it is not possible to
replace M =

∥∥maxi |Xi|
∥∥
ψ2

by K = maxi
∥∥Xi

∥∥
ψ2

in Theorem 1.1 is used to show that the same

is not possible in Lemma 1.4.
We sum up the structure of the paper:

• Section 2 is devoted to applications and discussions and consists of several parts. At first, we
give a simple proof of the uniform bound of Adamczak (2015) under the logarithmic Sobolev
assumption. The second paragraph is devoted to improvements of the non-uniform Hanson-
Wright inequality (1.1) in the subgaussian regime. Furthermore, we apply our techniques
to obtain a uniform concentration result similar to Theorem 1.1 in a particular case of
non-independent components. We consider the Ising model under Dobrushin’s condition, a
setting that has been studied recently by Adamczak et al. (2018a) and Götze et al. (2018).
The question we study was raised by Marton (2003) in a closely related scenario. Finally,
we show that it is not possible in general to replace ‖maxi |Xi|‖ψ2 with maxi ‖Xi‖ψ2 in
Theorem 1.1 by providing an appropriate counterexample.

• In Section 3 we present our proof of Theorem 1.1. While doing so, we prove Lemma 1.3
and Lemma 1.4. Finally, we give a proof of Proposition 1.2.

• In Section 4 we formulate and prove the dimension-free matrix Bernstein inequality that
holds for random matrices with subexponential spectral norm. We demonstrate how our
Bernstein inequality can be used in the context of covariance estimation for subgaussian
observations improving the state-of-the-art result of Lounici (2014) for covariance estimation
with missing observations.
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2 Some applications and discussions

We begin with some notation that will be used throughout the paper. For a random vector X
taking its values in Rn let X1, . . . , Xn denote its components. When all components of X are
independent let X ′

i denote an independent copy of the component Xi. Throughout the paper
C, c > 0 are absolute constants that may change from line to line. We write a . b if a ≤ Cb for
some absolute constant C > 0. Moreover, if a . b and b . a we write a ∼ b.

Furthermore, for a square matrix A, denote by Diag(A) the diagonal matrix that has the same
elements on the diagonal as A. The off-diagonal part of A is defined by Off(A) = A − Diag(A);
we define diag(a) as a n × n diagonal matrix with diagonal elements a ∈ Rn. Finally, for two
symmetric (Hermitian) matrices A,B we write A ≺ B if B − A is positive-definite and A � B if
B −A is positive-semidefinite. In what follows we also use the following equivalent formulations
of tail inequalities. Assume that for a random variable Y and some a, b > 0 we have that for any
t ≥ 1,

P(Y > max(a
√
t, bt)) ≤ e−t.

The last inequality implies for any u ≥ max(a, b),

P(Y > u) ≤ exp

(
−min

{
u2

a2
,
u

b

})
,

and vice versa.

Uniform Hanson-Wright inequalities under the logarithmic Sobolev condition

In this paragraph we recover a result of Adamczak (2015) under Assumption 1. Consider a random
variable ZA(X) defined by (1.3), a function of X that satisfies logarithmic Sobolev assumption
(1.7).

Following Adamczak (2015) we assume without loss of generality, that A is a finite set of
matrices. Then ZA is Lebesgue-a.e. differentiable and

‖∇ZA(X)‖ ≤ 2 sup
A∈A

‖AX‖,

bounded by a Lipschitz function of X with good concentration properties.

Remark 2.1. Note that Assumption 1 applies only for smooth functions, so that a standard
smoothing argument should be used (see e.g. Ledoux (2001)). For the sake of completeness we
recall this argument in Section A. In what follows in this section we assume that none of these
potential technical problems appear.

In particular, since X satisfies the logarithmic Sobolev condition with constant K, we have
by Theorem 5.3 in Ledoux (2001) that

P

(
sup
A∈A

‖AX‖ ≥ E sup
A∈A

‖AX‖ +K
√
t sup
A∈A

‖A‖
)
≤ e−t.

Taking squares and using (a+ b)2 ≤ 2a2 + 2b2 we get

P

(
sup
A∈A

‖AX‖2 ≥ 2

(
E sup
A∈A

‖AX‖
)2

+ 2K2 sup
A∈A

‖A‖2t
)

≤ e−t.

Furthermore, the logarithmic Sobolev condition implies for any λ ∈ R

Ent(eλZA(X)) ≤ 4K2λ2E sup
A∈A

‖AX‖2eλZA(X).

Therefore, by Lemma 1.3 it holds for any t ≥ 0 that

P

(
|ZA(X) − EZA(X)| > C

(
KE sup

A∈A
‖AX‖

√
t+K2 sup

A∈A
‖A‖t

))
≤ 2e−t,

which coincides with (1.5) for K-concentrated vectors up to absolute constant factors.
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Remark 2.2. This result may be used directly to prove the concentration for ‖Σ̂ − Σ‖, where

Σ̂ is the sample covariance defined as Σ̂ = 1
N

∑N
i=1XiX

⊤
i and X1, . . . , XN are centered Gaussian

vectors with the covariance matrix Σ (see Theorem 4.1 in Adamczak (2015)). We return to the
covariance estimation problem in Section 4.

Remark 2.3. We note some additional connections between the convex concentration property
(1.4) and Assumption 1. It is known that (1.4) follows from the logarithmic Sobolev inequality
by taking f(X) = exp(λ(ϕ(X) − Eϕ(X))/2) for λ > 0 which implies

Ent (exp(λ(ϕ(X) − Eϕ(X)))) ≤ K2λ2

2
E exp(λ(ϕ(X) − Eϕ(X))).

This immediately implies (1.4) via the standard Herbst argument, see Boucheron et al. (2013).
Moreover, the last inequality is equivalent to the concentration property. Indeed, from the con-
centration property we know that ‖ϕ(X) − Eϕ(X)‖ψ2 . K and this implies (see van Handel
(2016)) that for all λ ∈ R

Ent(exp(λ(ϕ(X) − Eϕ(X)))) . K2λ2E exp(λ(ϕ(X) − Eϕ(X))).

Improving Hanson-Wright inequality in the subgaussian regime

Our analysis implies, in particular, an improved version of Hanson-Wright inequality (1.1) in some
cases. We consider a centered random vector X = (X1, . . . , Xn) with independent subgaussian
components and set K = maxi ‖Xi‖ψ2 , M = ‖maxi |Xi|‖ψ2 . In this case (1.1) implies that with
probability at least 1 − 2e−t we have

X⊤AX − EX⊤AX . K2
(
‖A‖HS

√
t+ ‖A‖t

)
. (2.1)

At the same time, Theorem 1.1 for a single matrix A = {A} implies with the same probability

X⊤AX − EX⊤AX .ME‖AX‖
√
t+M2‖A‖t. (2.2)

Observe that when |Xi| ≤ L almost surely for every i ≤ n, we have M . min{K√
log n, L}. The

following example illustrates the difference between these two bounds.

Example 2.1. Assume, δ1, . . . , δn are independent Bernoulli random variables with the same
mean δ and let δ ≤ 1

4 . For X = (δ1 − δ, . . . , δn − δ) we easily get

E‖AX‖ ≤
√
EXTA2X ≤

√
δ‖A‖HS.

On the other hand, for δ ≤ 1
4 we have

‖X1‖2ψ2
= ‖δ1 − δ‖2ψ2

∼ sup
λ∈R

log(E exp(λ(δ1 − δ)))

λ2

= sup
λ∈R

log(δ exp(λ(1 − δ)) + (1 − δ) exp(−λδ))
λ2

=
1 − 2δ

4 log((1 − δ)/δ)
∼ 1

| log δ| ,

where the last line follows directly from Theorem 1.1 in Schlemm (2016) (a result equivalent
to Theorem 1.1 was also obtained in Berend and Kontorovich (2013)). Therefore, the standard
Hanson-Wright inequality implies that with probability at least 1 − e−t we have

X⊤AX − EX⊤AX .
1

| log δ|
(
‖A‖HS

√
t+ ‖A‖t

)
,

while (2.2) and M . min{K
√

logn, 1} imply that for t ≥ 1 and δ ≤ 1
4 it holds with probability

at least 1 − 2e−t that

X⊤AX − EX⊤AX . min

{√
δ logn

| log δ| ,
√
δ

}
‖A‖HS

√
t+ min

{
logn

| log δ| , 1
}
‖A‖t. (2.3)

It is easy to verify that lim
δ→0+

√
δ| log δ| = 0, thus the inequality (2.3) is better than Hanson-Wright

inequality for this X in the subgaussian regime (when the t-term is dominated by the
√
t-term).
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Uniform concentration results in the Ising model

Consider a random vector σ ∈ {−1, 1}n with the distribution defined by

π(σ) =
1

Z ′
exp




n∑

i,j=1

Jijσiσj −
n∑

i=1

hiσi


 ,

where Z ′ is a normalizing factor. This distribution defines the Ising model with parameters
J = (Jij)

n
i,j=1 and h = (hi)

n
i=1. For an arbitrary function f on {−1, 1}n denote a difference

operator,

|df |2(σ) =
1

2

n∑

i=1

(f(σ) − f(Tiσ))2π(−σi | σ1, . . . , σi−1, σi+1, . . . ),

where the operator Tiσ = (σ1, . . . , σi−1,−σi, σi+1, . . . ) flips the sign of the i-th component, and
π(· | σ1, . . . , σi−1, σi+1, . . . ) is conditional distribution of the i-th component given the rest of
the elements. The following recent result provides the logarithmic Sobolev inequality for σ under
Dobrushin-type conditions.

Theorem 2.1 (Proposition 1.1, Götze et al. (2018)). Suppose, ‖h‖∞ ≤ α and J satisfies Jii = 0
and

‖J‖17→1 = max
i=1,...,n

n∑

j=1

|Jij | ≤ 1 − ρ (2.4)

There is a constant C = C(α, ρ), such that for an arbitrary function f on {−1, 1}n we have

Ent(f2) ≤ 2CE|df |2.

Remark 2.4. Following Götze et al. (2018) the condition (2.4) will be called Dobrushin’s condi-
tion.

We may obtain the following uniform concentration result which is a simple outcome of our
Lemma 1.3 and Theorem 2.1.

Proposition 2.2. Let A be a finite set of symmetric matrices with zero diagonal. It holds in the
Ising model under Dobrushin’s condition and ‖h‖∞ ≤ α that for any t ≥ 0

P

(
sup
A∈A

σ⊤Aσ − E sup
A∈A

σ⊤Aσ ≥ t

)
≤ exp



−C min



 t2

(E sup
A∈A

‖Aσ‖ + supA∈A ‖A‖)2
,

t

sup
A∈A

‖A‖







 ,

(2.5)
where C depends only on α, ρ.

Proof. Let σ′
(i) = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . ), where given all but the i-th element of σ, the

variables σi and σ′
i are independent and are distributed according to π(· | σ1, . . . , σi−1, σi+1, . . . ).

Obviously, we may have all σ1, . . . , σi and σ′
1, . . . , σ

′
n defined on the same discrete probability

space, and thus we will use the notation π(·) and π(· | ·) for the distribution and the conditional
distribution. Therefore, we have

E|df |2(σ) =
1

2

n∑

i=1

E(f(σ) − f(Tiσ))2π(−σi | σ1, . . . , σi−1, σi+1, . . . )

=

n∑

i=1

∑

σ∈{−1,1}n

π(σ)
∑

σ′
i
∈{−1,1}

(f(σ) − f(σ′
(i)))

2
+π(σ′

i | σ1, . . . , σi−1, σi+1, . . . )

where we switched from 1
2 (f(σ)− f(σ′

(i)))
2 to (f(σ)− f(σ′

(i)))
2
+ due to the symmetry between σi

and σ′
i.
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Denoting σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) and using the independence of σi and σ′
i given σ−i

we observe that π(σi, σ
′
i | σ−i) = π(σi | σ−i)π(σ′

i | σ−i). Moreover, it follows from the definition
of conditional probability that

π(σ)π(σ′
i | σ1, . . . , σi−1, σi+1, . . . ) = π(σ−i)π(σi | σ−i)π(σ′

i | σ−i)

= π(σ−i)π(σi, σ
′
i | σ−i) = π(σ′

i, σi, σ
−i).

Finally, we get

E|df |2(σ) =

n∑

i=1

∑

(σ,σ′
i
)∈{−1,1}n+1

(f(σ) − f(σ′
(i)))

2
+π(σ, σ′

i) =

n∑

i=1

E(f(σ) − f(σ′
(i)))

2
+ .

Now we want to consider the function

ZA(σ) = sup
A∈A

σ⊤Aσ, (2.6)

where A is a given finite set of symmetric matrices with zero diagonal (the diagonal is not
important here, since σ2

i = 1). Let us apply Theorem 2.1 to f(σ) = eλZA(σ)/2. Since for x ≥ y

and λ ≥ 0 we have (eλx/2 − eλy/2)2 = eλx(1 − e−λ(x−y)/2)2 ≤ λ2

4 e
λx(x− y)2, it holds that

E|df |2(σ) = E

n∑

i=1

(f(σ) − f(σ′
(i)))

2
+ = EeλZA(σ)

n∑

i=1

(1 − e−λ(ZA(σ)−ZA(σ′

(i)))/2)2+

≤ λ2

4
EeλZA(σ)

n∑

i=1

(ZA(σ) − ZA(σ′
(i)))

2
+,

where for Ã (maximizer of (2.6)) we have,

n∑

i=1

(ZA(σ) − ZA(σ′
(i)))

2
+ ≤

n∑

i=1

(
σ⊤Ãσ − [σ′

(i)]
⊤Ãσ′

(i)

)2
+

=
n∑

i=1


2(σi − σ′

i)
n∑

j=1

Ãijσj




2

+

≤ 16 sup
A∈A

‖Aσ‖2.

Note that concentration for supA∈A ‖Aσ‖ is implied by the same result. Indeed, we have

n∑

i=1

(
sup

A∈A,γ∈Sn−1

γ⊤Aσ − sup
A∈A,γ∈Sn−1

γ⊤Aσ′
(i)

)2

+

≤
n∑

i=1

(w̃⊤σ − w̃⊤σ′
(i))

2
+

=

n∑

i=1

(w̃i(σi − σ′
i))

2
+ ≤ 4 sup

A∈A
‖A‖,

where w̃⊤ = γ⊤A is such that supA∈A ‖Aσ‖ = w̃⊤σ. Thus, the expectation of the corresponding
difference operator is bounded by 4 supA∈A ‖A‖. Therefore, due to the standard Herbst argument
(Proposition 6.1 in Boucheron et al. (2013)) Theorem 2.1 implies

P

(
sup
A∈A

‖Aσ‖ > E sup
A∈A

‖Aσ‖ + C sup
A∈A

‖A‖
√
t

)
≤ e−t.

To sum up, by Theorem 2.1 we have

Ent(eλZA(σ)) ≤ λ2E(4 sup
A∈A

‖Aσ‖)eλZA(σ).

It is left to apply Lemma 1.3 which finishes the proof of the following inequality

P

(
sup
A∈A

σ⊤Aσ − E sup
A∈A

σ⊤Aσ > C(
√
tE sup

A∈A
‖Aσ‖ + (

√
t+ t) sup

A∈A
‖A‖)

)
≥ 1 − e−t, (2.7)

where C only depends on α, ρ from Theorem 2.1. The claim follows.
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Remark 2.5. In the case that A = {A} our result implies the upper tail of the recent concentra-
tion inequality proved in Adamczak et al. (2018a) (see Theorem 2.2 and Example 2.5). To show
this fact (denoting σ = σ − Eσ) we observe that

E‖Aσ‖ ≤ E‖Aσ‖ + ‖AEσ‖ = E‖Aσ‖ +
( n∑

i=1

(

n∑

j=1

Ai,jEσj)
2
) 1

2 .

Now, it is well known that Ent(f2) ≤ 2cE|df |2 implies the Poincare inequality Var(f) ≤ cE|df |2.
Therefore, we have

‖Eσ σ⊤‖ = sup
u∈Sn−1

Var(uTσ) ≤ (c(α, ρ)/2) sup
u∈Sn−1

4‖u‖2 = 2c(α, ρ).

This implies,

E‖Aσ‖2 = ETr(A2σ σ⊤) ≤ ‖A‖2HS‖Eσ σT ‖ ≤ 2c(ρ, α)‖A‖2HS ,

where we used that Tr(BD) ≤ Tr(B)‖D‖ which holds for any pair of symmetric and nonnegative
matrices B,D. Finally, we have

E‖Aσ‖ ≤ C(ρ, α)‖A‖HS +




n∑

i=1




n∑

j=1

Ai,jEσj




2



1
2

.

The right-hand side term appears instead of E‖Aσ‖ in aforementioned Example 2.5.

Replacing ‖maxi |Xi|‖ψ2 with maxi ‖Xi‖ψ2 in Theorem 1.1 and Lemma 1.4

Here we show that it is essentially not possible to substitute ‖maxi |Xi|‖ψ2 with maxi ‖Xi‖ψ2 in
Theorem 1.1 by presenting a concrete counterexample which was kindly suggested by Rados law
Adamczak. Suppose the opposite: there is an absolute constant C > 0 such that for any set of
matrices A and any subgaussian random variables X1, . . . , Xn it holds with probability at least
1 − e−t that

ZA(X) ≤ C

(
EZA(X) + max

i
‖Xi‖ψ2

√
tE sup

A∈A
‖AX‖ + max

i
‖Xi‖2ψ2

sup
A∈A

‖A‖t
)
, (2.8)

which implies that for some other constant C′ > 0 we have

E
1/2ZA(X)2 ≤ C′

(
EZA(X) + max

i
‖Xi‖ψ2E sup

A∈A
‖AX‖ + max

i
‖Xi‖2ψ2

sup
A∈A

‖A‖
)
.

Notice that here we allow a multiplicative constant not equal to 1 in front of the expectation.

Let us take A = {A(1), . . . , A(n)} with A(i) having only one nonzero element A
(i)
ii = 1. For the

sake of simplicity we take i.i.d. X1, . . . , Xn with EX2
i = 1. This implies

ZA(X) = max
i≤n

(X2
i − 1), sup

A∈A
‖AX‖ = max

i≤n
|Xi|, sup

A∈A
‖A‖ = 1.

Assuming that ‖X1‖ψ2 ≤ 4 we have

∥∥max
i≤n

X2
i − 1

∥∥
L2

≤ C′

(
Emax

i≤n
(X2

i − 1) + 4Emax
i≤n

|Xi| + 16

)
,

which, since ‖maxi≤nX
2
i ‖L1 ≥ maxi≤n ‖Xi‖L2 = 1, implies

‖max
i≤n

X2
i ‖L2 ≤ 1 + C′(‖max

i≤n
X2
i ‖L1 + 4Emax

i≤n
|Xi| + 15) ≤ (1 + 20C′)‖max

i≤n
X2
i ‖L1.
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Note that this inequality also holds if we rescale X ′
i = αXi for an arbitrary α > 0. Therefore,

if ‖X1‖ψ2 ≤ 4‖X1‖L2, we can always rescale our random variables to have ‖X1‖L2 = 1 and
‖X1‖ψ2 ≤ 4, so that the above inequality still holds.

Taking the latter into account we conclude that there is a constant D > 0, such that if a
centered random X1 satisfies ‖X1‖ψ2 ≤ 4‖X1‖L2, then for any n ≥ 1 the following inequality
holds

‖max
i≤n

X2
i ‖L2 ≤ D‖max

i≤n
X2
i ‖L1. (2.9)

It is known that such hypercontractivity of maxima implies certain regularity of tails of X2
1 .

In this case by Theorem 4.6 in Hitczenko et al. (1998) for any ρ, ε > 0 there is another constant
A = A(D, ρ, ε) > 1 such that for every t ≥ t0 = ρ‖X1‖L1 we have

AP(X2
1 > At) ≤ εP(X2

1 > t),

so that taking ρ = ε = 1, there is A = A(D) > 1 such that for all t ≥ ‖X1‖L1 we have

P(X2
1 > At) ≤ 1

A
P(X2

1 > t). (2.10)

The latter does not have to hold for every subgaussian random variable X1. For instance, taking
a symmetric random variable X1 with P(|X1| = 1) = 1 − e−r and P(|X1| =

√
r) = e−r for

r ≥ 4 > 4 log 2 we have E exp
(

|X1|
2

2

)
= e

1
2 (1 − e−r) + e−r+

r
2 ≤ e

1
2 + e−

r
2 ≤ 2, which implies

‖X1‖ψ2 ≤
√

2. Moreover, for r ≥ 4 we also have EX2
1 ≥ 1 − e−

r
2 ≥ 1

2 , thus ‖X1‖L2 ≥ 1/
√

2 and
the conditions of (2.9) are satisfied. But for large enough r > At and for t = t0, we have

P
(
X2

1 > At
)

= P(X2
1 > t) = e−r,

therefore breaking the tail regularity (2.10). Therefore, it is impossible to establish an inequality
of the form (2.8). We note that it is also possible to prove that (2.9) may not hold for X1 defined
above via some direct calculations.

For the same reason it is not possible to replace ‖maxi≤n |Xi|‖ψ2 with maxi≤n ‖Xi‖ψ2 in
Lemma 1.4. Indeed, suppose that for any convex L-Lipschitz function f we have

P

(
f(X) ≤ C(Ef(X) + Lmax

i≤n
‖Xi‖ψ2

√
t)

)
≤ e−t.

Taking f(X) = maxi≤n |Xi|, which is convex and 1-Lipschitz, we get

∥∥max
i≤n

X2
i

∥∥
L2

=
∥∥max
i≤n

|Xi|
∥∥
L4

≤ C′

(
Emax

i≤n
|Xi| + max

i≤n
‖Xi‖ψ2

)
.

The same choice of X1 implies (2.9) and leads to a contradiction.

3 Proof of Theorem 1.1

In this section we assume that the components of X are independent. We recall that X ′
i denotes

an independent copy of the component Xi. The main tool of the proof is the modified logarithmic
Sobolev inequality (see Theorem 2 in Boucheron et al. (2003) or Theorem 6.15 in Boucheron et al.
(2013)). For the sake of brevity we denote Z = ZA(X) in this section. Let us set

Z ′
i = ZA(X(i)), X(i) = (X1, . . . , Xi−1, X

′
i, Xi, . . . , Xn).

Then by the symmetrized version of the inequality we have that for any λ,

Ent(eλZ) ≤
n∑

i=1

EeλZτ(−λ(Z − Z ′
i)+),
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where τ(x) = x(ex − 1). Since τ(x) ≤ x2 for x ≤ 0, we have for all λ ≥ 0,

Ent(eλZ) ≤ λ2EV+e
λZ , V+ := E

′
n∑

i=1

(Z − Z ′
i)

2
+. (3.1)

The right-hand side of the inequality can be “decoupled” by the variational entropy formula (1.8),
as it is done in the proof of Lemma 1.3 which was presented in the introduction.

Proof of Lemma 1.3. We have

Ent(eλZ) ≤ λ2LEeλZ + λ2E(W − L)+e
λZ .

Due to the deviation bound for W it holds for some absolute constant C > 0 that

E exp

(
(W − L)+

Cθ

)
≤ e.

Therefore, by (1.8) we have

E(W − L)+/(Cθ)e
λZ ≤ EeλZ + Ent(eλZ),

which implies
(1 − Cθλ2)Ent(eλZ) ≤ λ2(L+ Cθ)EeλZ .

By the standard Herbst argument (see e.g., Proposition 6.1 in Boucheron et al. (2013)) we have
for any 0 < λ ≤ (2Cθ)−1/2,

logE exp(λ(Z − EZ)) ≤ 2(L+ Cθ)λ2.

This moment generating function bound is known to immediately imply the right-tail concen-
tration bound (see the properties of subgamma random variables in Boucheron et al. (2013)).
Finally, if (1.9) holds for all λ ∈ R, the two sided inequality can be derived in the same way.

Remark 3.1. Note, there is as well a moment version of the modified logarithmic Sobolev
inequality, see e.g., Theorem 2 in Boucheron et al. (2005). By this theorem it holds for all q ≥ 2
that

‖(Z − EZ)+‖Lq
≤
√

2κq‖
√
V+‖Lq

,

where κ < 2 is an absolute constant. Then if we have

‖
√
V+‖Lq

≤
√
L+

√
θq, ∀q ≥ 2, (3.2)

which is equivalent to the second inequality in (1.9) up to absolute constant factors, then it holds
for any q ≥ 2

‖(Z − EZ)+‖Lq
≤
√

4Lq +
√

4θq.

The last inequality implies (1.10) up to absolute constant factors. We note that similar moment
computations were used in Boucheron et al. (2005) to analyze the Rademacher chaos. Similarly,
one can introduce the moment analog of the logarithmic Sobolev inequality (see equation 3 in
Adamczak and Wolff (2015)):

‖Z(X) − EZ(X)‖Lq
≤ K

√
q‖|∇Z(X)|‖Lq

,

where K > 0 is a constant, | · | stands for the standard Euclidean norm and q ≥ 2. Now, if it
holds (which in some cases may be derived by the second application of the moment analog of
the logarithmic Sobolev inequality)

‖|∇Z(X)|‖Lq
≤ E|∇Z(X)| + ‖|∇Z(X)| − E|∇Z(X)|‖Lq

≤
√
L+K

√
θq, ∀q ≥ 2

then
‖Z − EZ‖Lq

≤ K(
√
Lq +K

√
θq),

which implies the result similar to (1.10).
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Finally, we establish a version of our result that requires neither that Xi is centered nor that
Xi has variance one. It can happen that EX⊤AX 6= Tr(A), but in fact, the value we subtract does
not really affect the concentration properties. In general we can consider the random variable

Z = sup
A∈A

(X⊤AX − g(A)), (3.3)

where g : Rn×n → R is an arbitrary function.

Lemma 3.1. Suppose that the components Xi are independent but not necessarily centered, and
|Xi| ≤ K almost surely. Then for Z defined by (3.3) and for any t ≥ 1 it holds with probability
at least 1 − e−t that

Z − EZ ≤ C

(
K(E sup

A∈A
‖AX‖ + E sup

A∈A
‖Diag(A)X‖)

√
t+K2 sup

A∈A
‖A‖t

)
,

where C is an absolute constant.

Proof. Let Ã be the matrix that maximizes Z(X) given X . We have

∑

i≤n

(Z − Z ′
i)

2
+ ≤

∑

i≤n

(
X⊤ÃX − [X(i)]⊤ÃX(i)

)2

=
∑

i≤n


2(Xi −X ′

i)
∑

j 6=i

ãijXj + ãii(X
2
i −X ′2

i )




2

=
∑

i≤n

(Xi −X ′
i)

2


2
∑

j 6=i

ãijXj + ãii(Xi +X ′
i)




2

≤ (2K)2
∑

i≤n


2
∑

j

ãijXj + ãii(X
′
i −Xi)




2

,

where the last line follows from |Xi −X ′
i| ≤ 2K. The factor 2 appears in the second line because

Ã is symmetric and thus X ′
i is counted twice. Applying the triangle inequality we get

V+ = E
′
∑

i≤n

(Z − Z ′
i)

2
+ ≤ (2K)2E′ sup

A∈A
(2‖AX‖ + ‖Diag(A)X‖ + ‖Diag(A)X ′‖)2,

where E′[·] = E[·| X ] denotes the expectation with respect to the variables X ′
1, . . . , X

′
n only. Thus,

V+ ≤ 12K2

(
4 sup
A∈A

‖AX‖2 + sup
A∈A

‖Diag(A)X‖2 + E sup
A∈A

‖Diag(A)X‖2
)
,

where we used (a + b+ c)2 ≤ 3(a2 + b2 + c2). Since |Xi| ≤ K, we have by convex concentration
for Lipschitz functions (see e.g. Theorem 6.10 in Boucheron et al. (2013))

P

(
sup
A∈A

‖AX‖ > E sup
A∈A

‖AX‖ + 2
√

2K sup
A∈A

‖A‖
√
t

)
≤ e−t. (3.4)

Using (a+ b)2 ≤ 2a2 + 2b2 we have

P

(
sup
A∈A

‖AX‖2 > 2

(
E sup
A∈A

‖AX‖
)2

+ 16K2 sup
A∈A

‖A‖2t
)

≤ e−t. (3.5)

Similar inequality holds for the term supA∈A ‖Diag(A)X‖2. Moreover, by the Poincare inequality
(Theorem 3.17 in Boucheron et al. (2013)) we have

E sup
A∈A

‖Diag(A)X‖2 =

(
E sup
A∈A

‖Diag(A)X‖
)2

+ Var

(
E sup
A∈A

‖Diag(A)X‖
)

≤
(
E sup
A∈A

‖Diag(A)X‖
)2

+ (2K)2 sup
A∈A

‖Diag(A)‖2.
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Since ‖Diag(A)‖ ≤ ‖A‖, we get that for L ∼ K2 (E supA∈A ‖AX‖ + E supA∈A ‖Diag(A)X‖)
2

and

θ ∼ K4 (supA∈A ‖A‖)2 we have
P (V+ > L+ θt) ≤ e−t.

Therefore, due to the modified logarithmic Sobolev inequality (3.1) we can use Lemma 1.3. This
provides us with the inequality

P(Z − EZ > C(
√
L+ θ

√
t+

√
θt)) ≤ e−t,

where we can neglect the θ in front of
√
t when t ≥ 1.

Note that our bound has the term E supA∈A ‖Diag(A)X‖ which can be avoided in the case of
centered variables Xi. Therefore, we obtain the bound matching the previous results (1.5) and
(1.2).

Corollary 3.2. Suppose that |Xi| ≤ K almost surely and EXi = 0. Then for any t ≥ 1 it holds
with probability at least 1 − e−t that

Z − EZ≤ C

(
KE sup

A∈A
‖AX‖

√
t+K2 sup

A∈A
‖A‖t

)
,

where C > 0 is an absolute constant.

In the next two lemmas we show how to get rid of the diagonal term. This finishes the proof
of the corollary above.

Lemma 3.3. Suppose that Y ∈ Rn has the i.i.d. components with symmetric distribution and
let B be a finite set of n× n positive-semidefinite symmetric matrices. Then we have

E sup
B∈B

Y ⊤Diag(B)Y ≤ E sup
B∈B

Y ⊤BY.

Proof. Since any B ∈ B is positive-semidefinite, supB∈B x
⊤Bx is a convex function of x ∈ Rn.

Moreover, Y
d
= diag(ε)Y for an independent Rademacher vector ε ∈ {1,−1}n. Therefore, by

Jensen’s inequality

E sup
B∈B

Y ⊤BY = EEε sup
B∈B

Y ⊤diag(ε)Bdiag(ε)Y

≥ E sup
B∈B

EεY
⊤diag(ε)Bdiag(ε)Y

= E sup
B∈B

Y ⊤Diag(B)Y,

where Eε denotes the expectation with respect to ε given Y .

Lemma 3.4. For X with the components that are independent and mean zero we have

E sup
A∈A

‖Diag(A)X‖ ≤ CE sup
A∈A

‖AX‖,

where C > 0 is an absolute constant.

Proof. Let X ′ be an independent copy of X . By the standard symmetrization argument together
with Jensen’ inequality and the triangle inequality we have

E sup
A∈A

‖AX‖ ≤ E sup
A∈A

‖A(X −X ′)‖ ≤ 2E sup
A∈A

‖AX‖. (3.6)

Observe that X −X ′ d= (X −X ′)diag(ε) = diag(X −X ′)ε where ε ∈ {1,−1}n is an independent
Rademacher vector. Therefore, we have

E sup
A∈A

‖A(X −X ′)‖ = EEε sup
A∈A

‖Adiag(X −X ′)ε‖,
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where Eε denotes the expectation with respect to ε. Conditionally on (X − X ′) set AX,X′ =
{Adiag(X −X ′) : A ∈ A}. Let a1, . . . , an be the columns of A. Notice that for any matrix A
we have Diag(A⊤A) = diag(‖a1‖2, . . . , ‖an‖2) � diag(A2

11, . . . , A
2
nn) = Diag(A)2. Therefore, by

Lemma 3.3 we have
Eε sup

A∈AX,X′

‖Diag(A)ε‖2 ≤ Eε sup
A∈AX,X′

‖Aε‖2. (3.7)

We now want to get rid of the squares in (3.7). Let B be an arbitrary set of symmetric n× n
matrices and let us fix some B ∈ B. We have E‖Bε‖2 = ‖B‖2HS and by Khinchin’s inequality we
have

E‖Bε‖ ≥ 1√
2
‖B‖HS ,

with the optimal constant due to Szarek (1976). Thus, we have

E sup
B∈B

‖Bε‖ ≥ sup
B∈B

E‖Bε‖ ≥ 1√
2

sup
B∈B

‖B‖.

Furthermore, by the convex Poincare inequality (Theorem 3.17, Boucheron et al. (2013)) we have,

Var(sup
B∈B

‖Bε‖) = E sup
B∈B

‖Bε‖2 −
(
E sup
B∈B

‖Bε‖
)2

≤ 4 sup
B∈B

‖B‖2.

Therefore, E supB∈B ‖Bε‖2 ≤ (E supB∈B ‖Bε‖)2 + 4 supB∈B ‖B‖2 ≤ 9 (E supB∈B ‖Bε‖)2 and we
get

(E sup
B∈B

‖Bε‖)2 ≤ E sup
B∈B

‖Bε‖2 ≤ 9(E sup
B∈B

‖Bε‖)2.

The last inequality combined with (3.7) implies

Eε sup
A∈AX,X′

‖Diag(A)ε‖ ≤
(
Eε sup

A∈AX,X′

‖Diag(A)ε‖2
) 1

2

≤ 3Eε sup
A∈AX,X′

‖Aε‖.

Now, taking the expectation with respect to X,X ′ and applying (3.6) again we finish the proof.

3.1 Truncation for unbounded variables

In this section we finish the proof of Theorem 1.1. In order to apply the bounded version of our in-
equality, we want to truncate each variableXi, which can be done by the approach from Adamczak
(2008) (see references therein for more details on various applications of this method), where it
was used in the context of Talagrand’s concentration inequality. Suppose that ‖maxi |Xi|‖ψ2 <∞
and set

Yi = Xi1(|Xi| ≤M), Wi = Xi − Yi, (3.8)

with M = 8Emax |Xi|. We have,

ZA(X) = sup
A∈A

(Y ⊤AY − EX⊤AX +W⊤AX +W⊤AY )

≤ sup
A∈A

(Y ⊤AY − EX⊤AX) + sup
A∈A

|W⊤AX | + sup
A∈A

|W⊤AY |

≤ sup
A∈A

(Y ⊤AY − EX⊤AX) + ‖W‖ sup
A∈A

‖AX‖ + ‖W‖ sup
A∈A

‖AY ‖. (3.9)

The variables Yi are now bounded by the value M . Therefore, the first term of the last line can
be analyzed by Lemma 3.1.

To bound the rest we need to control the deviations of ‖W‖. We have ‖W‖2 = W 2
1 + · · ·+W 2

n

is a sum of independent random variables with bounded ψ1-norm. Thus, we can control it’s
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expectation via the Hoffman-Jørgensen inequality. Due to the choice of the truncation level we
have by Markov’s inequality

P

(
max
i≤n

W 2
i > 0

)
= P

(
max
i≤n

|Xi| > M

)
≤

Emax
i≤n

|Xi|

M
≤ 1

8
.

Denoting Sk = W 2
1 + · · · +W 2

k we have ‖W‖2 = Sn. Then,

P

(
max
k≤n

|Sk| > 0

)
≤ P

(
max
i≤n

W 2
i > 0

)
≤ 1

8
.

Therefore, by Proposition 6.8 in Ledoux and Talagrand (2013) we have

E‖W‖2 = ESn ≤ 8Emax
i≤n

W 2
i . ‖max

i≤n
|Xi|‖2ψ2

,

where the latter holds since ‖max
i≤n

W 2
i ‖ψ1 ≤ ‖max

i≤n
|Xi|‖2ψ2

. Furthermore, by Theorem 6.21 in

Ledoux and Talagrand (2013) we have
∥∥∥∥∥

n∑

i=1

W 2
i − EW 2

i

∥∥∥∥∥
ψ1

≤ K1

(
E
∣∣‖W‖2 − E‖W‖2

∣∣ +
∥∥max
i≤n

|W 2
i − EW 2

i |
∥∥
ψ1

)

≤ 2K1

(
E‖W‖2 +

∥∥max
i≤n

W 2
i

∥∥
ψ1

)

. ‖max
i≤n

|Xi|‖2ψ2
,

where K1 is an absolute constant. Given the bound on the expectation of ‖W‖2 we have
∥∥‖W‖

∥∥
ψ2

. ‖max
i≤n

|Xi|‖ψ2 .

Finally, we obtain the deviation bound: for every t > 0 we have

P

(
‖W‖ ≥ C

√
t‖max

i≤n
|Xi|‖ψ2

)
≤ 2e−t. (3.10)

Now we apply Lemma 3.1 to the bounded variables Y . Notice that our theorem does not
require the variables to be centered. This assumption is only used in Corollary 3.2. Taking this
into account, Lemma 3.1 can be applied to the variables Y as follows. Set g(A) = EX⊤AX and
ZA(Y ) = supA∈A(Y ⊤AY − g(A)). By Lemma 3.1 we have

ZA(Y ) − EZA(Y ) .M
√
t

(
E sup
A∈A

‖AY ‖ + E sup
A∈A

‖Diag(A)Y ‖
)

+M2t sup
A∈A

‖A‖ (3.11)

with probability at least 1−e−t. Finally, we have to replace the expectations EZA(Y ), E sup
A∈A

‖AY ‖
and E sup

A∈A
‖Diag(A)Y ‖ in (3.11) by their counterparts, taken with respect to X , as in the original

formulation of the result.
First, we want to provide a concentration bound for the convex function sup

A∈A
‖AX‖ that

accounts for unbounded variables. As a matter of fact, we prove the following Lemma which is
even slightly stronger than Lemma 1.4.

Lemma 3.5. Let f : Rn → R be separately convex1 L-Lipschitz with respect to the Euclidean
norm in Rn and X = (X1, . . . , Xn) be a random vector with the independent components. Then
it holds for t ≥ 1 that

P

(
f(X) > Ef(X) + C

∥∥max
i≤n

|Xi|
∥∥
ψ2
L
√
t

)
≤ e−t,

1This means that for every i = 1, ..., n it is a convex function of i-th variable if the rest of the variables are
fixed. Any convex function is separately convex.
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where C > 0 is an absolute constant. Additionally, if f is convex and L-Lipschitz, then for any
t > 0,

P

(
|f(X) − Ef(X)| > C

∥∥max
i≤n

|Xi|
∥∥
ψ2
L
√
t

)
≤ 4e−t.

Proof. By convex concentration (Theorem 6.10 in Boucheron et al. (2013)) for bounded Yi defined
by (3.8) we have that for any t > 0,

P

(
f(Y ) > Ef(Y ) + C‖max

i≤n
|Xi|‖ψ2L

√
t

)
≤ e−t.

Moreover, due to the Lipschitz assumption and (3.10) we have

|f(X) − f(Y )| ≤ L‖W‖ . L‖max
i≤n

|Xi|‖ψ2

√
1 + t,

where the latter holds with probability at least 1− e−t. Integrating these two bounds we also get

|Ef(X) − Ef(Y )| . L‖max
i≤n

|Xi|‖ψ2 , (3.12)

which together implies that with probability at least 1 − e−t we have

f(X) − Ef(X) ≤ f(Y ) − Ef(Y ) + |f(X) − f(Y )| + |Ef(X) − Ef(Y )|
. L‖max

i≤n
|Xi|‖ψ2

√
t.

The proof of the lower tail bound follows from Theorem 7.12 in Boucheron et al. (2013) and the
standard relation between the median and the expectation which holds in our case.

From Lemma 3.5 due to the fact that sup
A∈A

‖AX‖ is sup
A∈A

‖A‖-Lipschitz we have

P

(
sup
A∈A

‖AX‖ > E sup
A∈A

‖AX‖ + C‖max
i≤n

|Xi|‖ψ2 sup
A∈A

‖A‖
√
t

)
≤ 2e−t. (3.13)

Moreover, similar to (3.12) we have
∣∣∣∣E sup

A∈A
‖AY ‖ − E sup

A∈A
‖AX‖

∣∣∣∣ . ‖max
i≤n

|Xi|‖ψ2 sup
A∈A

‖A‖. (3.14)

Next, we bound the difference between EZA(X) and EZA(Y ).

Lemma 3.6. We have

|EZA(Y ) − EZA(X)| . ‖max
i≤n

|Xi|‖ψ2E sup
A∈A

‖AX‖ +
∥∥max
i≤n

|Xi|
∥∥2
ψ2

sup
A∈A

‖A‖.

Proof. Similarly to (3.9) we have

|EZA(Y ) − EZA(X)| ≤ E‖W‖ sup
A∈A

‖AX‖ + E‖W‖ sup
A∈A

‖AY ‖

≤ E
1/2‖W‖2(E1/2 sup

A∈A
‖AX‖2 + E

1/2 sup
A∈A

‖AY ‖2), (3.15)

where by (3.10) E1/2‖W‖2 . ‖maxi≤n |Xi|‖ψ2 and by (3.13),

E sup
A∈A

‖AX‖2 .
(
E sup
A∈A

‖AX‖
)2

+ ‖max
i≤n

|Xi|‖2ψ2
sup
A∈A

‖A‖2.

Taking the square root we get

E
1/2 sup

A∈A
‖AX‖2 . E sup

A∈A
‖AX‖ + ‖max

i≤n
|Xi|‖ψ2 sup

A∈A
‖A‖.
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Similarly and using (3.14) we have,

E
1/2 sup

A∈A
‖AY ‖2 . E sup

A∈A
‖AY ‖ + ‖max

i≤n
|Xi|‖ψ2 sup

A∈A
‖A‖

. E sup
A∈A

‖AX‖ + ‖max
i≤n

|Xi|‖ψ2 sup
A∈A

‖A‖.

Plugging it in (3.15) we get the required inequality.

Therefore, in (3.11) we can use Lemma 3.6 to get

EZA(Y ) ≤ EZA(X) + C

(
‖max
i≤n

|Xi|‖ψ2E sup
A∈A

‖AX‖ + ‖max
i≤n

|Xi|‖2ψ2
sup
A∈A

‖A‖
)
, (3.16)

and by Lemma 3.14 (neglecting the diagonal term for centered X due to Lemma 3.4)

E sup
A∈A

‖AY ‖ + E sup
A∈A

‖Diag(A)Y ‖ ≤ C

(
E sup
A∈A

‖AX‖ + ‖max
i≤n

|Xi|‖ψ2 sup
A∈A

‖A‖
)
. (3.17)

Finally, with probability at least 1 − e−t for t ≥ 1 we have from (3.9), (3.14) and (3.13)

|ZA(X) − ZA(Y )| ≤ ‖W‖ sup
A∈A

‖AY ‖ + ‖W‖ sup
A∈A

‖AX‖

. ‖W‖E sup
A∈A

‖AX‖ + ‖W‖‖max
i≤n

|Xi|‖ψ2 sup
A∈A

‖A‖
√
t,

which using (3.10) turns into

|ZA(X) − ZA(Y )| . ‖max
i≤n

|Xi|‖ψ2E sup
A∈A

‖AX‖
√
t+ ‖max

i≤n
|Xi|‖2ψ2

sup
A∈A

‖A‖t.

Combining the last inequality together with (3.16) and (3.17) we finish the proof of Theorem 1.1.

3.2 Proof of Proposition 1.2

The proof is essentially based on the application of the next standard deviation bound instead of
the concentration bound of (3.13) in the proof of Theorem 1.1. Since we did not find an exact
reference, we derive this inequality here.

Lemma 3.7. Suppose that X1, . . . , Xn are independent centered random variables and A is a
finite set of symmetric matrices. Let G be a standard normal vector in Rn. Then it holds with
probability at least 1 − Ce−t that

sup
A∈A

‖AX‖ . max
i≤n

∥∥Xi

∥∥
ψ2

(
E sup
A∈A

‖AG‖ + sup
A∈A

‖A‖
√
t

)
,

where C > 0 is an absolute constant.

Proof. At first, we observe that supA∈A ‖AX‖ = sup
A∈A,γ∈Sn−1

γTAX . Consider the metric ρ

defined by ρ(a, b) = ‖a−b‖max
i≤n

‖Xi‖ψ2 for any a, b ∈ R
n. By Theorem 2.2.26 in Talagrand (2014)

it holds for t ≥ 0 and an absolute constant C > 0 that with probability at least 1 − C exp(−t),
sup

A∈A,γ∈Sn−1

γTAX . diam(ASn−1, ρ)
√
t+ γ2(ASn−1, ρ),

where diam(ASn−1) = sup
x,y∈ASn−1

‖x−y‖max
i≤n

‖Xi‖ψ2 ≤ 2 sup
A∈A

‖A‖max
i≤n

∥∥Xi

∥∥
ψ2

and the functional

γ2 is also defined in Talagrand (2014). For the sake of brevity, we will not introduce its definition
here. Finally, applying Talagrand’s majorizing measure theorem (Theorem 2.4.1 in Talagrand
(2014)) we have

γ2(ASn−1, ρ) . max
i≤n

∥∥Xi

∥∥
ψ2
E sup
x∈ASn−1

xTG = max
i≤n

∥∥Xi

∥∥
ψ2
E sup
A∈A

‖AG‖.

The claim follows.
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Setting M = 8Emaxi |Xi| and K = maxi ‖Xi‖ψ2 consider the truncation scheme that is used
in (3.8). Due to the assumption that all Xi are symmetrically distributed, we have EYi = 0.
Therefore, Lemma 3.7 implies

P

(
sup
A∈A

‖AY ‖ > CK(E sup
A∈A

‖AG‖ + sup
A∈A

‖A‖
√
t)

)
≤ e−t,

which can be used instead of the convex concentration inequality (3.4) when dealing with the
modified logarithmic Sobolev inequality. Following this proof and using the fact that maxi |Yi| ≤
M almost surely, we end up with the concentration bound

ZA(Y ) − EZA(Y ) .MK

(
E sup
A∈A

‖AG‖
√
t+ sup

A∈A
‖A‖t

)
,

which holds with probability at least 1 − e−t for any t > 1. Furthermore, we slightly modify the
derivations of the previous section by using Lemma 3.7 instead of (3.13). In particular, we get
with probability at least 1 − e−t for any t > 1,

|ZA(X) − ZA(Y )| .MK(E sup
A∈A

‖AG‖
√
t+ sup

A∈A
‖A‖t),

and taking expectation we also get |EZA(X) − EAZ(Y )| . MKE sup
A∈A

‖AG‖. The claim follows

from (3.9).

4 The matrix Bernstein inequality in the subexponential

case

As we mentioned above, one of the prominent applications of the uniform Hanson-Wright inequal-
ities is a recent concentration result in the Gaussian covariance estimation problem. It is known
that covariance estimation may be alternatively approached by the matrix Bernstein inequality,
see e.g. Wei and Minsker (2017); Lounici (2014). Following the truncation approach, which was
taken above, we provide a version of matrix Bernstein inequality that does not require uniformly
bounded matrices. The standard version of the inequality (see Tropp (2012) and reference therein)
may be formulated as follows: consider random independent matrices X1, . . . , XN ∈ Rn×n, such
that almost surely maxi ‖Xi‖ ≤ L. It holds

P

(∥∥∥∥∥

N∑

i=1

Xi − EXi

∥∥∥∥∥ > u

)
≤ n exp

(
−c
(
u2

σ2

∧ u

L

))
,

where c is an absolute constant and σ2 =
∥∥E
∑N

i=1(Xi − EXi)
2
∥∥. The first problem with this

result is that it does not hold in general cases when maxi ‖Xi‖ψ1 or maxi ‖Xi‖ψ2 are bounded.
The second problem is the bound depends on the dimension n. This does not allow to apply this
result to operators in infinite-dimensional Hilbert spaces.

For a positive-definite real square matrix A we define the effective rank as r̃(A) = Tr(A)
‖A‖ . We

show the following bound.

Proposition 4.1. Consider the set of random independent Hermitian matrices X1, . . . , XN ∈
Cn×n such that

∥∥‖Xi‖
∥∥
ψ1
< ∞. Set M =

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

and let the positive definite Hermi-

tian matrix R be such that E
∑N

i=1X
2
i � R. Finally, set σ2 = ‖R‖. There are absolute constants

c, C, c1 > 0 such that for any u ≥ c1 max{M,σ} we have

P

(∥∥∥∥∥

N∑

i=1

Xi − EXi

∥∥∥∥∥ > u

)
≤ Cr̃ (R) exp

(
−c
(
u2

σ2

∧ u

M

))
.



Y. Klochkov and N. Zhivotovskiy 20

Remark 4.1. Using the well known bound for the maximum of subexponential random variables
(see Ledoux and Talagrand (2013)) we have

∥∥max
i≤N

‖Xi‖
∥∥
ψ1

. logN max
i≤N

∥∥‖Xi‖
∥∥
ψ1
.

Therefore, up to absolute constant factors we may state the bound forM = logN maxi≤N
∥∥‖Xi‖

∥∥
ψ1

.

When n = 1 the effective rank plays no role and our bound recovers the version of classical Bern-
stein inequality which is due to Adamczak (2008). In this paper, it is also shown that the logN
factor cannot be removed in general. This means that M =

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

can not be replaced

by maxi≤N
∥∥‖Xi‖

∥∥
ψ1

in general.

Proof. Fix U > 0 and consider the decomposition

Xi = Yi + Zi, Yi = Xi1(‖Xi‖ ≤ U), Zi = Xi1(‖Xi‖ > U),

so that the matrices Yi are uniformly bounded by U in the operator norm. By the triangle
inequality and the union bound we have

P

(∥∥∥∥∥

N∑

i=1

Xi − EXi

∥∥∥∥∥ > 2u

)
≤ P

(∥∥∥∥∥

N∑

i=1

Yi − EYi

∥∥∥∥∥ > u

)
+ P

(∥∥∥∥∥

N∑

i=1

Zi − EZi

∥∥∥∥∥ > u

)
.

Therefore, two parts can be treated separately. Throughout this proof c > 0 is an absolute
constant which may change from line to line. It is known that uniformly bounded random
matrices satisfy the Bernstein-type inequality (see Theorem 3.1 in Minsker (2017)) for u ≥ 1

6 (U +√
U2 + 36σ2)

P

(∥∥∥∥∥

N∑

i=1

Yi − EYi

∥∥∥∥∥ > u

)
≤ 14r̃

(
E

N∑

i=1

(Yi − EYi)
2

)
exp


− cu2∥∥∥∥

N∑
i=1

E(Yi − EYi)2
∥∥∥∥+ Uu


 ,

where we used ‖Yi‖ ≤ U . However, since we want to present this bound in terms of Xi and not
Yi, we need the following modification of the proof of Minsker’s theorem. Using the notation of
his proof, it follows from Lemma 3.1 in Minsker (2017):

logE exp(θ(Yi − EYi)) �
φ(θU)

U2
E(Yi − EYi)

2 � φ(θU)

U2
2EY 2

i � φ(θU)

U2
2EX2

i ,

where φ(t) = et − t− 1. Now, using the same lines of the proof, instead of formula (3.4) we have

ETrφ

(
θ

N∑

i=1

(Yi − EYi)

)
≤ Tr

(
exp

(
φ(θU)

U2
2

N∑

i=1

EX2
i

)
− Id

)
,

and lines (3.5) with the condition
∑n

i=1 EX
2
i � R imply

exp

(
φ(θU)

U2
2
N∑

i=1

EX2
i

)
− Id � exp

(
2φ(θU)

U2
R

)
− Id �

R

σ2
exp

(
2φ(θU)

U2
σ2

)
,

where σ2 = ‖R‖. Following the last lines of the proof of Theorem 3.1, we finally have

P

(∥∥∥∥∥

N∑

i=1

Yi − EYi

∥∥∥∥∥ > u

)
≤ 14r̃ (R) exp

(
− cu2

σ2 + Uu

)
, (4.1)

for u ≥ C max{U, σ}.
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We proceed with the analysis of Zi. Set U = 8Emax
i≤N

‖Xi‖, then we have by Markov’s inequal-

ity

P

(
max
k≤N

∥∥∥∥∥

k∑

i=1

Zi

∥∥∥∥∥ > 0

)
≤ P

(
max
i≤N

‖Zi‖ > 0

)
= P

(
max
i≤N

‖Xi‖ > U

)
≤ 1/8.

Thus, we can apply Proposition 6.8 from Ledoux and Talagrand (2013) to Zi taking its values in
the Banach space (Cn×n, ‖ · ‖) equipped with the spectral norm. We have

E

∥∥∥∥∥

N∑

i=1

Zi

∥∥∥∥∥ ≤ 8Emax
i≤N

‖Zi‖,

which implies that for some absolute constant K > 0,

E

∥∥∥∥∥

N∑

i=1

Zi − EZi

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥

N∑

i=1

Zi

∥∥∥∥∥ ≤ 16Emax
i≤N

‖Zi‖ ≤ K
∥∥max
i≤N

‖Zi‖
∥∥
ψ1
.

Using Theorem 6.21 from Ledoux and Talagrand (2013) in (Cn×n, ‖ · ‖) we have,

∥∥∥∥∥

∥∥∥∥∥

N∑

i=1

Zi − EZi

∥∥∥∥∥

∥∥∥∥∥
ψ1

≤ K1

(
E

∥∥∥∥∥

N∑

i=1

Zi − EZi

∥∥∥∥∥+
∥∥max
i≤N

‖Zi‖
∥∥
ψ1

)

≤ K2

∥∥max
i≤N

‖Zi‖
∥∥
ψ1
,

where K1,K2 > 0 are absolute constants. This implies that for any u ≥
∥∥maxi≤N ‖Zi‖

∥∥
ψ1

we

have

P

(∥∥∥∥∥

N∑

i=1

Zi − EZi

∥∥∥∥∥ > u

)
≤ exp

(
− cu∥∥maxi≤N ‖Zi‖

∥∥
ψ1

)
,

where c > 0 is an absolute constant. Combining it with (4.1) and that for some absolute C > 0
we have U ≤ C

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

and
∥∥maxi≤N ‖Zi‖

∥∥
ψ1

≤
∥∥maxi≤N ‖Xi‖

∥∥
ψ1

, we prove the

claim.

To the best of our knowledge, the Proposition 4.1 is the first to combine two important
properties: it simultaneously captures the effective rank instead of the dimension n and is valid
for matrices with subexponential operator norm (the matrix Bernstein inequality in the un-
bounded case was previously granted under the so-called Bernstein moment condition; we refer
to Tropp (2012) and the references therein). We should also compare our results with Propo-
sition 2 of Koltchinskii (2011). His inequality has the same form as our bound, but instead of
the effective rank, the original dimension n is used and M =

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

is replaced by

maxi≤N
∥∥‖Xi‖

∥∥
ψ1

log

(
N
(

maxi≤N
∥∥‖Xi‖

∥∥
ψ1

)2
/σ2

)
.

An application to covariance estimation with missing observations

Now we turn to the problem studied in Koltchinskii and Lounici (2017) and Lounici (2014).
Suppose, we want to estimate the covariance structure of a random subgaussian vector X ∈ Rn

(which will be assumed centered) based on N i.i.d. observations X1, . . . , XN . For the sake of
brevity, we work with the finite-dimensional case, while as in Koltchinskii and Lounici (2017)
our results do not depend explicitly on the dimension n. Recall that a centered random vector
X ∈ R

n is subgaussian if for all u ∈ R
n we have

‖〈X,u〉‖ψ2 . (E〈X,u〉2)
1
2 . (4.2)

Observe that this definition does not require any independence of the components of X .
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In what follows we discuss a more general framework suggested by Lounici (2014). Let δi,j ,
i ≤ N, j ≤ n be independent Bernoulli random variables with the same mean δ. We assume that
instead of observing X1, . . . , XN we observe vectors Y1, . . . , YN which are defined as Y ji = δi,jX

j
i .

This means that some components of vectors X1, . . . , XN are missing (replaced by zero), each
with probability 1 − δ. Since δ can be easily estimated, we assume it to be known. Following
Lounici (2014), denote

Σ̂(δ) =
1

N

N∑

i=1

YiY
⊤
i .

It can be easily shown that the estimator

Σ̂ = (δ−1 − δ−2)Diag(Σ̂(δ)) + δ−2Σ̂(δ)

is an unbiased estimator of Σ = EXiX
⊤
i . In particular,

Σ = (δ−1 − δ−2)Diag(EYiY
⊤
i ) + δ−2

EYiY
⊤
i . (4.3)

Theorem 4.2. Under the assumptions defined above, it holds with probability at least 1− e−t for
t ≥ 1 that

‖Σ̂ − Σ‖ . ‖Σ‖max

(√
r̃(Σ) log r̃(Σ)

Nδ2
,

√
t

Nδ2
,
r̃(Σ)(log r̃(Σ) + t) logN

Nδ2

)
.

Remark 4.2. The upper bound above provides some important improvements upon Proposition
3 in Lounici (2014), which is

‖Σ̂ − Σ‖ . ‖Σ‖max

(√
r̃(Σ) logn

Nδ2
,

√
r̃(Σ)t

Nδ2
,
r̃(Σ)(log n+ t)(logN + t)

Nδ2

)
(4.4)

The bound (4.4) depends on n and therefore is not applicable in the infinite dimensional scenarios.
It also contains a term proportional to t2, which appeared due to a straightforward truncation

of each observation. Moreover, this result has an unnecessary factor r̃(Σ) in the term
√

r̃(Σ)t
Nδ2 .

Finally, when δ = 1 tighter results may be obtained using high probability generic chaining bounds
for quadratic processes. In particular, Theorem 9 in Koltchinskii and Lounici (2017) implies with
probability at least 1 − e−t,

‖Σ̂ − Σ‖ . ‖Σ‖max

(√
r̃(Σ)

N
,

√
t

N
,
r̃(Σ)

N
,
t

N

)
. (4.5)

Unfortunately, this analysis may not be implied for δ < 1 in general, since the assumption (4.2)
does not hold for the vector Y , defined by Y ji = δi,jX

j
i . Therefore, our technique is a reasonable

alternative that works for general δ and is almost as tight as (4.5) when δ = 1. We also remark
that for δ = 1 even sharper versions of (4.5) were obtained in Mendelson and Zhivotovskiy (2018).
However, their statistical procedure differs from the sample covariance matrix Σ̂.

To prove Theorem 4.2 we need the following technical lemma, parts of which may as well be
found in Lounici (2014).

Lemma 4.3. Let X ∈ Rn satisfy (4.2) with covariance matrix Σ, and Y = (δ1X
1, . . . , δnX

n)
where δi, i ≤ n are independent Bernoulli random variables with the same mean δ. We have

∥∥‖Diag(Y Y ⊤)‖
∥∥
ψ1

. r̃(Σ)‖Σ‖,
∥∥‖Off(Y Y ⊤)‖

∥∥
ψ1

. r̃(Σ)‖Σ‖.

Additionally, it holds for some absolute constant C > 0 that

EOff(Y Y ⊤)2 � Cδ2Tr(Σ)(Σ + Diag(Σ)), and EDiag(Y Y ⊤)2 . CδTr(Σ)Diag(Σ). (4.6)



Y. Klochkov and N. Zhivotovskiy 23

Proof. Observe that ‖Diag(Y Y ⊤)‖ ≤ ‖Y ‖2 and ‖Off(Y Y ⊤)‖ ≤ ‖Y Y ⊤‖+‖Diag(Y Y ⊤)‖ ≤ 2‖Y ‖2.
Therefore, ∥∥‖Off(Y Y ⊤)‖

∥∥
ψ1

≤ 2‖‖Y ‖‖2ψ2
≤ 2‖‖X‖‖2ψ2

. Tr(Σ),

and the same bound holds for
∥∥‖Diag(Y Y ⊤)‖

∥∥
ψ1

.

Let A be an arbitrary symmetric matrix and let us calculate E(A ⊙ δδ
⊤)2 where ⊙ denotes

the Hadamard product and δ = (δ1, . . . , δn) is a vector with independent components having
Bernoulli distribution with the same mean δ. We have,

[
E(A⊙ δδ

⊤)2
]

ii
= E

∑

k

AikδiδkAkiδiδk =
∑

k

AikAikEδ
2
i δ

2
k = δ2[A2]ii + (δ − δ2)A2

ii.

If i 6= j we have for the i, j-th element

[
E(A⊙ δδ

⊤)2
]

ij
= E

∑

k

AikδiδkAkjδjδk =
∑

k

AikAkjEδiδjδ
2
k

= δ3[A2]ij + (δ2 − δ3)(AiiAij +AijAjj).

This can be put together in the following expression,

E(δδ⊤ ⊙A)2 = δ3A2 + (δ2 − δ3)
[
Diag(A2) + Off(A)Diag(A) + Diag(A)Off(A)

]

+ (δ − δ2)Diag(A)2.

Note that all of these matrices are positive semi-definite, apart from the term Off(A)Diag(A) +
Diag(A)Off(A), which we can obviously bound by 1

2 (Off(A) + Diag(A))2 = A2/2. Taking into
account δ ≤ 1, we have the following

E(δδ⊤ ⊙A)2 � 1

2
(δ3 + δ2)A2 + (δ2 − δ3)Diag(A2) + (δ − δ2)Diag(A)2

� δ2(A2 + Diag(A2)) + δDiag(A)2.

Recall that Y = diag(δ)X . Therefore, we have Off(Y Y ⊤) = δδ
⊤ ⊙ Off(XX⊤). Since the latter

has zero diagonal, the term with δ in the formula above disappears. Therefore,

EOff(Y Y ⊤)2 � δ2
[
EOff(XX⊤)2 + Diag

(
EOff(XX⊤)2

)]
. (4.7)

It holds EOff(XX⊤)2 � 2E(XX⊤)2 + 2EDiag(XX⊤)2, and we also have from Lounici (2014)
that E(XX⊤)2 � CTr(Σ)Σ. Additionally, due to (4.2) we immediately have EX4

i . Σ2
ii. Finally,

the following bound holds

EDiag(XX⊤)2 � CDiag(Σ)2 � CTr(Σ)Diag(Σ).

Plugging these bounds into (4.7) we get the second inequality. As for the diagonal case we have
for A = Diag(XX⊤),

EDiag(Y Y ⊤)2 � CδEDiag(XX⊤)2 � CδTr(Σ)Diag(Σ).

Lemma 4.4. For Y as in Lemma 4.3 and any unit vector u ∈ R
n we have

E(u⊤Off(Y Y ⊤)u)2 . δ2‖Σ‖2, E(u⊤Diag(Y Y ⊤)u)2 . δ‖Σ‖2.

Proof. Let v ∈ Rn be an arbitrary unit vector. First, we want to check that

‖u⊤Diag(XX⊤)v‖L4 . ‖Σ‖, ‖u⊤Off(XX⊤)v‖L4 . ‖Σ‖. (4.8)
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Obviously, ‖u⊤XX⊤v‖L4 ≤ ‖u⊤X‖L8‖v⊤X‖L8 . ‖Σ‖, so it is enough to check that only for the
diagonal. Let us apply the symmetrization argument. Let ε = (ε1, . . . , εn)⊤ denote independent
Rademacher variables. Then,

u⊤Diag(XX⊤)v = Eεε
⊤diag(u)XX⊤diag(v)ε = EεuεXX

⊤vε,

where uε = (u1ε1, . . . , unεn)⊤ (and similarly for vε) and Eε denotes the conditional expectation
with respect to ε given X . Then, by Jensen’s and Hölder’s inequalities,

E
(
u⊤Diag(XX⊤)v

)4 ≤ E
(
u⊤
ε
XX⊤vε

)4
= EεE

1/2[(u⊤
ε
X)8 | ε]E1/2[(v⊤

ε
X)8 | ε] . ‖Σ‖4,

thus implying (4.8).
Consider two vectors a,b ∈ Rn. We show the following bound,

E




∑

i6=j

δiδjaibj




2

≤ 18δ2‖a‖2‖b‖2 + 2δ4

(
∑

i

ai

)2(∑

i

bi

)2

. (4.9)

First, using EZ2 = E(Z − EZ)2 + (EZ)2 and the fact that Eδi = δ we have,

E




∑

i6=j

δiδjaibj




2

= E




∑

i6=j

(δi − δ)(δj − δ)aibj




2

+




∑

i6=j

δ2aibj




2

.

To the first term we apply the decoupling inequality (Theorem 6.1.1 in Vershynin (2016)). Namely,
defining δ′1, . . . , δ

′
n as independent copies of δ1, . . . , δn we have,

E




∑

i6=j

(δi − δ)(δj − δ)aibj




2

≤ 16E




∑

i6=j

(δi − δ)(δ′j − δ)aibj




2

= 16
∑

i6=j

∑

k 6=l

E(δi − δ)(δ′j − δ)(δk − δ)(δ′l − δ)aibjakbl,

where in the last sum only the terms with k = i and l = j do not vanish. Since E(δi−δ)2 = δ(1−δ),
we have

E



∑

i6=j

(δi − δ)(δj − δ)aibj




2

≤ 16
∑

i6=j

a2i b
2
jδ

2(1 − δ)2 ≤ 16δ2‖a‖2‖b‖2.

It remains to bound the second term. Using (x + y)2 ≤ 2x2 + 2y2 together with the Cauchy-
Schwarz inequality, we have




∑

i6=j

δ2aibj




2

≤ 2δ4

(
∑

i

aibi

)2

+ 2δ4




∑

i,j

aibj




2

≤ 2δ4‖a‖2‖b‖2 + 2δ4

(
∑

i

ai

)2(∑

i

bi

)2

.

Putting these two bounds together and using δ ≤ 1 we get the required inequality. Since
u⊤Off(Y Y ⊤)v = δ

⊤diag(u)Off(XX⊤)diag(v)δ, we can apply (4.9) with a = diag(u)X and b =
diag(u)X . This implies

E
(
u⊤Off(Y Y ⊤)v

)2
. δ2E‖diag(u)X‖2‖diag(v)X‖2 + δ4E(u⊤X)2(v⊤X)2

. δ2E1/2‖diag(u)X‖4E1/2‖diag(v)X‖4 + δ4E1/2(u⊤X)4E1/2(v⊤X)4 .
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Due to (4.2) we have E1/4(u⊤X)4 . ‖Σ‖1/2. Moreover, the vector diag(u)X also satisfies the
subgaussian assumption (4.2) and has the covariance matrix diag(u)Σdiag(u). Therefore, we have

E
1/2‖diag(u)X‖4 . Tr(diag(u)Σdiag(u)) .

∑

i

u2iΣii . max
i

Σii . ‖Σ‖,

where we used that ‖u‖ = 1. Similar inequalities hold for the vector v. Therefore, we conclude
that

E
(
u⊤Off(Y Y ⊤)u

)2
. δ2‖Σ‖2.

Finally, we have for the diagonal term

E
(
u⊤Diag(Y Y ⊤)v

)2
= E

(
∑

i

δiuiviX
2
i

)2

= δ2E
(
u⊤Diag(XX⊤)v

)2
+ (δ − δ2)

∑

i

u2i v
2
i EX

4
i

. δ2‖Σ‖2 + (δ − δ2)
∑

i

u2i v
2
i ‖Σ‖2 . δ‖Σ‖2.

Before we present the proof of the deviation bound, let us recall the following version of
Talagrand’s concentration inequality for empirical processes. Remarkably, the following result
can be proven using very similar techniques: at first, one may use the modified logarithmic
Sobolev inequality to prove a version of Talagrand’s concentration inequality in the bounded case
and then use the same truncation argument as in the proof of Theorem 1.1 to get the result in
the unbounded case.

Theorem 4.5 (Theorem 4 in Adamczak (2008)). Let X1, . . . , XN ∈ X be a sample of inde-
pendent random variables and F be a countable class of measurable functions X 7→ R such that
supf∈F ‖f(Xi)‖ψ1 <∞. Define

ZF = sup
f∈F

∣∣∣∣∣

N∑

i=1

f(Xi) − Ef(Xi)

∣∣∣∣∣ (4.10)

and σ2 = supf∈F

∑N
i=1 Ef

2(Xi). There is an absolute constant C > 0 such that

P (ZF > 2EZF + t) ≤ exp

(
− t2

4σ2

)
+ 3 exp

(
− t

C‖maxi supf |f(Xi)|‖ψ1

)
.

Proof of Theorem 4.2. At first, using (4.3) we have

‖Σ̂ − Σ‖ . δ−1
∥∥∥Diag(Σ̂(δ)) − EDiag(Σ̂(δ))

∥∥∥+ δ−2
∥∥∥Off(Σ̂(δ)) − EOff(Σ̂(δ))

∥∥∥ .

Let us apply Proposition 4.1 to the term NOff(Σ̂(δ)) =
∑N

i=1 Off(YiY
⊤
i ), where

R = CNδ2Tr(Σ)(Σ + Diag(Σ)).

We have r̃(R) ≤ 2r̃(Σ) and ‖R‖ . Nδ2Tr(Σ)‖Σ‖. Therefore, with probability at least 1 − e−t,

‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ . max

(√
δ2Tr(Σ)‖Σ‖(log r̃(Σ) + t)

N
,

Tr(Σ)(log r̃(Σ) + t) logN

N

)

= ‖Σ‖max

(√
δ2r̃(Σ)(log r̃(Σ) + t)

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

(4.11)



Y. Klochkov and N. Zhivotovskiy 26

Integrating this bound (see e.g. Theorem 2.3 in Boucheron et al. (2013)) we easily get

E‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ . ‖Σ‖max

(√
δ2r̃(Σ) log r̃(Σ)

N
,
r̃(Σ) log r̃(Σ) logN

N

)
.

Finally, we apply Theorem 4.5 to the set of functions F indexed by γ ∈ Sn−1 and defined by

fγ(Xi) = γ⊤Off(YiY
⊤
i )γ,

so that ZF = N‖Off(Σ̂(δ))−EOff(Σ̂(δ))‖ in (4.10). Then, by Lemma 4.4 we have σ2 . δ2N‖Σ‖2
and by Lemma 4.3 ‖maxi supf |f(Xi)|‖ψ1 = ‖maxi ‖Off(YiY

⊤
i )‖‖ψ1 . r̃(Σ)‖Σ‖ logN , so that

with probability at least 1 − e−t for t ≥ 1,

‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ . E‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ + δ‖Σ‖
√

t

N
+ ‖Σ‖ r̃(Σ)t logN

N

. ‖Σ‖max

(√
δ2r̃(Σ) log r̃(Σ)

N
,

√
δ2t

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

We proceed with the diagonal term. Applying Proposition 4.1 to the sum NDiag(Σ̂(δ)) =∑N
i=1 Diag(YiY

⊤
i ) with R = CNδTr(Σ)Diag(Σ) we have r̃(R) . r̃(Σ) and ‖R‖ . NδTr(Σ)‖Σ‖.

Therefore, with probability at least 1 − e−t we have

‖Diag(Σ̂(δ)) − EDiag(Σ̂(δ))‖ . ‖Σ‖max

(√
δr̃(Σ)(log r̃(Σ) + t)

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

(4.12)
Again, integrating this inequality we get

E‖Diag(Σ̂(δ)) − EDiag(Σ̂(δ))‖ . ‖Σ‖max

(√
δr̃(Σ) log r̃(Σ)

N
,
r̃(Σ) log r̃(Σ) logN

N

)
.

We have E(u⊤Diag(YiY
⊤
i )u)2 . δ‖Σ‖2 and ‖maxi ‖Off(YiY

⊤
i )‖‖ψ1 . r̃(Σ)‖Σ‖ logN by Lemma 4.4

and Lemma 4.3 respectively. By Theorem 4.5 we have with probability at least 1 − e−t,

‖Diag(Σ̂(δ)) − EDiag(Σ̂(δ))‖ . E‖Diag(Σ̂(δ)) − EDiag(Σ̂(δ))‖ + ‖Σ‖
√
δt

N
+ ‖Σ‖ r̃(Σ)t logN

N

. ‖Σ‖max

(√
δr̃(Σ) log r̃(Σ)

N
,

√
δt

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

Finally, we combine the off-diagonal and diagonal bounds via the triangle inequality and get

‖Σ̂ − Σ‖ ≤ δ−2‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ + δ−1‖Diag(Σ̂(δ)) − EDiag(Σ̂(δ))‖ .
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A An approximation argument for non-smooth functions

In order to apply the logarithmic Sobolev assumption (1.7) rigorously we need to take smooth
approximations of the function

ZA(X) = sup
A∈A

(X⊤AX − EX⊤AX).

Notice that we have,

|ZA(X) − ZA(Y )| ≤ ‖X − Y ‖
(

sup
A∈A

‖AX‖ + sup
A∈A

‖AY ‖
)
.

The following simple lemma shows how to apply the logarithmic Sobolev inequality to non-
differentiable functions.
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Lemma A.1. Suppose that X satisfies Assumption 1. Let f : Rn → R be such that

|f(x) − f(y)| ≤ |x− y|max(L(x), L(y)),

for some continuous non-negative function L(x). Then for some absolute constant C > 0 and
any λ ∈ R it holds

Ent(eλf ) ≤ CK2λ2EL(x)2eλf

Proof. Set h(x) = x2(1 − x)2+ and consider the smoothing kernel supported on the unit ball
defined by

φ(u) =
1

Zh
h(‖u‖2), Zh =

∫
h(‖u‖2)du = Sn−1

∫ ∞

0

h(r2)dr,

where Sn−1 is a surface area of the unit sphere in Rn. Note that since φ is radial, ∇φ(u) =
−∇φ(−u) and also,

∫
‖u‖‖∇φ(u)‖du =

2Sn−1

Zh

∫ ∞

0

r2|g′(r)|dr =
2
∫∞

0
r2|h′(r)|dr∫∞

0 h(r2)dr
= Ch.

Setting φm(u) = m−1φ(u/m) for m ∈ N we have ∇φm(u) = m−2(∇φ)(u/m). Therefore, we have

∫
‖u‖‖∇φm(u)‖du =

∫ ∥∥∥
u

m

∥∥∥
∥∥∥(∇φ)

( u
m

)∥∥∥ d
u

m
= Ch.

Take F (x) = eλf(x)/2 and let us consider a sequence of smooth approximations Fm(x) =∫
φm (x− u)F (u)du, so that Fm(x) tends to F pointwise. This is possible due to the fact that

F is continuous. Moreover, we have due to the symmetry

∇Fm(x) =

∫
(∇φm)(x− u)F (u)du =

∫
(∇φm)(u)F (x− u)du

=
1

2

∫
(∇φm)(u)[F (x − u) − F (x+ u)]du.

Since φm(u) vanishes for ‖u‖ ≥ 1/m, we have

‖∇Fm(x)‖ ≤ 1

2
sup

‖u‖≤m−1

|F (x− u) − F (x + u)|
‖u‖

∫
‖u‖‖∇φm(u)‖du

= Ch sup
‖u‖≤m−1

|F (x− u) − F (x+ u)|
2‖u‖ .

It is easy to see that

|F (x) − F (y)| = |eλf(x)/2 − eλf(y)/2| ≤ λ

2
‖x− y‖max(eλf(x)/2, eλf(y)/2) max(L(x), L(y)),

and therefore,

‖∇Fm(x)‖ ≤ λCh
2
F̃m(x) × Lm(x),

where we set Lm(x) = supy : ‖x−y‖≤m−1 L(y) and F̃m(x) = sup‖x−y‖≤m−1 eλf(y)/2 that tend point-
wise to L(x) and F (x), respectively, as m → ∞. Since each function fm is smooth, we have by
Assumption 1 that

Ent(F 2
m) ≤ K2

E‖∇Fm(x)‖2 ≤ λ2C2
h

4
K2

EL2
m(x)F̃m(x)2.

Taking the limit m→ ∞ we prove the the required inequality.
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